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Abstract

We settle a number of questions about the possible behaviour of the harmonic map heat
flow at finite-time singularities. In particular, we show that a type of nonuniqueness of bubbles
can occur at finite time, we show that the weak limit of the flow at the singular time can be
discontinuous, we determine exactly the (polynomial) rate of blow-up in one particular example,
and we show that ‘winding’ behaviour of the flow can lead to an unexpected failure of convergence
when the flow is (locally) lifted to the universal cover of the target manifold.

1 Introduction

Given a compact Riemannian manifold N , we define the energy of a sufficiently smooth map
u : D → N from the 2-disc D to be

E(u) =
1
2

∫
D
|du|2.

(The integral over an alternative region Ω ⊂ R2 will be denoted by E(u, Ω).) The tension field
τ = τ(u) ∈ Γ(u∗(TN )) is the vector field along u representing minus the L2-gradient of E. If we
write this as τ i ∂

∂yi (u) in terms of local coordinates {yi} on N then we have the expression

τ i = ∆ui + Γi
kl(u)∇uk.∇ul,

where Γi
kl are the Christoffel symbols for the target.

Although this intrinsic viewpoint will be optimal when we are dealing with smooth maps into N
(including most of Sections 3 and 4) for much of this paper we will consider maps into N to have
been composed with a fixed isometric embedding N ↪→ RN . (This simplifies some calculations, and
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the discussion of Sobolev spaces and weak solutions.) We then see the tension as a vector field in
the ambient RN , giving it the simple expression

τ = (∆u)T (1.1)

where the superscript T means the projection onto Tu(x)N .

In this paper we will consider the harmonic map flow from D to N . This is a time-dependent
solution u : D × [0, T ] → N of the harmonic map heat equation of Eells-Sampson [6]

∂u

∂t
= τ(u(t)) (1.2)

where u(t) := u(·, t) is the restriction (or more generally the trace) of u to the time slice D × {t}.
At times t at which the flow is smooth, the energy of the flow decays according to

d

dt
E(u(t)) = −

∫
D
|τ(u(t))|2. (1.3)

Since we are working with a two dimensional domain, the energy is conformally invariant (in
particular the energy of a map is preserved under precomposition with a dilation) and we have a
theory of Struwe at our disposal which includes the following existence theorem. (See also Chang
[2] where the situation in which the domain has boundary is explicitly considered.)

Theorem 1.1 (Struwe [15].) Given u0 ∈ C∞(D,N ), there exists a weak solution u ∈ W 1,2
loc (D ×

[0,∞),N ) to (1.2) which is smooth in D× [0,∞) except possibly at finitely many singular points in
D × (0,∞), and has the following properties:

(a) u(0) ≡ u0;

(b) u(·, t)|∂D ≡ u0|∂D for all t ≥ 0;

(c) E(u(t)) is a (weakly) decreasing function of t on [0,∞);

(d) If the flow is smooth for t ∈ [0, T ), then it is the unique smooth solution over this
time interval with the given boundary and initial data;

(e) If (x, T ) ∈ D× (0,∞) is a singular point, then energy concentrates in the sense that

lim
ν↓0

lim sup
t↑T

E(u(t), Dν(x) ∩D) 6= 0.

We call this flow the ‘Struwe solution’ or ‘Struwe flow.’

Here we have denoted by Dν(x) the open disc in R2 centred at x ∈ R2 and of radius ν > 0. We
will also be using the abbreviation Dν := Dν(0) and of course D = D1.
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Whilst the Struwe solution is unique amongst weak solutions satisfying conditions (a) to (c) of the
theorem - see Freire [7] - there are now known, in certain cases, to be other weak solutions satisfying
(a) and (b) but not (c) with similar regularity properties to the Struwe solution - see [19] and [1].

Given a flow u from Theorem 1.1, we may integrate (1.3) and use the fact that E(u(t)) is weakly
decreasing, to get the useful well-known bound on the tension∫ ∞

0
‖τ(u(t))‖2

L2(D)dt ≤ E(u0) < ∞. (1.4)

Whilst Struwe’s Theorem 1.1 allows the possibility of some finite-time singularities, it was not clear
at the time whether or not such singularities could occur. Later, Chang-Ding-Ye [3] constructed an
example of a flow in which a singularity is forced to occur at finite time. Their construction relies
on a certain corotational symmetry which is required to invoke maximum principle techniques.
However, work of Qing-Tian [12] (included in Theorem 1.4 below) opens up the possibility of more
robust methods as we now describe. In 1978, Lemaire proved the following useful theorem.

Theorem 1.2 (Lemaire [8].) Any harmonic map from the 2-disc D to N which is constant on the
boundary, must be constant throughout D.

A corollary of this result is that no nontrivial homotopy class of maps from D which has fixed,
constant boundary values, can contain a harmonic map. In an appendix to this paper we sketch a
proof of the existence of a homotopy class of maps which not only fails to contain a harmonic map,
but does so in a quantified way below a certain energy level:

Lemma 1.3 There exist a compact target manifold N , a smooth map v0 : D → N and ε > 0 such
that every smooth map v : D → N homotopic to v0 fails to be harmonic, and if E(v) ≤ E(v0) also,
then ∫

D
|τ(v)|2 ≥ ε.

This lemma, coupled with (1.3) and the fact that E ≥ 0 immediately implies that no heat flow
starting with an initial map u0 homotopic to v0 and with E(u0) ≤ E(v0) can be smooth beyond
time t = E(u0)

ε ≤ E(v0)
ε . This obviously gives a rich source of robust examples of finite-time

singularities. Note that we cannot perturb away a finite-time singularity here by adjusting the
initial map, although dependency of the singular points on the initial map is not addressed. The
general principle behind the proof of this lemma will be exploited later on, in a concrete situation,
to force certain flows with special properties to blow up in finite time.

The original work of Struwe also gave a basic description of what happens at a singularity; ‘bubbling’
in a similar form to that discovered by Sacks-Uhlenbeck [13] occurs. Gradually a better picture
has been built up, by better understanding the properties of maps with small tension in L2. The
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main tool, combining work of Struwe [15], Ding-Tian [4] (see also Qing [10] and Wang [21]) and
Qing-Tian [12] (see also Lin-Wang [9]) is:

Theorem 1.4 Suppose that un : D → N ↪→ RN (n ∈ N) is a sequence of smooth maps which
satisfy E(un) < M for some constant M , and all n ∈ N, and τ(un) → 0 in L2(D) as n →∞.

Then we may pass to a subsequence in n, and find a harmonic map u∞ : D → N , and a set
{x1, . . . , xm} ⊂ D such that

(a) un ⇀ u∞ weakly in W 1,2(D,N ),

(b) un → u∞ strongly in W 2,2
loc (D\{x1, . . . , xm},N ).

Moreover, for each l ∈ {1, . . . ,m}, there exists k = k(l) ∈ N such that for i ∈ {1, . . . , k} there exist
sequences ai

n → xl ∈ D and λi
n ↓ 0 as n → ∞, and nonconstant harmonic maps ωi : S2 → N

(which we precompose with inverse stereographic projection to view them as maps R2 ∪ {∞} → N )
such that:

(i)
λi

n

λj
n

+
λj

n

λi
n

+
|ai

n − aj
n|2

λi
nλj

n

→∞,

as n →∞, for each unequal i, j ∈ {1, . . . , k}.

(ii)

lim
ν↓0

lim
n→∞

E(un, Dν(xl)) =
k∑

i=1

E(ωi).

(iii)

un(x)−
k∑

i=1

(
ωi

(
x− ai

n

λi
n

)
− ωi(∞)

)
→ u∞(x),

as functions of x from Dν(xl) to N ↪→ RN (for sufficiently small ν > 0) both in W 1,2

and L∞.

(iv) For each i ∈ {1, . . . , k} there exists a finite set of points S ⊂ R2 (which may be
empty, but could contain up to k − 1 points) with the property that

un(ai
n + λi

nx) → ωi(x),

in W 2,2
loc (R2\S,N ) as n →∞.

We refer to the map u∞ : D → N as a ‘body’ map, and the (smooth) maps ωi : S2 → N as
‘bubbles’ or ‘bubble’ maps. The points {x1, . . . , xm} will be called ‘bubble points,’ and the λi

n

‘bubble scales.’
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Remark 1.5 Encoded in the L∞ convergence of part (iii) of Theorem 1.4 is the fact that at each
bubble point, the union of the images of the body map u∞ and the bubbles ωi is a connected set.
(See Qing-Tian [12].)

Using Theorem 1.4, and its earlier versions, the authors mentioned above (Struwe, Ding, Tian, Qing,
Wang, Lin) have described partly the bubbling which occurs at finite time in the harmonic map
flow. We need a slight improvement of those results incorporating better control on the relationship
between the bubble scales, the tension and the time left until the singularity. The following will be
proved in Section 2 based on Theorem 1.4 above.

Theorem 1.6 Suppose u ∈ W 1,2
loc (D×[0,∞),N ) is a Struwe flow from Theorem 1.1, and T ∈ (0,∞)

is a singular time. Then there exist times tn ↑ T with the property that

‖τ(u(tn))‖2
L2(D)(T − tn) → 0 (1.5)

as n →∞. Moreover, for every singular point (x, T ) ∈ D×(0,∞) at time T , there exist k ∈ N and,
for each i ∈ {1, . . . , k}, sequences ai

n → x ∈ D and λi
n ↓ 0 as n → ∞, and nonconstant harmonic

maps ωi : S2 → N (which we view as maps R2 ∪ {∞} → N ) such that:

(i)
λi

n

λj
n

+
λj

n

λi
n

+
|ai

n − aj
n|2

λi
nλj

n

→∞,

as n →∞, for each unequal i, j ∈ {1, . . . , k}.

(ii)

lim
η↓0

lim
t↑T

E(u(t), Dη(x)) = lim
t↑T

E(u(t), D
(T−t)

1
2
(x)) =

k∑
i=1

E(ωi).

(iii)

u(tn)−
k∑

i=1

(
ωi

(
· − ai

n

λi
n

)
− ωi(∞)

)
→ u(T ),

in W 1,2(Dν(x),N ) (for sufficiently small ν > 0).

(iv) For each i ∈ {1, . . . , k} there exists a finite set of points S ⊂ R2 (which may be
empty, but could contain up to k − 1 points) with the property that

u(ai
n + λi

ny, tn) → ωi(y),

as functions of y, in W 2,2
loc (R2\S,N ) as n →∞.

(v) For each i ∈ {1, . . . , k}, we have

λi
n(T − tn)−

1
2 → 0.
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Remark 1.7 Part (ii), in addition to being a so-called “no loss of energy” statement, now includes
important information about the rate of blow-up of any singularity in the uniform limit t ↑ T .
Restricting to the bubbling at times {tn} then gives part (v). (This rate of blow-up is well-known
and may be established by various methods.) It is possible to improve this rate slightly to, say,

λi
n

[
(T − tn)−1(− log(T − tn))

] 1
2 → 0,

for a possibly more carefully chosen sequence tn ↑ T . However, we will see in this paper that
λi

n(T − tn)−
1
2
−ε will not converge to zero in general, however small we take ε > 0.

Remark 1.8 Although we do not require it in this paper, it is not hard to improve (1.5) to, say,

‖τ(u(tn))‖2
L2(D)(T − tn)(− log(T − tn)) → 0. (1.6)

Remark 1.9 In contrast to Theorem 1.4, we do not claim L∞ convergence in part (iii) of Theorem
1.6. Indeed, we will see in this paper that such convergence is simply false in general.

Remark 1.10 Theorem 1.6 holds for an arbitrary compact domain surface once the necessary
notational changes have been made.

Remark 1.11 We must also record that bubbling is liable to occur at infinite time in addition
to any bubbling at finite time. Indeed, it is easy to see from (1.4) and (1.3) that we may extract
a sequence of times tn → ∞ so that u(tn) : D → N satisfy the hypotheses of Theorem 1.4. An
‘infinite-time singularity’ is said to occur at any bubble point of this analysis.

The bubbling at infinite time raises the question of whether the convergence at times tn is in fact
uniform as t → ∞, and whether the energy concentrating at the bubble points can dissipate or
move around the domain between consecutive times tn and tn+1. For results and counterexamples
along these lines see [14], [20], [16], and [18].

In contrast, because finite-time singular points are isolated in space-time, we are guaranteed rea-
sonable uniform convergence of u(t) away from bubble points, as t tends to a singular time T , and
concentrated energy cannot move dramatically around the domain between times tn and tn+1 of
Theorem 1.6. However, many other uniformity questions remain, many of which we settle here.
Roughly speaking, it has been asked whether the images of the bubbles can move around in the
target between times tn and tn+1. This is popularly known as the question of ‘uniqueness of bub-
bles.’ For this to happen, the bubbles would have to move with unbounded speed as the singular
time was approached.

We will see that such bubbles, moving in the image with unbounded speed can indeed
occur.
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In order to continue a solution after a singularity, Struwe defines u(T ) to be the weak limit of
u(tn) in W 1,2 as n → ∞ and solves the harmonic map heat equation with u(T ) as initial data.
Although u(T ) ∈ W 1,2, a natural question which has been raised by Qing-Tian [12] and Lin-Wang
[9] is whether u(T ) is continuous1. Indeed, this question is particularly relevant in the light of the
results proved about infinite-time bubbling in [12] and [9].

We will see that u(T ) can in fact be discontinuous.

One explicit way of asking whether the flow converges well at the finite-time singularity is to lift
the flow to the universal cover N̂ of the target and see if the lifted bubbles still converge. More
precisely, we make the following definition during which part (iv) of Theorem 1.6 should be kept
in mind:

Definition 1.12 Given the regularity described in Theorem 1.1, we may lift a Struwe solution
u to a flow û : D × [0,∞) → N̂ into the universal cover N̂ of the target manifold. We say
that a singularity at a point (x, T ) ∈ D × (0,∞) of the flow u is winding if there exist λn ↓ 0,
an → x, tn ↑ T , points {x1, . . . , xk} ⊂ R2 and a nonconstant harmonic map ω : R2 → N such that
u(an+λnx, tn) → ω(x) in W 2,2

loc (R2\{x1, . . . , xk},N ) - and hence in C0
loc - but so that û(an+λnx, tn)

does not converge in C0
loc(R2\{x1, . . . , xk}, N̂ ) even after selecting a subsequence.

Remark 1.13 This definition makes sense for any compact target manifold N , although if the
target is simply connected then no singularity can be winding. The definition also makes sense for
alternative domain surfaces, although if the domain is not simply connected then we only lift the
flow in a neighbourhood of (x, T ) in space-time.

Roughly speaking then, a singularity is winding if at least one of the bubbles which develop must,
once the flow has been lifted to N̂ , converge to infinity and escape every compact subdomain of N̂ .

We will see that winding singularities do indeed exist.

Next, we are interested in the rate of blow-up of finite-time singularities. With the selection of tn
that we make in Theorem 1.6, we find in part (v) of that theorem that for any bubble,

λn = o
(
(T − tn)

1
2

)
,

and this may even be improved (see Remark 1.7) to

λn = o

([
(T − tn)

− log(T − tn)

] 1
2

)
.

1See also the very recent paper of Qing [11] for a discussion about this question
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Lower bounds for λn in terms of T − tn are much harder to obtain. Indeed, we do not know of any
prior example of a finite-time singularity in the harmonic map heat flow for which any such lower
bound has been obtained.

In this paper we have an example of a singularity for which for all δ > 0,

λn ≥ (T − tn)
1
2
+δ

for sufficiently large n.

The polynomial rate of blow-up is therefore precisely determined. We will, in fact, prove a
marginally better bound (essentially writing δ above as a decaying function of T − tn) and fur-
ther marginal improvements to the rate could be achieved by altering the target metric carefully.

Finally, we return to the control on the tension provided by (1.4), and ask whether this can be
improved.

We will see that although ‖τ(u(t))‖L2(D) is in L2([0, T ]), it is not, in general, in
L2+δ([0, T ]) for any δ > 0.

We compile these results in the following main theorem, which is proved in Sections 3 and 4.

Theorem 1.14 There exist a compact target manifold N and an initial map u0 ∈ C∞(D,N ) such
that the Struwe flow u from Theorem 1.1 satisfies the following properties:

(a) There exists a singular point (0, T ) ∈ D × (0,∞) (with no singularity for t < T );

(b) Precisely one bubble develops at (0, T ) in the sense that when analysed with Theorem
1.6, we must have k = 1;

(c) The singularity is winding in the sense of Definition 1.12;

(d) The map u(T ) ∈ W 1,2(D,N ) is discontinuous at the origin;

(e) For all δ > 0, the rate of blow-up of the bubble is constrained by

(T − tn)
1
2
+δ � λn � (T − tn)

1
2 ,

where we write an � bn for positive sequences {an} and {bn} if an
bn
→ 0 as n →∞.

(f) For all δ > 0, and s ∈ [0, T ), we have∫ T

s
‖τ(u(t))‖2+δ

L2(D)
= ∞.

In the light of the work of L. Simon [14] it is tempting to conjecture that the nonuniformity of the
bubbling that we witness in this work cannot occur if we insist on a real analytic target.
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2 The bubbling analysis

In this section we prove Theorem 1.6 based on the work of Struwe [15], Ding-Tian [4] and Qing-Tian
[12] compiled in Theorem 1.4.

Our first task is to select the times tn ↑ T . By combining (1.4) and the fact that∫ T

s

dt

T − t
= ∞,

for s < T , we see that it is easy to pick times tn ↑ T such that (1.5) is satisfied. The final sequence
will be a subsequence of that picked now.

We now wish to analyse the flow at one of the singularities which occur at time T . This is a local
analysis and we assume that the singularity occurs at the origin in D to simplify the notation
without losing any generality. Let ν > 0 be sufficiently small so that Dν × {T} contains no
other singular point. By the properties of u from Theorem 1.1, we know that u(t) → u(T ) in
Ck

loc(Dν\{0},N ), and we will use this fact implicitly in the following argument.

Let us look at the evolution of energy near 0. (These calculations should be compared to those of
Qing [10].) After picking a cut-off function φ ∈ C∞([0,∞), [0, 1]) supported in [0, 4), identically
equal to 1 on [0, 1], and with ‖φ′‖L∞ ≤ 1, we may define, for t ∈ [0, T ] and r ∈ (0, ν

2 ], the cut energy

Θr(t) :=
1
2

∫
D

φ2

(
|y|2

r2

)
|∇u(t)|2(y) dy.

Differentiating with respect to t, using the equation (1.2), integrating by parts and using (1.1) (c.f.
[16]) gives

dΘr(t)
dt

=
∫

D
φ2

(
|y|2

r2

)
∇u.∇τ = −

∫
D

φ2

(
|y|2

r2

)
|τ |2 −

∫
D

2φ

(
|y|2

r2

)
φ′
(
|y|2

r2

)
2
r2

[(y.∇)u] .τ,

(2.1)
and hence the estimate∣∣∣∣dΘr(t)

dt

∣∣∣∣ ≤ ∫
D
|τ |2 +

C

r

∫
D
|∇u||τ | ≤ ‖τ(u(t))‖2

L2(D) +
C

r
‖τ(u(t))‖L2(D), (2.2)

where C is finally allowed to depend on E(u0). This expression may now be integrated between a
and b where 0 < a < b < T to give

|Θr(b)−Θr(a)| ≤
∫ b

a
‖τ(u(t))‖2

L2(D)dt +
C

r

∫ b

a
‖τ(u(t))‖L2(D)dt (2.3)

≤
∫ T

a
‖τ(u(t))‖2

L2(D)dt +
C(T − a)

1
2

r

(∫ T

a
‖τ(u(t))‖2

L2(D)dt

) 1
2

. (2.4)

Keeping in mind (1.4) we see that the right-hand side of (2.4) converges to zero as a ↑ T , and hence
that Θr(t) must have a limit as t ↑ T . This allows us to define

L := lim
t↑T

Θr(t)−Θr(T ), (2.5)
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where L is not dependent on r, or equivalently

lim
t↑T

E(u(t), Dr) = L + E(u(T ), Dr), (2.6)

(where we are using the Ck convergence of u(t) to u(T ) away from the origin). Referring back to
Theorem 1.1 we then must have

L = lim
r↓0

lim
t↑T

E(u(t), Dr) > 0. (2.7)

Next we return to (2.4) setting r = γ(T − a)
1
2 (for some constant γ > 0) and taking b ↑ T (keeping

(2.5) in mind) to give∣∣∣∣L + Θ
γ(T−a)

1
2
(T )−Θ

γ(T−a)
1
2
(a)
∣∣∣∣ ≤ ∫ T

a
‖τ(u(t))‖2

L2(D)dt +
C

γ

(∫ T

a
‖τ(u(t))‖2

L2(D)dt

) 1
2

. (2.8)

Taking also the limit a ↑ T and using (1.4) again, we then see that

lim
a↑T

Θ
γ(T−a)

1
2
(a) = L, (2.9)

for all γ > 0. Now, with α > 0, we may send a ↑ T in the inequality

Θ
α(T−a)

1
2

2

(a) ≤ E(u(a), D
α(T−a)

1
2
) ≤ Θ

α(T−a)
1
2
(a).

Using (2.9) with γ = α
2 and γ = α, we find that

lim
a↑T

E(u(a), D
α(T−a)

1
2
) = L, (2.10)

for any α > 0.

At this point, let us take stock of which parts of the theorem we have addressed. In pursuit of part
(ii) we have proved that

lim
η↓0

lim
t↑T

E(u(t), Dη) = lim
t↑T

E(u(t), D
(T−t)

1
2
) = L.

Concerning part (iii), our estimates so far imply that

‖u(t)− u(T )‖W 1,2(Dν\D
α(T−t)

1
2

) → 0,

as t ↑ T , for any α > 0.

It remains to analyse the bubbling which may occur at the singular point (0, T ) ∈ D × (0,∞) at
the times tn selected earlier. For the remainder of the paper, we set µn := (T − tn)

1
2 . For this

section, we define rescaled maps un : D → N by un(y) = u(µny, tn).

By the scaling properties of the tension, and the already-established (1.5), we must have

‖τ(un)‖L2(D) = µn‖τ(u(tn))‖L2(Dµn ) → 0,
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and therefore we may apply Theorem 1.4 to the un. By (2.10) we see that

lim
n→∞

E(un, Dη) = L,

for any η ∈ (0, 1]. In particular,
E(un, D\Dη) → 0 (2.11)

as n →∞ for any η ∈ (0, 1] and so by part (a) of Theorem 1.4, u∞ is forced to be constant on D.

It remains to make use of parts (i) to (iv) of Theorem 1.4. These find bubbles ωi, blow-up centres
ai

n and bubble scales λi
n ↓ 0. By (2.11), the origin is the only bubble point of un (so ai

n → 0 as
n → ∞). Scaling the blow-up centres and bubble scales by a factor µn, then gives exactly those
required for Theorem 1.6.

3 The main construction

In this section, we construct the target manifold and flow demanded by Theorem 1.14. Parts (a) to
(c) of that theorem will be established here, with the final parts (d) to (f) left until Section 4. The
flow we construct will have various symmetries which will help us to establish the finer properties of
Section 4. However, the construction itself is quite robust, and will guarantee not only a finite-time
singularity but one that is winding, for much more general asymmetric initial maps.

In the sequel, we will concentrate on the flow up to the time of its first singularity. Whilst the
flow is smooth, it will mainly suit us to consider the flow in terms of intrinsic coordinates on N ,
ignoring the embedding N ↪→ RN which is so useful in the earlier theory.

3.1 Construction of the target manifold

The target that we will construct will be a warped product manifold. Such manifolds have been
useful in the construction of various examples of harmonic map flows - see [16], [17], and [20] -
and also of nonuniform behaviour in other geometric problems such as nonunique tangent maps for
harmonic maps (see White [22]). Topologically, the target will be [−1, 1]× S1 × S2. Although this
has nonempty boundary, we will later easily see that the flow remains within the smaller region
[0, 1)×S1×S2, so we may agree now to implicitly join the two boundary components to give T 2×S2

and modify the metric on the region [−1,−1
2)×S1×S2, say, to make it everywhere smooth. There

is plenty of flexibility here, and in particular, we could cap each boundary component with a D×S2

to give S2 × S2, although no singularity could then be winding in the sense defined above.

Let us start off with the strip S = [−1, 1]× R, addressed by real coordinates (w, z), and equipped
with the metric

γ =
(

1 w2

w2 1 + w4

)
.
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We then obtain a cylinder C by taking the quotient of S by the group of isometries Γ = {(w, z) →
(w, z + n) | n ∈ Z}.

Ultimately, we will only be concerned with the half of C where w ≥ 0. On S ∩ {w > 0}, we will
mainly use coordinates (x, y) where x = 1

w − z and y = z. (Equivalently w = 1
x+y and z = y.) We

then have the restriction x + y ≥ 1.

In these alternative coordinates, the group of isometries Γ is now {(x, y) → (x−n, y + n) | n ∈ Z},
and the metric takes the form

g =

(
1

(x+y)4
0

0 1

)
,

and we see that the curve {x = 0} on C (which should be visualised in w, z coordinates, spiralling
towards the circle {w = 0}) is a geodesic.

We next define a warping function f ∈ C∞(C) by

f(w, z) =
{

e−
2π
w

(
sin 2π( 1

w − z − 1
8) +

√
2
)

+ 1 w > 0
1 w ≤ 0.

(Note that f is well defined on C despite being written in coordinates on S.) More useful to us is
the expression for f written in (x, y) coordinates on the half of C where w > 0,

f(x, y) = e−2π(x+y)

(
sin 2π(x− 1

8
) +

√
2
)

+ 1.

We note the following properties of f :

(i) f(w, z) > 1 for w > 0, and f(w, z) = 1 for w ≤ 0,

(ii) ∂f
∂y = −2πe−2π(x+y)

(
sin 2π(x− 1

8) +
√

2
)

< 0 for w > 0,

(iii) ∂f
∂x = e−2π(x+y)

(
−2π sin 2π(x− 1

8)− 2
√

2π + 2π cos 2π(x− 1
8)
)

= 2
√

2πe−2π(x+y) (cos 2πx− 1) .

By property (iii) we have
∂f

∂x
(0, ·) ≡ 0, (3.1)

and by (ii),
∂f

∂y
(0, y) = −

√
2πe−2πy. (3.2)

Finally we define the target manifold to be the warped product

N = C ×f S2.

We denote the projections of N onto its two 2-dimensional components by P1 : N → C and
P1 : N → S2 respectively.

12



The significance of (3.1) is that it may now be checked that the three dimensional noncompact
manifold

Σ := {(0, y) | y ≥ 1} × S2 (3.3)

lies totally geodesically within N .

3.2 Analysis of the flow

3.2.1 Description of the flow and the flow equations

In order to discuss flows into the target manifold N constructed in the previous section, we equip
the S2 part of N with coordinates. We choose spherical polar coordinates (α, θ) where θ ∈ [0, 2π)
is the longitude and α ∈ [0, π] gives a measure of latitude with α = 0 the ‘north’ pole and α = π
the ‘south’ pole.

Let us now define an initial map u0 ∈ C∞(D,N ) for the harmonic map heat flow. Using polar
coordinates (r, θ) on the domain, let

u0(r, θ) = (0, y0, α0(r), θ),

where the number y0 > 1 and the function α0 : [0, 1] → R with α0(0) = 0 and α(1) = π, will be
fixed later to make u0 smooth and of controlled energy. Therefore when projected onto C, u0 is
constant, and when projected onto the S2, u0 maps once over the whole sphere. The map u0 has
constant boundary values.

Let us now take the usual Struwe solution of the harmonic map heat equation (as found by Theorem
1.1). For a certain nontrivial time interval [0, T ) (for some T ∈ (0,∞]) we can be sure that the
flow is both smooth, and remains within the interior of C × S2. Moreover, during this time,
by appealing to the uniqueness described in Theorem 1.1 the flow must remain within the totally
geodesic submanifold Σ described in (3.3) and must retain the rotational and corotational symmetry
enjoyed by the initial map. We see, therefore, that the flow in these coordinates must take the form

u(r, θ, t) = (0, Y (r, t), α(r, t), θ),

with boundary values ∂Y
∂r (0, ·) ≡ 0, Y (1, ·) ≡ y0, α(0, ·) ≡ 0 and α(1, ·) ≡ π, for t ∈ [0, T ).

Remark 3.1 Throughout this paper we will abuse notation as and when convenient by using
Y both as the function Y (r, t) on [0, 1] × [0, T ) and as the corresponding rotationally symmetric
function on D × [0, T ) given by (r, θ, t) → Y (r, t), and similarly for α etc.

It will be convenient to use the shorthand

e(α) :=
1
2

[(
∂α

∂r

)2

+
sin2 α

r2

]
. (3.4)
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The energy of u(t) may then be written in terms of Y and α as

E(t) = π

∫ 1

0

((
∂Y

∂r
(r, t)

)2

r + 2f(0, Y (r, t)) [e(α)(r, t)] r

)
dr. (3.5)

=
∫

D

(
1
2
|∇Y |2 + f(0, Y )e(α)

)
(3.6)

Working either from this expression for the energy, or by working first with general asymmetric
flows into N and then specialising to symmetric flows as considered here, we find (for t ∈ [0, T ))
that the functions Y and α solve the following PDE:

∂Y

∂t
=

∂2Y

∂r2
+

1
r

∂Y

∂r
− ∂f

∂y
(0, Y )e(α) (3.7)

≡ ∆Y − ∂f

∂y
(0, Y )e(α) (3.8)

∂α

∂t
=

∂2α

∂r2
+

1
r

∂α

∂r
− sinα cos α

r2
+

1
f(0, Y )

∂f

∂y
(0, Y )

∂Y

∂r

∂α

∂r
(3.9)

Having equation (3.8), and keeping in mind the fact that ∂f
∂y < 0, we may immediately apply the

maximum principle to find that
Y (r, t) ≥ y0 > 1 (3.10)

for all r ∈ [0, 1] and t ∈ [0, T ). In particular, the flow cannot approach the boundary of C × S2,
and so without loss of generality, we may take T ∈ (0,∞] to be the largest possible value subject
to the flow being smooth for times t ∈ [0, T ).

3.2.2 Blow-up of Y

We now try to analyse the fate of Y . We will see that Y (0, t) is unbounded over some finite time
interval; this corresponds to the development of a bubble at the centre of the domain disc in finite
time. Moreover, once we have visualised how the submanifold Σ from (3.3) sits within the target
N , we will see that the flow will then have the basic winding behaviour which we seek, and more
specifically that the singularity will be winding in the sense of Definition 1.12.

First, we note that the flow cannot stay smooth, with uniform bounds on its derivatives, for all time.
This is because the initial map u0 has constant boundary values but is homotopically nontrivial.
Any flow with this initial map which blew up neither at finite nor at infinite time, would provide
a homotopy from u0 to a harmonic map within the same nontrivial homotopy class. However, this
is impossible since no such harmonic map exists by Theorem 1.2 of Lemaire.

According to our earlier notation, T ∈ (0,∞] is then the first blow-up time. By Theorem 1.6 (in the
case T < ∞) or Remark 1.11 (in the case T = ∞) one or more bubbles ω : S2 → N must develop
at time t = T ; by the symmetry of the flow, and the finiteness of the number of singularities, the
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one and only bubble point must be the centre of the domain disc. We claim, roughly speaking,
that any bubble must occur at “y = ∞.”

Lemma 3.2 Let ω : S2 → N be any bubble which develops at time t = T in the flow constructed.
Then the image of ω must lie within the three dimensional submanifold Ω of N defined by the
condition w = 0 (which is topologically S1×S2). Moreover, with P1 and P2 the projections defined
in Section 3.1 we must have P1 ◦ω a constant map, and P2 ◦ω a harmonic map between 2-spheres.

In the proof below, λn will be the bubble scale for ω (as in Theorem 1.6 for example). Given the
rotational symmetry of the flow, we may assume that an = 0 for all n - i.e. that the bubble is
obtained by blowing up about the origin for each n.

Proof. We have already established that for times t ∈ [0, T ), the image of the flow lies within the
submanifold Σ described in (3.3). By either part (iv) of Theorem 1.6, or a combination of part (iv)
of Theorem 1.4 combined with Remark 1.11 (depending on whether T < ∞ or T = ∞) we then
see that the image of ω must lie within the closure of Σ in N . Taking the closure of Σ adds the
submanifold Ω of the lemma.

Meanwhile, since ω is a smooth map from S2, and there is no finite length path in Ω ∪ Σ between
any point in Σ and any point in Ω, the image of ω must lie either wholly within Σ, or wholly within
Ω.

Suppose that the image of ω lay wholly within Σ. If P2 ◦ω were constant, then P1 ◦ω would be
harmonic, and would take values in the geodesic {x = 0} within C. Essentially ω would then be a
harmonic function on the 2-sphere, and would therefore be constant, which cannot be the case for
a bubble. Therefore, if the image of ω were to lie wholly within Σ, then P2 ◦ω would have to be
nonconstant. In this case, if we define, for s ∈ R near 0, the transformations φs : N → N by

φs(x, y, α, θ) = (x, y + s, α, θ)

then it is easy to check, using the inequality ∂f
∂y < 0, that

d

ds

∣∣∣∣
s=0

E(φs ◦ω) < 0,

contradicting the fact that ω is harmonic.

We have established that the image of ω lies wholly within Ω. But Ω is isometric to the cartesian
product of a (scaled) S1 and an S2, and therefore ω splits into two harmonic maps P1 ◦ω : S2 →
S1 ↪→ C and P2 ◦ω : S2 → S2. Finally, any harmonic map from S2 to S1 can be lifted to a harmonic
function, and must therefore be constant.

Having determined accurately the type of bubble which must occur, we are now in a position to
prove that T < ∞ - i.e. that the first singularity must occur at finite time. Indeed, if the flow did
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not blow up at finite time, then we could apply Lemaire’s Theorem 1.2 to deduce that the limit u∞
of the u(tn) from Remark 1.11 and Theorem 1.4 must be the constant map u∞(r, θ) = (0, y0, π, θ),
and therefore by Remark 1.5, the image of at least one bubble would have to pass through the
point (0, y0, π, θ) ∈ N which is impossible by Lemma 3.2.

Now we know that T < ∞, let tn and k be as in the analysis of Theorem 1.6. We claim that k = 1,
which means that only one bubble can develop. Indeed, by the description of the bubbles given
in Lemma 3.2, we see that any bubble has as much energy as a harmonic map between 2-spheres,
which must have energy at least 4π (see [5, (11.5)]). By choosing y0 > 1 sufficiently large (to make
f(0, y0) sufficiently close to 1) and choosing α0 appropriately we are able to make the energy of
u0 as close as we like to 4π (for example we may start by taking α0 = 2 tan−1(r/ε) with ε > 0
small and perturb it slightly in order to fit the boundary condition α0(1) = π) with u0 smooth. In
particular we can make the energy strictly less than 8π, which then limits the flow to develop a
single bubble. (We are implicitly using part (ii) of Theorem 1.6.) One implication of having only
one bubble is that part (iv) of Theorem 1.6 applied to this singularity reduces to u(λnξ, tn) → ω(ξ)
as functions of ξ, in W 2,2

loc (R2,N ).

Finally, knowledge of the type of bubble which must occur also constrains Y to have a particular
type of blow-up at time t = T . In particular, the singularity must be winding (in the sense of
Definition 1.12) since otherwise, after passing to a subsequence, not only would we have convergence
of u(λnξ, tn) in W 2,2

loc (R2,N ), we would also have convergence of û(λnξ, tn) in C0
loc(R2, N̂ ) and hence

convergence of Y (λnξ, tn) in C0
loc(R2, R). However, by considering again how Σ and Ω sit within N ,

we see that the only way that u(λnξ, tn) can converge to a bubble of the type described in Lemma
3.2 is if Y (λnξ, tn) →∞ for every ξ ∈ R2, which is contradictory.

In conclusion, we have established that a singularity develops in the flow at the origin, at finite
time. Precisely one bubble is created, and the bubble is winding in the sense of Definition 1.12.

4 Finer properties of the singularity

We now wish to finish the proof of Theorem 1.14 by addressing parts (d) to (f). We continue to
switch between notations for Y as warned in Remark 3.1.

4.1 Oscillation of Y

In this section we establish decay of the oscillation of Y (tn) over scales of length µn := (T − tn)
1
2 .

We define the oscillation of a function or map f over a region Ω by

osc(f,Ω) := sup
a,b∈Ω

dist(f(a), f(b)).

16



Lemma 4.1 The flow constructed in Section 3.2.1 satisfies

osc(Y (tn), Dµn) → 0,

as n →∞.

Remark 4.2 For general flows, from arbitrary compact domain surfaces into arbitrary compact
target manifolds, there is a weaker analogue of Lemma 4.1 which states that after lifting the flow
around a neighbourhood of a singularity to the universal cover of the target, the oscillation of the
lifted flow û over Dµn at time tn, is bounded uniformly in n. This weaker result would in fact
suffice for our requirements in this paper.

Proof. In Section 3.2.2 we established that precisely one bubble developed in the sequence u(tn),
at a scale λn, say. Moreover, by Lemma 3.2, and part (iv) of Theorem 1.6, we know that
P1 ◦u(λnξ, tn) → p as functions of ξ, in C0

loc(R2, C) where p := image(P1 ◦ω) ∈ C. In particu-
lar, we have

osc(Y (tn), DRλn) → 0 (4.1)

for any R ∈ (0,∞), as n →∞.

We now define rescaled maps un : D → N by un(ξ) := u(2µnξ, tn). (We may assume that µn ≤ 1
2

for all n.) In this new language, by appealing to Theorem 1.6 (parts (v) and (iii)) we see that un

develops the same bubble at a scale λn(2µn)−1 → 0, and that un converges to a constant map in
W 1,2

loc (D\{0},N ). (Note once again that no bubble develops at the scale µn in the maps u(tn).) By
the scaling properties of the tension, and by (1.5) of Theorem 1.6 we have

‖τ(un)‖L2(D) = µn‖τ(u(tn))‖L2(D2µn ) → 0,

as n → ∞. We are then in a position to apply Theorem 1.4 to the un. Part (b) of that theorem
tells us that un converges to a constant not only in W 1,2

loc (D\{0},N ) but also in L∞loc(D\{0},N ).
In particular, we must have

osc(Y (tn), Dµn\D2νµn) → 0 (4.2)

for arbitrarily small ν > 0, as n →∞.

We also gain the important L∞ convergence of part (iii) of Theorem 1.4 (which is the contribution
of Qing-Tian [12]). This implies that for arbitrarily small ε > 0, there exist R > 0 and ν ∈ (0, 1]
such that we have the ‘neck estimate’

osc(un, Dν\DRλn(2µn)−1) < ε

for sufficiently large n. Renormalising, we have

osc(Y (tn), D2µnν\DRλn) < ε (4.3)

for sufficiently large n. Combining (4.1), (4.2) and (4.3) then gives us the lemma.
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4.2 Discontinuity of u(T )

In this section we prove that Y (T ), the weak limit of Y (tn) in W 1,2(D, R), must be discontinuous,
and hence that u(T ) must also be discontinuous as claimed in part (d) of Theorem 1.14. (It is
important to keep in mind that the image of the flow for t ∈ [0, T ) remains in Σ, and that the flow
u is smooth away from the origin, up to and including time t = T .) The function Y (T ) must be
smooth away from the origin. Our aim is to prove that it must be unbounded.

We begin by defining a measure of the average of Y over certain annuli in D. Let φ ∈ C∞([0,∞), [0, 1])
be nonconstant and be supported in the interval [14 , 1]. We may then define, for r ∈ (0, 1] and
t ∈ [0, T ],

Ψr(t) :=
∫

D

1
r2

φ

(
|ξ|2

r2

)
Y (ξ, t)dξ.

Retaining the notation µn := (T − tn)
1
2 from before, we then consider Ψµn(tn). We established dur-

ing Section 3.2.2 that Y (0, tn) →∞. Combining with Lemma 4.1, we see that infξ∈D Y (µnξ, tn) →
∞. In particular, this forces

Ψµn(tn) →∞, (4.4)

as n → ∞. We now try to control how Ψr evolves over short time intervals. Differentiating, and
using 3.8, we find that

dΨr

dt
=

∫
D

1
r2

φ

(
|ξ|2

r2

)
∂Y

∂t
(ξ, t)dξ

=
∫

D

1
r2

φ

(
|ξ|2

r2

)[
∆Y − ∂f

∂y
(0, Y )e(α)

]
=

∫
D

[
1
r2

φ

(
|ξ|2

r2

)(
−∂f

∂y
(0, Y )

)
e(α)− 1

r2
φ′
(
|ξ|2

r2

)
2
r2

ξ.∇Y

]
Keeping in mind the boundedness of the energy, written as in (3.6), the inequality f ≥ 1, and the
fact that by (3.2) and (3.10)

−∂f

∂y
(0, y) ≤

√
2π,

we may then estimate ∣∣∣∣dΨr

dt

∣∣∣∣ ≤ C

r2

∫
D

e(α) +
C

r3

∫
Dr

|∇Y | ≤ C

r2
,

where C depends on the choice of φ and E(0). Specialising to the case r = µn and integrating from
time tn to some later time t ∈ [tn, T ), we then find that

|Ψµn(t)−Ψµn(tn)| ≤ (T − tn) sup
∣∣∣∣dΨµn

dt

∣∣∣∣ ≤ C,

with C independent of n and t. Keeping in mind (4.4), we must have

lim
n→∞

lim inf
t↑T

Ψµn(t) →∞. (4.5)
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However, as mentioned earlier, if u(T ) were continuous, Y (T ) would be a bounded function. By
smoothness of the flow on D\{0} × (0, T ] we would then have

lim
t↑T

Ψµn(t) = Ψµn(T ) ≤ M,

for some M < ∞ independent of n, which would contradict (4.5). We conclude that u(T ) must be
discontinuous as claimed.

4.3 Upper bounds for Y

Although we know from Section 3.2.2 that Y (0, tn) →∞ as n →∞, we do not yet have any control
on how fast Y (·, tn) blows up in relation to (T − tn)−1.

Lemma 4.3 The flow constructed in Section 3.2.1 satisfies

Mn := sup
D

Y (·, tn) ≤ C [− ln(T − tn)]
1
2 ,

with C independent of n, for sufficiently large n.

Proof. The strategy behind the proof is that if Y (0, tn) were too large, then Y (·, tn) would be large
on a disc of radius Dµn by Lemma 4.1, and this would force the Dirichlet energy of Y (tn) to be
unreasonably large.

In more detail, we may use (3.6) and the fact that E(t) is a weakly decreasing function of t ∈ [0, T )
to estimate

E(0) ≥ E(t) ≥ 1
2

∫
D
|∇Y (t)|2 ≥ 1

2

∫
D\Ds

|∇Y (t)|2,

for s ∈ (0, 1). The final term, being the Dirichlet energy of Y (t), will be at least the Dirichlet
energy of the unique harmonic function with the same values as Y (t) on the boundary ∂(D\Ds).
That function is (r, θ) →

(
ln r
ln s

)
(Y (s, t)− y0)+ y0, which has energy π

− ln s(Y (s, t)− y0)2. Therefore,
we find that for all t ∈ [0, T ) and s ∈ (0, 1),

Y (s, t) ≤
[
E(0)

π
(− ln s)

] 1
2

+ y0. (4.6)

In particular, for all s ∈ [µn, 1], we have

Y (s, tn) ≤ C [(− ln(T − tn))]
1
2 ,

for sufficiently large n. This proves the desired estimate on the annulus D\Dµn , and may be
combined with Lemma 4.1 to extend the estimate to the whole disc D.
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4.4 Rate of blow-up

In this section we prove the lower bound on the bubble scale λn which is claimed in part (e) of
Theorem 1.14 and states that for all δ > 0, λn(T − tn)−( 1

2
+δ) →∞ as n →∞. (The upper bound

of part (e) has already been proved for general flows as part (v) of Theorem 1.6.)

Our strategy will be to argue that if the flow were too concentrated at time tn, then the tension
of u(tn) would be unreasonably large, in some sense. We will estimate the tension from below
by constructing an explicit variation of u(tn) which will create a large drop in the energy. In the
process, we will require a ‘neck analysis’ (see Lemma 4.4 below) and the control of the blow-up of
Y we established in Lemma 4.3. The first result about necks in the context of maps with small but
nonzero tension was proved by Qing-Tian [12] and their analysis is strong enough for our purposes.
Here we quote a slight simplification and perturbation of Lemma 2.9 of [18] (see also Remark 2.8
of [18]) the proof of which was more along the lines of Lin-Wang [9].

Lemma 4.4 Suppose that v : D → N is smooth and satisfies E(v,D) < M for some M . Then
there exist δ > 0 (dependent only on N ) and K > 0 (dependent only on M and N ) such that if

E(v,D\Dr2) < δ

for some r ∈ (0, 1
2 ], and

‖τ(v)‖2
L2(D) < δ,

then we have the estimate
E(v,D2r\Dr) ≤ K r. (4.7)

Here, as in [18], this sort of lemma will allow us to argue that if the bubble scale is sufficiently
small then we can find a dyadic annulus D2r\Dr surrounding the part of the domain where con-
centration is occurring, and with very small energy. Such energy control then allows us to analyse
the concentrated part of the flow (which is converging to the bubble) in isolation from the rest of
the flow.

As in previous sections we use the shorthand µn := (T − tn)
1
2 and consider rescaled maps un :

D → N defined this time by un(ξ) = u(µnξ, tn). As before, by (1.5) we have τ(un) → 0 in L2(D).
Retaining the notation λn for the scale of the (unique) bubble produced by Theorem 1.6 (and
keeping in mind parts (v) and (iii) of that theorem) the rescaled maps un must develop a bubble
at the scale λn/µn → 0 and we must have

lim
R→∞

lim
n→∞

E(un, D\DRλn
µn

) = 0.

In particular, we may fix R > 0 sufficiently large so that

E(un, D\DRλn
µn

) < δ
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for sufficiently large n (where δ is as in Lemma 4.4). Therefore, after setting rn :=
√

Rλn
µn

, we may
apply Lemma 4.4 for sufficiently large n to deduce that

E(un, D2rn\Drn) ≤ Krn.

Retranslating to the original scale gives

E(u(tn), An) ≤ Krn. (4.8)

where An := D2
√

Rλnµn
\D√

Rλnµn
.

We now wish to describe explicitly a variation of the map u(tn) which will reduce its energy by a
controlled amount, and thus give control on its tension. The variation will be written in terms of
the Y and α of Section 3.2.1, and so let us write Yn := Y (·, tn) and αn := α(·, tn). We define a
cut-off function φ ∈ C∞([0,∞), [0, 1]) supported in [0, 4), identically equal to 1 on [0, 1], and with
‖φ′‖L∞ ≤ 1, and a scaled cut-off φn : D → R by

φn(ξ) = φ

(
|ξ|2

Rλnµn

)
.

We may then vary u(tn) through a family of maps v
(s)
n : D → N where, for s in a neighbourhood

of 0 ∈ R, we define (using the coordinate notation for N of Section 3.2.1)

v(s)
n (ξ) = (0, Yn(ξ) + sφn(ξ), αn(ξ), θ),

so that v
(0)
n ≡ u(tn).

Writing the energy in terms of these coordinates (c.f. (3.6)) gives

E(v(s)
n ) =

∫
D

(
1
2
|∇(Yn + sφn)|2 + f(0, Yn + sφn)e(αn)

)
and hence

d

ds
E(v(s)

n )
∣∣∣∣
s=0

=
∫

D
∇Yn.∇φn +

∫
D

∂f

∂y
(0, Yn)φne(αn). (4.9)

Let us label the two terms on the right-hand side I and II respectively. First we estimate

|I| =
∣∣∣∣ ∫

An

∇Yn.∇φn

∣∣∣∣ ≤ (∫
An

|∇Yn|2
) 1

2
(∫

An

|∇φn|2
) 1

2

(4.10)

≤ C (E(u(tn), An))
1
2 ≤ C(K)r

1
2
n ≤ C(K, R)

(
λn

µn

) 1
4

(4.11)

where we have used the fact that ∇φn is supported on An, the Cauchy-Schwarz inequality, the
dilation invariance of the energy, and (4.8).

Next we wish to estimate II. By (3.2)

−∂f

∂y
(0, Yn) =

√
2πe−2πYn ≥ e−2πYn ≥ e−2πMn (4.12)
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where we are still using the notation Mn := supD Yn. By the description of the bubble ω given by
Lemma 3.2, and the expression for the energy (3.6) we have∫

Dλn

e(αn) = E(P2 ◦u(tn), Dλn) → E(P2 ◦ω, D) =: κ > 0, (4.13)

where P2 is the projection N → S2 as in Section 3.1. Moreover, we may use the facts that φn ≡ 1
on D√

Rλnµn
and that λn

µn
→ 0 to deduce that∫

D
φne(αn) ≥

∫
Dλn

e(αn) (4.14)

for sufficiently large n. Combining (4.12), (4.13) and (4.14), we have

−II ≥ e−2πMn

∫
D

φne(αn) ≥ e−2πMn
κ

2
,

for sufficiently large n.

Finally, we deal with the left-hand side of (4.9) by exploiting the fact that the tension is the L2

gradient of the energy, and so, using suggestive notation,∣∣∣∣ d

ds
E(v(s)

n )|s=0

∣∣∣∣ =
∣∣∣∣ ∫

D
〈τ(u(tn)),

d

ds
v(s)
n |s=0〉

∣∣∣∣ ≤ ‖τ(u(tn))‖L2(D)‖φn‖L2(D)

≤ C
√

Rλnµn‖τ(u(tn))‖L2(D) ≤ C(R)

√
λn

µn
,

for sufficiently large n, because of (1.5).

Combining our knowledge about all three terms of (4.9), we see that

e−2πMn ≤ C(−II) ≤ C

(
λn

µn

) 1
4

+ C

(
λn

µn

) 1
2

≤ C

(
λn

µn

) 1
4

,

for sufficiently large n, with C independent of n. Incorporating the control on Mn offered by Lemma
4.3, we then have

exp
(
−C [− ln(T − tn)]

1
2

)
≤ λn

µn
,

for sufficiently large n. Rewriting, we have

λn ≥ (T − tn)
1
2
+C[− ln(T−tn)]−

1
2 , (4.15)

which is stronger than the bound claimed in the theorem.

4.5 Estimates on the tension

By (1.4) we know that for any Struwe solution of the harmonic map heat equation (as in Theorem
1.1) we always have ‖τ(u(t))‖L2(D) ∈ L2([0,∞)) as a function of t. We now wish to point out that
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for the flow we have constructed in this paper, this cannot be improved in that

‖τ(u(t))‖L2(D) /∈ L2+ε((T − ε, T ))

for any ε > 0, as claimed in part (f) of Theorem 1.14.

To establish this, we use the control on the rate of blow-up we found in Section 4.4 (which makes
up part (e) of Theorem 1.14). Interpreting this in the language of the cut energy from Section 2,
we see that

Θ
(T−tn)

1
2+δ(tn) → 0

as n →∞. In contrast, with L defined as in Section 2, we must have

lim
t↑T

Θ
(T−tn)

1
2+δ(t) ≥ L > 0,

for fixed n. Combining, we see, for sufficiently large n, that

0 <
L

2
≤ lim

t↑T
Θ

(T−tn)
1
2+δ(t)−Θ

(T−tn)
1
2+δ(tn) =

∫ T

tn

d

dt
Θ

(T−tn)
1
2+δ(t)dt.

We then return to (2.1) of Section 2 and note the variant of (2.2)

dΘr(t)
dt

≤ C

r
‖τ(u(t))‖L2(D).

In our situation this gives, via the Hölder inequality,

L

2
≤ C

(T − tn)
1
2
+δ

∫ T

tn

‖τ(u(t))‖L2(D)dt ≤
(∫ T

tn

‖τ(u(t))‖
2

1−2δ

L2(D)
dt

) 1
2
−δ

.

In particular, for any ε > 0, the quantity∫ T

tn

‖τ(u(t))‖2+ε
L2(D)

dt

must be bounded below by a strictly positive number, independent of n, which implies our claim.

5 Appendix

We end by sketching a proof of Lemma 1.3. We may take the target N to be the warped product
S1×f S2 where f : S1 → [1, 3] is defined to be f(θ) = 2−cos θ. Note now that since min f = f(0) =
1, the least energy of a map S2 → N which has degree one once projected onto the S2 component
of the target, is 4π. Fix now a point q ∈ S2, and choose a sequence of smooth maps vn : D → N
with the properties that vn|∂D = (π

2 , q), the projection of vn onto the S2 component of the target
covers the sphere precisely once, and E(vn) ↓ 4π. (A typical such map sends a small disc in the
domain conformally over most of {0} × S2 - costing a little less than 4π of energy - and then uses
the rest of the domain to match up with the boundary values - costing very little extra energy.)
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We now claim that the v0 of the lemma may be taken to be one of the vn in this sequence. If that
were not the case, then for all n, we could deform vn to a lower energy smooth map with arbitrarily
small tension in L2. In particular, we could find a new sequence of smooth maps un : D → N with
the properties that un|∂D = (π

2 , q), the projection of un onto the S2 component of the target is still
homotopically nontrivial, E(un) ↓ 4π, and τ(un) → 0 in L2(D) as n →∞.

Such a sequence of maps undergoes bubbling, as described in Theorem 1.4 of this paper. By
Lemaire’s Theorem 1.2, the map u∞ must send the whole disc to the point (π

2 , q). A more elaborate
version of Theorem 1.4 in which we considered the possibility of bubbling at the boundary would tell
us that a bubble must then be created, with energy 4π, and the only bubbles with this energy which
can account for the change in homotopy class between un and u∞ are harmonic maps ω : S2 → N
with image {0}×S2. However, by Qing-Tian’s ‘no necks’ result - see Remark 1.5 - extended suitably
to cover singularities at the boundary, the image of u∞ cannot be disconnected from the image of
ω, so we have a contradiction.
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