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Local monotonicity and mean value formulas
for evolving Riemannian manifolds

By Klaus Ecker at Berlin, Dan Knopf at Austin, Lei Ni at San Diego,
and Peter Topping at Warwick

Abstract. We derive identities for general flows of Riemannian metrics that may be
regarded as local mean-value, monotonicity, or Lyapunov formulae. These generalize pre-
vious work of the first author for mean curvature flow and other nonlinear diffusions. Our
results apply in particular to Ricci flow, where they yield a local monotone quantity di-
rectly analogous to Perelman’s reduced volume ¥ and a local identity related to Perelman’s
average energy 7 .

1. Introduction

To motivate the local formulas we derive in this paper, consider the following simple
but quite general strategy for finding monotone quantities in geometric flows, whose core
idea is simply integration by parts. Let (ﬂ " g(z)) be a smooth one-parameter family of
complete Riemannian manifolds evolving for 7 € [a, b] by

0
1.1 —g="2h.
(1.1) a7
Observe that the formal conjugate of the time-dependent heat operator %— A on the
0
evolving manifold (,ﬂ”,g(t)) is — <& +A+tr, h>. If o,y : A" X [a,b] — R are smooth

functions for which the divergence theorem is valid (e.g. if .#" is compact or if ¢ and  and
their derivatives decay rapidly enough at infinity), one has"

5 gone GOl p oA

1 Here and throughout this paper, du denotes the volume form associated to g().
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If ¢ solves the heat equation and y solves the adjoint heat equation, it follows that

the integral | @y du is independent of time. More generally, if l//|:<%—A) q)} and

] y
17 { <a_t +A+tr, h) 14 both have the same sign, then | ¢y du will be monotone in . If the

product gy is geometrically meaningful, this can yield useful results. Here are but a few
examples.

Example 1. The simplest example uses the heat equation on Euclidean space. Let

1 _L=?
We i(“/) (X € Rn,t < S)
(s — 1

(1.3) Y(x, 1) =

denote the backward heat kernel with singularity at (y,s) € R” x R. If ¢ solves the heat
equation and neither it nor its derivatives grow too fast at infinity, then

p(y,s) = 1t1;n | o(x, )y (x, 1) dx.
N Rn

Because % | o(x,00(x,t)dx =0, one has ¢(y,s) = [ @(x,){(x,1)dx for all y e R" and
R R

t < s, which illustrates the averaging property of the heat operator.
Example 2. Let F,: .#/" — /" = R""! be a one-parameter family of hypersurfaces
) 0 .

evolving by mean curvature flow, EFZ = —Hv, where H is the mean curvature and v the

outward unit normal of the hypersurface .#,". This corresponds to # = —HA in (1.1), where
A is the second fundamental form. Define i by formula (1.3) applied to x € R"*! and ¢ < s.
Using tr, h = —H?, one calculates that

2

0 2\, _ (X—J’)L
Hence by (1.2),
ij Wdu = f[(é—A> :|l//d — (X—y)L_Hvz Vo

This is established for ¢ = 1 by Huisken [20], Theorem 3.1, and generalized by Huisken
and the first author [8], §1, to any smooth ¢ for which the integrals are finite and integration
by parts is permissible.

Hence | y duis monotone nonincreasing in time and is constant precisely on homo-

w"

thetically shﬁﬁking solutions. The monotonicity implies that the density

eMCF . d
o [1}%/!”'# )%
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of the limit point ¢ = (0,0) is well defined. Another consequence is that sup ¢ < sup ¢ if
P VK M
(E—A>¢ <0 for 7 € [a,b].

Example 3. A compact Riemannian manifold (.#",g(¢)) evolving by Ricci flow
corresponds to 4 = —Rc in (1.1), so that tr, 7 = —R. If?

p=1 and ¥ =[t(2Af — |Vf|* + R) + f — n](4nt) e,
then Perelman’s entropy may be written as # (g(1), f(¢),7(¢)) = [ oy du. If de/dt = —1

P s n V&
and <E+A>f_ \d _R_Z_r’ then

't
Rc+ VVf — %g’ (4nr) e

0
—+A—R|y=2
(Gra-gJy=x
In this case, (1.2) becomes

2

d (4n7) "% dp,

S 9@, f(0,7(0) = | 2¢

M

1
Rc+VVf—Zg

which is formula (3.4) of [28]. In particular, %" is monotone increasing and is constant pre-
cisely on compact shrinking gradient solitons.

Example 4.  Again for (.#",g(t)) evolving smoothly by Ricci flow for 7 € [a, b], let £
denote Perelman’s reduced distance [28] from an origin (y,b). Take ¢ = 1 and choose = v
to be the reduced-volume density®

1 —/(x,b—1)
v(x,t) = —————>e '™ xe " t<b).
0 [dn(b — )" ( )

Then Perelman’s reduced volume is given by V(1) = [ oydu By [28], §7,
ot

obtains monotonicity of the reduced volume if .#" is compact or if its Ricci curvature is
bounded.

(— + A — R) v = 0 holds in the barrier sense, hence in the distributional sense.® Thus one

More generally, one gets monotonicity of [ ¢y du for any nonnegative super-
M
solution ¢ of the heat equation. In particular, taking ¢(x,?) = R(x,7) — Ryin(0) on a

2 Throughout this paper, V represents the spartial covariant derivative, and A = tr, VV.

3 The formula used here and throughout this paper differs from Perelman’s by the constant factor
(471)7"/ 2. This normalization is more convenient for our applications.

4 Tt is a standard fact that a suitable barrier inequality implies a distributional inequality. See [4] for
relevant definitions and a proof. A direct proof for v is found in [38], Lemma 1.12.
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. . 0 o .
compact manifold and noting that (E—A)go = 0 holds pointwise, one verifies that

J [R — Ruin(0)]v du is nondecreasing in time.
Vi
In [12], Feldman, Ilmanen, and the third author introduce an expanding entropy and
a forward reduced volume for compact manifolds evolving by Ricci flow. Monotonicity of
these quantities may also be derived from (1.2) with ¢ = 1.

Similar ideas play important roles in Perelman’s proofs of differential Harnack esti-
mates [28], §9, and pseudolocality [28], §10.

The strategy of integration by parts can be adapted to yield local monotone quantities
for geometric flows. We shall present a rigorous derivation in Section 2 when we prove
our main result, Theorem 7. Before doing so, however, we will explain the underlying mo-
tivations by a purely formal argument. Suppose for the purposes of this argument that
Q= [J Qis a smooth, precompact subset of .#" x [a,b]. Assume that dQ, is smooth

a<t<h
with outward unit normal v, and let do denote the measure on 0Q, induced by ¢(z). If the

product ¢ vanishes on 0€2, then

(1.4) g{w[(%—A) }-i—(ﬂ[(%-i—A-l—trgh)lﬁ}}d,udt
= J(dtfwdu> dt + j(¢<w,v> W{Vop,v))dadt.

This formula may be regarded as a space-time analog of Green’s second identity. In the spe-
cial case that Q i is the super-level set {(x,7) : ¥(x,7) > 0} and both Q, and Q, are empty,
then v = —|Vy| ' Vi, whence (1.4) reduces to

0 0
s M(“‘ - AM T w[(—w + trgh>z//] } dudi+ [ p[Vy|dodi=D0.
waoy U L\ of (=0}
Formula (1.5) enables a strategy for the construction of local monotone quantities.

Here is the strategy, again presented as a purely formal argument. Let ¢ and ¥ > 0

be given. Define y = log'¥, and for r > 0, let i) = log(r"¥). Notice that Vi) = Vi for
all r > 0. Take Q to be the set E, defined for r > 0 by

(1.6) E = {(x,0) : B(x,0) > 1"} = {(x,0) 1 Yy > O},

(When V¥ is a fundamental solution® of a backward heat equation, the set E, is often called
a ‘heatball’.) Assume for the sake of this formal argument that the outward unit normal to
the time slice E,(1) := E, n (4" x {t}) is v = —|Viy| "' Viy. Observe that

%) See Section 5 below.
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(1.7) <%+A>lp:‘P_l<%+A+trgh)‘P—\Vtﬁz—trgh.

Applying the coarea formula to each time slice E,(¢), followed by an integration in ¢, one
obtains

d n
(1.8) S [ VUlPpdpdr == [ |Vy|pdad.
Er

OE,

Similarly, one has

d 0
(19) L [, o dudi = [(tr,h)| < log(r"¥) | dyudr
dr . £ or
(1.9b) :g [ (tr, hypdpdt,
Er

because the boundary integral vanishes in this case. Now by rearranging (1.5) and using
(1.7)—(1.9), one gets

Ef,{% K%— A)w] +y! [<%+A+trgh>‘l‘](p} dudr

= g{IW/Iz — (try W)Y }p dudt — I¢IV¢|d0df+g(trgh)wdﬂdt
r aEr r

rd
= [{IVy[® = (try W Yo dudi — = — [{|VP|* = (try ) Yo dudr.
£ ndrg
Defining
(1.10) P,w(r) == [{|VIog¥|* — (tr, h) log(r"¥)}p dudt
E,

and applying an integrating factor, one obtains the following formal identity. Since
log(r"¥) = ¢,y > 0 in E,, this identity produces a local monotone quantity whenever

(g — A) @ and ¢ (% +A+try, h) Y have the same sign.

Proto-theorem. Whenever the steps above can be rigorously justified and all integrals
in sight make sense, the identity

a4 (P

rn

0 0
— _r% f{bg(rn\p) <E - A>¢ Tyt [(aju A+ trgh>q1]<p} dudt
E,

will hold in an appropriate sense.
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In spirit, (1.11) is a parabolic analogue of the formula

d (1 1
G T eWdd) =g [ v sPaedn

o
r [x—y|<r [x—yl<r

which for harmonic ¢ (i.e. Ap = 0) leads to the classical local mean-value representation
formulae

Y Y p—

n
P eyl<r

| o(x)do.

=yl

p(y) =

o, nw, "1

The main result of this paper, Theorem 7, is a rigorous version of the motivational
proto-theorem above. We establish Theorem 7 in a sufficiently robust framework to pro-
vide new proofs of some classical mean-value formulae (Examples 5-8), to generate several
new results (Corollaries 13, 15, 18, 19, 23, 26, 27) and to permit generalizations for future
applications. Our immediate original results are organized as follows: in Section 4, we
study Perelman’s reduced volume for manifolds evolving by Ricci flow; in Section 5, we
discuss heat kernels on evolving Riemannian manifolds (including fixed manifolds as an
interesting special case); and in Section 6, we consider Perelman’s average energy for mani-
folds evolving by Ricci flow. In [27], the third author applies some of these results to obtain
local regularity theorems for Ricci flow. Potential future generalizations that we have in
mind concern varifold (Brakke) solutions of mean curvature flow, solutions of Ricci flow
with surgery, and fundamental solutions in the context of ‘weak’ (Bakry-Emery) Ricci cur-
vature, e.g. [23].

As noted above, Theorem 7 allows new proofs of several previously known local mo-
notonicity formulae, all of which should be compared with (1.11). To wit:

Example 5. Consider the Euclidean metric on .#" = R" with 27 =0. If ¥ is the
backwards heat kernel (1.3) centered at (y,s) and the heatball E, = E,(y,s) is defined by
(1.6), then (1.10) becomes

|y — x|
Pow = [ o002 duar
’ E(y,s) As—1)°

Thus (1.11) reduces to

r n

d P(/,_,\p(r) N n n 0
(1.12) p <7> = = EV(inS)log(r ¥) <6t A>god,udt.

2
Since | Lx‘zd,u dt = 1, this implies the mean value identity
E(vs) 4(s—1
1 ly =
1.13 ,8) =— X, 1) ——dudt
(1.13) o(y:5) Wagwm )4@_02u

for all ¢ satisfying (% — A) ¢ = 0. This localizes Example 1.
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To our knowledge, Pini [29], [30], [31] was the first to prove (1.13) in the case n = 1.
This was later generalized to n > 1 by Watson [35]. The general formula (1.12) appears in
Evans-Gariepy [9]. There are many similar mean-value representation formulae for more
general parabolic operators. For example, see Fabes-Garofalo [10] and Garofalo-Lanconelli
[14]. (Also see Corollaries 23 and 26, below.)

Example 6. Surface integrals over heatballs first appear in the work of Fulks [13],
who proves that a continuous function ¢ on R" x (a, b) satisfies

do

1 ly—x
9(y,8) =— [ o(x,1)
M\ Jaly = xPs— 0 + [ly — 5 — 2n(s — )]

for all sufficiently small > 0 if and only if ¢ is a solution of the heat equation. (Compare
with Corollary 25 below.)

Example 7. Previous results of the first author [5] localize2 Example 2 for mean cur-
vature flow. On R"*! x (—o0,0), define W (x, 1) := (—4nr) " ?e/4 Substitute

0
! (E—i—A—i—tryh)‘I’ = —|VYy + Hy|?

and tr, i = —H? into (1.10) and (1.11). If the space-time track .# = |J .#" of a solution to
<0

mean curvature flow is well defined in the cylinder B(0, \/2n#%/n) x (—#/4m,0), then [5]
proves that formula (1.11), with the integrals taken over E, N ., holds in the distributional
sense for any r € (0, 7) and any ¢ for which all integral expressions are finite. In particular,
Py w(r)/r" is monotone increasing in r. The density @F := &im | W(x, 1) du of the limit

point O = (0,0) can thus be calculated locally by 0.
P
ONCF — hmw'
™0 rh

(Compare with Corollary 18 below.) Related work of the first author for other nonlinear
diffusions is found in [7].

Example 8. Perelman’s scaled entropy ¥~ and the forward reduced volume 6. are
localized by the third author [25], Propositions 5.2, 5.3, 5.4. Although only stated there
for Kéahler-Ricci flow, these localizations remain valid for Ricci flow in general. They are
motivated by the first author’s work on mean curvature flow [6] and arise from (1.2) by
taking ¢ to be a suitable cutoff function defined with respect to 7/ and 7/, , respectively.

The remainder of this paper is organized as follows. In Section 2, we rigorously derive
Theorem 7: the general local monotonicity formula motivated by formula (1.11) above. In
Section 3, we derive a local gradient estimate for solutions of the conjugate heat equation.
In Sections 4-5, we apply this machinery to obtain new results in some special cases where
our assumptions can be checked and in which (1.11) simplifies and becomes more familiar.
The Appendix (Section 7) reviews some relevant properties of Perelman’s reduced distance
and volume.
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2. The rigorous derivation

Let —o0 < a < b < o0, and let (,/% " g(t)) be a smooth one-parameter family of com-
plete Riemannian manifolds evolving by (1.1) for 7 € [a,b]. As noted above, the formal

. 0 : 0
conjugate of the heat operator Frie Aon (" g(1)) is — <E +A+tr, h). For o € R, we

adopt the standard notation [«], := max{«, 0}.

Let ¥ be a given positive function on .#" x [a,b). As in Section 1, it is convenient to
work with

(2.1) Y = log¥
and the function defined for each r > 0 by

(22) lﬁ(,,) = lﬁ—{—nlogr
For r > 0, we define the space-time super-level set (‘heatball’)

(2.3a) E. ={(x,t)e " x|a,b):¥ >r"}

(2.3b) ={(x,1) e A" x[a,b) : y,) > 0}

We would like to allow ¥ to blow up as we approach time ¢ = b; in particular, we
have in mind various functions which have a singularity that agrees asymptotically with a
(backwards) heat kernel centered at some point in .#" at time ¢ = b. (See Sections 6-5.) In
this context, we make, for the moment, the following three assumptions about V.

Assumption 1. The function ¥ is locally Lipschitz on .#" X [a, s] for any s € (a,b).

Assumption 2. There exists a compact subset Q = .#" such that ¥ is bounded out-
side Q X [a,b).

Assumption 3. There exists 7 > 0 such that

i (f lde) =0

/b NE; (4" x{s})
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and

[|Vy)? dudt < oo.
E;.

Remark 4. By the continuity of ¥ from Assumption 1 and its boundedness from As-
sumption 2, we can be sure, after reducing 7 > 0 if necessary, that ¥ < 7" outside some
compact subset of .#" x (a,b]. In particular, we then know that the super-level sets E, lie

inside this compact subset for r € (0, 7].

Remark 5. By Assumption 3 and compactness of E;, one has [ || dudt < co.
E;

T

Remark 6. We make no direct assumptions about the regularity of the sets E,
themselves.

Let ¢ be an arbitrary smooth function on .#" x (a,b]. By Assumption 3, the quantity
(24) Pyw(r) = [[IVY]* = (tr W)]p dpdr
E,

is finite for r € (0, 7|. Our main result is as follows:

Theorem 7. Suppose that (/% ", g(t)) is a smooth one-parameter family of complete
Riemannian manifolds evolving by (1.1) for t € [a,b], that ¥ : 4" x [a,b) —( 0, c0) satisfies
Assumptions 1-3, that 7 > 0 is chosen according to Assumption 3 and Remark 4, and that
O<ro<rn =r.

If'Y is smooth and the function

0
<E+A+trgh)‘l’ _ %

¥y ot

+ Ay + VY |> +tr b

belongs to L' (E;), then

Pyw(r) Py w(ro)
ry o

(2.5)

"' on 5‘# 2
=[—[|-[=—+A h
r{rnHE{[ (at + A+ V[t )w
4
If, instead, Y is merely locally Lipschitz in the sense of Assumption 1, and the inequality

0
<a—t+A+trgh>‘P
¥

1\

0
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holds in the distributional sense, and ¢ = 0, then

(26) P@W(I"]) - P(p’\p(?’o) < _er
rt s -

n op
e (¥ +nlogr) <E - A(p) dudtdr.
ro E,
Remark 8. If ¢ solves the heat equation and ¥ solves the conjugate heat equation,
then (2.5) implies that P, w(r)/r" is independent of r. See Example 5 (above) and Corollary

23 (below).

Proof of Theorem 7. We begin by assuming that ¥ is smooth. In the proof, we write
P(-) = P, w(-). For most of the proof, we will work with a modified function, namely

(2.7) P(ros):= [ (VY =y (try )] dud,
E.n(M"x][a,s])

arising from restriction to the time interval [a, s], for some s € (a,b). As a result, we will
only be working on domains on which ¥ and its derivatives are bounded, and the conver-
gence of integrals will not be in doubt. A limit s b will be taken at the end.

Let{: R — [0, 1] be a smooth function with the properties that {(y) = 0 for y < 0 and

¥
{'(y) 20.Let Z: R — [0, o0) denote the primitive of { defined by Z(y) = [ {(x)dx. One
should keep in mind that { can be made very close to the Heaviside function, in which case

Z(y) will lie a little below [y]. .

For r € (0,7 and s € (a,b), we define

(2.8) Orys) = [ [IVUIPLW) = Z(b)(try Wlpdudt,
M"xa,s)
which should be regarded as a perturbation of P(r,s), and will relieve us of some technical
problems arising from the fact that we have no control on the regularity of E,. Note that
{(Y () and Z(y,)) have support in E,. Therefore, the convergence of the integrals is guar-
anteed.

In the following computations, we suppress the dependence of Q on s and assume
that each integral is over the space-time region .#" X [a, s] unless otherwise stated. One has

P d [Q(r)] '

o) L |EZ =1o0)- o

= JIVUIPL (W) — Z' (W) (trg W) p dpdt — QO(r)
= [V (W )pdudt — [[LQb)(trg b)) dud
— JIVIP W )pdudt + [[Z(P )ty h)]p dpdt.

The first integral and the last integral in the last equality on the right-hand side require fur-
ther attention.

For the first of these, we keep in mind that Vi = Vi, and compute



Ecker, Knopf, Ni, and Topping, Local monotonicity and mean value formulas 99

(2.10) [V (b)lpdudt
= [(V, V(b)) o dpdr
— (AW (Wh))e + <V, VoL ()] dudt
= [T=(AW)L W )0 + (AW () LW ) + <V, Vi ' (U))] duadt,
the calculation being valid on each time slice.

For the fourth integral, we compute that at each time 7 € (a, b), one has

i IZ(‘//(r))(ﬂdﬂ: f {Z/(l//m)%

dt i {1y ot

op

0+ Z0) 5, + 20 oty h)] dp,

the final term coming from differentiation of the volume form. Integrating over the time
interval [a, s] and using the facts that Z’ = { and that Z(y/,)) = 0 at ¢ = a (which holds be-
cause ) < 0 at = a by Remark 4), we find that

Y ot 2y 2

QA1) 200, g e =~ c0) 5 2 awa

J//"X{S}

where the integrals are still over .#" X [a, s| unless otherwise indicated.

We now combine (2.9) with (2.10) and (2.11) to obtain

n+1
(2.12) 73;[ r }_ f( + A+ VY] + )C(lﬁ(r))(ﬁdﬂdl

0
+ [(Ap) (W) dpedt — fa—(fz(lﬁ(,)) dudt

+ J<VY, Vol 0 (W) dudt + f{ }Z(‘//<r))(0 dp.
M x{s

The entire identity may now be multiplied by 7/r"*! and integrated with respect to r between
ro and ri, where 0 < ry < r; < 7, to get an identity for the quantity Q(r1,s)/rf — Q(ro,s)/r{.

We may simplify the resulting expression by picking an appropriate sequence of valid
functions { and passing to the limit. Precisely, we pick a smooth {; : R — [0, 1] with the
properties that {;(y) =0 for y £ 1/2, {;(y) =1 for y = 1, and {{(») = 0. Then we define
a sequence (i : R — [0,1] by (i () = (2K 1y). As k increases, this sequence increases
pointwise to the characteristic function of (0, c0). The corresponding Z; converge uni-
formly to the function y — [y], . Crucially, we also can make use of the facts that Ck(t,b )
converges to the characteristic functlon of E, in L'(.#" x [a,b]) and that ;. (,) is a
bounded sequence of functions on .#" x [a,b) with disjoint supports for each k. Indeed,
the support of {; lies within the interval (2%, 21-),

For each r € (0, 7], we have Q(r,s) — P(r,s) as k — oo. Using the dominated conver-
gence theorem, our expression becomes
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P(ry,s) B P(ry,s)

r n

(2.13)

G
r n

—-f

pntl
ro E.n(M"xa,s])

J <%¢+A¢+IV¢| + tr, )(pd,udtdr

" on op

- /78 (— — Ago) dudtdr
r{ Pl E,ﬂ(y/i"l"x[a s]) “ ot

+ f | Wlipdudr.
n’ //”x{s}

Now we may take the limit as s " b. By Assumption 3, the final term converges to zero,
and we end up with (2.5) as desired.

Next we turn to the case that i is merely Lipschitz, in the sense of Assumption 1.
Given s € (a, b) and functions { and Z as above, there exists a sequence of smooth functions

W, on 4" x [a,b] such that y; —  in both W2 and C° on the set E; n (4" x [a, s]). By
hypothesis on our Lipschitz s, we have

0
e (S A 19 ) 0 o dur <0
M"Xa,s)

where we make sense of the Laplacian term via integration by parts, namely
[ =AW W) pdudt = [V, Vo)Xl (b) + VI (b)) o) dudt.

By definition of ;, we have

lim | —<%+A¢j+|V¢j|2+trgh>c((zpj)( Jodudt=1<0,

=% i xa,s) ot

uniformly in r € (0, 7|. Consequently, we may carry out the same calculations that we did in
the first part of the proof to obtain an inequality for the quantity Q(r,s)/r{ — Q(ro,s)/r{,
with ; in place of . We then pass to the limit as j — oo to obtain the inequality

r, s ro, S "n
gy L0 QUG F I (s ) dudrdr
" o ro’ M"x[a,s)

r n
-

1o

dp
s ’////";[[a , — Z (W) dudt dr

+ );‘(')J rZH j <le7 V§0>lp())é/(lp(,)) dlu dtdr

A" xa,s)

n n
— Z(y dud
+j”n+l //”I{y} o diedr
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for our Lipschitz . Finally, we replace { with the same sequence of cut-off functions ¢, that
we used before (thus approximating the Heaviside function), take the limit as k — oo, and
then take the limit as s  b. This gives the inequality (2.6). []

The argument above may be compared to proofs of earlier results, especially the
proof [5] of the local monotonicity formula for mean curvature flow.

There is an alternative formula for (2.4) that we find useful in the sequel:

Lemma 9. Suppose that (/% ”,g(l)) is a smooth one-parameter family of complete
Riemannian manifolds evolving by (1.1) for t € |a,b], that Y : M" x [a,b) —( 0, 00) satis-
fies Assumptions 1-3, that 7 > 0 is determined by Assumption 3 and Remark 4, and that
O<ro<rn 7.

o

Ifop=1 —
If o and 3

+ |V |* € L'(E;), then for all r € (0, 7], one has

Pt = I (%

-
E)‘ 0 [

+ |vlp|2> dudt.

Proof. In the case that ¢ = 1, substituting formula (2.11) into formula (2.8) yields

001 = | (Lr WU ) dudi— | Z0h)du

M"xa,s) M x5}

Although (2.11) was derived assuming smoothness of ¥, one can verify that it holds for
locally Lipschitz W satisfying Assumption 1 by approximating i by a sequence of smooth
Y; (as in the proof of Theorem 7) and then passing to the limit as j — oco. Then if
W
ot
{x along which Q(r,s) — P(r,s) as k — oo and then let s /b to obtain the stated
formula. []

+ \Vlﬁ]z e L'(E;), one may (again as in the proof of Theorem 7) choose a sequence

3. A local gradient estimate

In order to apply Theorem 7 to a fundamental solution of the heat equation of an
evolving manifold in Section 5, we need a local gradient estimate. One approach would be
to adapt existing theory of local heat kernel asymptotics. Instead, we prove a more general
result which may be of independent interest. Compare [17], [22], [24], the recent [33], [34],
and [36], [37].

Let (% " g(l)) be a smooth one-parameter family of complete Riemannian manifolds
evolving by (1.1) for 7€ [0, 7]. We shall abuse notation by writing g(t) to mean g(z(¢)),
where

(t):=1—t
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In the remainder of this section, we state our results solely in terms of z. In particular, g(7)

satisfies %g = —2hon /" x [0,1].

Given X € .#/" and p > 0, define

(3.1) Qp)i= U (Byo(®p) x {z}) 4" x [0,17].

0<t<t

We now prove a local a priori estimate for bounded positive solutions of the conjugate heat
equation

T

(3.2) (aﬁ —A—tr, h>v =0.

We will apply this in Section 5.

Theorem 10. Let (,/% ", g(‘c)) be a smooth one-parameter family of complete Riemann-

ian manifolds evolving by a—g = —2h for 0 <t < 1. Assume there exist ki,ky, k3 = 0 such
that t

h<kig, Rc=—kyg, and |V(tryh)| <ks

in the space-time region Q(2p) given by (3.1). Assume further that v(z) solves (3.2) and sat-
isfies 0 < v < A in Q(2p).

Then there exist a constant C| depending only on n and an absolute constant C, such
that at all (x,t) € Q(p), one has

Vo|?

AN [1 CivFap coth(viap) + C
02 é(l'l'logg) |:;+C1k1+2k2+k3+ ks + 1\/—2/)00 (\/—2/})—'_ 2.

P2

Proof. By scaling, we may assume that 4 = 1. We define®
fi=logyv and w:=|Vlog(l — )%,

computing that

VI
(5= 8) 7 = 9P + (e .

Then using Bochner-Weitzenbock, we calculate that

<% - A) \Vf|* = 2h(Vf,Vf) — 2Re(Vf, Vf) — 2|VVf|* + 2{V(trgh + IV£1), VD

© Note that w is used by Souplet-Zhang [33], Theorem 1.1, in generalizing Hamilton’s result [7]. A similar
function is employed by Yau [36]. Also see related work of the third author [26].
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and

1 o o
(— - A) Y= [2h(Vf, Vf) — 2Re(Vf, V) + 2{V(tr, h), VFD]

2 R/l
TV A = AT
/AN L0 /A R\ VAPV i /)
(1=7) (1-7) (1=/)
By rewriting the last term above as
4 4
f<WVﬂ /DR S P /A M A

1-5°  T1=f 1-n* -5’

and cancelling terms, we obtain

0 1 . .
(E - A) Y= 2h(VF,Vf) = 2Re(Vf, VF) + 2(V(tr, h), VfD]

2 SRAA\AR /PN
u—fVPVWW+ 7 -
, (i 1T?jf;IVf| f<V”’Vf>

Now let 7(s) be a smooth nonnegative cutoff function such that #(s) = 1 when s < 1
and 5(s) = 0 when s > 2, with ' £ 0, || £ Gy, (')* £ Capp, and " = —C,. Define

Observe that at each fixed 7, u is smooth in space off of the g(7) cut locus of X. However,
for our purposes of applying the maximum principle, Calabi’s trick allows us to proceed as
though u were smooth everywhere. Thus, we calculate that

\Ziye
u ~ p?
and
ou
P < Gk
and

C \/k_zp COth(\/k_z,D) + G

—Au £ 2
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Now let G := uw and compute that

i—A (1G) =G+ tu i—A wl+w E—A u| — 2t{Vu,Vw).
ot ot ot
For any 7; > 0, consider 7G on .#" x [0,7;]. At any point (xo,79) where 7G attains its

0
maximum on .#" x [0,7;], we have 0 < <E - A) (tG) and

(% - A) (tG) £ G — 2t(Vu, Vw)

[ 2

+ 20| MOV W) = RE(V/. V) + Wy ). 91 (150 )|V ]
_ (1-/) (1-/)
= \ZiN

+2ru_1_f<Vw,Vf> T

+ 1w |:C2kl + G Vkop COtig\/k_zp) + CZ} .

Using the fact that VG(xo, o) = 0, we can replace uVw by —wVu above. Then multiplying
both sides of the inequality by u € [0, 1] and using 1/(1 — f) < 1, we obtain

0< G+ 2t{[(n+ Dk + k]G + k3v/G}

+ 2tG|Vul |Vf] (%) —27(1 — /)G?
CivVkap coth(vVkap) + Cz}
p? ‘

+ TG{Czkl +

Noticing that 2k3v/G < k3(G + 1) and that

_ V 2 V 2 D)
269 197112, = GG I VLS f)

G fz
< 2
<1 /)G+16G 21—

we estimate at (xo, 7)) that

Civkyp coth(vVkap) + Cz} }

0§‘L’k3—|—G{l—|—T|:C1k1—|—2k2+k3—|— p2

Dividing both sides by 7(1 — f) while noting that 1/(1 — f) <1 and —f/(1 — f) < 1, we
get
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CiVkap coth(vVkzp) + Co
2

—G?

1
0Zks+ G ;+C1k1+2k2+k3+

from which we can conclude that

Civkap coth(vVkap) + C,
2

1
G ;—F Ciky + 2k + k3 + Vs +

at (xo,70). Hence W(t;) ;=11 sup w(x,1;) may be estimated by
xeBy(r)(“ﬁp)

W(‘Cl) § T()G(X(), ‘L'o)

Civkap coth(vkap) + Cz]
P2

Civkap coth(vVkap) + Cz]
p? ‘

§1—|—T0|:C1k1+2k2—|—k3+\/k73+

<1l+1 |:C1k1—|—2k2—|—k3+\/k73+

Since 7, > 0 was arbitrary, the result follows. []

Remark 11. In the special case that 4 = 0, we have

2 2
|VZ;| < (1 +10g%> E+2k2+

Civkap coth(vVkap) + Cz}

v p?

at (x,t), for all times 7 € [0, 7] and points x € B,,)(X, p), which slightly improves a result of
[33].

4. Reduced volume for Ricci flow

Our first application of Theorem 7 is to Ricci flow. Let (.#", g(1)) be a complete so-
lution of Ricci flow that remains smooth for 0 < ¢ < 7. This corresponds to # = —Rc and
try,h=—Rin (1.1).

4.1. Localizing Perelman’s reduced volume. Perelman [31], §7, has discovered a re-
markable quantity that may be regarded as a kind of parabolic distance for Ricci flow.

- . . 0 S
Define 7(7) := 7 — 1, noting that g(z(¢)) then satisfies 59 = 2Rcfor0 <t <% Fixxe. /"
T

and regard (x,0) (in (x,7) coordinates) as a space-time origin. The space-time action of a
smooth path y with y(0) = (x,0) and y(z) = (x,7) is

(4.12) () = Jﬁ(

Va1 |dy
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Taking the infimum over all such paths, Perelman defines the reduced distance from (¥, 0)
to (x,7) as

(42) ((5,%) = s (5, 7) = 5 = inf 20).

and observes that

_ 1
4.3 DX, T) = Vz X, T ;_—76*/()6,1)
( ) ( ) ( 70)( ) (4nr)”/2

is a subsolution of the conjugate heat equation u, = Au — Ru in the barrier sense [28], hence
in the distributional sense.” It follows that the reduced volume (essentially a Gaussian
weighted volume)

(4.4) V()= Vi) = [v(x,7)du
is a monotonically increasing function of ¢ which is constant precisely on shrinking gradient
solitons. (Compare with Example 4 above.)

The interpretations of / as parabolic distance and ¥ as Gaussian weighted volume
are elucidated by the following examples.

Example 9. Let (.#Z",g) be a Riemannian manifold of nonnegative Ricci curvature,
and let ¢ be any smooth superharmonic function (Ag < 0). In their seminal paper [22], Li
and Yau define

2 1

p(x, ) = 1nf{ gl" da+rjq( )da}

where the infimum is taken over all smooth paths from an origin (¥,0). As a spec1a1 case
of their more general results [22], Theorem 4.3, they observe that (4z7)” "2e=p(x7) s a

distributional subsolution of the linear parabolic equation <8_ —A+ q> u=>0.
T

Example 10. Let (R", g) denote Euclidean space with its standard flat metric. Given
A€ R, define X = grad (2 |x|2>. Then one has 0 = Rc = 1g — #xg. Hence there is a Ricci
soliton structure (i.e. an infinitesimal Ricci soliton) on Euclidean space, called the Gaussian

soliton. It is nontrivial whenever A + 0.

Take 2 =1 to give (R",g) the structure of a gradient shrinking soliton. Then
a) Vo tx 1s an ¥-geodesic from (0,0) to (x,7). Thus the reduced distance is
40,0)(x,7) = |x|?/4t and the reduced volume integrand is exactly the heat kernel

v 0( 1) = (4n7)"2e~ /4 Hence V (0.0)(¢) = 1. (Compare [21], §15.)

7 See [38] for a direct proof of the distributional inequality.
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Example 11.  Let S}, denote the round sphere of radius r(r) = \/2(n — I)7. This is
a positive Einstein manifold, hence a homothetically shrinking (in #) solution of Ricci flow.
Along any sequence (xi, 7x) of smooth origins approaching the singularity ¢ at t = 0, one
gets a smooth function 7y (x,7) := klm; £(x,70) (X, T) = n/2 measuring the reduced distance

from . Hence V(1) = [(n — 1)/(27e)]"* Vol(S}') for all £ < 0. (See [4], §7.1.)

Our first application of Theorem 7 is where ¥ is Perelman’s reduced-volume density v
(4.3). Let / denote the reduced distance (4.2) from a smooth origin (X, 7) and assume there
exists k € (0, c0) such that Rc = —kg on .Z" x [0, 7]. In what follows, we will freely use re-
sults from the Appendix (Section 7, below).

Lemma 39 guarantees that / is locally Lipschitz, hence that Assumption 1 is satisfied.
(Also see [38] or [4].) The estimate in Part (1) of Lemma 28 ensures that Assumption 2 is
satisfied. Assumption 3 follows from combining that estimate, Corollary 32, and Lemma
40. Here we may take any 7 > 0 satisfying 7> < min{7/c, 4n}, where ¢ = ¢*/3 /(4z). So for
r € (0, 7], consider

r

Vdnt

P, .(r) ::g[|V/|2+R<nlog —/)}qod,udl.

| — %

472
and solutions of mean curvature flow. See Examples 5 and 7, respectively.

Notice that |V/ \2 replaces the term in the heatball formulas for Euclidean space

Remark 12. For r € (0, 7], one may write P; ,(r) in either alternative form

(4.5a) Piy(r)= | <£ +7/4+ |V/|2> dudt
£ \2t

(4.5b) = o 11*3/2% dudt.
£\2t 2

Here #(x,7) = [ 03> # (dy/dc) do is computed along a minimizing .#-geodesic y, where

0
H(X)=2Re(X,X)— (R, +2{VR, X) + R/7) is Hamilton’s traced differential Harnack
expression.

If R=0and ¢ = 0 on Ej;, then for all r € (0, 7], one has

(4.6) Poo(r) = [[IV/]? + Rylpdudi = [|V/Ppdudt 2 0.
E E,

r

If (.#",9(0)) has nonnegative curvature operator and 7 < 4z#(1 — 1/C) for some
C > 1, then for all r € (0, 7],

(4.7) Piu(r) £ jw
E

dudt.
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Proof. By Part (2) of Lemma 39, the arguments of Lemma 40 apply to show that

2_
lthrWlM _2T

[28] imply formulae (4.5).

+/; + |V/|* € L'(E;). Hence Lemma 9 and identities (7.5) and (7.6) of

Since ¥,y > 0 in E,, the inequalities in (4.6) are clear.

If (.#", g(0)) has nonnegative curvature operator, Hamilton’s traced differential Har-
nack inequality [18] implies that

() 2 a(le )=
do c t—o t—oo

along a minimizing .#-geodesic y. Hence

1 5 i 3 dy
—= H = < R+ ==
2" —f—-1 2 J\/E * do

2 -
)d(f:_t {
I—11

By Lemma 31, one has 7 < r?/4x, which gives estimate (4.7). []

ﬁ)—/.

Corollary 13. Let (4", g(t)) be a complete solution of Ricci flow that remains
smooth for 0 <t <t and satisfies Rc = —kg. Let ¢ be any smooth nonnegative function of
(x,1) and let ¢ = ¢**'/3 /(4r). Then whenever 0 < ro < r; < min{\/7/c,2+/n}, one has

Our main result in this section is as follows. Recall that y,) :=n log(

Py o(r1)  Pyo(ro) "on g
5 _ 5 < _ _r
(4.8) " = ;([ s Ef ¥ 3 Ag | dudtdr.
Furthermore,
_ - . P,(r)
4. =1 % .
(4.9) p(x, 1) =lim—2

In particular,

o P,,(r1) " n 0
> @, v
(4.10) p(x,7) = ” + g e Efylﬁ(”[(at A>¢] dudtdr.

v
ot
implied by Perelman’s barrier inequality [28], (7.13); see [38], Lemma 1.12, for a direct
proof.) Hence we may apply Theorem 7 in the form (2.6) to obtain (4.8).

Proof. The quantity ¥ = v satisfies — + Av — Rv = 0 as a distribution. (This is

Formula (7.6) of Perelman [28] implies that
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/
P(/),v(r> = J‘ |:—+ Rlp(r) —R-— T3/29{:| (0d,udt
E LT
By Corollary 32, there is a precompact neighborhood # of X with E, € % x [0, cr?] for all
r > 0 under consideration. By Lemma 35, there exists a precompact set ¥~ such that the
images of all minimizing #-geodesics from (X, 0) to points in % x [0, cr?] are contained in
the set 7~ x [0, ¢r?], in which one has uniform bounds on all curvatures and their derivatives.
( di(x 1 1
So by Lemma 28, one has o= Oz;x) + 0(;) and Ry, = R(n log\/;;;% - /) = O(;)

as 7 \, 0. By Corollary 37, t3/24 is also O ! as 7 \, 0. Adapting the arguments in the
y y pung g
T

proof of Lemma 40, one concludes that

. Pyo(r) . 1 .di(x,x) P
h{%r——h{%{r};f 42 vdudip=9(X,1),

exactly as in the calculation for Euclidean space. (Also see Corollary 23, below.) []

An example of how this result may be applied is the following local Harnack inequal-
ity, which follows directly from (4.10).

Remark 14. Assume the hypotheses of Corollary 13 hold. If R = 0 on E,,, then

1 2
R(%,7) 2 — [[[V/]* + Ry Rduds + frn—Zflp(,,)|Rc|2dﬂdtdr.
0 E.

" E,
The inequality (4.8) is sharp in the following sense.
Corollary 15. Let (ﬂ ", g(t)) be a complete solution of Ricci flow that is smooth for
0 <t <1, with Re 2 —kg. If equality holds in (4.8) for ¢ = 1, then (E,,¢(1)) is isometric to
a shrinking gradient soliton for all r < min{\//c,2\/z}.

Proof. From the proof of Theorem 7, it is easy to see that

dr rn

0
d (P1o(r) , <E+A+tr9h>v
pntl v
E,

for almost all r < min{+/7/c,2/n}. Therefore, equality in (4.8) implies that v is a distribu-
tional solution of the parabolic equation

(ﬁ—A—FR)v:O
ot

in E, for almost all small r. By parabolic regularity, v is actually smooth. This implies that
one has equality in the chain of inequalities
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) _
n /§—A/+n 20
T 27

1
A/_’VAZ—}_R_% é/r:_<_R+%—§T3/2%)+

that follow from equations (7.13), (7.5), and (7.10) of [28]. Hence one has
u:=1(2A — |V/|* + R)+/ —n=0.

By [28], equation (9.1) (where the roles of u and v are reversed), this implies that

2

Rc—l—VV/—ig v.

0:<8—A+R>(uv):—27 >

ot

This is possible only if (E,,g(t)) has the structure of a shrinking gradient soliton with
potential function 7. []

Remark 16. For applications of Corollary 15 to regularity theorems for Ricci flow,
see [27] by the third author.

4.2. Comparing global and local quantities. Corollaries 13 and 15 suggest a natural
question: how does the purely local monotone quantity P ,(r)/r" compare to Perelman’s

global monotone quantity V(¢) = | vdu? A path to a partial answer begins with an obser-
M
vation that generalizes Example 11 above.

Cao, Hamilton, and Ilmanen [1] prove that any complete gradient shrinking soliton
(,ﬂ " g(t)) that exists up to a maximal time 7" < oo and satisfies certain noncollapsing and
curvature decay hypotheses converges as ¢ /T to an incomplete (possibly empty) metric
cone (%,d), which is smooth except at the parabolic vertex (/. The convergence is smooth
except on a compact set (possibly all of .#") that vanishes into the vertex.® Furthermore,
they prove that along a sequence (xx, 7x) approaching @, a limit /y(x, ) := lim/,, ;) (x, 7)
exists for all x € .#" and 7(¢) > 0. They show that the central density function

ORF (1) i= V(1) = lim ¥y o9(0)

of the parabolic vertex ¢ is independent of time and satisfies @' () = e’, where v is the
constant entropy of the soliton (ﬂ " g(r)).

On a compact soliton, there is a pointwise version of the Cao-Hamilton-Ilmanen re-
sult, due to Bennett Chow and the third author:

Lemma 17. If (/% ", g(r)) is a compact shrinking (necessarily gradient) soliton, then
the limit /y(x,7) exists for all x € M" and t(t) > 0. This limit agrees up to a constant with

the soliton potential function f(x,1).

See [4] for a proof.

8 See [11] for examples where (¢, d) = li{%((//{",g(r)) is nonempty.
T
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Recall that the entropy of a compact Riemannian manifold (.#", g) is
v(AM",g) = inf{”f/(g,f,r) :feCl,t>0, | (4nr) e dy = 1},

where

(4.11) W(g,f,7) = [ [(Vf]*+R) + f — n|(4n1) "¢ dpu.

M"
(Compare with Example 3.) Under the coupled system

d
(4.12a) 9= —2Rec,
0 o 2 n
(4.12b) (at+A>f_Wf] ~R o,
(4.12¢) v _

=
the functional #(g(t), f(¢),7(¢)) is monotone increasing in time and is constant precisely

on a compact shrinking gradient soliton with potential function f, where (after possible
normalization) one has

I
(4.13) Re+VVf 5 =0.
T

Here and in the remainder of this section, the symbol = denotes an identity that holds on a
shrinking gradient soliton.

We are now ready to answer the question we posed above regarding the relationship
between P ,(r)/r" and V(t). (Compare with Example 7.)

Corollary 18. Let (% " g(l)) be a compact shrinking Ricci soliton that vanishes into a
parabolic vertex O at time T. Then for all t < T and r > 0, one has

r

Vant

Proof. 1t will be easiest to regard everything as a function of t(¢) :== T — ¢ > 0. Be-
cause (.#",g(t)) is a compact shrinking soliton, there exist a time-independent metric

where Py ,(r) = [ {|V/|2 +R<n10g

E,

— /ﬂ dudt is computed with ¢ = (.

g and function f on .#" such that Re(g) + VVf —%g = 0. The solution of Ricci flow
is then g(7) =1¢;(g), where {;},., is a one-parameter family of diffeomorphisms
such that &, =id and %éf(x) = 7! grad; f(x). The soliton potential function satisfies
f(x,7) =& f(x) and f, = —||Vf ||%. (Notice that (4.13) implies that system (4.12) holds.)
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Let ¥ = (4711)_"/ 2e~/(x7) where / is the reduced distance from the parabolic vertex
0. By Lemma 17, / = f 4+ C. So Assumptions 1 and 2 are clearly satisfied. Because

| lWldu=O[r"*log(x™"*)] and [ |Vy|[*du= O("*")
(e} M"x{}

: . . 0 o
as 7\, 0, Assumption 3 is satisfied as well. Because a—t// = |Vf]? - 2£, Lemma 9 implies
that t t

n

Py(r)= | <2T + 4+ |V/|2> dudt =

E,

n

(Compare Remark 12.) Computing V(z) = Vi (), one finds that

V()= [ (4m) e D du(g(1)

M

"
= [ Volyu){x: (471)7”/26_/(""1) >z}dz
0

Vol & {x: (4nr)"Pe 0D = 1}]de (z=1"?)

1
Vol :{(y,7) <nlo dt
Vol 0009 < mlow )

But on a shrinking gradient soliton, P; ,(r)/r" is independent of r > 0, while V(z) is inde-
pendent of 7 > 0. Since they agree at r = 1 and 7 = 1, they agree everywhere. []

Since the reduced distance and reduced volume are invariant under parabolic rescal-
ing, similar considerations apply to solutions whose rescaled limits are shrinking gradient
solitons.

4.3. Localizing forward reduced volume. In [12], Feldman, Ilmanen, and the third
author introduce a forward reduced distance

/i (x,t) ;== inf ! Jt\/E dy2+R ds

B W ds ’

Here the infimum is taken over smooth paths y from an origin (¥, 0) to (x, ¢). Define

u(x, 1) = (4nt) P

ot
if (.#",g(t)) is a complete solution of Ricci flow with bounded nonnegative curvature

and Yy = logu. In [25], it is proved that (é —A— R) u =< 0 holds in the distributional sense
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operator for 0 < 7 < T. Following the same arguments as in the proof of Corollary 13 then
leads to the following result for

r

Poult) = J |92 R(ntog——

— /+> ] pdudt.
E,
Corollary 19. Let (% ", g(t)) be a complete solution of Ricci flow with bounded non-
negative curvature operator for 0 <t < T. Let ¢ be any smooth nonnegative function. Then
whenever 0 < rog < r; < V4nT, one has

(4.14) Poulr) _ Poulro) J"] ’11 [y +nlogr) <% + A(p> dudt dr.
E

n n = n
Vl l’o o r

In direct analogy with Corollary 15, one also has the following.

Corollary 20. Let (,%",g(t)) be a complete solution of Ricci flow with bounded
nonnegative curvature operator for 0 < t < T. If equality holds in (4.14) with ¢ = 1, then
(Er, g(t)) is isometric to an expanding gradient soliton for all r < \/4nT.

5. Mean-value theorems for heat kernels

In this section, we apply Theorem 7 to heat kernels of evolving Riemannian mani-
folds, especially those evolving by Ricci flow, with stationary (i.e. time-independent) mani-
folds appearing as an interesting special case.

Let (.#",¢(1)) be a smooth family of Riemannian manifolds evolving by (1.1) for
t € [0, 7]. We will again abuse notation by regarding certain evolving quantities, where con-
venient, as functions of x € .#" and (1) :== 7 — t.

A smooth function ¥ : (.#" x [0,7])\(X,0) — Ry is called a fundamental solution of
the conjugate heat equation

0
(5.1) <E—A—tr9h>‘l’:0
with singularity at (x,0) if ¥ satisfies (5.1) at all (x,7) € .#" x (0, 7], with li{% Y(-,1) =0z

in the sense of distributions. We call a minimal fundamental solution of (5.1) a heat kernel.

For any smooth family (% ”,g(l)) of complete Riemannian manifolds, it is well
known that a heat kernel W always exists and is unique. Moreover, ¥ is bounded outside
any compact space-time set containing (¥,0) in its interior.” If ¥ is the conjugate heat
kernel for (.#",g(1)), then (2.4) takes the form

) There are several standard constructions, all of which utilize local properties that the manifold inherits
from R". See the fine survey [16] and references therein.
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P,w(r) = [[[VIog¥|* — log(r"¥)(tr, h)|p dud.

r

It is clear that Assumptions 1 and 2 are always satisfied. In particular, E; is compact for
7 > 0 sufficiently small. We shall prove that Assumption 3 is also valid for such 7. For
this, we need a purely local observation about ¥ near (¥,0).

Lemma 21. For 1€0,7], let (A" g(t)) be a smooth family of (possibly incom-
plete) Riemannian manifolds. Suppose that Y is any fundamental solution of (5.1) with
singularity at (x,0). For any ¢ > 0, there exist a precompact neighborhood E of X, a time
7€ (0,7], and a smooth function ® : E x [0,7] — Ry with ®(X,0) =1 such that for all
(x,7) € (E x [0,7])\(X,0), one has

d2

1 (o) (% X)
(5.2) Y(x,7) — O(x,7) W exp (— T) <e

Proof- One begins with Garofalo and Lanconelli’s asymptotics [15], Theorem 2.1,
for a fundamental solution with respect to a Riemannian metric on R” which is Euclidean
outside of an arbitrarily large compact neighborhood of the origin. The first step is a
straightforward adaptation of their proof to the case /& & 0. The second step is to glue a
large ball centered at X € /™" into Euclidean space, obtaining a manifold ([RR”, g(z)) which
is identical to (JV ", g(t)) on a large neighborhood of X and to which the refined asymp-
totics apply. The difference of the fundamental solutions ¥ and ¥ for (4", ¢(¢)) and
([RR”, g(z)), respectively, starts at zero as a distribution. By the comparison principle, it stays
uniformly small for a short time. []

We now consider Assumption 3. Let 7 > 0 be given. Apply Lemma 21 with ¢ = 7" /2.
By shrinking Z and 7 if necessary, we may assume without loss of generality that
1/2<® =<2 in E x [0,7]. Because ¥(-,7) — Jz as 7\, 0, we may also assume 7 > 0 is
small enough that E;(zr) < E for all 7 € (0,7], where Ei(t) := E; n (4" x {z}). Then in

U Eji(7), one has
7€(0,7]

2 —
(5.3) o exp —dg(f) %) > ¥xr)—e 1
’ (4n7)"/? 4z = O(x,7) T4

S 1
which implies that dqz(T) (x,-) <4t B log—+ log4 — g log(4n) + log 7| there. Reduce 7 > 0
: T

if necessary so that 7 < 4"-2/"z7=2_Then one has
(5.4) d? (%) < 4nrl !
. (1) X, = 4nt Og‘[

in E7(7) for all 7 € (0, 7]. Since ¥ > 7" = 2¢ in Ej, one also has

D(x, 1) < 2

(5:3) (4n0)"* = (4nr)"?*

lIA

Y —¢

lIA

kg
2

If necessary, reduce 7 > 0 further so 7 < 7! and 7 < 4"2/"z. Then  := log ¥ satisfies
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1
Y| < nlog~
T

in E7(7) for all 7 € (0, 7]. By (5.4), this proves that lii% [ Wldu=0.
INVE ()

If <7, then ¥ < 7" < 7"/2 outside E;. So by (5.5), there exists ¢ = ¢(n) such
that W(-,7) < e“c™"/? for all 7 € (0,7]. By (5.4), E;(t) S By)(%,p) for p:= /5n/e. Since
¥ > 7" in E;, Theorem 10 yields C independent of x and zin |J By)(X,2p) such that
for any 7 € (0,7], one has O<r=zt

2
(5.6) Vy|? < <%+ c) (1+c+nlogf—glog§>

in E; 0 (M" x [t/2,7]). If F > 0 is small enough that E; is compact, this estimate and (5.4)
prove that [ |le|2 dudt < oo, which establishes Assumption 3.

7

Remark 22. Assumption 3 is valid for a// 7 > 0 in any manifold (.#",¢(t)),_; for
which the kernel W vanishes at infinity in space-time, i.e. if for every ¢ > 0, there exists a
compact set K = .#" x (—o0, ] such that ¥ < ¢ outside K.

Our main result in this section is the following consequence of Theorem 7. The reader
is invited to compare it with Corollary 13 (above) for Perelman’s reduced volume density.
Recall that ) := log(r"¥).

Corollary 23. Suppose that (,/% ", g(t)) is a smooth family of complete Riemannian
manifolds evolving by (1.1) for t € [0,7]. Let ¥ : (4" x [0,7])\(X,0) — R be the kernel of
the conjugate heat equation (5.1) with singularity at (x,7) = (X,0). Let ¢ be any smooth func-
tion of (x,t). Then there is F > 0 such that if 0 < ro <ry < F, then

Pyw(r1)  Pyw(ro)
rt ’"0

= _Irn+1 flﬂ < A(p) dudtdr.

ro

Furthermore, one has

- - . P( ‘J‘(r)
) =1 TN
p(x, 1) lim—27=,

and thus

_ - P r " on 0
p(x, 1) = (ﬂ,:’n( 1) + [ s fl//(,.) (a—(': — Ago) dudtdr.
1 0 E,

Proof. Now that we have verified Assumptions 1-3, everything follows directly
from Theorem 7 except for the representation formula (p(x ) = 11{11[ o, w(r)/r"], which

we will prove by a blow-up argument. Without loss of generality, we may assume that
p(x,f) = 1. Here is the set-up. Identify R" with T;.#", and let y e .#" denote the
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image of ¥ € R” under the exponential map exp;(-) for g at 7 =0. For r >0, de-
fine ¢"(¥,7) == o(ry,r*1), ¥'(¥,7) := r"¥(ry,r*t), and ¥°(3,1) := (4nr)7"/2e’|y’|z/4’. Let
du'(-,7) denote the pullback of " du(-,r*t) under the map 7 exp:(ry). For § =0,
consider the ‘truncations’ defined by

E° = E,  (M" x (0r*,1]),
-0
.

E ={(y,7):t>0and ¥ (¥, 1) > 1},

E) = 1{(3,7):t>dand ¥*(F,7) > 1},

P = [[[Viog¥|” — (tr, h)log(r"P)|p dudr,

£

P = [|Viog¥°|* dydx.
Eq

The proof consists of two claims, which together imply the result.

The first claim is that if 0 < 0 « 1, then li{%[Pf /r"] = P3. Pulling back, one computes
Po=y" | [IVIog¥’|* — r2(tr, h) log¥']¢" du’ dv. By Lemma 21, ¥" — ¥° as r\, 0 uni-

B } . -
formly on any Q = R" x [§,7]. By parabolic regularity, y(E?) — y(EJ) in L'(R") as
r\\ 0. Since du" — dy and ¢(x,7) = 1, the claim follows.

The second claim is that for any # > 0, there exists some J € (0,1/100) such that
0 <[P, w(r) — P%]/r" < n for all small r>0. By Lemma 21, if r <1 is so small that

1/2<® <2 in E 0 (2 x[0,4), then (4n1) " exp(—d2, (%, x)/4t) = — there. (Com-

4
D) _ n }"2 }’2 . S .

pare (5.3).) Furthermore, d(X,") < 4t zlog—+log4 <4wmlog— in E/\E’, since
2 * T T
= >4. Because 7 <1 in E, for all small »> 0, Theorem 10 gives C such that
T

C N\ ;
Viog¥|* < = <logr—> in E\E°. (Here we used r™" < W < e‘c™?; compare (5.6).)
Therefore, !

zH ntd

2 /(5r2 n2 r\ 2 nonsn/2 1\>
| [Vleg¥®|"du<C' [7t7 (log—| dr < C"r"0""(log—
E\E? 0 T 0

The second claim, hence the theorem, follows readily. []

Remark 24. In the special case that L(-,¢) is a divergence-form, uniformly elliptic
operator on Euclidean space R” and W is the kernel of its adjoint L*, the results of Corol-

lary 23 appear in [10], Theorems 1 and 2, for ¢ solving <g — L)go =0, and in [14], Theo-

rem 1.5, for arbitrary smooth ¢. ot

We conclude this section with two results for the special case of the conjugate heat
kernel ¥ of a fixed Riemannian manifold (.Z", g).
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Our first observation is that one can adapt the argument of [10] to obtain a mean-
value representation theorem in terms of an integral on ‘heat spheres’. This approach is
naturally related to the interpretation of equation (1.4) as a space-time Green’s formula.
To give the argument, we introduce some additional notation. Consider the space-time
manifold M"™' = 4" x R equipped with the metric §(x,?) = g(x) + d?>, where ¢ is the
global R-coordinate. Applying Green’s formula to a bounded space-time domain D in
n+t

- . 0
M"" with the vector field (p‘PE —¥YVp + pVY, we get

D D

(5.7) j(?f—Agp)‘Pd,udz:f[(?f—A(ﬂ)‘PJr(o(&;IJrA‘P)}d,udz

0
= [divg ((p‘PE —YVp + (pV‘P) dudt
D

p _
= | <¢‘PE —WVp + gV, v> dA,

oD g

where 7 is the unit outward normal and d A the area element of dD, both taken with respect
to g. For s = 0, we follow [10] in defining

D’ ={(x,7) € E, : 1> s}

and two portions of its space-time boundary,

Pi={(x7):¥Y=r",t>s} and P;={(x,7)eD]:7=s}.

Applying (5.7) to D; yields

0= f(%—A(p)‘Pd,udt

D;

P B
— [ gWdu+ J"<go‘P——‘I‘V¢+(pV‘P,17> di
Py Py ot g

1 0 ~ -
= [o¥du +— f<(/)— — Vo, 17> dA+ [ p{VY,V);dA.
P "p ot g Py
Letting s \, 0, we obtain

%,0) = lim [ ¢¥d
9(%,0) S\Oljg(p u

0
g P

1 0 - 7 5 {
-3 J<¢E_w’v> dA — [ p{V¥,7);dA
Py

2
VY] dA.

1 0
=—— I(E—A>(pd,udt+ [o

n
"o AERVIL 24 da
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Summing together and noticing that PY = JE,, we get the following mean-value theorem,
which is naturally related to Corollary 23 by the coarea formula.

Theorem 25. Let (", g) be a complete fixed manifold. Let ¥ denote the conjugate
heat kernel with singularity at (x,7) = (X,0). If a smooth function ¢ of (x,t) solves the heat
equation, then

. vy|?
p(x,7)= | V]
E N+ V)

For the e-regularity theorems for Ricci flow derived by the third author [27], we need
a mean-value inequality for nonnegative supersolutions. For this purpose, assume that the
Ricci curvature of (.#", g) satisfies Rc = (n — 1)kg for some k € {—1,0,1}. Let (.#}, g) de-
note the simply connected space form of constant sectional curvature k, and let ¥, denote its
conjugate heat kernel centered at X € .. Then there exists ¥y : [0, c0) x (0, 00) —( 0, o)
such that Wy (x, 7) = Wy (di (%, x), 7), where di denotes the distance function of (., §).

pdA.

Fix an origin (X,7) € .#" x R. Again let 7 := 7 — 7, and let ¥ denote the transplant of
lPk to (ﬂ >g)a

(5.8) P(x,7) == Pr(dy (%, %), 7).
As above, let lﬁ(r) =log(r"¥) and E, = {(x,7) e M" x R : l/;(r) (x,7) > 0}. Define

(5, 1 5
(5.9) Y 0 = f |V IogW|* dudt.
E,

Then the following mean-value inequality follows from Theorem 7.

Corollary 26. Let (#",g) be a complete Riemannian manifold such that
Rc = (n—1)kg for some ke{—1,0,1}. Let ¥ be defined by (5.8), and let ¢ =0 be

0
any smooth supersolution of the heat equation, i.e. (E — A) @ = 0. Then

1 3
)= " [|Viog®|*pdudt.
E,

. d ..
In particular, I&9(r) £ 1 holds for all r > 0, and El &0 (1) < 0 holds in the sense of distri-
butions.

If equality holds for ¢ = 1, then the largest metric ball in E, is isometric to the corre-
sponding ball in the simply-connected space form of constant sectional curvature k.

Proof. The inequalities follow from Theorem 7 by the results of Cheeger-Yau [3]
that <% - A> ¥(x,7) <0 and ¥(x,7) = ¥(x, 1), where ¥ is the conjugate heat kernel of

(", g). The implication of equality is a consequence of the rigidity derived from equality
in the Bishop volume comparison theorem. (See [2].) [
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6. Average energy for Ricci flow

Again assume (", g(1)) is a smooth complete solution of Ricci flow for 7 € [0, 7]. Let
Y denote a fundamental solution to the conjugate heat equation

(6.1) (%+A—R>‘P:O

centered at (%, 7). The traditional notation in this case is ¥ = e/, i.e. f := —.

Perelman [28] has discovered that the average energy

F()= [ N +Re’du= [ (V'+R)e” du
M x{t} A" x{t}

is a monotonically (weakly) increasing function of 7. Our result in this situation gives a
quantity which is not just monotonic, but constant in its parameter.

Corollary 27. Suppose that (% " g(t)) is a smooth, compact solution of Ricci flow for
te€0,1], with t < co. Suppose further that ¥ : .M" x [0,t] —( 0, o) is a fundamental solu-
tion of (6.1) with singularity at (X, ). Define f := —log'¥.

Then for all f € R below some threshold value, we have

[ (Af + Rye dudr =1,
{r<f}
where

{(f<fy={(x,0)el" x[a,b): f(x,1) < f}.

Proof. The arguments in Section 5 (above) verify that the hypotheses of Lemma 9
are satisfied. Since

W ViR = Ayt R

one then has

P y(r) = J"Axp+R dudt = [(Af + R)dudt.

E,

fn

At this point, we change variables from r to f := nlogr. We then get

P17l{/(}’) _

. [ (Af + R)e” dudt,

{(r<s}

whence the conclusion follows from Corollary 23 in Section 5. [J
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7. Appendix. Simple estimates for reduced geometry

For the convenience of the reader, we provide certain elementary estimates involving
reduced geometry in a form adapted to this paper. The reader should note that most of the
estimates solely for reduced distance are essentially contained in Ye’s notes [38], though not
always in the form stated here. (Also see [4].)

Notation. Assume that (/% ”,g(r)) is a smooth one-parameter family of complete
. . ... 0 .
(possibly noncompact) manifolds satisfying 5.9~ 2Rc for 0 £ 7 < 7. Unless otherwise
T

noted, all Riemannian quantities are measured with respect to g(z). All quantities in re-
duced geometry are calculated with respect to a fixed origin ¢ = (X,0). We denote the
metric distance from x to y with respect to g(7) by d:(x, y) and write d;(x) = d,(X, x).
We define B.(x,r)={ye.#":d.(x,y) <r} and write B.(r) = B.(X,r). Perelman’s
space-time action ¥, reduced distance /, and reduced volume density v are defined
above in (4.1), (4.2), and (4.3), respectively. We will also use the space-time distance

L(x,7) := inf{Z () : 9(0) = (%,0),7(7) = (x,7)}.

7.1. Bounds for reduced distance. Given k = 0 and K = 0, define

d2(x) nk
_ 2 G \X)
(7.1) l(x,71)=e i 37
and
_ di(x) nK
_ 2Kt %0
(7.2) /(x,7)=e e + 3

Our first observation directly follows Ye [38].

Lemma 28. The reduced distance /(x,t) has the following properties.
(1) If there is k = 0 such that Rc = —kg on M" x [0,7], then /(x,7) = /(x,7).
(2) If there is K = 0 such that Re < Kg on " x [0,7], then /(x,7) £ /(x,71).

Proof. (1) Observe that g(7) = ¢2"g(0). By (4.1), the Z-action of an arbitrary path
y from (X,0) to (x,7) is

VT d
_ 4 2
ZL(y) = 6[ (2 s + 2s R) ds
1 \[dy
> - —2kt _
=z 5¢ E)rdsods 2nkfs ds

o2k doz(x) _ %13/2
2\t 3 )

v

Since y was arbitrary, one has /(x, 1) = inf, Z(y) = /(x,7).

v
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(2) Observe that g(7) < e*(7g(0). Let 8 be a path from (¥,0) to (x, 7) that is minimal
and of constant speed with respect to g(0). Then as above

_d3(x) 2nK
< 2k %X 32
L(p)=e NG +—
Hence /(x,7) < 5 f 2B < lx7). O
Remark 29. If Rc = —kg on .#" x [0,7], it follows from Part (1) of Lemma 28 (by

standard arguments) that minimizing .#-geodesics exist and are smooth

7.2. Bounds for reduced-volume heatballs.

Recall that the reduced-volume density is
v(x, 1) = (4n7) "2¢=/(x7)_ For r > 0, define the reduced-volume heatball
(7.3) ={(x,7) e " x (0,7] : v(x,7) > r "}

;
7.4 x,7)eM" x (0,7]: /(x,7) < nlo
74) { (0.9 () < nlog |
and define c(k, 7) by
oHT/3
(7.5) c=—p

Givenr >0, k =0, T > 0, define

2
(7.6) p(rk,7) = 2nt log— + = nkr2 :
e 3" )

Note that p(r,0,7) agrees with R,(7) in [9]. It is easy to see that for each r > 0 and k = 0
one has p(r,k,7) > 0 for all sufficiently small = > 0.

Remark 30. If Rc = —kg on .#" x [0,7], then Part (1) of Lemma 28 implies that
(x,7) € E, only if x € By(p(r, k, 7).
Lemma 31.

Assume 0 < r*> < min{z/c,4n}. If cr’> <t £ 7, then p(r,k,7) = 0.

Proof. When t = c¢r?, one has

k 1 r? k‘L’ 1 1 kT
traz <
3r+210g4 3 log4 3 <0,

while for ¢ < 7 < 7, one has
o \3° 2708y 3072 %% 2
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Corollary 32. Assume that Rc = —kg on M" x [0,7] for some k=0 and that
0 < r?> < min{z/c,4n}. Then

E, c ) UJBO(p(r,k,r)) x {1}.

7.3. Gradient estimates for reduced distance. Local gradient estimates for curvatures
evolving by Ricci flow originated in [32], §7. Recall the following version.

Proposition 33 (Hamilton [19], §13). Suppose g(t) solves backward Ricci flow for
70 =1 < 11 on an open set U of M" with B, (x,24) < U. There exists C, depending only
on n such that if |Rm| < M on U x [ty, 1], then

1

T1—1

+ M

1
IVRm| < CnM\/F+

on By (x,2) x [t9,71).
If there is a global bound on curvature, the situation is quite simple:

Remark 34. If Rm| <M on .#" x[0,7], then for every 7* < 7 there exists
A= A(n,M,7*) such that [VR| < 4 on .Z" x [0,7*].

More generally, the following ‘localization lemma’ often provides adequate local
bounds.

Lemma 35. Assume Rc = —kg on 4" x [0,7]. Then for every A >0 and t* € (0,7),
there exists 1* such that the image of any minimizing ¥-geodesic from (x,0) to any
(x,7) € Bo(4) x (0,7*] is contained in By(A"). In particular, there exist constants C, C' de-
pending only on |Rm| in a space-time cylinder Q(2,7t*,7) such that Rc < Cg and |VR| < C’
on By(2") x [0,7%].

Proof. By smoothness, there exists K such that Rc < Kg on By(4) x [0,7*]. Apply-
ing Part (2) of Lemma 28 along radial geodesics from X shows that

.22 nK
sup [el(x 1)) < KT E 4 R ()2,
(x,7) € Bo(4) x[0,7%] 4 3

Define

PRRPYEEN YRy )2
=2e e Z—l—g(k—i-K)(r).

Let (x,7) € By(4) x (0,7*] be arbitrary and let y be any minimizing #-geodesic from (¥, 0)
to (x, 7). Then for every o € [0, 7|, one obtains

do(y(0)) < 2e*y |t (x,7) +%72 <A
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by following the proof of Part (1) of Lemma 28. This proves that the image of y is con-
tained in By(1").
1
Now define 7/ = t* + 5 (z — *) and choose /" large enough that By(1*) < B./(1'). By

smoothness, there exists M such that [Rm| < M on B./(31") x [0,7]. So by Proposition 33,
there exists C’ such that [VR| < C’" on B,/(1") x [0,7*]. Clearly, Rc < Cg on B./(1") x [0, 7]
aswell. [J

Lemma 36. Assume that there exists an open set U = M" and 0 <10 <11 £ 7T
such that |VR| <A on U X [to,71]. Let y:[0,71] =« be an L-geodesic and let

I'(7) = Th\nfio (ﬁ Zi ), which is well defined for all 7y = 0.

(1) If Re = —kg on U % [vo, 1], then for all T € [ty, 71|, one has

dy
dt

< 5z | (2rtm) 4 v )ekee - L va| >0

< \/—[2F(To)+A\/_(T—T0)} (k = 0).

(2) If Rec < Kg on U X [v,11], then for all T € [t9, 7], one has

Dz 5| (r + v s - 2vm] k>0
2 1= Rr() + 40— o) (K =0

. . . . d
Proof. 1t will be more convenient to regard y as a function of s = /7. Let y = d—y
T

and y' = % = 2s9. The Euler-Lagrange equation satisfied by y is
Vy = lVR —2Rc(y) — i)‘z.
2 2t
In terms of s, this becomes
V,y' = 25*VR — 4sRc(y'),

which is nonsingular at s = 0. The computation

d ,,» dt o ,
— " == =g 2 ! 9!
7 Yl 7S 6Tg(y,y)+ gV, v")

= 4s*(VR,y’"> — 4sRc(y',y")

shows that |y’| satisfies the differential inequalities
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d I / 2
(7.7) — || < 2ks|y’| + 24s
ds
and
d 1 l 2
(7.8) d—]y | = —2Ks|y'| — 24s°.
A)

Let so = /70 and s; = /71. Define

. A g A
ww:(wmﬂ+7§ymw_7g

and

) i1 3,
K

o) = (o0l + %

replacing these by their limits if either & or K is zero. Note that y(so) = |y'(s0)| = ¥/(s0). It
is readily verified that s is a supersolution of (7.7) and that y is a subsolution of (7.8). So

one has Y (s) < ‘%‘ < Y (s) for so < s < 51, as claimed. []

Corollary 37. Assume that Rc = —kg on M" x [0,7]. Then for any >0 and
7 € (0,7), there exist positive constants n and C such that for any minimizing £-geodesic y
from (%,0) to (x,7) € By(4) x (0,7*], one has
d
y)—c

da

dy

min <\/E y]
o

[0,7]

)znrmM(vg

[0,7]

Furthermore, for all o € (0,1], one has

dy

W2<2FMQﬂ+@+@}

=2 o 3

Proof. By Lemma 35, there exists a neighborhood % containing the image of y such
that Rc < Kg and |VR| < 4 in % x [0,7*]. Using this, the first statement is easy to verify.

To prove the second statement, let x = y(t), so that L(x,7) = #(y). Then as in
Lemma 28, one has

2

2nk 55 o ~ldy
S 32 > er
L(x,7) + 3 7 :J\/Eda do

for any 7 € (0,7]. Let ¥ = miny (\/E %D Then for any

0 € (0,7) one has

dy
%D and ¥ = maxj <\/E
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2nk
kel TP

L(x,7) + 3 > 2V/7yp?

}72
> 2% (7 p2 C2>

20y

dV‘z 2. /=
> Y 20 do — 2CW4.
- 2 \/%—\/f—éf,(s

do

Consequently, one obtains

0

2
d(7 S B
77 f

(7.9) Af{jﬁ @

2
[L(x, 1) 4+2CVE + %klj/z} ,

whence the second statement follows. []

Lemma 38. Assume Rc = —kg on M" x [0,7]. Let A > 0 and t* < 7 be given.

(1) There exists C such that for all x € By(4) and t € (0,7*], one has
1
|L(x,7 +0) — L(x,7)| < C<7?+ ﬁ)é
whenever 0 € (0,7/3) and t + 0 € [0, 7*].
(2) There exists C such that for all x € By(4) and t € (0,7*], one has

|L(x,7 +0) — L(x,7)| = C(é—&—\%—i— ﬁ)é

whenever 6 € (0,7/3) and t + 0 € [0, 77].
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Proof. Let o be a minimizing #-geodesic from (0,X) to (x,7). By Lemma 35, we
may assume that Rc < Ky and |VR| < 4 in % x [0,7%], where % is a neighborhood of the

image of a.

To bound L at a later time in terms of L at an earlier time, let f denote the constant
path (o) =x for t <o < t+0. Because o is minimizing and & is additive, one has
L(x,7) = %(a) and L(x,7+0) < L(a) + Z(p). Hence there exists C, depending only on

n such that

+0

L(x,740) — L(x,7) £ Z(f) = [ VoRdo < [C,(k + K)/7]0.

To bound L at an earlier time in terms of L at a later time, define a path y from (¥,0) to

(x,7—0) by
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y(0) = a(0), 0<0=1-20,
yo)=0(20—(1=20)), t1—-20<c=<7-0.

Observe that the image of y lies in % and that

T

L)% 20~ [ VoR(s(o) do

2 -0
do+ [ \aR(y(0))do.

@
do 7-28

rave

=20

, da|?
By Part (1) of Lemma 36, there exists C’ such that ’d_oc <C'Jtfore=1—-20=1/3.
g

Since ¥ () = L(x, 1), it follows that

L(x,7—90)—L(x,7) £ L(y) — L(0) = C, [\Cf;—l— (k—|—K)\/?}5.

This proves the first statement.
2

-0
@ do. [

To prove the second statement, use (7.9) to estimate [ /o 7
=20 o

Lemma 39. [fRc = —kgon 4" x [0,7], then £ : M" x (0,7) is locally Lipschitz.

(1) For any 4. > 0 and t* < 7, there exists C such that

A 1
/f+—‘ §C<—+1)
2t T

everywhere in By(1) and almost everywhere in (0,7*], and such that

V| < C<%+ 1)

everywhere in (0,7*| and almost everywhere in By(1).

(2) There exists C such that
/41
4] < C <L + 1)
T
everywhere in M" and almost everywhere in (0,7*], and such that
/41
V/|* < C(i + 1)
T

everywhere in (0,7*| and almost everywhere in M".
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Proof. We again apply Lemma 35 to get bounds Rc < Kg and |VR| < A4 on
By(21*) x [0,7*], where By(4") is a neighborhood of any minimizing geodesic from (%, 0)
to a point (x,7) € By(4) x (0,7*].

4 1
Wh it i th, / satisfies /;, + — = ——
erever 1t 1S smootn, 7 satisiies + 27 2ﬁ

time and the estimates for /; follow directly from Lemma 38 and Rademacher’s Theorem.

L. Thus local Lipschitz continuity in

To show local Lipschitz continuity in space, let x, y € By(4) and 7 € (0,7*] be given.
We may assume that d;(x, y) € (0,7/3). Let « be a minimizing #-geodesic from (X,0) to
(x,7) and let f be a unit-speed g(7)-geodesic from x to y. Let 0 = d;(x, y) and define a
path y from (x,0) to (y,7) by

(o) = (o), 0o<t-2,
yo) =0a(26 — (1 —20)), t1—20<c=<7-9,
(o) =B(o — (= 9)), T—0<0=T1.

Observe that the image of y belongs to By(24"). Exactly as in the proof of Lemma 38, one
finds there exist C,, and C’ such that

L) S 20) ~ ] VoR(x(o) do

2 T
% do+ [ VoR(y(0))do

720

=9 dOCZ T
+4f\/3% do+ [\o
7—0

720

< Z(a) + G, [%+ (k+K + e’”*)\/%]a.

Since « is minimizing, this implies that

b
NG

Reversing the roles of x and y gives the same inequality for L(x,7) — L(y, 7). The first gra-
dient estimate then follows by Rademacher’s Theorem.

L(y,7)— L(x,7) < c( i ﬁ)dr(x, ».

To prove the second gradient estimate, observe that local Lipschitz continuity of L
implies that the #-geodesic cut locus is a set of measure zero. If (x,7) is not in the cut

locus, then the first variation formula [28], (7.1) implies that VL(x,7) = 2¢/7 % The sec-

ond gradient formula now follows from Corollary 37. []

7.4. Integration over reduced-volume heatballs. If v is the reduced-volume density
and ¢ : /" x (0,7) — R is a given function, then the function P, ,(r) defined in (2.4) may
be written as

Py.(r) = [ Fpdpudt,
Er
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where

r
F—V/2+R<nlo —/).
vl SV

Lemma 40. Assume that Rc = —kg on .M" x [0,7]. Then for any t* € (0,7), there ex-
ists C independent of ¢ such that

P,
POl Lo p
r M™% (0,cr?)

whenever 0 < r> < min{t*/c,4n}, where ¢ = ¢**/3 /(4r).
Proof. For 0 <t < t*, Part (2) of Lemma 39 implies that

Ct+C'
A= Ler ¢

almost everywhere in a precompact neighborhood % of X. Here and in the rest of the proof,
C, C’, C" denote positive constants that may change from line to line. By Corollary 32, we
may assume that % x [0, 7*] contains E, for all r > 0 under consideration. Lemma 28 im-
plies that

¢

T

d2
wep < e,
T

almost everywhere in %. Let A = e *p(r,k,7)/(2\/n), where p(r,k,7) is defined by (7.6).
Together, Lemmata 28 and 31 show that

r n,, C 2
0<mnlo /L - —(1+7
g\/4m’ I T( )
everywhere in E,. Hence
d? c’
IF| < |V/|2+n(k+K)<nlog 4 —/> < c@+—
4nt T T

almost everywhere in E,. Since the volume forms du(r) are all comparable on
By(C2) x [0,7%], it follows from the definition (7.6) of p(r, k, ) = 21/ne**J that

/in+2 , )Ln
| Fldu< ¢+ &
Bo(C) t t

0 P2\
"4 ! <log>
dnt

For r > 0 and n = 2, the substitution z = t/r? shows that

n

2\3
ol 4! (logr> } .
dnt

=C’

+ C//
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ntl+tl ntl+l

cr? 2 2 c 2
[t <logr—> dt=r"[z7! <log—> dz < Cr'.

Hence by Corollary 32, one has

L'rz
[|Fldudt < [ | | |Fldu|dt< C'r"
E, 0 B()(C/l)

whenever 0 < r> < min{z/c,4n}. The result follows. []
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