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Abstract

We derive sharp pressure estimates for two dimensional incompressible fluid flow, in terms of natural quantities such as
enstrophy, energy and angular momentum. We cover both the Euler and Navier—Stokes equations, and both periodic planar
flows and spherical flows. ©2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

In a two dimensional incompressible fluid with bounded enstrophy, can we control the oscillation of pressure?
A first inspection of the equations, armed with classical elliptic regularity theory and Sobolev inequalities, would
suggest that this is impossible and that for fluids with vorticity concentrated in an appropriate manner, the ratio of
the oscillation of pressure and the enstrophy could be arbitrarily large.

However, in this paper, we harness recent developments in the nonlinear theory of partial differential equations
concerning the compensation properties of Jacobian determinants, to show that on the contrary, universal bounds are
possible and that we can give many of them in optimal form. For our treatment of spherical flows, we must develop
this compensation theory further, to handle Jacobian determinamtctdr fieldson surfaces rather than simply
determinants of maps into surfaces supporting isoperimetric inequalities as in [7]. Our analysis gives estimates for
the fluid viewed at a given instant of time. Estimates of a more dynamical nature then require only the computation
of the evolution of enstrophy in addition.

Let us begin by detailing the Navier—Stokes equations. The planar equations for the velocity vector: field
[0, T] x R? - R? and pressurg : [0, T] x R? — R are

v+ (v-V)v—vAv+Vp =0,
V.v=0, ) (1)
v(0, -) = vo,
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where A is the Laplacian, and > O is the viscosity. Withv = 0, these equation become the Euler equa-
tions.

Meanwhile, on the sphe$? < R3, the velocity is a tangent vector field: [0, 7] x $2 — R3. We postulate
the equations

v+ (v-V)v+|v]%u —v(Av +2v) + Vp =0,
diviev =0, . (2)
U(O, ) = 0,

whereu € 52 — R3 is the space coordinate (also the unit normal vector)and0, 7] x S2 — R is again the
pressure. The surface divergence,giat a point: € 2 is defined by

divev=e1-V(v-e1) +e2-V(v-en),

for any orthonormal basisy, e, of the tangent spacg, S2, andA is now the Laplace—Beltrami operator, which is
applied to the three componentswindependently.

Note that in the spherical equations, the normal veetSi: cancels the normal component(@f- V)v. (Indeed,
(v-V)v+|v|%u corresponds to the covariant derivatWgv.) The other additional term; 2vv, prevents the viscosity
term from dissipating angular momentum, as we shall see. Of cauxset 2v) is simply the ordinary Laplacian
in RS of the linear radial extension ofto the ambienR3; this extension will be useful in some of our calculations.
Note that the incompressibility condition is equivalent totheterm having no normal component (iuwe.Av = 0).

A remark on the physically correct viscosity term for the Navier—Stokes equations on curved manifolds may be
found in ([4], Added in proof).

Two dimensional incompressible spherical flow equations such as those given have been used to study basic
dynamical questions concerning the evolution of large scale atmospheric vortices. Typically, the viscosity term is
small, and is adapted to suit numerical calculations; in the case of zero viscosity, the vorticity (see below) is often
restricted to take only a finite number of values, with each region of constant vorticity referredvordeepatch
A starting point for further references is [5].

Let us define various relevant physical quantities for spherical flows. The vouticity> — R of v is taken to
be

o) =u-(V xv),

wherev is extended arbitrarily to a neighbourhood$5 in R3. Ubiquitous in this work are the global physical
guantities

Enstrophy = / «?, and Kinetic energy= / [v]2.
52 52
These will normally refer implicitly to the velocity field at timein other words ta(¢) := v(¢, -), for some flow

v. The normalised angular momentum is simply

3
W)= — | uxv.
87T S2

Finally, we define two renormalised quantities, éxeeskinetic energy

8
K(v)=/ w2 = =122 3)
52 3
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and theexces®nstrophy
167

W(v>=f w® — 1) (4)
52 3

As we shall see, the excess kinetic energy and enstrophy are always positive; they correspond to the same physical
qguantity computed for the velocity field obtained by projectingnto the orthogonal complement of the first
eigenspace oA.

For planar flows we shall require merely the vorticily: R? — R (occasionally written,) which is given
analogously by

w(x,y) = BXUZ — 8yvl,

wherev = (v1, v2).

In the sequel, we talk of ‘admissible’ solutions. These may be taken sooethsolutions for simplicity; there
is a classical theory providing smooth solutions given smooth initial aiafan contrast to the three-dimensional
case) even in the case= 0 of inviscid flows.

Theorem 1. Suppose thatv, p) is an admissible solution to the spherical equati¢@s Then at each time,
denoting the average value pfz, -) by p;, the pressure is controlled in terms of the enstrophy and kinetic energy
according to

B —— <pt,u) —p; < — — , 5
2 Szw + 47 /52|U| = ptu) =pr = 2 /Szw + 47 52|U| ®)

for all u € $2, and hence
1 2
osap(t,)) < — | o (6)
T Js2

Here, the oscillation of a functiofi is defined to be

0sq f) = esssupf(x) — f(»)I.
X,y

The enstrophy and kinetic energy are calculated at tim&heorem 1. However, in the zero viscosity case 0,
these quantities do not depend on time, as one would expect (see Section 3) so we may calculateghestdad
of v(z, -).

Looked at upside-down, inequality (6) of Theorem 1 tells us that if we take two local measurements of pressure,
then any discrepancy gives us an explicit lower bound on the global enstrophy.

The senses in which Theorem 1 is sharp will be discussed in Section 4. Roughly speaking, if the vorticity is
suitably concentrated, the lower pressure bound is achieved in the limit.

As we shall justify later on (see Section 3) the Poincaré inequality tells us that the kinetic energy may be controlled
optimally in terms of the enstrophy:

Proposition 1. For any velocity field on $2, we have

1
/Ivlzf—/ o, @)
52 2 SZ
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Therefore, (5) may be simplified (and weakened) to an inequality involving no more than the pressure and enstrophy
1 5
x| = ptw Tz o [ ot ®)
27 Jg2 8r Js2
More useful when the excess enstrophy is small, is the following result.

Theorem 2. Suppose thatv, p) is an admissible solution to the spherical equati¢®s Then at each time we
have

1 1 3
osdp(t, ) < §|9<vo>|2 + W) + 2\/; 12 (vo)| W (v(2))Y/2. )

This result will turn out to be more useful fors> (1/v) because the excess enstrophy decays over that timescale;
we prove the following proposition in Section 3.

Proposition 2. The excess enstropliy(v(r)) decays according to

W) < W(oe ™.
Combining Theorem 2 and Proposition 2 gives

1 1
osap(t, ) < 5|9<vo>|2 + ;W(UO)E_SW + 2@ |12 (vo)| W (vo) /2. (10)

Theorem 2 and its consequence (10) are optimal in rather different ways to Theorem 1. As clarified in Section 4,
we have equality for ‘uniformly rotating’ flows.

Let us now turn our attention to planar flows, and in particular, to those which are doubly periodic. In what
follows, I" is some lattice ifR2, andT is defined to be the tord&?/I".

Theorem 3. Suppose that, p) is an admissible solution to the planar equatig@swhich is periodic with respect
to I'. Then at each time, we have

osap(t, ) < % /T 2. (11)

This estimate is sharp for suitable velocity fields with highly-concentrated vorticity (see Section 4).
In (11) the enstrophy is calculated at timeHowever, it will become clear in Section 3 (although we suppress
the proof) that the enstrophy decays exponentially according to

"2 —2m (D | ~2
/ Dy = € Dyg:
T T

whereA1(T) is the first eigenvalue of the Laplacian @n

2. Instantaneous pressure estimates

In this section we will derive the equations for the pressure, put them into a suggestive form, and then exploit the
hidden regularity properties of Jacobian determinants to obtain the desired pressure estimates. For spherical flows,
we will be led by the philosophy of the theory, whilst for planar flows, we apply the current theory directly. It has
already been observed by Tartar [6] that the pressure equation for planar flows enjoys a geometric structure which
may be exploited to obtain unexpected estimates.
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Let us recall one of the results we proved in [7] which in fact holds for any compact Riemannian surface once
we have made sense of the quantities involved.

Theorem 4. Suppose that € HX(T, R?), and thaty is a solution inW&’l(T, R) to
—Ag = det(Vu), (12)

(which is unique up to the addition of a constant). Then we have the estimate

1 2

Note that at first glance, the Jacobian determinantvdet appears to be controllable only in* which in itself is

too weak to conclude that lies in L. A broader discussion of the geometry behind this theorem may be found

in [7]. A Hardy space interpretation of this type of result®f was given in [3]. Previous estimates of this form

have been developed by Wente [8], Brezis and Coron [2] and others, although these results are not applicable in the
generality required here (see [7] for a survey).

Proof (Theorem 3). Let us turn our attention to the system of equations (1). Writing the velocity field in coordinates
v(x,y) = (a(x,y),b(x,y)), the incompressibility condition is, + b, = 0, and taking the divergence of the
principal equation yields

(V- v)+V-((v-V)v) —vA(V-v)+ Ap =0.
Therefore using incompressibility,

—Ap=V_-((v-V)v) = (aay + bay), + (aby + bby),
= 2(bxay — axby) — abxy + baxy + abyy — bay, = —2de(Vv), (14)

where we use the shorthand = d.a. Applying Theorem 4 directly we obtain

1 2
0Sap) = o—lIVvlzz(p,
but a short calculation, using incompressibility, reveals that
&% = |Vv|? + 2de{(Vv), (15)

which after integration allows us to conclude that

1 A2
0s < — . O
dp)_Zﬂ/Tw

Fluid flow in the plane is blessed with a velocity field taking value®fy the fact thatR? is equipped with an
isoperimetric inequality is then used directly to achieve the unexpected regularity of Theorem 4. For spherical fluid
flow, the situation is more complicated with the velocity a section of a nontrivial tangent bundle. However, we are
able to make progress by following the philosophy of the proof of Theorem 4, and our task is made easier by the
symmetry of the Green function &?; in this sense, the proof has points in common with previous work of Baraket
[1].

Before proving Theorem 1, let us record the spherical equivalent of (15) which is a simple calculation appealing
implicitly to the fact that the Gauss curvature of the standard 2-sphere is identically equal to one.



148 P. Topping/ Physica D 137 (2000) 143-156
Proposition 3. Given a velocity field on $2, we may define a 1-form
a() =u- (v xdv).
Then
dor = (2u - (vx X vy) — 02[v]?) dx A dy = (@? — |Vv[®)p?dx A dy, (16)

wherex and y are local isothermal coordinates for the positiane $? < R3, and p? = |u.|? = |u,|?, and
therefore

/ w?® — |Vv|2=/ 2u - (vy x vy)—p2|v|2)dx/\dy=0.
§2 S2 Y

Itis worth clarifying that Vv|? in (16) above refers to theoordinate independeharmonic energy densityv|? =
(1/p®) (Jvx [ + [vy ).
We may now give the spherical analogue to Theorem 4.

Theorem 5. Suppose that € H1($?, R3) is a tangent vector field on the 2-sphere, and thistthe unique solution
in Wyt (S%, R) to
1 1
—Ap = ?u < (vx X vy) — §|v|2, an

having an average value of zero (wherandy are again local isothermal coordinates, apds defined as before).
Then we have the pointwise estimate

1 1 1 1
——[ |Vv|2——/ Ivlszs—/ |Vv|2——/ v]2. (18)
47'[ S2 87T 52 47T 2 87T 52

Note that withx, y andp as in the preceeding theorem, the Laplace—Beltrami operator is simply

AL az+a2
T p2\ax2 T 9y2 )

Theorem 5 is the main ingredient in the proofs of Theorems 1 and 2.

Proof (Theorem 1). Analogously to the proof of Theorem 3, we begin by taking the surface divergence of the
flow equations (2). Using the incompressibility condition carefully, we find thatdiv - V)v) = —2(1/p%)u -
(vx x vy) — [v[%, and diva(|Jv|?u) = 2|v|2, and therefore the pressure satisfies the equation

1 1
—Ap=-2 <?u < (vx X vy) — §|v|2> . (19)

Applying Theorem 5 gives

v o [P o [ ver o [
- v — [ |v — v — | vl5,
21 Jg2 4 J g2 =r= 2 Jg2 4 g2

and we conclude by applying the final part of Proposition 3. |

Our proof of Theorem 5 is fairly direct, but hidden within are the seeds of an ‘isoperimetric inequality for vector
fields'. If we were to generalise the result to handle vector fields on more general surfaces, it might be more
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appropriate to mimic the theory developed in [7] more closely, and work explicitly with some such isoperimetric
inequality.

Proof (Theorem 5). We may assume, via an approximation argument; taatl hence) are smooth. Recall that
the Green function on the sphere

. 1 lu — ul
G(u,u):—Eln > ,

is the solution of the equation

1
4’
Let us stereographically project the sphere onto the plane, seidmthe origin. This gives us stereographic
cartesian and polar coordinates y) and(r, 8) respectively, corresponding to the paine S2.
In these coordinates; (1) = (1/47) In(1+ (1/r%)), and so
dG 1p

-~ __ - F 2
dr 4 v’ (20)

~AG(fi, 1) =8, —

wherep, defined as before, may now be given explicitly&s) = 2/(1 + r2). Since the volume form o2 is
given byp?dx A dy, Green’s representation feris

1 1
W) = / G, un) <_2” < (vy X vy) — —|v|2> pzdx A dy,
S2 P 2
and using Proposition 3 and (20) we progress with

(p(ﬁ):/G(ﬁ,u)}d(w(vxdv)):—}/ dG/\(u'(vxdv))zi/ B(/
s2 2 2 S2 8m o r 0

2
u-(vx vg)dé) dr.

(21)

Let us writev in terms of the orthogonal basis of the tangent spacg?afuggested by the cartesian coordinates
(x, y). Explicitly,

v =auy + Buy.
Therefore the magnitude ofis given by|v|? = p?(a? + g?). Differentiating with respect te, say, we find

Vy = ylty + Qityy + Bylty + Butyy, (22)
and therefore

u-(vxvy) = Xxv)- vy = (auy — Buy) - (ayuy + cttyy + Byuy + Buyy)

= aByp® + Py - try) + APy - uyy) — Payp® — aBlity - ttey) — 21y - ttyy).
Exploiting the conformality of stereographic projection gives us the ‘connection coefficients’

Uy - Uyy = %(|My|2)x = PPx, Uy - Uyy = %(|My|2)y = PPy (23)

1 2
Uy * Uxy = §(|Mx| )y = PPy, Ux ‘ Uyy = (ux 'uy)y —Uyxy Uy = —PPx,
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and hence
u- (v xvy) = (@By — Bay)p? + ppr(@” + 7).
Likewise, we see that
- (v x v) = (@B — Par)p® — ppy(a® + B2,
and hence
- (v x vg) = (afy — Pato) p? + rppr(@® + %) = (afy — Pag)p® — rplvl?,

which we integrate to

21 2 21
/ u-(vxvy)do = ,02/ (afy — Bag) do — rzp/ lv]? do, (24)
0 0 0

since we are hoping to estimate #héntegral in (21).

We can control the first term on the right-hand side of (24) using the isoperimetric inequaliy, an simply
by direct calculation using Wirtinger’s inequality. Denoting the average valuefof each fixed- by @ = @ (r),
and likewise forg, we have

27 27 _
;02/0 (aBp — Bog) d ;02/0 ((a —a@)By — (B — Pag) dI

p2 [27 _
7[{) ((@—@2+ B2+ (B—B*+ad)do

IA

,02 2 27
< 7/0 (@2 + B2+ B2 +a2) db =p2/0 (o + $2) do. (25)

In order to continue with this estimate, we return to (22). Taking the scalar product with the unit (etpr,
and appealing to (23), we find that
Ux
Uy - ; = pay — pxp,

and so by utilizing Young’s inequality we may estimate
2 .2 Ux 2 2 Ux 2 2 2 4,2 1 2 Ux ? x? 3,2
play =(vy-— —xpB) =|vy:-— ) QA+r)+xp" |1+ 5 |=—|vy - — +2—2,0ﬂ.
o o r o\~ p r
Summing the analogous expressionsdéw?, p2gZ andp?p? gives

2 e\ uy\2 e \ 2 uy \?
pz(af+a§+ﬂf+ﬂ§)§;<<vy~7x> +(uy7y> +<v7> +(vx7’> +2p%(a® + B2,

and by observing (using the fact thais a tangent vector field on the sphere) that

2 2 2 2
u u u u N
(vy : —x> + <vy . —y) + (vx ‘ —x) + <vx . —y) = |Vv|2 — |v]|?p?,
2 P 2 P
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(where the notatiofVv|? = |v,|?+ |v, |2 avoids confusion with thevv|? = (1/0?)(|vx|?+|vy|?) used previously)
we reduce to

1 2
0% + ) < Pef + ol + BT+ B)) < ;(IVUIZ — vI20?) + 2pv[%,
or simply
2r2 .
p% (@2 + B < 7|VU|2-
Blending this with (24) and (25) yields

2r2 2 R 2 2 2,.2 2 . 2
=] Vv —rzp/ lv]2do < / u-(vxuvg)do < —/ IVu|2do — rzp/ lv2do. (26)
P Jo 0 0 P Jo 0

In order to use the representation (21) we compute

1 00 2 2 p2r . 1 00 p21 R 1 n 1
By L/ V|2 do drz_/ / r|Vv|2d9dr=—/ |Vv|2=—/ IVl?,
8tJo r\ p Jo 4z Jo Jo A JR2 A [ g2

(where the final equality alludes to the conformal invariance of the Dirichlet energy on two-dimensional domains)
and

1 '] 2 1 oo 21w 1 1
— L er/ [v[?de ) dr = —/ / rlv|?p?do dr = —/ [v]2p? = —/ [v]2.
8t Jo r 0 87 Jo Jo 8 Jr2 8r Jg2

Combining these calculations with (26) and (21) gives the conclusion

1 2 1 2 . 1/‘ 2 1/ 2
- Vol|f — — < < — Vo|f — — . O
47 52| vl 871/;2|U| =e) = 47 52| vl 8r 52|U|

Let us now turn our attention to Theorem 2. The basic supplementary principle behind this result is that the
velocity field may be decomposed into a ‘purely rotational’ part and an ‘orthogonal’ part, the latter having zero
angular momentum. The contribution to pressure variation from each componentis then considered separately —the
variation due to the purely rotational component being calculated explicitly. As we shall see in the next section, the
effect of viscosity is to kill the orthogonal part leaving the purely rotational part intact. We are therefore guaranteed
a sharp estimate in the limit of this process.

We define a ‘purely rotational’ velocity field to be a field of the form

v(u) =e x u,

for some fixed € R®, and we may refer to the corresponding flow as ‘uniformly rotating’. The angular momentum,
vorticity and enstrophy are then given by

QW) =e, o) =2u-e), / w? = &MZ. (27)
SZ 3

Moreover, the pressure is precisely

pw) = £(le]? = 3(u - e)?),
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and hence
le|?
osdp) = - (28)
Given any other field, we decompose it into divergence free components
v ="yt
where

V') = 2) xu, and vt =rv— "™

This is simply taking thd.2 projection onto the first eigenspace of the Laplacian, and the orthogonal component.
Consequently, since each componentbfs perpendicular to linear functions (a fact which may be verified directly)

we have simple decomposition of most of our physical quantities into the sum of the quantities for each component
of v. Explicitly,

/aﬂ:&m(vn%/ (@h)?,
52 3 SZ

wherewt (1) = u - (V x v+), and

8
/|v|2=—|9<v)|2+/ lvt|?,
52 3 S2

which explains our definitions of the renormalised quantities in (3) and (4). A short calculation confirms that
2™ = 2(v). (29)

The proof of Theorem 2 will also require a rather coarser estimate than (18) for the oscillation of solutions to
Poisson’s equation. Since we are insisting upon explicit constants, we state:

Proposition 4. Suppose : S2 — R is a solution to the equation

_A(p:fv

wheref € L2(S2, R). Then

1 ) 1/2
OS“‘”)fﬁngf) .

Proof. For anyi € S2 — R3, explicit calculations confirm that

lu—a\? 1 u—a] 1
In =27, and c:= — In = _.
/S2< 2 ) i Tl 2 2

Therefore, using Green’s representation

L 1In|u—12| 1 In|u—ft| ‘
(P(M)—/Sz(—g > )f(u)——z 52( > —c>f(u),

we may estimate directly

N 1/2 1/2 1/2
1 u—al )’ 2y _ 1 2
'“””55(/520” 2 ‘C)) (L) == (L)
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and hence

1 ) 1/2
osc«p)sﬁgszf) - U

Proof (Theorem 2). In this proof we only concern ourselves with optimal coefficients for the quadratic angular
momentum term in (9) which dominates in the limit of large time (assumingO0). If the other terms are large,
then Theorem 1 may be more appropriate.

We begin by decomposing Eq. (19) for the pressure into its components. A short calculation, using (29) yields

_Ap — _Aprot _ Apl _ Ay,

where
1 1
t t t
—Apt=-2 (—pzu S x o) — E|v

and

1 1
“"F) L —Apt =2 (;u (v X vy) = §|vL|2> ,
—Ay = —2((u - 2W)w+ — v v,
By (28) and (29) we have

12)*,
2 9
using Theorem 5 (c.f. Theorem 1) we have

Osqpl’ot) —

1 1
osaph) < = / (@h)? = =W ().
T Js2 T
Once we have observed, using the inequalit§!| < |£2(v)| and Proposition 1, that
/ (—Ay)? < 8|9(v)|2/ (@D + P < 12|9(v>|2/ (@H)? =122w)* W (),
52 52 52

we may invoke Proposition 4 to get

0sdy) < 2@ 12 () |W (v)Y2.

Combining all three oscillation estimates yields

2
0sap) < @ + %W(v) + 2\/§ 12(0)] W2,

which is our destination, modulo conservation of angular momentum which will be established mathematically in
the next section. |

3. Evolution of physical quantities

In this section we give mathematical proofs of the evolution properties of physical quantities which we have
referred to elsewhere in this paper.

In our calculations, we will use repeatedly the following consequence of the divergence theorem (or equivalently
the first variation formula).
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Proposition 5. If w : $2 — R3 is a divergence-free tangent vector field on the sphere, then

/w-Vf:O,
S2

for any functionf : §2 — R.

We begin by proving conservation of angular momentum — a fact used already in the proof of Theorem 2. We
need only concern ourselves with an arbitrary component

3 3
e-Q(v):—f e~(u><v)=—f (exu)-v
8 Jg2 8 Jg2
of 22, wheree € R3 is any unit vector, and this component does not vary in time according to the calculation

9 (exu)~v=/(exu)-(v(Av—l—Zv)—(v~V)v—|v|2u—Vp)
dat 52 §2

=/2[U(A(exu)+2(exu))-v—(v-V((exu)~v)—(exv)-v)
N
—|v|2(exu)-u—(exu)-Vp]=O,

where we have used the fact that the components &fu) are linear functions, and are therefore eigenfunctions
on the sphere with eigenvalue 2, and also that bahd(e x u) are divergence-free, and may therefore be fed into
Proposition 5.

Conservation of momentum requires only the incompressibility condition. Using Proposition 5 we have, for an
arbitrary vector € R3,

e'/v:/v~V(u~e):O.
52 52

It is this fact, together with the final part of 3 which we require in order to prove Proposition 1 by applying the
Poincaré inequality

2/S2f2§fszlvf|2, g /Szf=o, (30)

to each component af, and summing. The coefficient 2 in (30) is, of course, the first eigenvalue of the Laplacian
on $2. Indeed for functions orthogonal to the first eigenspace, this coefficient may be improved to 6, the second
eigenvalue, and hence fot- we may improve Proposition 1 to

1 1
/|vﬂ25—/ |VUL|2=—f (@h)2. (31)
52 6 52 6 SZ

Of course, we have equality in (7) for purely rotational vector fields suefP§r equivalently we hav#y (v™!) =
K™Y = 0.

It remains to handle the decay of kinetic energy and enstrophy, both of which are conservef.iff not, these
guantities decrease, with tle&ceskinetic energy angxces&nstrophy decaying exponentially.

To handle the kinetic energy, we take the scaler product of (2) wiin2l integrate, using Proposition 5 and (31)
to find that

dK(v) 9

— |v|2=—/v-V|v|2—2fv~Vp—2v /|vU|2—2/ [v]?
at ot §2 52 2 52 52
=—2v (/ |w¢|2—2/ |UL|2>5—81)/ lvt)? = —8vK (v).
§2 S2 S2

Therefore the excess kinetic energy decays exponentially.
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It is well known that for planar flows, the vorticity evolves according to
9o+ (v-V)d=vAd.

For spherical flows, we may extend the velocity field to the amtiéraind take the curl of the extention of equations
(2) —or proceed intrinsically —to derive the evolution equation for vorticity

orw~+ (v - Vo = v(Aw + 2w).
By analogy to the kinetic energy, we multiply this equation lydhd integrate to obtain
oW (v) 0

— |a)|2=—/v-V|a)|2—2v /|Va)|2—2/ lw|?
8t 3t SZ 52 SZ SZ
= —2v </ |VwJ'|2—2/ |wi|2)§—8u/ lwt ]2 = —8vW (v),
52 52 52

where we have used the fact that is orthogonal to both constant and linear functions (which is easily verified)
and hence (cf. (31)) that

1
/|wl|25—/ |Vt |2,
S2 6 52

(We are also using implicitly the fact that the rotational componexiV x v™!) of w is a linear function, in order to
decompose the vorticity as shown.) We see, therefore, that the excess enstrophy decays exponentially as described
in Proposition 2.

4. Optimality of the estimates

Most of our estimates are sharp, as we detail below, though different estimates are sharpest for different distribu-
tions of vorticity. Most of the velocity fields we describe below are modifications of examples of Baraket [1] who
was interested in proving limits on the strength of Wente-type inequalities, before the optimal inequalities were
given in [7].

For Theorem 1, the first inequality in (5) (bounding from below the variation of pressure from its average value)
is optimal in the weak sense that we may find a sequence of non-zero velocity fields such that the ratio of the
right-hand side and the left-hand side converges to 1 in the limit. Consequently, (6) must be sharp up to a possible
factor of two.

Explicitly, using spherical polar coordinatés, ¢) for u and the notatiom = (0, 0, 1) (so that cos = u - ¢) we
take, for smalk, the velocity fields

(€MD Dexu a<e,
ve(u) = (e(l/z)a_l)e X U o> €.

Clearly we have the pointwise estimaté < /2, and so

/ [v]? = O(e).
52

Working a little harder, we have, with the aid of Proposition 3,

/aﬂ:f [Vv|? = 7 + 0o(2),
52 52
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where the contribution from ‘radial’ (harmonic) energy is in fact mere{y)OFinally, it is easy to calculate that

/2” ( ) do 2rel=2022giry cose  « < e,
u-(vxuvg = ]
0 2 ea™2 sinfa cosa o> e,

and hence using Green'’s representation (cf. (21)) we find that
ple) = —3 +0(D),

where the average value pfis 0. Given the above, the first inequality in (5) is clearly seen to be optimal by taking
the limite — 0.

Note that these considerations do not pin the coefficient of the kinetic energy. However, it is worth pointing out
that the energy with the coefficient given arises naturally in the proof.

In contrast, we may actually achieve equality in (9) of Theorem 2. However instead of concentrating the vorticity, it
now pays to distribute it more evenly. Indeed, itis easy to see that for any purely rotational velocityifield e x u,
for some fixed vectoe, we must have equality —see (27) and (28). Moreover, since the excess enstrophy decays in
the limit to leave such a flow, we must have an optimal estimate in the limit of large time, provided-that

Theorem 3 is completely sharp, as we see by considering more examples of the type used by Baraket, or by
inspecting the proof of Theorem 4 given in [7]. It suffices to consider a velocity field which is zero outside a small
ball B(0, d) in the torusT. Inside, we may set

(€27 (—y, x) r<e,

Ue(-xﬂy)z 61/2 1 (g_:L) (_y’x) E<r<d, ’
d—e\r B

wherer? = x2 + y2, in which case

/ &% =7 + 0(1),

T

and, after some thought,
0sap) = 3 +0(1),

ase — 0.
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