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and Peter Topping at Warwick

Abstract. We derive identities for general flows of Riemannian metrics that may be
regarded as local mean-value, monotonicity, or Lyapunov formulae. These generalize pre-
vious work of the first author for mean curvature flow and other nonlinear di¤usions. Our
results apply in particular to Ricci flow, where they yield a local monotone quantity di-
rectly analogous to Perelman’s reduced volume ~VV and a local identity related to Perelman’s
average energy F.

1. Introduction

To motivate the local formulas we derive in this paper, consider the following simple
but quite general strategy for finding monotone quantities in geometric flows, whose core
idea is simply integration by parts. Let

!
Mn; gðtÞ

"
be a smooth one-parameter family of

complete Riemannian manifolds evolving for t A ½a; b% by

q

qt
g ¼ 2h:ð1:1Þ

Observe that the formal conjugate of the time-dependent heat operator
q

qt
' D on the

evolving manifold
!
Mn; gðtÞ

"
is ' q

qt
þ Dþ trg h

# $
. If j;c : Mn ) ½a; b% ! R are smooth

functions for which the divergence theorem is valid (e.g. if Mn is compact or if j and c and
their derivatives decay rapidly enough at infinity), one has1)

d

dt

Ð

Mn

jc dm ¼
Ð

Mn

c
q

qt
' D

# $
j

& '
þ j

q

qt
þ Dþ trg h

# $
c

& '( )
dm:ð1:2Þ

1) Here and throughout this paper, dm denotes the volume form associated to gðtÞ.



If j solves the heat equation and c solves the adjoint heat equation, it follows that

the integral
Ð

Mn

jc dm is independent of time. More generally, if c
q

qt
' D

# $
j

& '
and

j
q

qt
þ Dþ trg h

# $
c

& '
both have the same sign, then

Ð

Mn

jc dmwill be monotone in t. If the

product jc is geometrically meaningful, this can yield useful results. Here are but a few
examples.

Example 1. The simplest example uses the heat equation on Euclidean space. Let

cðx; tÞ ¼ 1

½4pðs' tÞ%n=2
e
'j y'xj2

4ðs'tÞ ðx A Rn; t < sÞð1:3Þ

denote the backward heat kernel with singularity at ðy; sÞ A Rn ) R. If j solves the heat
equation and neither it nor its derivatives grow too fast at infinity, then

jðy; sÞ ¼ lim
t%s

Ð

Rn

jðx; tÞcðx; tÞ dx:

Because
d

dt

Ð

Rn

jðx; tÞcðx; tÞ dx ¼ 0, one has jðy; sÞ ¼
Ð

Rn

jðx; tÞcðx; tÞ dx for all y A Rn and

t < s, which illustrates the averaging property of the heat operator.

Example 2. Let Ft : M
n ,! Mn

t HRnþ1 be a one-parameter family of hypersurfaces

evolving by mean curvature flow,
q

qt
Ft ¼ 'Hn, where H is the mean curvature and n the

outward unit normal of the hypersurface Mn
t . This corresponds to h ¼ 'HA in (1.1), where

A is the second fundamental form. Define c by formula (1.3) applied to x A Rnþ1 and t < s.
Using trg h ¼ 'H 2, one calculates that

q

qt
þ D'H 2

# $
c ¼ ' ðx' yÞ?

2ðs' tÞ
'Hn

*****

*****

2

c:

Hence by (1.2),

d

dt

Ð

Mn
t

jc dm ¼
Ð

Mn
t

q

qt
' D

# $
j

& '
c dm'

Ð

Mn
t

ðx' yÞ?

2ðs' tÞ
'Hn

*****

*****

2

jc dm:

This is established for j1 1 by Huisken [20], Theorem 3.1, and generalized by Huisken
and the first author [8], §1, to any smooth j for which the integrals are finite and integration
by parts is permissible.

Hence
Ð

Mn
t

c dm is monotone nonincreasing in time and is constant precisely on homo-

thetically shrinking solutions. The monotonicity implies that the density

YMCF
O :¼ lim

t%0

Ð

Mn
t

c dm
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of the limit point O ¼ ð0; 0Þ is well defined. Another consequence is that sup
Mn

b

je sup
Mn

a

j if
q

qt
' D

# $
je 0 for t A ½a; b%.

Example 3. A compact Riemannian manifold
!
Mn; gðtÞ

"
evolving by Ricci flow

corresponds to h ¼ 'Rc in (1.1), so that trg h ¼ 'R. If2)

j1 1 and c ¼ ½tð2Df ' j‘f j2 þ RÞ þ f ' n%ð4ptÞ'n=2e'f ;

then Perelman’s entropy may be written as W
!
gðtÞ; f ðtÞ; tðtÞ

"
¼

Ð

Mn

jc dm. If dt=dt ¼ '1

and
q

qt
þ D

# $
f ¼ j‘f j2 ' R' n

2t
, then

q

qt
þ D' R

# $
c ¼ 2t Rcþ ‘‘f ' 1

2t
g

****

****
2

ð4ptÞ'n=2e'f :

In this case, (1.2) becomes

d

dt
W

!
gðtÞ; f ðtÞ; tðtÞ

"
¼

Ð

Mn

2t Rcþ ‘‘f ' 1

2t
g

****

****
2

ð4ptÞ'n=2e'f dm;

which is formula (3.4) of [28]. In particular, W is monotone increasing and is constant pre-
cisely on compact shrinking gradient solitons.

Example 4. Again for
!
Mn; gðtÞ

"
evolving smoothly by Ricci flow for t A ½a; b%, let l

denote Perelman’s reduced distance [28] from an origin ðy; bÞ. Take j1 1 and choose c1 v
to be the reduced-volume density3)

vðx; tÞ ¼ 1

½4pðb' tÞ%n=2
e'lðx;b'tÞ ðx A Mn; t < bÞ:

Then Perelman’s reduced volume is given by ~VVðtÞ ¼
Ð

Mn

jc dm. By [28], §7,
q

qt
þ D' R

# $
vf 0 holds in the barrier sense, hence in the distributional sense.4) Thus one

obtains monotonicity of the reduced volume if Mn is compact or if its Ricci curvature is
bounded.

More generally, one gets monotonicity of
Ð

Mn

jc dm for any nonnegative super-

solution j of the heat equation. In particular, taking jðx; tÞ ¼ Rðx; tÞ ' Rminð0Þ on a

2) Throughout this paper, ‘ represents the spatial covariant derivative, and D ¼ trg ‘‘.
3) The formula used here and throughout this paper di¤ers from Perelman’s by the constant factor

ð4pÞ'n=2. This normalization is more convenient for our applications.
4) It is a standard fact that a suitable barrier inequality implies a distributional inequality. See [4] for

relevant definitions and a proof. A direct proof for v is found in [38], Lemma 1.12.
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compact manifold and noting that
q

qt
' D

# $
jf 0 holds pointwise, one verifies that

Ð

Mn

½R' Rminð0Þ%v dm is nondecreasing in time.

In [12], Feldman, Ilmanen, and the third author introduce an expanding entropy and
a forward reduced volume for compact manifolds evolving by Ricci flow. Monotonicity of
these quantities may also be derived from (1.2) with j1 1.

Similar ideas play important roles in Perelman’s proofs of di¤erential Harnack esti-
mates [28], §9, and pseudolocality [28], §10.

The strategy of integration by parts can be adapted to yield local monotone quantities
for geometric flows. We shall present a rigorous derivation in Section 2 when we prove
our main result, Theorem 7. Before doing so, however, we will explain the underlying mo-
tivations by a purely formal argument. Suppose for the purposes of this argument that
W ¼

S
aeteb

Wt is a smooth, precompact subset of Mn ) ½a; b%. Assume that qWt is smooth

with outward unit normal n, and let ds denote the measure on qWt induced by gðtÞ. If the
product jc vanishes on qW, then

Ð

W

c
q

qt
' D

# $
j

& '
þ j

q

qt
þ Dþ trg h

# $
c

& '( )
dm dtð1:4Þ

¼
Ðb

a

#
d

dt

Ð

Wt

jc dm

$
dtþ

Ð

qW

ðjh‘c; ni' ch‘j; niÞ ds dt:

This formula may be regarded as a space-time analog of Green’s second identity. In the spe-
cial case that W is the super-level set fðx; tÞ : cðx; tÞ > 0g and both Wa and Wb are empty,
then n ¼ 'j‘cj'1‘c, whence (1.4) reduces to

Ð

fc>0g
c

q

qt
' D

# $
j

& '
þ j

q

qt
þ Dþ trg h

# $
c

& '( )
dm dtþ

Ð

fc¼0g
jj‘cj ds dt ¼ 0:ð1:5Þ

Formula (1.5) enables a strategy for the construction of local monotone quantities.

Here is the strategy, again presented as a purely formal argument. Let j and C > 0
be given. Define c ¼ logC, and for r > 0, let cðrÞ ¼ logðrnCÞ. Notice that ‘cðrÞ ¼ ‘c for
all r > 0. Take W to be the set Er defined for r > 0 by

Er :¼ fðx; tÞ : Cðx; tÞ > r'ng ¼ fðx; tÞ : cðrÞ > 0g:ð1:6Þ

(When C is a fundamental solution5) of a backward heat equation, the set Er is often called
a ‘heatball’.) Assume for the sake of this formal argument that the outward unit normal to
the time slice ErðtÞ :¼ ErX ðMn ) ftgÞ is n ¼ 'j‘cj'1‘c. Observe that

5) See Section 5 below.
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q

qt
þ D

# $
c ¼ C'1 q

qt
þ Dþ trg h

# $
C' j‘cj2 ' trg h:ð1:7Þ

Applying the coarea formula to each time slice ErðtÞ, followed by an integration in t, one
obtains

d

dr

Ð

Er

j‘cj2j dm dt ¼ n

r

Ð

qEr

j‘cjj ds dt:ð1:8Þ

Similarly, one has

d

dr

Ð

Er

ðtrg hÞcðrÞj dm dt ¼
Ð

Er

ðtrg hÞ
q

qr
logðrnCÞ

& '
j dm dtð1:9aÞ

¼ n

r

Ð

Er

ðtrg hÞj dm dt;ð1:9bÞ

because the boundary integral vanishes in this case. Now by rearranging (1.5) and using
(1.7)–(1.9), one gets

Ð

Er

cðrÞ
q

qt
' D

# $
j

& '
þC'1 q

qt
þ Dþ trg h

# $
C

& '
j

( )
dm dt

¼
Ð

Er

fj‘cj2 ' ðtrg hÞcðrÞgj dm dt'
Ð

qEr

jj‘cj ds dtþ
Ð

Er

ðtrg hÞj dm dt

¼
Ð

Er

fj‘cj2 ' ðtrg hÞcðrÞgj dm dt'
r

n

d

dr

Ð

Er

fj‘cj2 ' ðtrg hÞcðrÞgj dm dt:

Defining

Pj;CðrÞ :¼
Ð

Er

fj‘ logCj2 ' ðtrg hÞ logðrnCÞgj dm dtð1:10Þ

and applying an integrating factor, one obtains the following formal identity. Since
logðrnCÞ ¼ cðrÞ > 0 in Er, this identity produces a local monotone quantity whenever
q

qt
' D

# $
j and j

q

qt
þ Dþ trg h

# $
C have the same sign.

Proto-theorem. Whenever the steps above can be rigorously justified and all integrals
in sight make sense, the identity

d

dr

Pj;CðrÞ
rn

# $
ð1:11Þ

¼ ' n

rnþ1

Ð

Er

logðrnCÞ q

qt
' D

# $
jþC'1 q

qt
þ Dþ trg h

# $
C

& '
j

( )
dm dt

will hold in an appropriate sense.
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In spirit, (1.11) is a parabolic analogue of the formula

d

dr

#
1

rn
Ð

jx'yj<r

jðxÞ dm
$
¼ 1

2rnþ1

Ð

jx'yj<r

ðr2 ' jx' yj2ÞDj dm;

which for harmonic j (i.e. Dj ¼ 0) leads to the classical local mean-value representation
formulae

jðyÞ ¼ 1

onrn
Ð

jx'yj<r

jðxÞ dm ¼ 1

nonrn'1

Ð

jx'yj¼r

jðxÞ ds:

The main result of this paper, Theorem 7, is a rigorous version of the motivational
proto-theorem above. We establish Theorem 7 in a su‰ciently robust framework to pro-
vide new proofs of some classical mean-value formulae (Examples 5–8), to generate several
new results (Corollaries 13, 15, 18, 19, 23, 26, 27) and to permit generalizations for future
applications. Our immediate original results are organized as follows: in Section 4, we
study Perelman’s reduced volume for manifolds evolving by Ricci flow; in Section 5, we
discuss heat kernels on evolving Riemannian manifolds (including fixed manifolds as an
interesting special case); and in Section 6, we consider Perelman’s average energy for mani-
folds evolving by Ricci flow. In [27], the third author applies some of these results to obtain
local regularity theorems for Ricci flow. Potential future generalizations that we have in
mind concern varifold (Brakke) solutions of mean curvature flow, solutions of Ricci flow
with surgery, and fundamental solutions in the context of ‘weak’ (Bakry-Émery) Ricci cur-
vature, e.g. [23].

As noted above, Theorem 7 allows new proofs of several previously known local mo-
notonicity formulae, all of which should be compared with (1.11). To wit:

Example 5. Consider the Euclidean metric on Mn ¼ Rn with h ¼ 0. If C is the
backwards heat kernel (1.3) centered at ðy; sÞ and the heatball Er1Erðy; sÞ is defined by
(1.6), then (1.10) becomes

Pj;CðrÞ ¼
Ð

Erðy; sÞ
jðx; tÞ jy' xj2

4ðs' tÞ2
dm dt:

Thus (1.11) reduces to

d

dr

Pj;CðrÞ
rn

# $
¼ ' n

rnþ1

Ð

Erðy; sÞ
logðrnCÞ q

qt
' D

# $
j dm dt:ð1:12Þ

Since
Ð

Erðy; sÞ

jy' xj2

4ðs' tÞ2
dm dt ¼ 1, this implies the mean value identity

jðy; sÞ ¼ 1

rn
Ð

Erðy; sÞ
jðx; tÞ jy' xj2

4ðs' tÞ2
dm dtð1:13Þ

for all j satisfying
q

qt
' D

# $
j ¼ 0. This localizes Example 1.

94 Ecker, Knopf, Ni, and Topping, Local monotonicity and mean value formulas



To our knowledge, Pini [29], [30], [31] was the first to prove (1.13) in the case n ¼ 1.
This was later generalized to n > 1 by Watson [35]. The general formula (1.12) appears in
Evans-Gariepy [9]. There are many similar mean-value representation formulae for more
general parabolic operators. For example, see Fabes-Garofalo [10] and Garofalo-Lanconelli
[14]. (Also see Corollaries 23 and 26, below.)

Example 6. Surface integrals over heatballs first appear in the work of Fulks [13],
who proves that a continuous function j on Rn ) ða; bÞ satisfies

jðy; sÞ ¼ 1

rn
Ð

qEr

jðx; tÞ jy' xj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4jy' xj2ðs' tÞ2 þ ½jy' xj2 ' 2nðs' tÞ%2

q ds

for all su‰ciently small r > 0 if and only if j is a solution of the heat equation. (Compare
with Corollary 25 below.)

Example 7. Previous results of the first author [5] localize Example 2 for mean cur-
vature flow. On Rnþ1 ) ð'y; 0Þ, define Cðx; tÞ :¼ ð'4ptÞ'n=2ejxj

2=4t. Substitute

C'1 q

qt
þ Dþ trg h

# $
C ¼ 'j‘?cþHnj2

and trg h ¼ 'H 2 into (1.10) and (1.11). If the space-time track M ¼
S
t<0

Mn
t of a solution to

mean curvature flow is well defined in the cylinder Bð0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nr2=p

p
Þ ) ð'r2=4p; 0Þ, then [5]

proves that formula (1.11), with the integrals taken over ErXM, holds in the distributional
sense for any r A ð0; rÞ and any j for which all integral expressions are finite. In particular,
P1;CðrÞ=rn is monotone increasing in r. The density YMCF

O :¼ lim
t%0

Ð

Mn
t

Cðx; tÞ dm of the limit
point O ¼ ð0; 0Þ can thus be calculated locally by

YMCF
O ¼ lim

r&0

P1;CðrÞ
rn

:

(Compare with Corollary 18 below.) Related work of the first author for other nonlinear
di¤usions is found in [7].

Example 8. Perelman’s scaled entropy W and the forward reduced volume yþ are
localized by the third author [25], Propositions 5.2, 5.3, 5.4. Although only stated there
for Kähler-Ricci flow, these localizations remain valid for Ricci flow in general. They are
motivated by the first author’s work on mean curvature flow [6] and arise from (1.2) by
taking j to be a suitable cuto¤ function defined with respect to tl and tlþ, respectively.

The remainder of this paper is organized as follows. In Section 2, we rigorously derive
Theorem 7: the general local monotonicity formula motivated by formula (1.11) above. In
Section 3, we derive a local gradient estimate for solutions of the conjugate heat equation.
In Sections 4–5, we apply this machinery to obtain new results in some special cases where
our assumptions can be checked and in which (1.11) simplifies and becomes more familiar.
The Appendix (Section 7) reviews some relevant properties of Perelman’s reduced distance
and volume.
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2. The rigorous derivation

Let 'y < a < b < y, and let
!
Mn; gðtÞ

"
be a smooth one-parameter family of com-

plete Riemannian manifolds evolving by (1.1) for t A ½a; b%. As noted above, the formal

conjugate of the heat operator
q

qt
' D on

!
Mn; gðtÞ

"
is ' q

qt
þ Dþ trg h

# $
. For a A R, we

adopt the standard notation ½a%þ :¼ maxfa; 0g.

Let C be a given positive function on Mn ) ½a; bÞ. As in Section 1, it is convenient to
work with

c :¼ logCð2:1Þ

and the function defined for each r > 0 by

cðrÞ :¼ cþ n log r:ð2:2Þ

For r > 0, we define the space-time super-level set (‘heatball’)

Er ¼ fðx; tÞ A Mn ) ½a; bÞ : C > r'ngð2:3aÞ

¼ fðx; tÞ A Mn ) ½a; bÞ : cðrÞ > 0g:ð2:3bÞ

We would like to allow C to blow up as we approach time t ¼ b; in particular, we
have in mind various functions which have a singularity that agrees asymptotically with a
(backwards) heat kernel centered at some point in Mn at time t ¼ b. (See Sections 6–5.) In
this context, we make, for the moment, the following three assumptions about C.

Assumption 1. The function C is locally Lipschitz on Mn ) ½a; s% for any s A ða; bÞ.

Assumption 2. There exists a compact subset WLMn such that C is bounded out-
side W) ½a; bÞ.

Assumption 3. There exists r > 0 such that

lim
s%b

# Ð

ErXðMn)fsgÞ
jcj dm

$
¼ 0
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and

Ð

Er

j‘cj2 dm dt < y:

Remark 4. By the continuity of C from Assumption 1 and its boundedness from As-
sumption 2, we can be sure, after reducing r > 0 if necessary, that Ce r'n outside some
compact subset of Mn ) ða; b%. In particular, we then know that the super-level sets Er lie
inside this compact subset for r A ð0; r%.

Remark 5. By Assumption 3 and compactness of Er, one has
Ð

Er

jcj dm dt < y.

Remark 6. We make no direct assumptions about the regularity of the sets Er

themselves.

Let j be an arbitrary smooth function on Mn ) ða; b%. By Assumption 3, the quantity

Pj;CðrÞ :¼
Ð

Er

½j‘cj2 ' cðrÞðtrg hÞ%j dm dtð2:4Þ

is finite for r A ð0; r%. Our main result is as follows:

Theorem 7. Suppose that
!
Mn; gðtÞ

"
is a smooth one-parameter family of complete

Riemannian manifolds evolving by (1.1) for t A ½a; b%, that C : Mn ) ½a; bÞ !ð 0;yÞ satisfies
Assumptions 1–3, that r > 0 is chosen according to Assumption 3 and Remark 4, and that
0 < r0 < r1 e r.

If C is smooth and the function

q

qt
þ Dþ trg h

# $
C

C
1

qc

qt
þ Dcþ j‘cj2 þ trg h

belongs to L1ðErÞ, then

Pj;Cðr1Þ
rn1

'
Pj;Cðr0Þ

rn0
ð2:5Þ

¼
Ðr1

r0

n

rnþ1

Ð

Er

&
' qc

qt
þ Dcþ j‘cj2 þ trg h

# $
j

' ðcþ n log rÞ qj

qt
' Dj

# $'
dm dt dr:

If, instead,C is merely locally Lipschitz in the sense of Assumption 1, and the inequality

q

qt
þ Dþ trg h

# $
C

C
f 0
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holds in the distributional sense, and jf 0, then

Pj;Cðr1Þ
rn1

'
Pj;Cðr0Þ

rn0
e'

Ðr1

r0

n

rnþ1

Ð

Er

ðcþ n log rÞ qj

qt
' Dj

# $
dm dt dr:ð2:6Þ

Remark 8. If j solves the heat equation and C solves the conjugate heat equation,
then (2.5) implies that Pj;CðrÞ=rn is independent of r. See Example 5 (above) and Corollary
23 (below).

Proof of Theorem 7. We begin by assuming that C is smooth. In the proof, we write
Pð!Þ1Pj;Cð!Þ. For most of the proof, we will work with a modified function, namely

Pðr; sÞ :¼
Ð

ErXðMn)½a; s%Þ
½j‘cj2 ' cðrÞðtrg hÞ%j dm dt;ð2:7Þ

arising from restriction to the time interval ½a; s%, for some s A ða; bÞ. As a result, we will
only be working on domains on which C and its derivatives are bounded, and the conver-
gence of integrals will not be in doubt. A limit s % b will be taken at the end.

Let z : R ! ½0; 1% be a smooth function with the properties that zðyÞ ¼ 0 for ye 0 and

z 0ðyÞf 0. Let Z : R ! ½0;yÞ denote the primitive of z defined by ZðyÞ ¼
Ðy

'y
zðxÞ dx. One

should keep in mind that z can be made very close to the Heaviside function, in which case
ZðyÞ will lie a little below ½y%þ.

For r A ð0; r% and s A ða; bÞ, we define

Qðr; sÞ :¼
Ð

Mn)½a; s%
½j‘cj2zðcðrÞÞ ' ZðcðrÞÞðtrg hÞ%j dm dt;ð2:8Þ

which should be regarded as a perturbation of Pðr; sÞ, and will relieve us of some technical
problems arising from the fact that we have no control on the regularity of Er. Note that
zðcðrÞÞ and ZðcðrÞÞ have support in Er. Therefore, the convergence of the integrals is guar-
anteed.

In the following computations, we suppress the dependence of Q on s and assume
that each integral is over the space-time region Mn ) ½a; s% unless otherwise stated. One has

rnþ1

n

d

dr

QðrÞ
rn

& '
¼ r

n
Q 0ðrÞ 'QðrÞð2:9Þ

¼
Ð
½j‘cj2z 0ðcðrÞÞ ' Z 0ðcðrÞÞðtrg hÞ%j dm dt'QðrÞ

¼
Ð
½j‘cj2z 0ðcðrÞÞ%j dm dt'

Ð
½zðcðrÞÞðtrg hÞ%j dm dt

'
Ð
½j‘cj2zðcðrÞÞ%j dm dtþ

Ð
½ZðcðrÞÞðtrg hÞ%j dm dt:

The first integral and the last integral in the last equality on the right-hand side require fur-
ther attention.

For the first of these, we keep in mind that ‘c ¼ ‘cðrÞ and compute
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Ð
½j‘cj2z 0ðcðrÞÞ%j dm dtð2:10Þ

¼
Ð ,
‘c;‘

!
zðcðrÞÞ

"-
j dm dt

¼ '
Ð
½ðDcÞzðcðrÞÞjþ h‘cðrÞ;‘jizðcðrÞÞ% dm dt

¼
Ð
½'ðDcÞzðcðrÞÞjþ ðDjÞcðrÞzðcðrÞÞ þ h‘c;‘jicðrÞz

0ðcðrÞÞ% dm dt;

the calculation being valid on each time slice.

For the fourth integral, we compute that at each time t A ða; bÞ, one has

d

dt

Ð

Mn)ftg
ZðcðrÞÞj dm ¼

Ð

Mn)ftg
Z 0ðcðrÞÞ

qc

qt
jþ ZðcðrÞÞ

qj

qt
þ ZðcðrÞÞjðtrg hÞ

& '
dm;

the final term coming from di¤erentiation of the volume form. Integrating over the time
interval ½a; s% and using the facts that Z 0 ¼ z and that ZðcðrÞÞ ¼ 0 at t ¼ a (which holds be-
cause cðrÞ e 0 at t ¼ a by Remark 4), we find that

Ð
ZðcðrÞÞðtrg hÞj dm dt ¼ '

Ð
zðcðrÞÞ

qc

qt
jþ ZðcðrÞÞ

qj

qt

& '
dm dtð2:11Þ

þ
Ð

Mn)fsg
ZðcðrÞÞj dm;

where the integrals are still over Mn ) ½a; s% unless otherwise indicated.

We now combine (2.9) with (2.10) and (2.11) to obtain

rnþ1

n

d

dr

QðrÞ
rn

& '
¼ '

Ð qc

qt
þ Dcþ j‘cj2 þ trg h

# $
zðcðrÞÞj dm dtð2:12Þ

þ
Ð
ðDjÞcðrÞzðcðrÞÞ dm dt'

Ð qj
qt

ZðcðrÞÞ dm dt

þ
Ð
h‘c;‘jicðrÞz

0ðcðrÞÞ dm dtþ
Ð

Mn)fsg
ZðcðrÞÞj dm:

The entire identity may now be multiplied by n=rnþ1 and integrated with respect to r between
r0 and r1, where 0 < r0 < r1 e r, to get an identity for the quantity Qðr1; sÞ=rn1 'Qðr0; sÞ=rn0 .

We may simplify the resulting expression by picking an appropriate sequence of valid
functions z and passing to the limit. Precisely, we pick a smooth z1 : R ! ½0; 1% with the
properties that z1ðyÞ ¼ 0 for ye 1=2, z1ðyÞ ¼ 1 for yf 1, and z 01ðyÞf 0. Then we define
a sequence zk : R ! ½0; 1% by zkðyÞ ¼ z1ð2k'1yÞ. As k increases, this sequence increases
pointwise to the characteristic function of ð0;yÞ. The corresponding Zk converge uni-
formly to the function y 7! ½y%þ. Crucially, we also can make use of the facts that zkðcðrÞÞ
converges to the characteristic function of Er in L1ðMn ) ½a; b%Þ and that cðrÞz

0
kðcðrÞÞ is a

bounded sequence of functions on Mn ) ½a; bÞ with disjoint supports for each k. Indeed,
the support of z 0k lies within the interval ð2'k; 21'kÞ.

For each r A ð0; r%, we have Qðr; sÞ ! Pðr; sÞ as k ! y. Using the dominated conver-
gence theorem, our expression becomes
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Pðr1; sÞ
rn1

' Pðr0; sÞ
rn0

ð2:13Þ

¼ '
Ðr1

r0

n

rnþ1

Ð

ErXðMn)½a; s%Þ

qc

qt
þ Dcþ j‘cj2 þ trg h

# $
j dm dt dr

'
Ðr1

r0

n

rnþ1

Ð

ErXðMn)½a; s%Þ
cðrÞ

qj

qt
' Dj

# $
dm dt dr

þ
Ðr1

r0

n

rnþ1

Ð

Mn)fsg
½cðrÞ%þj dm dr:

Now we may take the limit as s % b. By Assumption 3, the final term converges to zero,
and we end up with (2.5) as desired.

Next we turn to the case that c is merely Lipschitz, in the sense of Assumption 1.
Given s A ða; bÞ and functions z and Z as above, there exists a sequence of smooth functions
cj on Mn ) ½a; b% such that cj ! c in both W 1;2 and C0 on the set Er X ðMn ) ½a; s%Þ. By
hypothesis on our Lipschitz c, we have

I :¼
Ð

Mn)½a; s%
' qc

qt
þ Dcþ j‘cj2 þ trg h

# $
zðcðrÞÞj dm dte 0;

where we make sense of the Laplacian term via integration by parts, namely

Ð
'ðDcÞzðcðrÞÞj dm dt :¼

Ð
½h‘c;‘jizðcðrÞÞ þ j‘cj2z 0ðcðrÞÞj% dm dt:

By definition of cj, we have

lim
j!y

Ð

Mn)½a; s%
'

qcj

qt
þ Dcj þ j‘cjj

2 þ trg h

# $
z
!
ðcjÞðrÞ

"
j dm dt ¼ I e 0;

uniformly in r A ð0; r%. Consequently, we may carry out the same calculations that we did in
the first part of the proof to obtain an inequality for the quantity Qðr1; sÞ=rn1 'Qðr0; sÞ=rn0 ,
with cj in place of c. We then pass to the limit as j ! y to obtain the inequality

Qðr1; sÞ
rn1

'Qðr0; sÞ
rn0

e
Ðr1

r0

n

rnþ1

Ð

Mn)½a; s%
ðDjÞcðrÞzðcðrÞÞ dm dt drð2:14Þ

'
Ðr1

r0

n

rnþ1

Ð

Mn)½a; s%

qj

qt
ZðcðrÞÞ dm dt dr

þ
Ðr1

r0

n

rnþ1

Ð

Mn)½a; s%
h‘c;‘jicðrÞz

0ðcðrÞÞ dm dt dr

þ
Ðr1

r0

n

rnþ1

Ð

Mn)fsg
ZðcðrÞÞj dm dr
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for our Lipschitz c. Finally, we replace z with the same sequence of cut-o¤ functions zk that
we used before (thus approximating the Heaviside function), take the limit as k ! y, and
then take the limit as s % b. This gives the inequality (2.6). r

The argument above may be compared to proofs of earlier results, especially the
proof [5] of the local monotonicity formula for mean curvature flow.

There is an alternative formula for (2.4) that we find useful in the sequel:

Lemma 9. Suppose that
!
Mn; gðtÞ

"
is a smooth one-parameter family of complete

Riemannian manifolds evolving by (1.1) for t A ½a; b%, that C : Mn ) ½a; bÞ !ð 0;yÞ satis-
fies Assumptions 1–3, that r > 0 is determined by Assumption 3 and Remark 4, and that
0 < r0 < r1 e r.

If j1 1 and
qc

qt
þ j‘cj2 A L1ðErÞ, then for all r A ð0; r%, one has

Pj;CðrÞ ¼
Ð

Er

qc

qt
þ j‘cj2

# $
dm dt:

Proof. In the case that j1 1, substituting formula (2.11) into formula (2.8) yields

Qðr; sÞ ¼
Ð

Mn)½a; s%

qc

qt
þ j‘cj2

# $
zðcðrÞÞ dm dt'

Ð

Mn)fsg
ZðcðrÞÞ dm:

Although (2.11) was derived assuming smoothness of c, one can verify that it holds for
locally Lipschitz C satisfying Assumption 1 by approximating c by a sequence of smooth
cj (as in the proof of Theorem 7) and then passing to the limit as j ! y. Then if
qc

qt
þ j‘cj2 A L1ðErÞ, one may (again as in the proof of Theorem 7) choose a sequence

zk along which Qðr; sÞ ! Pðr; sÞ as k ! y and then let s % b to obtain the stated
formula. r

3. A local gradient estimate

In order to apply Theorem 7 to a fundamental solution of the heat equation of an
evolving manifold in Section 5, we need a local gradient estimate. One approach would be
to adapt existing theory of local heat kernel asymptotics. Instead, we prove a more general
result which may be of independent interest. Compare [17], [22], [24], the recent [33], [34],
and [36], [37].

Let
!
Mn; gðtÞ

"
be a smooth one-parameter family of complete Riemannian manifolds

evolving by (1.1) for t A ½0; t %. We shall abuse notation by writing gðtÞ to mean g
!
tðtÞ

"
,

where

tðtÞ :¼ t' t:
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In the remainder of this section, we state our results solely in terms of t. In particular, gðtÞ

satisfies
q

qt
g ¼ '2h on Mn ) ½0; t %.

Given x A Mn and r > 0, define

WðrÞ :¼
S

0etet

!
BgðtÞðx; rÞ ) ftg

"
LMn ) ½0; t %:ð3:1Þ

We now prove a local a priori estimate for bounded positive solutions of the conjugate heat
equation

q

qt
' D' trg h

# $
v ¼ 0:ð3:2Þ

We will apply this in Section 5.

Theorem 10. Let
!
Mn; gðtÞ

"
be a smooth one-parameter family of complete Riemann-

ian manifolds evolving by
q

qt
g ¼ '2h for 0e te t. Assume there exist k1; k2; k3 f 0 such

that

he k1g; Rcf'k2g; and j‘ðtrg hÞje k3

in the space-time region Wð2rÞ given by (3.1). Assume further that vðtÞ solves (3.2) and sat-
isfies 0 < veA in Wð2rÞ.

Then there exist a constant C1 depending only on n and an absolute constant C2 such
that at all ðx; tÞ A WðrÞ, one has

j‘vj2

v2
e 1þ log

A

v

# $2 1

t
þ C1k1 þ 2k2 þ k3 þ

ffiffiffiffiffi
k3

p
þ C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

& '
:

Proof. By scaling, we may assume that A ¼ 1. We define6)

f :¼ log v and w :¼ j‘ logð1' f Þj2;

computing that

q

qt
' D

# $
f ¼ j‘f j2 þ ðtrg hÞ:

Then using Bochner-Weitzenböck, we calculate that

q

qt
' D

# $
j‘f j2 ¼ 2hð‘f ;‘f Þ ' 2Rcð‘f ;‘f Þ ' 2j‘‘f j2 þ 2h‘ðtrg hþ j‘f j2Þ;‘f i

6) Note that w is used by Souplet-Zhang [33], Theorem 1.1, in generalizing Hamilton’s result [7]. A similar
function is employed by Yau [36]. Also see related work of the third author [26].
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and

q

qt
' D

# $
w ¼ 1

ð1' f Þ2
½2hð‘f ;‘f Þ ' 2Rcð‘f ;‘f Þ þ 2h‘ðtrg hÞ;‘f i%

' 2

ð1' f Þ2
j‘‘f j2 þ h‘j‘f j2;‘f i

1' f
þ j‘f j4

ð1' f Þ2

" #

' 4
j‘f j4

ð1' f Þ4
þ 2

ðtrg hÞj‘f j2 þ j‘f j4

ð1' f Þ3
' 2f

h‘j‘f j2;‘f i
ð1' f Þ3

:

By rewriting the last term above as

'2f
h‘j‘f j2;‘f i
ð1' f Þ3

¼ '2
f

1' f
h‘w;‘f iþ 4

j‘f j4

ð1' f Þ4
' 4

j‘f j4

ð1' f Þ3

and cancelling terms, we obtain

q

qt
' D

# $
w ¼ 1

ð1' f Þ2
½2hð‘f ;‘f Þ ' 2Rcð‘f ;‘f Þ þ 2h‘ðtrg hÞ;‘f i%

' 2

ð1' f Þ2
j‘‘f j2 þ h‘j‘f j2;‘f i

1' f
þ j‘f j4

ð1' f Þ2

" #

þ 2
ðtrg hÞj‘f j2 ' j‘f j4

ð1' f Þ3
þ 2

'f

1' f
h‘w;‘f i:

Now let hðsÞ be a smooth nonnegative cuto¤ function such that hðsÞ ¼ 1 when se 1
and hðsÞ ¼ 0 when sf 2, with h 0e 0, jh 0jeC2, ðh 0Þ2eC2h, and h 00f'C2. Define

uðx; tÞ :¼ h
dgðtÞðx; xÞ

r

# $
:

Observe that at each fixed t, u is smooth in space o¤ of the gðtÞ cut locus of x. However,
for our purposes of applying the maximum principle, Calabi’s trick allows us to proceed as
though u were smooth everywhere. Thus, we calculate that

j‘uj2

u
e

C2

r2

and

qu

qt
eC2k1

and

'Due
C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2
:
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Now let G :¼ uw and compute that

q

qt
' D

# $
ðtGÞ ¼ G þ tu

q

qt
' D

# $
w

& '
þ tw

q

qt
' D

# $
u

& '
' 2th‘u;‘wi:

For any t1 > 0, consider tG on Mn ) ½0; t1%. At any point ðx0; t0Þ where tG attains its

maximum on Mn ) ½0; t1%, we have 0e
q

qt
' D

# $
ðtGÞ and

q

qt
' D

# $
ðtGÞeG ' 2th‘u;‘wi

þ 2tu
hð‘f ;‘f Þ 'Rcð‘f ;‘f Þ þ h‘ðtrg hÞ;‘f i

ð1' f Þ2
þ ðtrg hÞj‘f j2

ð1' f Þ3

" #

þ 2tu
'f

1' f
h‘w;‘f i' j‘f j4

ð1' f Þ3

" #

þ tw C2k1 þ
C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

& '
:

Using the fact that ‘Gðx0; t0Þ ¼ 0, we can replace u‘w by 'w‘u above. Then multiplying
both sides of the inequality by u A ½0; 1% and using 1=ð1' f Þe 1, we obtain

0eG þ 2tf½ðnþ 1Þk1 þ k2%G þ k3
ffiffiffiffi
G

p
g

þ 2tGj‘uj j‘f j 'f

1' f

# $
' 2tð1' f ÞG2

þ tG C2k1 þ
C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

( )
:

Noticing that 2k3
ffiffiffiffi
G

p
e k3ðG þ 1Þ and that

2tGj‘uj j‘f j 'f

1' f

# $
e tG

j‘f j2

1' f
uþ j‘uj2

u

f 2

1' f

 !

e tð1' f ÞG2 þ tG
C2

r2
f 2

1' f
;

we estimate at ðx0; t0Þ that

0e tk3 þ G 1þ t C1k1 þ 2k2 þ k3 þ
C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

& '( )

þ tG
C2

r2
f 2

1' f
' tð1' f ÞG2:

Dividing both sides by tð1' f Þ while noting that 1=ð1' f Þe 1 and 'f =ð1' f Þe 1, we
get
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0e k3 þ G
1

t
þ C1k1 þ 2k2 þ k3 þ

C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

& '
' G2;

from which we can conclude that

Ge
1

t
þ C1k1 þ 2k2 þ k3 þ

ffiffiffiffiffi
k3

p
þ C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

at ðx0; t0Þ. Hence Wðt1Þ :¼ t1 sup
x ABgðtÞðx;rÞ

wðx; t1Þ may be estimated by

W ðt1Þe t0Gðx0; t0Þ

e 1þ t0 C1k1 þ 2k2 þ k3 þ
ffiffiffiffiffi
k3

p
þ C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

& '

e 1þ t1 C1k1 þ 2k2 þ k3 þ
ffiffiffiffiffi
k3

p
þ C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

& '
:

Since t1 > 0 was arbitrary, the result follows. r

Remark 11. In the special case that h1 0, we have

j‘vj2

v2
e 1þ log

A

v

# $2 1

t
þ 2k2 þ

C1

ffiffiffiffiffi
k2

p
r cothð

ffiffiffiffiffi
k2

p
rÞ þ C2

r2

& '

at ðx; tÞ, for all times t A ½0; t % and points x A BgðtÞðx; rÞ, which slightly improves a result of
[33].

4. Reduced volume for Ricci flow

Our first application of Theorem 7 is to Ricci flow. Let
!
Mn; gðtÞ

"
be a complete so-

lution of Ricci flow that remains smooth for 0e te t. This corresponds to h ¼ 'Rc and
trg h ¼ 'R in (1.1).

4.1. Localizing Perelman’s reduced volume. Perelman [31], §7, has discovered a re-
markable quantity that may be regarded as a kind of parabolic distance for Ricci flow.

Define tðtÞ :¼ t' t, noting that g
!
tðtÞ

"
then satisfies

q

qt
g ¼ 2Rc for 0e te t. Fix x A Mn

and regard ðx; 0Þ (in ðx; tÞ coordinates) as a space-time origin. The space-time action of a
smooth path g with gð0Þ ¼ ðx; 0Þ and gðtÞ ¼ ðx; tÞ is

LðgÞ :¼
Ðt

0

ffiffiffi
s

p dg

ds

****

****
2

þ R

 !

dsð4:1aÞ

¼
Ð
ffiffi
t

p

0

1

2

dg

ds

****

****
2

þ 2s2R

 !
ds ðs ¼

ffiffiffi
s

p
Þ:ð4:1bÞ
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Taking the infimum over all such paths, Perelman defines the reduced distance from ðx; 0Þ
to ðx; tÞ as

lðx; tÞ ¼ lðx;0Þðx; tÞ :¼
1

2
ffiffiffi
t

p inf
g

LðgÞ;ð4:2Þ

and observes that

vðx; tÞ ¼ vðx;0Þðx; tÞ :¼
1

ð4ptÞn=2
e'lðx; tÞð4:3Þ

is a subsolution of the conjugate heat equation ut ¼ Du' Ru in the barrier sense [28], hence
in the distributional sense.7) It follows that the reduced volume (essentially a Gaussian
weighted volume)

~VVðtÞ ¼ ~VV ðx;0ÞðtÞ :¼
Ð

Mn

vðx; tÞ dmð4:4Þ

is a monotonically increasing function of t which is constant precisely on shrinking gradient
solitons. (Compare with Example 4 above.)

The interpretations of l as parabolic distance and ~VV as Gaussian weighted volume
are elucidated by the following examples.

Example 9. Let ðMn; gÞ be a Riemannian manifold of nonnegative Ricci curvature,
and let q be any smooth superharmonic function ðDqe 0Þ. In their seminal paper [22], Li
and Yau define

rðx; tÞ ¼ inf

(
1

4t

Ð1

0

dg

ds

****

****
2

dsþ t
Ð1

0

q
!
gðsÞ

"
ds

)
;

where the infimum is taken over all smooth paths from an origin ðx; 0Þ. As a special case
of their more general results [22], Theorem 4.3, they observe that ð4ptÞ'n=2e'rðx; tÞ is a

distributional subsolution of the linear parabolic equation
q

qt
' Dþ q

# $
u ¼ 0.

Example 10. Let ðRn; gÞ denote Euclidean space with its standard flat metric. Given

l A R, define X ¼ grad
l

4
jxj2

# $
. Then one has 0 ¼ Rc ¼ lg'LXg. Hence there is a Ricci

soliton structure (i.e. an infinitesimal Ricci soliton) on Euclidean space, called the Gaussian
soliton. It is nontrivial whenever l3 0.

Take l ¼ 1 to give ðRn; gÞ the structure of a gradient shrinking soliton. Then
gðsÞ ¼

ffiffiffiffiffiffiffiffi
s=t

p
x is an L-geodesic from ð0; 0Þ to ðx; tÞ. Thus the reduced distance is

lð0;0Þðx; tÞ ¼ jxj2=4t and the reduced volume integrand is exactly the heat kernel
vð0;0Þðx; tÞ ¼ ð4ptÞ'n=2e'jxj2=4t. Hence ~VV ð0;0ÞðtÞ1 1. (Compare [21], §15.)

7) See [38] for a direct proof of the distributional inequality.

106 Ecker, Knopf, Ni, and Topping, Local monotonicity and mean value formulas



Example 11. Let Sn
rðtÞ denote the round sphere of radius rðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn' 1Þt

p
. This is

a positive Einstein manifold, hence a homothetically shrinking (in t) solution of Ricci flow.
Along any sequence ðxk; tkÞ of smooth origins approaching the singularity O at t ¼ 0, one
gets a smooth function lOðx; tÞ :¼ lim

k!y
lðxk ; tkÞðx; tÞ1 n=2 measuring the reduced distance

from O. Hence ~VVOðtÞ1 ½ðn' 1Þ=ð2peÞ%n=2 VolðSn
1 Þ for all t < 0. (See [4], §7.1.)

Our first application of Theorem 7 is where C is Perelman’s reduced-volume density v
(4.3). Let l denote the reduced distance (4.2) from a smooth origin ðx; tÞ and assume there
exists k A ð0;yÞ such that Rcf'kg on Mn ) ½0; t %. In what follows, we will freely use re-
sults from the Appendix (Section 7, below).

Lemma 39 guarantees that l is locally Lipschitz, hence that Assumption 1 is satisfied.
(Also see [38] or [4].) The estimate in Part (1) of Lemma 28 ensures that Assumption 2 is
satisfied. Assumption 3 follows from combining that estimate, Corollary 32, and Lemma
40. Here we may take any r > 0 satisfying r2 < minft=c; 4pg, where c ¼ e4kt=3=ð4pÞ. So for
r A ð0; r%, consider

Pj; vðrÞ :¼
Ð

Er

j‘lj2 þ R n log
rffiffiffiffiffiffiffiffi
4pt

p ' l

# $& '
j dm dt:

Notice that j‘lj2 replaces the term
jx' xj2

4t2
in the heatball formulas for Euclidean space

and solutions of mean curvature flow. See Examples 5 and 7, respectively.

Remark 12. For r A ð0; r%, one may write P1; vðrÞ in either alternative form

P1; vðrÞ ¼
Ð

Er

n

2t
þ lt þ j‘lj2

# $
dm dtð4:5aÞ

¼
Ð

Er

n

2t
' 1

2
t'3=2K

# $
dm dt:ð4:5bÞ

Here Kðx; tÞ ¼
Ðt

0

s3=2Hðdg=dsÞ ds is computed along a minimizing L-geodesic g, where

HðXÞ ¼ 2RcðX ;XÞ ' ðRt þ 2h‘R;Xiþ R=tÞ is Hamilton’s traced di¤erential Harnack
expression.

If Rf 0 and jf 0 on Er, then for all r A ð0; r%, one has

Pj; vðrÞ ¼
Ð

Er

½j‘lj2 þ RcðrÞ%j dm dtf
Ð

Er

j‘lj2j dm dtf 0:ð4:6Þ

If
!
Mn; gð0Þ

"
has nonnegative curvature operator and r2 < 4ptð1' 1=CÞ for some

C > 1, then for all r A ð0; r%,

P1; vðrÞe
Ð

Er

n=2þ Cl

t
dm dt:ð4:7Þ
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Proof. By Part (2) of Lemma 39, the arguments of Lemma 40 apply to show that

ct þ j‘cj2 ¼ n

2t
þ lt þ j‘lj2 A L1ðErÞ. Hence Lemma 9 and identities (7.5) and (7.6) of

[28] imply formulae (4.5).

Since cðrÞ > 0 in Er, the inequalities in (4.6) are clear.

If
!
Mn; gð0Þ

"
has nonnegative curvature operator, Hamilton’s traced di¤erential Har-

nack inequality [18] implies that

H
dg

ds

# $
f'R

1

s
þ 1

t' s

# $
¼ ' t

t' s

R

s

along a minimizing L-geodesic g. Hence

' 1

2
t'3=2Ke

t

t' t

t'3=2

2

Ðt

0

ffiffiffi
s

p
Rþ dg

ds

****

****
2

 !

ds ¼ t

t' t

l

t
:

By Lemma 31, one has t < r2=4p, which gives estimate (4.7). r

Our main result in this section is as follows. Recall that cðrÞ :¼ n log
rffiffiffiffiffiffiffiffi
4pt

p
# $

' l.

Corollary 13. Let
!
Mn; gðtÞ

"
be a complete solution of Ricci flow that remains

smooth for 0e te t and satisfies Rcf'kg. Let j be any smooth nonnegative function of
ðx; tÞ and let c ¼ e4kt=3=ð4pÞ. Then whenever 0 < r0 < r1 < minf

ffiffiffiffiffiffiffi
t=c

p
; 2

ffiffiffi
p

p
g, one has

Pj; vðr1Þ
rn1

'
Pj; vðr0Þ

rn0
e'

Ðr1

r0

n

rnþ1

Ð

Er

cðrÞ
qj

qt
' Dj

# $
dm dt dr:ð4:8Þ

Furthermore,

jðx; tÞ ¼ lim
r&0

Pj; vðrÞ
rn

:ð4:9Þ

In particular,

jðx; tÞf
Pj; vðr1Þ

rn1
þ

Ðr1

0

n

rnþ1

Ð

Er

cðrÞ
q

qt
' D

# $
j

& '
dm dt dr:ð4:10Þ

Proof. The quantity C ¼ v satisfies
qv

qt
þ Dv' Rvf 0 as a distribution. (This is

implied by Perelman’s barrier inequality [28], (7.13); see [38], Lemma 1.12, for a direct
proof.) Hence we may apply Theorem 7 in the form (2.6) to obtain (4.8).

Formula (7.6) of Perelman [28] implies that
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Pj; vðrÞ ¼
Ð

Er

&
l

t
þ RcðrÞ ' R' t'3=2K

'
j dm dt:

By Corollary 32, there is a precompact neighborhood U of x with Er LU) ½0; cr2% for all
r > 0 under consideration. By Lemma 35, there exists a precompact set V such that the
images of all minimizing L-geodesics from ðx; 0Þ to points in U) ½0; cr2% are contained in
the setV) ½0; cr2%, in which one has uniform bounds on all curvatures and their derivatives.

So by Lemma 28, one has
l

t
¼ d 2

0 ðx; xÞ
4t2

þO
1

t

# $
and RcðrÞ ¼ R n log

rffiffiffiffiffiffiffiffi
4pt

p ' l

# $
¼ O

1

t

# $

as t & 0. By Corollary 37, t'3=2K is also O
1

t

# $
as t & 0. Adapting the arguments in the

proof of Lemma 40, one concludes that

lim
r&0

Pj; vðrÞ
rn

¼ lim
r&0

(
1

rn
Ð

Er

d 2
0 ðx; xÞ
4t2

j dm dt

)
¼ jðx; tÞ;

exactly as in the calculation for Euclidean space. (Also see Corollary 23, below.) r

An example of how this result may be applied is the following local Harnack inequal-
ity, which follows directly from (4.10).

Remark 14. Assume the hypotheses of Corollary 13 hold. If Rf 0 on Er1 , then

Rðx; tÞf 1

rn1

Ð

Er1

½j‘lj2 þ RcðrÞ%Rdm dtþ
Ðr1

0

2n

rnþ1

Ð

Er

cðrÞjRcj2 dm dt dr:

The inequality (4.8) is sharp in the following sense.

Corollary 15. Let
!
Mn; gðtÞ

"
be a complete solution of Ricci flow that is smooth for

0e te t, with Rcf'kg. If equality holds in (4.8) for j1 1, then
!
Er; gðtÞ

"
is isometric to

a shrinking gradient soliton for all r < minf
ffiffiffiffiffiffiffi
t=c

p
; 2

ffiffiffi
p

p
g.

Proof. From the proof of Theorem 7, it is easy to see that

d

dr

P1; vðrÞ
rn

# $
¼ ' n

rnþ1

Ð

Er

q

qt
þ Dþ trg h

# $
v

v
dm dt

for almost all r < minf
ffiffiffiffiffiffiffi
t=c

p
; 2

ffiffiffi
p

p
g. Therefore, equality in (4.8) implies that v is a distribu-

tional solution of the parabolic equation

q

qt
' Dþ R

# $
v ¼ 0

in Er for almost all small r. By parabolic regularity, v is actually smooth. This implies that
one has equality in the chain of inequalities
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Dl' j‘lj2 þ R' n

2t
e lt ¼ ' 'Rþ n

2t
' 1

2
t'3=2K

# $
þ n' 2l

2t
e'Dlþ n' 2l

2t

that follow from equations (7.13), (7.5), and (7.10) of [28]. Hence one has

u :¼ tð2Dl' j‘lj2 þ RÞ þ l' n ¼ 0:

By [28], equation (9.1) (where the roles of u and v are reversed), this implies that

0 ¼ q

qt
' Dþ R

# $
ðuvÞ ¼ '2t Rcþ ‘‘l' 1

2t
g

****

****
2

v:

This is possible only if
!
Er; gðtÞ

"
has the structure of a shrinking gradient soliton with

potential function l. r

Remark 16. For applications of Corollary 15 to regularity theorems for Ricci flow,
see [27] by the third author.

4.2. Comparing global and local quantities. Corollaries 13 and 15 suggest a natural
question: how does the purely local monotone quantity P1; vðrÞ=rn compare to Perelman’s
global monotone quantity ~VVðtÞ ¼

Ð

Mn

v dm? A path to a partial answer begins with an obser-

vation that generalizes Example 11 above.

Cao, Hamilton, and Ilmanen [1] prove that any complete gradient shrinking soliton!
Mn; gðtÞ

"
that exists up to a maximal time T < y and satisfies certain noncollapsing and

curvature decay hypotheses converges as t % T to an incomplete (possibly empty) metric
cone ðC; dÞ, which is smooth except at the parabolic vertex O. The convergence is smooth
except on a compact set (possibly all of Mn) that vanishes into the vertex.8) Furthermore,
they prove that along a sequence ðxk; tkÞ approaching O, a limit lOðx; tÞ :¼ lim lðxk ; tkÞðx; tÞ
exists for all x A Mn and tðtÞ > 0. They show that the central density function

YRF
O ðtÞ :¼ ~VVOðtÞ ¼ lim

k!y
~VV ðxk ; tkÞðtÞ

of the parabolic vertex O is independent of time and satisfies YRF
O ðtÞ1 en, where n is the

constant entropy of the soliton
!
Mn; gðtÞ

"
.

On a compact soliton, there is a pointwise version of the Cao-Hamilton-Ilmanen re-
sult, due to Bennett Chow and the third author:

Lemma 17. If
!
Mn; gðtÞ

"
is a compact shrinking (necessarily gradient) soliton, then

the limit lOðx; tÞ exists for all x A Mn and tðtÞ > 0. This limit agrees up to a constant with
the soliton potential function f ðx; tÞ.

See [4] for a proof.

8) See [11] for examples where ðC; dÞ ¼ lim
t&0

!
Mn; gðtÞ

"
is nonempty.
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Recall that the entropy of a compact Riemannian manifold ðMn; gÞ is

nðMn; gÞ :¼ inf

(
Wðg; f ; tÞ : f A Cy

0 ; t > 0;
Ð

Mn

ð4ptÞ'n=2e'f dm ¼ 1

)
;

where

Wðg; f ; tÞ :¼
Ð

Mn

½tðj‘f j2 þ RÞ þ f ' n%ð4ptÞ'n=2e'f dm:ð4:11Þ

(Compare with Example 3.) Under the coupled system

q

qt
g ¼ '2Rc;ð4:12aÞ

q

qt
þ D

# $
f ¼ j‘f j2 ' Rþ n

2t
;ð4:12bÞ

dt

dt
¼ '1;ð4:12cÞ

the functional W
!
gðtÞ; f ðtÞ; tðtÞ

"
is monotone increasing in time and is constant precisely

on a compact shrinking gradient soliton with potential function f , where (after possible
normalization) one has

Rcþ ‘‘f ' 1

2t
g ¼* 0:ð4:13Þ

Here and in the remainder of this section, the symbol ¼* denotes an identity that holds on a
shrinking gradient soliton.

We are now ready to answer the question we posed above regarding the relationship
between P1; vðrÞ=rn and ~VVðtÞ. (Compare with Example 7.)

Corollary 18. Let
!
Mn; gðtÞ

"
be a compact shrinking Ricci soliton that vanishes into a

parabolic vertex O at time T. Then for all t < T and r > 0, one has

YRF
O ðtÞ :¼ ~VVOðtÞ ¼

P1; vðrÞ
rn

;

where P1; vðrÞ ¼
Ð

Er

j‘lj2 þ R n log
rffiffiffiffiffiffiffiffi
4pt

p ' l

# $& '
dm dt is computed with l ¼ lO.

Proof. It will be easiest to regard everything as a function of tðtÞ :¼ T ' t > 0. Be-
cause

!
Mn; gðtÞ

"
is a compact shrinking soliton, there exist a time-independent metric

g and function f on Mn such that RcðgÞ þ ‘‘f ' 1

2
g ¼ 0. The solution of Ricci flow

is then gðtÞ ¼ tx+
t ðgÞ, where fxtgt>0 is a one-parameter family of di¤eomorphisms

such that x1 ¼ id and
q

qt
xtðxÞ ¼ 't'1 gradg f ðxÞ. The soliton potential function satisfies

f ðx; tÞ ¼ x+
t f ðxÞ and ft ¼ 'k‘f k2. (Notice that (4.13) implies that system (4.12) holds.)
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Let C ¼ ð4ptÞ'n=2e'lðx; tÞ, where l is the reduced distance from the parabolic vertex
O. By Lemma 17, l ¼ f þ C. So Assumptions 1 and 2 are clearly satisfied. Because

Ð

Mn)ftg
jcj dm ¼ O½tn=2 logðt'n=2Þ% and

Ð

Mn)ftg
j‘cj2 dm ¼ Oðtn=2'1Þ

as t & 0, Assumption 3 is satisfied as well. Because
q

qt
c ¼ j‘f j2 ' n

2t
, Lemma 9 implies

that

P1; vðrÞ ¼
Ð

Er

n

2t
þ lt þ j‘lj2

# $
dm dt ¼*

Ð

Er

n

2t
dm dt:

(Compare Remark 12.) Computing ~VVðtÞ ¼ ~VVOðtÞ, one finds that

~VVð1Þ ¼
Ð

Mn

ð4pÞ'n=2e'lðx;1Þ dm
!
gð1Þ

"

¼
Ðy

0

Volgð1Þfx : ð4pÞ'n=2e'lðx;1Þ f zg dz

¼*
Ðy

0

n

2t
VolgðtÞ½x'1

t fx : ð4ptÞ'n=2e'lðx;1Þ f 1g% dt ðz ¼ tn=2Þ

¼
Ðy

0

n

2t
VolgðtÞ y : lðy; tÞ < n log

1ffiffiffiffiffiffiffiffi
4pt

p
( )

dt

¼
Ð

E1

n

2t
dm dt

¼* P1; vð1Þ:

But on a shrinking gradient soliton, P1; vðrÞ=rn is independent of r > 0, while ~VVðtÞ is inde-
pendent of t > 0. Since they agree at r ¼ 1 and t ¼ 1, they agree everywhere. r

Since the reduced distance and reduced volume are invariant under parabolic rescal-
ing, similar considerations apply to solutions whose rescaled limits are shrinking gradient
solitons.

4.3. Localizing forward reduced volume. In [12], Feldman, Ilmanen, and the third
author introduce a forward reduced distance

lþðx; tÞ :¼ inf
g

1

2
ffiffi
t

p
Ðt

0

ffiffi
s

p dg

ds

****

****
2

þ R

 !

ds:

Here the infimum is taken over smooth paths g from an origin ðx; 0Þ to ðx; tÞ. Define

uðx; tÞ ¼ ð4ptÞ'n=2e'lþðx; tÞ

and c ¼ log u. In [25], it is proved that
q

qt
' D' R

# $
ue 0 holds in the distributional sense

if
!
Mn; gðtÞ

"
is a complete solution of Ricci flow with bounded nonnegative curvature
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operator for 0e teT . Following the same arguments as in the proof of Corollary 13 then
leads to the following result for

Pj;uðrÞ ¼
Ð

Er

j‘lþj2 ' R n log
rffiffiffiffiffiffiffi
4pt

p ' lþ

# $& '
j dm dt:

Corollary 19. Let
!
Mn; gðtÞ

"
be a complete solution of Ricci flow with bounded non-

negative curvature operator for 0e teT. Let j be any smooth nonnegative function. Then
whenever 0 < r0 < r1 <

ffiffiffiffiffiffiffiffiffi
4pT

p
, one has

Pj;uðr1Þ
rn1

'
Pj;uðr0Þ

rn0
e

Ðr1

r0

n

rnþ1

Ð

Er

ðcþ n log rÞ qj

qt
þ Dj

# $
dm dt dr:ð4:14Þ

In direct analogy with Corollary 15, one also has the following.

Corollary 20. Let
!
Mn; gðtÞ

"
be a complete solution of Ricci flow with bounded

nonnegative curvature operator for 0e teT. If equality holds in (4.14) with j1 1, then!
Er; gðtÞ

"
is isometric to an expanding gradient soliton for all r <

ffiffiffiffiffiffiffiffiffi
4pT

p
.

5. Mean-value theorems for heat kernels

In this section, we apply Theorem 7 to heat kernels of evolving Riemannian mani-
folds, especially those evolving by Ricci flow, with stationary (i.e. time-independent) mani-
folds appearing as an interesting special case.

Let
!
Mn; gðtÞ

"
be a smooth family of Riemannian manifolds evolving by (1.1) for

t A ½0; t %. We will again abuse notation by regarding certain evolving quantities, where con-
venient, as functions of x A Mn and tðtÞ :¼ t' t.

A smooth function C : ðMn ) ½0; t %Þnðx; 0Þ ! Rþ is called a fundamental solution of
the conjugate heat equation

q

qt
' D' trg h

# $
C ¼ 0ð5:1Þ

with singularity at ðx; 0Þ if C satisfies (5.1) at all ðx; tÞ A Mn ) ð0; t %, with lim
t&0

Cð!; tÞ ¼ dx

in the sense of distributions. We call a minimal fundamental solution of (5.1) a heat kernel.

For any smooth family
!
Mn; gðtÞ

"
of complete Riemannian manifolds, it is well

known that a heat kernel C always exists and is unique. Moreover, C is bounded outside
any compact space-time set containing ðx; 0Þ in its interior.9) If C is the conjugate heat
kernel for

!
Mn; gðtÞ

"
, then (2.4) takes the form

9) There are several standard constructions, all of which utilize local properties that the manifold inherits
from Rn. See the fine survey [16] and references therein.
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Pj;CðrÞ ¼
Ð

Er

½j‘ logCj2 ' logðrnCÞðtrg hÞ%j dm dt:

It is clear that Assumptions 1 and 2 are always satisfied. In particular, Er is compact for
r > 0 su‰ciently small. We shall prove that Assumption 3 is also valid for such r. For
this, we need a purely local observation about C near ðx; 0Þ.

Lemma 21. For t A ½0; t %, let
!
Nn; gðtÞ

"
be a smooth family of (possibly incom-

plete) Riemannian manifolds. Suppose that C is any fundamental solution of (5.1) with
singularity at ðx; 0Þ. For any e > 0, there exist a precompact neighborhood X of x, a time
t A ð0; t %, and a smooth function F : X) ½0; t% ! Rþ with Fðx; 0Þ ¼ 1 such that for all
ðx; tÞ A ðX) ½0; t%Þnðx; 0Þ, one has

Cðx; tÞ 'Fðx; tÞ ! 1

ð4ptÞn=2
exp '

d 2
gðtÞðx; xÞ

4t

 !*****

*****e e:ð5:2Þ

Proof. One begins with Garofalo and Lanconelli’s asymptotics [15], Theorem 2.1,
for a fundamental solution with respect to a Riemannian metric on Rn which is Euclidean
outside of an arbitrarily large compact neighborhood of the origin. The first step is a
straightforward adaptation of their proof to the case h3 0. The second step is to glue a
large ball centered at x A Nn into Euclidean space, obtaining a manifold

!
Rn; ~ggðtÞ

"
which

is identical to
!
Nn; gðtÞ

"
on a large neighborhood of x and to which the refined asymp-

totics apply. The di¤erence of the fundamental solutions C and ~CC for
!
Nn; gðtÞ

"
and!

Rn; ~ggðtÞ
"
, respectively, starts at zero as a distribution. By the comparison principle, it stays

uniformly small for a short time. r

We now consider Assumption 3. Let r > 0 be given. Apply Lemma 21 with e ¼ r'n=2.
By shrinking X and t if necessary, we may assume without loss of generality that
1=2eFe 2 in X) ½0; t%. Because Cð!; tÞ ! dx as t & 0, we may also assume t > 0 is
small enough that ErðtÞLX for all t A ð0; t%, where ErðtÞ :¼ Er X ðMn ) ftgÞ. Then inS
t A ð0; t%

ErðtÞ, one has

1

ð4ptÞn=2
exp '

d 2
gðtÞðx; xÞ

4t

 !

f
Cðx; tÞ ' e

Fðx; tÞ
f

1

4rn
;ð5:3Þ

which implies that d 2
gðtÞðx; !Þe 4t

n

2
log

1

t
þ log 4' n

2
logð4pÞ þ log rn

& '
there. Reduce t > 0

if necessary so that te 4ðn'2Þ=npr'2. Then one has

d 2
gðtÞðx; !Þe 4nt log

1

t
ð5:4Þ

in ErðtÞ for all t A ð0; t%. Since C > r'n ¼ 2e in Er, one also has

C

2
eC' ee

Fðx; tÞ
ð4ptÞn=2

e
2

ð4ptÞn=2
:ð5:5Þ

If necessary, reduce t > 0 further so te r'1 and te 4ðn'2Þ=np. Then c :¼ logC satisfies
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jcje n log
1

t

in ErðtÞ for all t A ð0; t%. By (5.4), this proves that lim
t&0

Ð

ErðtÞ
jcj dm ¼ 0.

If te r2, then Ce r'n e t'n=2 outside Er. So by (5.5), there exists c ¼ cðnÞ such
that Cð!; tÞe ect'n=2 for all t A ð0; t%. By (5.4), ErðtÞLBgðtÞðx; rÞ for r :¼

ffiffiffiffiffiffiffiffiffiffi
5n=e

p
. Since

C > r'n in Er, Theorem 10 yields C independent of x and t in
S

0<tet

BgðtÞðx; 2rÞ such that
for any t A ð0; t%, one has

j‘cj2 e 1

t
þ C

# $
1þ cþ n log r' n

2
log

t

2

# $2

ð5:6Þ

in Er X ðMn ) ½t=2; t%Þ. If r > 0 is small enough that Er is compact, this estimate and (5.4)
prove that

Ð

Er

j‘cj2 dm dt < y, which establishes Assumption 3.

Remark 22. Assumption 3 is valid for all r > 0 in any manifold
!
Mn; gðtÞ

"
t<t

for
which the kernel C vanishes at infinity in space-time, i.e. if for every e > 0, there exists a
compact set KHMn ) ð'y; t % such that Ce e outside K .

Our main result in this section is the following consequence of Theorem 7. The reader
is invited to compare it with Corollary 13 (above) for Perelman’s reduced volume density.
Recall that cðrÞ :¼ logðrnCÞ.

Corollary 23. Suppose that
!
Mn; gðtÞ

"
is a smooth family of complete Riemannian

manifolds evolving by (1.1) for t A ½0; t %. Let C : ðMn ) ½0; t %Þnðx; 0Þ ! Rþ be the kernel of
the conjugate heat equation (5.1) with singularity at ðx; tÞ ¼ ðx; 0Þ. Let j be any smooth func-
tion of ðx; tÞ. Then there is r > 0 such that if 0 < r0 < r1 < r, then

Pj;Cðr1Þ
rn1

'
Pj;Cðr0Þ

rn0
¼ '

Ðr1

r0

n

rnþ1

Ð

Er

cðrÞ
qj

qt
' Dj

# $
dm dt dr:

Furthermore, one has

jðx; tÞ ¼ lim
r&0

Pj;CðrÞ
rn

;

and thus

jðx; tÞ ¼
Pj;Cðr1Þ

rn1
þ

Ðr1

0

n

rnþ1

Ð

Er

cðrÞ
qj

qt
' Dj

# $
dm dt dr:

Proof. Now that we have verified Assumptions 1–3, everything follows directly
from Theorem 7 except for the representation formula jðx; tÞ ¼ lim

r&0
½Pj;CðrÞ=rn%, which

we will prove by a blow-up argument. Without loss of generality, we may assume that
jðx; tÞ ¼ 1. Here is the set-up. Identify Rn with TxM

n, and let y A Mn denote the
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image of ~yy A Rn under the exponential map expxð!Þ for g at t ¼ 0. For r > 0, de-
fine jrð~yy; tÞ :¼ jðry; r2tÞ, Crð~yy; tÞ :¼ rnCðry; r2tÞ, and C0ð~yy; tÞ :¼ ð4ptÞ'n=2e'j~yyj2=4t. Let
dmrð!; tÞ denote the pullback of r'n dmð!; r2tÞ under the map ~yy 7! expxðr~yyÞ. For df 0,
consider the ‘truncations’ defined by

E d
r :¼ ErX ðMn ) ðdr2; t %Þ;

ÊE
d

r :¼ fð~yy; tÞ : t > d and Crð~yy; tÞ > 1g;

ÊE
d

0 :¼ fð~yy; tÞ : t > d and C0ð~yy; tÞ > 1g;

Pd
r :¼

Ð

E d
r

½j‘ logCj2 ' ðtrg hÞ logðrnCÞ%j dm dt;

Pd
0 :¼

Ð

ÊE
d

0

j‘ logC0j2 d~yy dt:

The proof consists of two claims, which together imply the result.

The first claim is that if 0 < df 1, then lim
r&0

½Pd
r =r

n% ¼ Pd
0. Pulling back, one computes

Pd
r ¼ rn

Ð

ÊE d
r

½j‘ logCrj2 ' r2ðtrg hÞ logCr%jr dmr dt. By Lemma 21, Cr ! C0 as r & 0 uni-

formly on any WHHRn ) ½d; t %. By parabolic regularity, wðÊE d
r Þ ! wðÊE d

0Þ in L1ðRnÞ as
r & 0. Since dmr ! d~yy and jðx; tÞ ¼ 1, the claim follows.

The second claim is that for any h > 0, there exists some d A ð0; 1=100Þ such that
0e ½Pj;CðrÞ ' Pd

r %=rn < h for all small r > 0. By Lemma 21, if re 1 is so small that

1=2eFe 2 in Er X ðX) ½0; t%Þ, then ð4ptÞ'n=2 exp
!
'd 2

gðtÞðx; xÞ=4t
"
f

1

4rn
there. (Com-

pare (5.3).) Furthermore, d 2
gðtÞðx; !Þe 4t

n

2
log

r2

t
þ log 4

# $
e 4tn log

r2

t
in ErnE d

r , since
r2

t
f 4. Because te 1 in Er for all small r > 0, Theorem 10 gives C such that

j‘ logCj2e C

t
log

r2

t

# $2

in ErnE d
r . (Here we used r'n eCe ect'n=2; compare (5.6).)

Therefore,

Ð

ErnE d
r

j‘ logCj2 dmeC 0 Ðdr
2

0

t
n'2
2 log

r2

t

# $nþ4
2

dteC 00rndn=2 log
1

d

# $nþ4
2

:

The second claim, hence the theorem, follows readily. r

Remark 24. In the special case that Lð!; tÞ is a divergence-form, uniformly elliptic
operator on Euclidean space Rn and C is the kernel of its adjoint L+, the results of Corol-

lary 23 appear in [10], Theorems 1 and 2, for j solving
q

qt
' L

# $
j ¼ 0, and in [14], Theo-

rem 1.5, for arbitrary smooth j.

We conclude this section with two results for the special case of the conjugate heat
kernel C of a fixed Riemannian manifold ðMn; gÞ.
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Our first observation is that one can adapt the argument of [10] to obtain a mean-
value representation theorem in terms of an integral on ‘heat spheres’. This approach is
naturally related to the interpretation of equation (1.4) as a space-time Green’s formula.
To give the argument, we introduce some additional notation. Consider the space-time

manifold ~MM
nþ1 ¼ Mn ) R equipped with the metric ~ggðx; tÞ ¼ gðxÞ þ dt2, where t is the

global R-coordinate. Applying Green’s formula to a bounded space-time domain D in

~MM
nþ1

with the vector field jC
q

qt
'C‘jþ j‘C, we get

Ð

D

qj

qt
' Dj

# $
C dm dt ¼

Ð

D

qj

qt
' Dj

# $
Cþ j

qC

qt
þ DC

# $& '
dm dtð5:7Þ

¼
Ð

D

div~gg jC
q

qt
'C‘jþ j‘C

# $
dm dt

¼
Ð

qD

jC
q

qt
'C‘jþ j‘C; ~nn

. /

~gg

d ~AA;

where ~nn is the unit outward normal and d ~AA the area element of qD, both taken with respect
to ~gg. For sf 0, we follow [10] in defining

Ds
r ¼ fðx; tÞ A Er : t > sg

and two portions of its space-time boundary,

Ps
1 ¼ fðx; tÞ : C ¼ r'n; t > sg and Ps

2 ¼ fðx; tÞ A Ds
r : t ¼ sg:

Applying (5.7) to Ds
r yields

0 ¼
Ð

Ds
r

qj

qt
' Dj

# $
C dm dt

¼
Ð

Ps
2

jC dmþ
Ð

Ps
1

jC
q

qt
'C‘jþ j‘C; ~nn

. /

~gg

d ~AA

¼
Ð

Ps
2

jC dmþ 1

rn
Ð

Ps
1

j
q

qt
' ‘j; ~nn

. /

~gg

d ~AAþ
Ð

Ps
1

jh‘C; ~nni~gg d ~AA:

Letting s & 0, we obtain

jðx; 0Þ ¼ lim
s&0

Ð

Ps
2

jC dm

¼ ' 1

rn
Ð

P0
1

j
q

qt
' ‘j; ~nn

. /

~gg

d ~AA'
Ð

P0
1

jh‘C; ~nni~gg d ~AA

¼ ' 1

rn
Ð

D0
r

q

qt
' D

# $
j dm dtþ

Ð

P0
1

j
j‘Cj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jCtj2 þ j‘Cj2
q d ~AA:
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Summing together and noticing that P0
1 ¼ qEr, we get the following mean-value theorem,

which is naturally related to Corollary 23 by the coarea formula.

Theorem 25. Let ðMn; gÞ be a complete fixed manifold. Let C denote the conjugate
heat kernel with singularity at ðx; tÞ ¼ ðx; 0Þ. If a smooth function j of ðx; tÞ solves the heat
equation, then

jðx; tÞ ¼
Ð

qEr

j‘Cj2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jCtj2 þ j‘Cj2

q j d ~AA:

For the e-regularity theorems for Ricci flow derived by the third author [27], we need
a mean-value inequality for nonnegative supersolutions. For this purpose, assume that the
Ricci curvature of ðMn; gÞ satisfies Rcf ðn' 1Þkg for some k A f'1; 0; 1g. Let ðMn

k ; ~ggÞ de-
note the simply connected space form of constant sectional curvature k, and letCk denote its
conjugate heat kernel centered at ~xx A Mn

k . Then there exists ~CCk : ½0;yÞ ) ð0;yÞ !ð 0;yÞ
such that Ckðx; tÞ ¼ ~CCk

!
dkð~xx; xÞ; t

"
, where dk denotes the distance function of ðMn

k ; ~ggÞ.

Fix an origin ðx; tÞ A Mn ) R. Again let t :¼ t' t, and let ~CC denote the transplant of
Ck to ðMn; gÞ, i.e.

~CCðx; tÞ :¼ ~CCk

!
dgðx; xÞ; t

"
:ð5:8Þ

As above, let ~ccðrÞ ¼ logðrn ~CCÞ and ~EEr ¼ fðx; tÞ A Mn ) R : ~ccðrÞðx; tÞ > 0g. Define

~II
ðx;0ÞðrÞ :¼ 1

rn
Ð

~EEr

j‘ log ~CCj2 dm dt:ð5:9Þ

Then the following mean-value inequality follows from Theorem 7.

Corollary 26. Let ðMn; gÞ be a complete Riemannian manifold such that
Rcf ðn' 1Þkg for some k A f'1; 0; 1g. Let ~CC be defined by (5.8), and let jf 0 be

any smooth supersolution of the heat equation, i.e.
q

qt
' D

# $
jf 0. Then

jðx; tÞf 1

rn
Ð

~EEr

j‘ log ~CCj2j dm dt:

In particular, ~II ðx;0ÞðrÞe 1 holds for all r > 0, and
d

dr
~II ðx;0ÞðrÞe 0 holds in the sense of distri-

butions.

If equality holds for j1 1, then the largest metric ball in ~EEr is isometric to the corre-
sponding ball in the simply-connected space form of constant sectional curvature k.

Proof. The inequalities follow from Theorem 7 by the results of Cheeger-Yau [3]

that
q

qt
' D

# $
~CCðx; tÞe 0 and ~CCðx; tÞfCðx; tÞ, where C is the conjugate heat kernel of

ðMn; gÞ. The implication of equality is a consequence of the rigidity derived from equality
in the Bishop volume comparison theorem. (See [2].) r
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6. Average energy for Ricci flow

Again assume
!
Mn; gðtÞ

"
is a smooth complete solution of Ricci flow for t A ½0; t %. Let

C denote a fundamental solution to the conjugate heat equation

q

qt
þ D' R

# $
C ¼ 0ð6:1Þ

centered at ðx; tÞ. The traditional notation in this case is C ¼ e'f , i.e. f :¼ 'c.

Perelman [28] has discovered that the average energy

FðtÞ ¼
Ð

Mn)ftg
ðDf þ RÞe'f dm ¼

Ð

Mn)ftg
ðj‘f j2 þ RÞe'f dm

is a monotonically (weakly) increasing function of t. Our result in this situation gives a
quantity which is not just monotonic, but constant in its parameter.

Corollary 27. Suppose that
!
Mn; gðtÞ

"
is a smooth, compact solution of Ricci flow for

t A ½0; t %, with t < y. Suppose further that C : Mn ) ½0; t % !ð 0;yÞ is a fundamental solu-
tion of (6.1) with singularity at ðx; tÞ. Define f :¼ 'logC.

Then for all f A R below some threshold value, we have

Ð

f f< f g
ðDf þ RÞe'f dm dt ¼ 1;

where

f f < f g :¼ fðx; tÞ A Mn ) ½a; bÞ : f ðx; tÞ < f g:

Proof. The arguments in Section 5 (above) verify that the hypotheses of Lemma 9
are satisfied. Since

qc

qt
þ j‘cj2 ¼ 'Dcþ R;

one then has

P1;CðrÞ ¼
Ð

Er

ð'Dcþ RÞ dm dt ¼
Ð

Er

ðDf þ RÞ dm dt:

At this point, we change variables from r to f :¼ n log r. We then get

P1;CðrÞ
rn

¼
Ð

f f< f g
ðDf þ RÞe'f dm dt;

whence the conclusion follows from Corollary 23 in Section 5. r
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7. Appendix. Simple estimates for reduced geometry

For the convenience of the reader, we provide certain elementary estimates involving
reduced geometry in a form adapted to this paper. The reader should note that most of the
estimates solely for reduced distance are essentially contained in Ye’s notes [38], though not
always in the form stated here. (Also see [4].)

Notation. Assume that
!
Mn; gðtÞ

"
is a smooth one-parameter family of complete

(possibly noncompact) manifolds satisfying
q

qt
g ¼ 2Rc for 0e te t. Unless otherwise

noted, all Riemannian quantities are measured with respect to gðtÞ. All quantities in re-
duced geometry are calculated with respect to a fixed origin O ¼ ðx; 0Þ. We denote the
metric distance from x to y with respect to gðtÞ by dtðx; yÞ and write dtðxÞ ¼ dtðx; xÞ.
We define Btðx; rÞ ¼ fy A Mn : dtðx; yÞ < rg and write BtðrÞ ¼ Btðx; rÞ. Perelman’s
space-time action L, reduced distance l, and reduced volume density v are defined
above in (4.1), (4.2), and (4.3), respectively. We will also use the space-time distance
Lðx; tÞ :¼ inffLðgÞ : gð0Þ ¼ ðx; 0Þ; gðtÞ ¼ ðx; tÞg.

7.1. Bounds for reduced distance. Given kf 0 and Kf 0, define

lðx; tÞ ¼ e'2kt d
2
0 ðxÞ
4t

' nk

3
tð7:1Þ

and

lðx; tÞ ¼ e2Kt d
2
0 ðxÞ
4t

þ nK

3
t:ð7:2Þ

Our first observation directly follows Ye [38].

Lemma 28. The reduced distance lðx; tÞ has the following properties.

(1) If there is kf 0 such that Rcf'kg on Mn ) ½0; t%, then lðx; tÞf lðx; tÞ.

(2) If there is K f 0 such that RceKg on Mn ) ½0; t%, then lðx; tÞe lðx; tÞ.

Proof. (1) Observe that gðtÞf e'2ktgð0Þ. By (4.1), the L-action of an arbitrary path
g from ðx; 0Þ to ðx; tÞ is

LðgÞ ¼
Ð
ffiffi
t

p

0

1

2

dg

ds

****

****
2

þ 2s2R

 !
ds

f
1

2
e'2kt

Ð
ffiffi
t

p

0

dg

ds

****

****
2

0

ds' 2nk
Ð
ffiffi
t

p

0

s2 ds

f e'2kt d
2
0 ðxÞ
2

ffiffiffi
t

p ' 2nk

3
t3=2:

Since g was arbitrary, one has lðx; tÞ ¼ 1

2
ffiffiffi
t

p infg LðgÞf lðx; tÞ.
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(2) Observe that gðtÞe e2Ktgð0Þ. Let b be a path from ðx; 0Þ to ðx; tÞ that is minimal
and of constant speed with respect to gð0Þ. Then as above,

LðbÞe e2Kt d
2
0 ðxÞ
2

ffiffiffi
t

p þ 2nK

3
t3=2:

Hence lðx; tÞe 1

2
ffiffiffi
t

p LðbÞe lðx; tÞ. r

Remark 29. If Rcf'kg on Mn ) ½0; t%, it follows from Part (1) of Lemma 28 (by
standard arguments) that minimizing L-geodesics exist and are smooth.

7.2. Bounds for reduced-volume heatballs. Recall that the reduced-volume density is
vðx; tÞ ¼ ð4ptÞ'n=2e'lðx; tÞ. For r > 0, define the reduced-volume heatball

Er ¼ fðx; tÞ A Mn ) ð0; t% : vðx; tÞ > r'ngð7:3Þ

¼ ðx; tÞ A Mn ) ð0; t% : lðx; tÞ < n log
rffiffiffiffiffiffiffiffi
4pt

p
( )

ð7:4Þ

and define cðk; tÞ by

c ¼ e4kt=3

4p
:ð7:5Þ

Given r > 0, kf 0, t > 0, define

rðr; k; tÞ ¼ ekt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2nt log
r2

4pt
þ 4

3
nkt2

# $

þ

s

:ð7:6Þ

Note that rðr; 0; tÞ agrees with RrðtÞ in [9]. It is easy to see that for each r > 0 and kf 0,
one has rðr; k; tÞ > 0 for all su‰ciently small t > 0.

Remark 30. If Rcf'kg on Mn ) ½0; t%, then Part (1) of Lemma 28 implies that
ðx; tÞ A Er only if x A B0

!
rðr; k; tÞ

"
.

Lemma 31. Assume 0 < r2 eminft=c; 4pg. If cr2 e te t, then rðr; k; tÞ ¼ 0.

Proof. When t ¼ cr2, one has

k

3
tþ 1

2
log

r2

4pt
e

kt

3
þ 1

2
log

1

4pc
¼ ' kt

3
e 0;

while for cr2e te t, one has

q

qt

k

3
t2 þ 1

2
t log

r2

4pt

# $
¼ 2k

3
tþ 1

2
log

r2

4pt
' 1

2

e
2k

3
tþ 1

2
log

1

4pc
' 1

2
e' 1

2
: r
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Corollary 32. Assume that Rcf'kg on Mn ) ½0; t% for some kf 0 and that
0 < r2eminft=c; 4pg. Then

ErL
S

0<t<cr2
B0

!
rðr; k; tÞ

"
) ftg:

7.3. Gradient estimates for reduced distance. Local gradient estimates for curvatures
evolving by Ricci flow originated in [32], §7. Recall the following version.

Proposition 33 (Hamilton [19], §13). Suppose gðtÞ solves backward Ricci flow for
t0 e te t1 on an open set U of Mn with Bt1ðx; 2lÞHU. There exists Cn depending only
on n such that if jRmjeM on U) ½t0; t1%, then

j‘RmjeCnM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l2
þ 1

t1 ' t
þM

s

on Bt1ðx; lÞ ) ½t0; t1Þ.

If there is a global bound on curvature, the situation is quite simple:

Remark 34. If jRmjeM on Mn ) ½0; t%, then for every t+ < t there exists
A ¼ Aðn;M; t+Þ such that j‘RjeA on Mn ) ½0; t+%.

More generally, the following ‘localization lemma’ often provides adequate local
bounds.

Lemma 35. Assume Rcf'kg on Mn ) ½0; t%. Then for every l > 0 and t+ A ð0; tÞ,
there exists l+ such that the image of any minimizing L-geodesic from ðx; 0Þ to any
ðx; tÞ A B0ðlÞ ) ð0; t+% is contained in B0ðl+Þ. In particular, there exist constants C, C 0 de-
pending only on jRmj in a space-time cylinder Wðl; t+; tÞ such that Rc < Cg and j‘RjeC 0

on B0ðl+Þ ) ½0; t+%.

Proof. By smoothness, there exists K such that RceKg on B0ðlÞ ) ½0; t+%. Apply-
ing Part (2) of Lemma 28 along radial geodesics from x shows that

sup
ðx; tÞ AB0ðlÞ)½0; t+%

½tlðx; tÞ%e e2Kt+ l
2

4
þ nK

3
ðt+Þ2:

Define

l+ ¼ 2ekt
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

e2Kt+
l2

4
þ n

3
ðk þ KÞðt+Þ2

s

:

Let ðx; tÞ A B0ðlÞ ) ð0; t+% be arbitrary and let g be any minimizing L-geodesic from ðx; 0Þ
to ðx; tÞ. Then for every s A ½0; t%, one obtains

d0
!
gðsÞ

"
e 2ekt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tlðx; tÞ þ nk

3
t2

r
< l+
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by following the proof of Part (1) of Lemma 28. This proves that the image of g is con-
tained in B0ðl+Þ.

Now define t 0 ¼ t+ þ 1

2
ðt' t+Þ and choose l 0 large enough that B0ðl+ÞLBt 0 ðl 0Þ. By

smoothness, there exists M such that jRmjeM on Bt 0 ð3l 0Þ ) ½0; t 0%. So by Proposition 33,
there exists C 0 such that j‘RjeC 0 on Bt 0 ðl 0Þ ) ½0; t+%. Clearly, RceCg on Bt 0 ðl 0Þ ) ½0; t+%
as well. r

Lemma 36. Assume that there exists an open set ULMn and 0e t0 e t1 e t
such that j‘RjeA on U) ½t0; t1%. Let g : ½0; t1% ! U be an L-geodesic and let

Gðt0Þ ¼ lim
t&t0

ffiffiffi
t

p dg

dt

****

****

# $
, which is well defined for all t0 f 0.

(1) If Rcf'kg on U) ½t0; t1%, then for all t A ½t0; t1%, one has

dg

dt

****

****e
1

2
ffiffiffi
t

p 2Gðt0Þ þ
A

k

ffiffiffiffiffi
t1

p
# $

ekðt't0Þ ' A

k

ffiffiffiffiffi
t1

p
& '

ðk > 0Þ

e
1

2
ffiffiffi
t

p ½2Gðt0Þ þ A
ffiffiffiffiffi
t1

p
ðt' t0Þ% ðk ¼ 0Þ:

(2) If RceKg on U) ½t0; t1%, then for all t A ½t0; t1%, one has

dg

dt

****

****f
1

2
ffiffiffi
t

p 2Gðt0Þ þ
A

K

ffiffiffiffiffi
t1

p
# $

eKðt0'tÞ ' A

K

ffiffiffiffiffi
t1

p
& '

ðK > 0Þ

f
1

2
ffiffiffi
t

p ½2Gðt0Þ þ A
ffiffiffiffiffi
t1

p
ðt0 ' tÞ% ðK ¼ 0Þ:

Proof. It will be more convenient to regard g as a function of s ¼
ffiffiffi
t

p
. Let _gg ¼ dg

dt
and g 0 ¼ dg

ds
¼ 2s _gg. The Euler-Lagrange equation satisfied by g is

‘ _gg _gg ¼
1

2
‘R' 2Rcð _ggÞ ' 1

2t
_gg:

In terms of s, this becomes

‘g 0g
0 ¼ 2s2‘R' 4sRcðg 0Þ;

which is nonsingular at s ¼ 0. The computation

d

ds
jg 0j2 ¼ dt

ds

q

qt
gðg 0; g 0Þ þ 2gð‘g 0g

0; g 0Þ

¼ 4s2h‘R; g 0i' 4sRcðg 0; g 0Þ

shows that jg 0j satisfies the di¤erential inequalities
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d

ds
jg 0je 2ksjg 0j þ 2As2ð7:7Þ

and

d

ds
jg 0jf'2Ksjg 0j ' 2As2:ð7:8Þ

Let s0 ¼
ffiffiffiffiffi
t0

p
and s1 ¼

ffiffiffiffiffi
t1

p
. Define

cðsÞ ¼ jg 0ðs0Þj þ
As1
k

# $
ekðs

2's20 Þ ' As1
k

and

cðsÞ ¼ jg 0ðs0Þj þ
As1
K

# $
eKðs20's2Þ ' As1

K
;

replacing these by their limits if either k or K is zero. Note that cðs0Þ ¼ jg 0ðs0Þj ¼ cðs0Þ. It
is readily verified that c is a supersolution of (7.7) and that c is a subsolution of (7.8). So

one has cðsÞe dg

ds

****

****ecðsÞ for s0 e se s1, as claimed. r

Corollary 37. Assume that Rcf'kg on Mn ) ½0; t%. Then for any l > 0 and
t+ A ð0; tÞ, there exist positive constants h and C such that for any minimizing L-geodesic g
from ðx; 0Þ to ðx; tÞ A B0ðlÞ ) ð0; t+%, one has

min
½0; t%

ffiffiffi
s

p dg

ds

****

****

# $
f h max

½0; t%

ffiffiffi
s

p dg

ds

****

****

# $
' C:

Furthermore, for all s A ð0; t%, one has

dg

ds

****

****
2

e
2

h2
l
!
gðtÞ; t

"
þ C2

s
þ nk

3

& '
:

Proof. By Lemma 35, there exists a neighborhood U containing the image of g such
that RceKg and j‘RjeA in U) ½0; t+%. Using this, the first statement is easy to verify.

To prove the second statement, let x ¼ gðtÞ, so that Lðx; tÞ ¼ LðgÞ. Then as in
Lemma 28, one has

Lðx; tÞ þ 2nk

3
t3=2 f

Ð̂tt

0

ffiffiffi
s

p dg

ds

****

****
2

ds

for any t̂t A ð0; t%. Let c ¼ min½0; t%
ffiffiffi
s

p dg

ds

****

****

# $
and C ¼ max½0; t%

ffiffiffi
s

p dg

ds

****

****

# $
. Then for any

d A ð0; t̂tÞ one has
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Lðx; tÞ þ 2nk

3
t3=2f 2

ffiffiffi
t̂t

p
c2

f 2
ffiffiffi
t̂t

p h2

2
C2 ' C2

# $

f
h2

2

ffiffiffi
t̂t

p
ffiffiffi
t̂t

p
'

ffiffiffiffiffiffiffiffiffiffiffi
t̂t' d

p
Ð̂tt

t̂t'd

ffiffiffi
s

p dg

ds

****

****
2

ds' 2C2
ffiffiffi
t̂t

p
:

Consequently, one obtains

Ð̂tt

t̂t'd

ffiffiffi
s

p dg

ds

****

****
2

dse
d

h2t̂t
Lðx; tÞ þ 2C2

ffiffiffi
t̂t

p
þ 2nk

3
t3=2

& '
;ð7:9Þ

whence the second statement follows. r

Lemma 38. Assume Rcf'kg on Mn ) ½0; t%. Let l > 0 and t+ < t be given.

(1) There exists C such that for all x A B0ðlÞ and t A ð0; t+%, one has

jLðx; tG dÞ ' Lðx; tÞjeC
1ffiffiffi
t

p þ
ffiffiffi
t

p# $
d

whenever d A ð0; t=3Þ and tG d A ½0; t+%.

(2) There exists C such that for all x A B0ðlÞ and t A ð0; t+%, one has

jLðx; tG dÞ ' Lðx; tÞjeC
L

t
þ 1ffiffiffi

t
p þ

ffiffiffi
t

p# $
d

whenever d A ð0; t=3Þ and tG d A ½0; t+%.

Proof. Let a be a minimizing L-geodesic from ð0; xÞ to ðx; tÞ. By Lemma 35, we
may assume that Rc < Kg and j‘RjeA in U) ½0; t+%, where U is a neighborhood of the
image of a.

To bound L at a later time in terms of L at an earlier time, let b denote the constant
path bðsÞ ¼ x for te se tþ d. Because a is minimizing and L is additive, one has
Lðx; tÞ ¼ LðaÞ and Lðx; tþ dÞeLðaÞ þLðbÞ. Hence there exists Cn depending only on
n such that

Lðx; tþ dÞ ' Lðx; tÞeLðbÞ ¼
Ðtþd

t

ffiffiffi
s

p
Rdse ½Cnðk þ KÞ

ffiffiffi
t

p
%d:

To bound L at an earlier time in terms of L at a later time, define a path g from ðx; 0Þ to
ðx; t' dÞ by
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gðsÞ ¼ aðsÞ; 0e se t' 2d;

gðsÞ ¼ a
!
2s' ðt' 2dÞ

"
; t' 2d < se t' d:

Observe that the image of g lies in U and that

LðgÞeLðaÞ '
Ðt

t'2d

ffiffiffi
s

p
R
!
aðsÞ

"
ds

þ 4
Ðt'd

t'2d

ffiffiffi
s

p da

ds

****

****
2

dsþ
Ðt'd

t'2d

ffiffiffi
s

p
R
!
gðsÞ

"
ds:

By Part (1) of Lemma 36, there exists C 0 such that
da

ds

****

****
2

eC 0=t for sf t' 2df t=3.
Since LðaÞ ¼ Lðx; tÞ, it follows that

Lðx; t' dÞ ' Lðx; tÞeLðgÞ 'LðaÞeCn
C 0
ffiffiffi
t

p þ ðk þ KÞ
ffiffiffi
t

p& '
d:

This proves the first statement.

To prove the second statement, use (7.9) to estimate
Ðt'd

t'2d

ffiffiffi
s

p da

ds

****

****
2

ds. r

Lemma 39. If Rcf'kg on Mn ) ½0; t%, then l : Mn ) ð0; tÞ is locally Lipschitz.

(1) For any l > 0 and t+ < t, there exists C such that

lt þ
l

2t

****

****eC
1

t
þ 1

# $

everywhere in B0ðlÞ and almost everywhere in ð0; t+%, and such that

j‘ljeC
1

t
þ 1

# $

everywhere in ð0; t+% and almost everywhere in B0ðlÞ.

(2) There exists C such that

jltjeC
lþ 1

t
þ 1

# $

everywhere in Mn and almost everywhere in ð0; t+%, and such that

j‘lj2 eC
lþ 1

t
þ 1

# $

everywhere in ð0; t+% and almost everywhere in Mn.
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Proof. We again apply Lemma 35 to get bounds RceKg and j‘RjeA on
B0ð2l+Þ ) ½0; t+%, where B0ðl+Þ is a neighborhood of any minimizing geodesic from ðx; 0Þ
to a point ðx; tÞ A B0ðlÞ ) ð0; t+%.

Wherever it is smooth, l satisfies lt þ
l

2t
¼ 1

2
ffiffiffi
t

p Lt. Thus local Lipschitz continuity in

time and the estimates for lt follow directly from Lemma 38 and Rademacher’s Theorem.

To show local Lipschitz continuity in space, let x; y A B0ðlÞ and t A ð0; t+% be given.
We may assume that dtðx; yÞ A ð0; t=3Þ. Let a be a minimizing L-geodesic from ðx; 0Þ to
ðx; tÞ and let b be a unit-speed gðtÞ-geodesic from x to y. Let d ¼ dtðx; yÞ and define a
path g from ðx; 0Þ to ðy; tÞ by

gðsÞ ¼ aðsÞ; 0e se t' 2d;

gðsÞ ¼ a
!
2s' ðt' 2dÞ

"
; t' 2d < se t' d;

gðsÞ ¼ b
!
s' ðt' dÞ

"
; t' d < se t:

Observe that the image of g belongs to B0ð2l+Þ. Exactly as in the proof of Lemma 38, one
finds there exist Cn and C 0 such that

LðgÞeLðaÞ '
Ðt

t'2d

ffiffiffi
s

p
R
!
aðsÞ

"
ds

þ 4
Ðt'd

t'2d

ffiffiffi
s

p da

ds

****

****
2

dsþ
Ðt

t'd

ffiffiffi
s

p db

ds

****

****
2

dsþ
Ðt

t'2d

ffiffiffi
s

p
R
!
gðsÞ

"
ds

eLðaÞ þ Cn
C 0
ffiffiffi
t

p þ ðk þ K þ ekt
+ Þ

ffiffiffi
t

p& '
d:

Since a is minimizing, this implies that

Lðy; tÞ ' Lðx; tÞeC
1ffiffiffi
t

p þ
ffiffiffi
t

p# $
dtðx; yÞ:

Reversing the roles of x and y gives the same inequality for Lðx; tÞ ' Lðy; tÞ. The first gra-
dient estimate then follows by Rademacher’s Theorem.

To prove the second gradient estimate, observe that local Lipschitz continuity of L
implies that the L-geodesic cut locus is a set of measure zero. If ðx; tÞ is not in the cut

locus, then the first variation formula [28], (7.1) implies that ‘Lðx; tÞ ¼ 2
ffiffiffi
t

p da

dt
. The sec-

ond gradient formula now follows from Corollary 37. r

7.4. Integration over reduced-volume heatballs. If v is the reduced-volume density
and j : Mn ) ð0; tÞ ! R is a given function, then the function Pj; vðrÞ defined in (2.4) may
be written as

Pj; vðrÞ ¼
Ð

Er

Fj dm dt;
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where

F ¼ j‘lj2 þ R n log
rffiffiffiffiffiffiffiffi
4pt

p ' l

# $
:

Lemma 40. Assume that Rcf'kg on Mn ) ½0; t%. Then for any t+ A ð0; tÞ, there ex-
ists C independent of j such that

jPj; vðrÞj
rn

eC sup
Mn)ð0; cr2Þ

jjj

whenever 0 < r2 eminft+=c; 4pg, where c ¼ e4kt=3=ð4pÞ.

Proof. For 0 < te t+, Part (2) of Lemma 39 implies that

j‘lj2 e Clþ C 0

t

almost everywhere in a precompact neighborhood U of x. Here and in the rest of the proof,
C, C 0, C 00 denote positive constants that may change from line to line. By Corollary 32, we
may assume that U) ½0; t+% contains Er for all r > 0 under consideration. Lemma 28 im-
plies that

j‘lj2eC
d 2
0 ðxÞ
t2

þ C 0

t

almost everywhere in U. Let l ¼ e'ktrðr; k; tÞ=ð2
ffiffiffi
n

p
Þ, where rðr; k; tÞ is defined by (7.6).

Together, Lemmata 28 and 31 show that

0 < n log
rffiffiffiffiffiffiffiffi
4pt

p ' le
n

t
l2 e

C

t
ð1þ t2Þ

everywhere in Er. Hence

jF je j‘lj2 þ nðk þ KÞ n log
rffiffiffiffiffiffiffiffi
4pt

p ' l

# $
eC

d 2
0 ðxÞ
t2

þ C 0

t

almost everywhere in Er. Since the volume forms dmðtÞ are all comparable on
B0ðClÞ ) ½0; t+%, it follows from the definition (7.6) of rðr; k; tÞ ¼ 2

ffiffiffi
n

p
ektl that

Ð

B0ðClÞ
jF j dmeC 0 l

nþ2

t2
þ C 00 l

n

t

eC 0 tn þ t
n
2
'1 log

r2

4pt

# $n
2
þ1

" #
þ C 00 tn'1 þ t

n
2
'1 log

r2

4pt

# $n
2

" #
:

For r > 0 and nf 2, the substitution z ¼ t=r2 shows that
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Ðcr2

0

t
n
2
'1 log

r2

4pt

# $nþ1G1
2

dt ¼ rn
Ðc

0

z
n
2
'1 log

1

4pz

# $nþ1G1
2

dzeCrn:

Hence by Corollary 32, one has

Ð

Er

jF j dm dte
Ðcr2

0

Ð

B0ðClÞ
jF j dm

 !

dteC 0rn

whenever 0 < r2 eminft=c; 4pg. The result follows. r
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