

Constant Flux Relation in

Non-equilibrium Statistical Mechanics

Oleg Zaboronski Department of Mathematics University of Warwick Coventry, UK

Joint work with:

- Colm Connaughton (CNLS, LANL, Los Alamos, New Mexico, USA)
- R. Rajesh (Institute of Mathematical Sciences, CIT Campus, Taramani, Chennai, India.)

Some Terminology from Turbulence Theory

Mathematics Institute

- Reynolds number $R = \frac{LU}{\nu}$.
- Energy injected into large eddies.
- Energy removed from small eddies at viscous scale.
- Transfer by interaction between eddies.
- Concept of inertial range

K41 : In the limit of ∞ R, all small scale statistical properties depend only on the local scale, k, and the energy dissipation rate, P. Dimensional analysis :

$$E(k) = cP^{\frac{2}{3}}k^{-\frac{5}{3}}$$
 Kolmogorov spectrum

Structure Functions and the $\frac{4}{5}$ Law

Mathematics Institute

- Structure functions : $S_n(r) = \langle (u(x+r) u(x))^n \rangle.$
- Scaling form in stationary state:

$$\lim_{r \to 0} \lim_{\nu \to 0} \lim_{t \to \infty} S_n(r) = C_n \left(Pr \right)^{\zeta_n}$$

• K41 theory gives $\zeta_n = \frac{n}{3}$.

 $\frac{4}{5}$ Law : $S_3(r) = \frac{4}{5}Pr$. Thus $\zeta_3 = 1$ (exact).

Mathematics Institute WMI

Existence of a quantity, *I*, such as energy which is conserved by the nonlinear interactions in the system.

- Existence of a quantity, *I*, such as energy which is conserved by the nonlinear interactions in the system.
- Sources and sinks of *I* are well separated in phase space.
 Existence of an *inertial range*.

- Existence of a quantity, *I*, such as energy which is conserved by the nonlinear interactions in the system.
- Sources and sinks of *I* are well separated in phase space.
 Existence of an *inertial range*.
- Conservative dynamics transfer *I* from the source to the sink resulting in a flux of *I* through the inertial range.

- Existence of a quantity, *I*, such as energy which is conserved by the nonlinear interactions in the system.
- Sources and sinks of *I* are well separated in phase space.
 Existence of an *inertial range*.
- Conservative dynamics transfer *I* from the source to the sink resulting in a flux of *I* through the inertial range.
- A stationary state is reached for large times where addition of *I* at the source is balanced by dissipation at the sink. Constant flux of *I* through the inertial range.

- Existence of a quantity, *I*, such as energy which is conserved by the nonlinear interactions in the system.
- Sources and sinks of *I* are well separated in phase space.
 Existence of an *inertial range*.
- Conservative dynamics transfer *I* from the source to the sink resulting in a flux of *I* through the inertial range.
- A stationary state is reached for large times where addition of *I* at the source is balanced by dissipation at the sink. Constant flux of *I* through the inertial range.
- Non-equilibrium stationary state. Lack of detailed balance.

Mathematics Institute WMI

- Existence of a quantity, *I*, such as energy which is conserved by the nonlinear interactions in the system.
- Sources and sinks of *I* are well separated in phase space.
 Existence of an *inertial range*.
- Conservative dynamics transfer *I* from the source to the sink resulting in a flux of *I* through the inertial range.
- A stationary state is reached for large times where addition of *I* at the source is balanced by dissipation at the sink. Constant flux of *I* through the inertial range.
- Non-equilibrium stationary state. Lack of detailed balance.

Questions : Is Kolmogorov phenomenology useful for studying such systems? Is there a counterpart of the 4/5 law?

Mathematics Institute WMI

Consider a lattice in d dimensions with massive point particles. $N_t(\mathbf{x}, m)$ =number of particles of mass m on site x at time t.

 \checkmark Diffusion : rate D

Mathematics Institute WMI

Consider a lattice in d dimensions with massive point particles. $N_t(\mathbf{x}, m)$ =number of particles of mass m on site x at time t.

- **Diffusion** : rate D
- Spatially homogeneous injection : rate J/m_0

Mathematics Institute WM

Consider a lattice in d dimensions with massive point particles. $N_t(\mathbf{x}, m)$ =number of particles of mass m on site x at time t.

- Spatially homogeneous injection : rate J/m_0
- Aggregation $A_{m_1} + A_{m_2} \rightarrow A_{m_1+m_2}$: rate λ

Mathematics Institute WM

Consider a lattice in d dimensions with massive point particles. $N_t(\mathbf{x}, m)$ =number of particles of mass m on site x at time t.

- Spatially homogeneous injection : rate J/m_0
- Aggregation $A_{m_1} + A_{m_2} \rightarrow A_{m_1+m_2}$: rate λ

Interested in the probability $P_1(m, t)$ of finding a particle at a site:

$$\begin{aligned} \frac{\partial P_1(m)}{\partial t} &= D\Delta P_1(m) + \frac{\lambda}{2} \int_0^\infty dm_1 dm_2 P_2(m_1, m_2, +0) \delta(m - m_1 - m_1) \\ &- \frac{\lambda}{2} \int_0^\infty dm_1 dm_2 P_2(m, m_1, +0) \delta(m_2 - m - m_1) \\ &- \frac{\lambda}{2} \int_0^\infty dm_1 dm_2 P(m, m_2, +0) \delta(m_1 - m_2 - m) + \frac{J}{m} \delta(m - m_2) \end{aligned}$$

Warwick, December 2005 - p. 5/2

Mathematics Institute WMI

Mass is conserved by aggregation events

Warwick WMI Mathematics Institute

- Mass is conserved by aggregation events
- Aggregation events generate larger masses from smaller ones leading to a flux of mass through mass space.

- Mass is conserved by aggregation events
- Aggregation events generate larger masses from smaller ones leading to a flux of mass through mass space.
- Source of masses at $m = m_0$, no sink (usually). Inertial range, $m_0 << m << \infty$.

- Mass is conserved by aggregation events
- Aggregation events generate larger masses from smaller ones leading to a flux of mass through mass space.
- Source of masses at $m = m_0$, no sink (usually). Inertial range, $m_0 << m << \infty$.
- Non-equilibrium stationary state carries a constant flux, J, of mass through mass space (takes infinite amount of time to be set up).

- Mass is conserved by aggregation events
- Aggregation events generate larger masses from smaller ones leading to a flux of mass through mass space.
- Source of masses at $m = m_0$, no sink (usually). Inertial range, $m_0 << m << \infty$.
- Non-equilibrium stationary state carries a constant flux, J, of mass through mass space (takes infinite amount of time to be set up).
- Analogue of Kolmogorov spectrum ?

$$P_1(m) = c_k m^{-x}$$

Mathematics Institute WMI

- Mass is conserved by aggregation events
- Aggregation events generate larger masses from smaller ones leading to a flux of mass through mass space.
- Source of masses at $m = m_0$, no sink (usually). Inertial range, $m_0 << m << \infty$.
- Non-equilibrium stationary state carries a constant flux, J, of mass through mass space (takes infinite amount of time to be set up).
- Analogue of Kolmogorov spectrum ?

$$P_1(m) = c_k m^{-x}$$

Scaling of multi-point correlation functions in mass space?

 $P_n(m_1,\ldots,m_n,+0) = Pr.(n \text{ particles are in } dV dm_1\ldots dm_n).$

Answers in d < 2

The critical dimension for the Takayasu model is 2. Mean field scaling is correct for d > 2 but incorrect for d < 2. In d = 2 scaling laws acquire logarithmic corrections.

Answers in d < 2

Mathematics Institute

The critical dimension for the Takayasu model is 2. Mean field scaling is correct for d > 2 but incorrect for d < 2. In d = 2 scaling laws acquire logarithmic corrections. Corrections to scaling exponents in d < 2 can be calculated using

an ϵ -expansion where $\epsilon = 2 - d$.

Answers in d < 2

Mathematics Institute WMI

The critical dimension for the Takayasu model is 2. Mean field scaling is correct for d > 2 but incorrect for d < 2. In d = 2 scaling laws acquire logarithmic corrections. Corrections to scaling exponents in d < 2 can be calculated using an ϵ -expansion where $\epsilon = 2 - d$. It is found that (Phys. Rev. Lett. 94, 194503 (2005))

$$P_1(m) \sim m^{-\frac{2d+2}{d+2}}$$

and

$$P_n(m_1,\ldots,m_n) \sim m^{-\gamma_n} \Phi\left(\frac{m_i}{m_j}\right)$$

where

$$\gamma_n = \frac{3}{2}n + \frac{n(n-2)}{2(d+2)}\epsilon + O(\epsilon^2).$$

Discussion of results.

•
$$\gamma_n = \frac{3}{2}n + \frac{n(n-2)}{2(d+2)}\epsilon + O(\epsilon^2).$$

Discussion of results.

•
$$\gamma_n = \frac{3}{2}n + \frac{n(n-2)}{2(d+2)}\epsilon + O(\epsilon^2).$$

• γ_1 can be obtained from a dimensional arguments if one assumes that P_1 depends on mass m and mass flux J only.

Discussion of results.

•
$$\gamma_n = \frac{3}{2}n + \frac{n(n-2)}{2(d+2)}\epsilon + O(\epsilon^2).$$

- γ_1 can be obtained from a dimensional arguments if one assumes that P_1 depends on mass m and mass flux J only.
- Order ϵ correction to M.F. vanishes for 2-point function. Numerics suggested $\gamma_2 = 3$ exactly. Why?

Can we find γ_2 without recourse to ϵ -expansion?

Mathematics Institute WMI

Stationary Hopf equation for $m > m_0$:

$$D = \frac{\lambda}{2} \int_{0}^{\infty} dm_{1} dm_{2} P_{2}(m_{1}, m_{2}) \,\delta(m - m_{1} - m_{2}) - \frac{\lambda}{2} \int_{0}^{\infty} dm_{1} dm_{2} P_{2}(m, m_{1}) \,\delta(m_{2} - m - m_{1}) - \frac{\lambda}{2} \int_{0}^{\infty} dm_{1} dm_{2} P_{2}(m, m_{2}) \,\delta(m_{1} - m_{2} - m).$$

Assume scaling form for 2-point function :

$$P_2(m_1, m_2) = \frac{1}{(m_1 m_2)^h} \phi\left(\frac{m_1}{m_2}\right)$$

• ϕ is a scaling function: $\phi(x) = \phi(1/x)$.

Zakharov Transformations

Change variables in the 2nd and 3rd integrals in Hopf equation

$$(m_1, m_2) \rightarrow \frac{m}{m'_2}(m'_1, m)$$

 $(m_1, m_2) \rightarrow \frac{m}{m'_1}(m, m'_2).$

Zakharov Transformations

Change variables in the 2nd and 3rd integrals in Hopf equation

$$(m_1, m_2) \rightarrow \frac{m}{m'_2}(m'_1, m)$$

 $(m_1, m_2) \rightarrow \frac{m}{m'_1}(m, m'_2).$

$$0 = \frac{\lambda}{2} \int_0^\infty dm_1 dm_2 (m_1 m_2)^{-h} \phi\left(\frac{m_1}{m_2}\right) m^{2-2h} \left(m^{2h-2} - m_1^{2h-2} - m_2^{2h-2}\right) \delta(m - m_1 - m_2)$$

Mathematics Institute WMI

▲ After Z.T. we see that the RHS of Hopf equation is exactly zero for h = 3/2.

- After Z.T. we see that the RHS of Hopf equation is exactly zero for h = 3/2.
- We conclude that $\gamma_2 = 3$ exactly (modulo some convergence issues). N. B. $\gamma_2 = \gamma_2^{MF}$, but $\gamma_1 = 4/3 \neq \gamma_1^{MF} = 3/2$.

- After Z.T. we see that the RHS of Hopf equation is exactly zero for h = 3/2.
- We conclude that $\gamma_2 = 3$ exactly (modulo some convergence issues). N. B. $\gamma_2 = \gamma_2^{MF}$, but $\gamma_1 = 4/3 \neq \gamma_1^{MF} = 3/2$.
- CFR scaling exponent corresponds to a constant flux of mass through the inertial range.

Mathematics Institute WMI

- After Z.T. we see that the RHS of Hopf equation is exactly zero for h = 3/2.
- We conclude that $\gamma_2 = 3$ exactly (modulo some convergence issues). N. B. $\gamma_2 = \gamma_2^{MF}$, but $\gamma_1 = 4/3 \neq \gamma_1^{MF} = 3/2$.
- CFR scaling exponent corresponds to a constant flux of mass through the inertial range.
- More generally, we might have a mass dependent kernel :

$$\lambda \to \lambda(m_1, m_2)$$

which is homogeneous of degree ζ . Then CFR becomes

$$\gamma_2 = 3 + \zeta.$$

Essential Ingredients for CFR

- Nonlinear interactions which redistribute some conserved quantity between the modes of the system.
- Existence of an inertial range and a stationary constant flux state at large time.
- Identification of the correlation function responsible for transfer of flux.
- Scale invariance.

Essential Ingredients for CFR

Mathematics Institute WMI

- Nonlinear interactions which redistribute some conserved quantity between the modes of the system.
- Existence of an inertial range and a stationary constant flux state at large time.
- Identification of the correlation function responsible for transfer of flux.
- Scale invariance.

These features are not unique to Takayasu model. There should be a CFR in many (most) turbulence-like systems.

Energy CFR in wave turbulence: general considerations.

Mathematics Institute WM

• The Hamiltonian is $H = \int d\vec{k}h(\vec{k})$,

$$h(\vec{k}) = \omega(\vec{k})\bar{a}(\vec{k})a(\vec{k}) + u(\vec{k})$$

where $u(\vec{k})$ is a non-linear part of Hamiltonian density. Let $U = \int d\vec{k}u(\vec{k})$.

Energy CFR in wave turbulence: general considerations.

Mathematics Institute WM

• The Hamiltonian is $H = \int d\vec{k}h(\vec{k})$,

$$h(\vec{k}) = \omega(\vec{k})\bar{a}(\vec{k})a(\vec{k}) + u(\vec{k})$$

where $u(\vec{k})$ is a non-linear part of Hamiltonian density. Let $U = \int d\vec{k}u(\vec{k})$.

• Variables $\bar{a}(\vec{k}), a(\vec{k})$ are canonical, i. e.

$$\{\bar{a}(\vec{k}), a(\vec{k}')\} = i\delta^{(d)}(\vec{k} - \vec{k}'),$$
$$\{\bar{a}(\vec{k}), \bar{a}(\vec{k}')\} = 0 = \{a(\vec{k}), a(\vec{k}')\}$$

Energy CFR in wave turbulence: general considerations.

Mathematics Institute

• The Hamiltonian is
$$H = \int d\vec{k}h(\vec{k})$$
,

$$h(\vec{k}) = \omega(\vec{k})\bar{a}(\vec{k})a(\vec{k}) + u(\vec{k})$$

where $u(\vec{k})$ is a non-linear part of Hamiltonian density. Let $U = \int d\vec{k}u(\vec{k})$.

• Variables $\bar{a}(\vec{k}), a(\vec{k})$ are canonical, i. e.

$$\{\bar{a}(\vec{k}), a(\vec{k}')\} = i\delta^{(d)}(\vec{k} - \vec{k}'),$$

$$\{\bar{a}(\vec{k}), \bar{a}(\vec{k}')\} = 0 = \{a(\vec{k}), a(\vec{k}')\}$$

Continuity equation associated with conservation of energy:

$$\langle \dot{u}(\vec{k}) - \dot{\bar{a}}(\vec{k}) \frac{\delta U}{\delta \bar{a}(\vec{k})} - \dot{a}(\vec{k}) \frac{\delta U}{\delta a(\vec{k})} \rangle = 0.$$

Warwick, December 2005 - p. 13/2

• $u(\vec{k}_0) = \int \int d\vec{k}_1 d\vec{k}_2 \lambda(k_0; k_1, k_2) \delta(\vec{k}_{0,12}) \left(\bar{a}(\vec{k}_0) a(\vec{k}_1) a(\vec{k}_2) + c. c. \right),$ where λ is homogeneous of degree γ .

Mathematics Institute WM

• Continuity equation for energy density takes the form $\int \int k_1^{d-1} dk_1 k_2^{d-1} dk_2 \left(\lambda(k; k_1, k_2) C(k, k_1, k_2) - \lambda(k_1; k, k_2) C(k_1, k, k_2) \right) = 0,$ where $C(\vec{k}_1, \vec{k}, \vec{k}_2)$ is angle average of $\langle Re\left(a(\vec{k}_1)\dot{a}(\vec{k})\bar{a}(\vec{k}_2)\right) \rangle$. We assume that C scales with exponent h, to be determined.

• $u(\vec{k}_0) = \int \int d\vec{k}_1 d\vec{k}_2 \lambda(k_0; k_1, k_2) \delta(\vec{k}_{0,12}) \left(\bar{a}(\vec{k}_0) a(\vec{k}_1) a(\vec{k}_2) + c. c. \right),$ where λ is homogeneous of degree γ .

- Continuity equation for energy density takes the form $\int \int k_1^{d-1} dk_1 k_2^{d-1} dk_2 \left(\lambda(k; k_1, k_2) C(k, k_1, k_2) - \lambda(k_1; k, k_2) C(k_1, k, k_2) \right) = 0,$ where $C(\vec{k}_1, \vec{k}, \vec{k}_2)$ is angle average of $\langle Re\left(a(\vec{k}_1)\dot{\bar{a}}(\vec{k})\bar{a}(\vec{k}_2)\right) \rangle$. We assume that C scales with exponent h, to be determined.
- Zakharov transformation of the first integral: $k_1 = \frac{k}{k'_1}k, \ k_2 = \frac{k}{k'_1}k'_2.$

Energy CFR in 3-wave turbulence (continued).

Mathematics Institute WMI

The result of applying ZT to the continuity equation is

$$\int \int k_1^{d-1} dk_1 k_2^{d-1} dk_2 \left(\left(\frac{k}{k_1}\right)^{3d+h+\gamma} - 1 \right) \lambda(k_1; k, k_2) C(k_1, k, k_2)$$

which is identically satisfied if $h = -3d - \gamma$.

Energy CFR in 3-wave turbulence (continued).

Mathematics Institute WMI

The result of applying ZT to the continuity equation is

$$\int \int k_1^{d-1} dk_1 k_2^{d-1} dk_2 \left(\left(\frac{k}{k_1}\right)^{3d+h+\gamma} - 1 \right) \lambda(k_1; k, k_2) C(k_1, k, k_2)$$

which is identically satisfied if $h = -3d - \gamma$.

• We conclude that $C \sim k^{-3d-\gamma}$.

Energy CFR in 3-wave turbulence (continued).

Mathematics Institute WMI

The result of applying ZT to the continuity equation is

$$\int \int k_1^{d-1} dk_1 k_2^{d-1} dk_2 \left(\left(\frac{k}{k_1}\right)^{3d+h+\gamma} - 1 \right) \lambda(k_1; k, k_2) C(k_1, k, k_2)$$

which is identically satisfied if $h = -3d - \gamma$.

• We conclude that
$$C \sim k^{-3d-\gamma}$$
.

In the limit of weak non-linearity C can be expressed in terms of particle density n(k) using weak turbulence closure:

$$C = Re\langle a_1 \dot{\bar{a}} \bar{a}_2 \rangle \sim \lambda n^2 \omega \delta(\Delta \vec{k}) \delta(\Delta \omega(k)) \sim (k^{-d-\gamma})^2 k^{-d+\gamma} \sim k^{-3}$$

which is consistent with CFR. However we expect CFR to hold even in the regime where weak turbulence approximation is not valid.

Mathematics Institute WMI

• $u(\vec{k}) = \frac{1}{2} \int d\vec{k}_1 d\vec{k}_2 d\vec{k}_3 \,\lambda(k; k_1, k_2, k_3) \delta(\vec{k} + \vec{k}_1 - \vec{k}_2 - \vec{k}_3) \\ \left(a(\vec{k}) \,a(\vec{k}_1) \,\bar{a}(\vec{k}_2) \,\bar{a}(\vec{k}_3) + c. \, c.\right)$

• $u(\vec{k}) = \frac{1}{2} \int d\vec{k}_1 d\vec{k}_2 d\vec{k}_3 \,\lambda(k; k_1, k_2, k_3) \delta(\vec{k} + \vec{k}_1 - \vec{k}_2 - \vec{k}_3) \\ \left(a(\vec{k}) \,a(\vec{k}_1) \,\bar{a}(\vec{k}_2) \,\bar{a}(\vec{k}_3) + c. \, c.\right)$

Warwick WMI

• Continuity equation after ZT: $0 = \int (k_1 k_2 k_3)^{d-1} dk_1 dk_2 dk_3 \lambda(k, k_1, k_2, k_3) C(k, k_1, k_2, k_3)$ $\left[\left(\frac{k}{k_1} \right)^y + \left(\frac{k}{k_2} \right)^y + \left(\frac{k}{k_3} \right)^y - 3 \right],$ where $C(k, k_1, k_2, k_3)$ is angle average of $Re \langle \dot{a}(\vec{k}) a(\vec{k}_1) \bar{a}(\vec{k}_2) \bar{a}(\vec{k}_2) \rangle; y = 4d + \gamma + h. h \text{ is a scaling exponent of } C.$

• $u(\vec{k}) = \frac{1}{2} \int d\vec{k}_1 d\vec{k}_2 d\vec{k}_3 \,\lambda(k; k_1, k_2, k_3) \delta(\vec{k} + \vec{k}_1 - \vec{k}_2 - \vec{k}_3) \\ \left(a(\vec{k}) \,a(\vec{k}_1) \,\bar{a}(\vec{k}_2) \,\bar{a}(\vec{k}_3) + c. \, c.\right)$

• Continuity equation after ZT: $0 = \int (k_1 k_2 k_3)^{d-1} dk_1 dk_2 dk_3 \lambda(k, k_1, k_2, k_3) C(k, k_1, k_2, k_3)$ $\left[\left(\frac{k}{k_1} \right)^y + \left(\frac{k}{k_2} \right)^y + \left(\frac{k}{k_3} \right)^y - 3 \right],$ where $C(k, k_1, k_2, k_3)$ is angle average of $Re \langle \dot{a}(\vec{k}) a(\vec{k_1}) \bar{a}(\vec{k_2}) \bar{a}(\vec{k_2}) \rangle; y = 4d + \gamma + h. h \text{ is a scaling exponent of } C.$

• Energy CFR: $h = -4d - \gamma$.

$\begin{aligned} \bullet \quad u(\vec{k}) &= \frac{1}{2} \int d\vec{k}_1 d\vec{k}_2 d\vec{k}_3 \,\lambda(k;k_1,k_2,k_3) \delta(\vec{k}+\vec{k}_1-\vec{k}_2-\vec{k}_3) \\ & \left(a(\vec{k}) \,a(\vec{k}_1) \,\bar{a}(\vec{k}_2) \,\bar{a}(\vec{k}_3) + c. \, c.\right) \end{aligned}$

• Continuity equation after ZT: $0 = \int (k_1 k_2 k_3)^{d-1} dk_1 dk_2 dk_3 \lambda(k, k_1, k_2, k_3) C(k, k_1, k_2, k_3)$ $\left[\left(\frac{k}{k_1} \right)^y + \left(\frac{k}{k_2} \right)^y + \left(\frac{k}{k_3} \right)^y - 3 \right],$ where $C(k, k_1, k_2, k_3)$ is angle average of $Re \langle \dot{a}(\vec{k}) a(\vec{k}_1) \bar{a}(\vec{k}_2) \bar{a}(\vec{k}_2) \rangle; y = 4d + \gamma + h. h \text{ is a scaling exponent of } C.$

• Energy CFR: $h = -4d - \gamma$.

Warwick WMI

Weak turbulence limit: $C \sim \lambda n^3 \omega \delta(\omega) \delta(k) \sim k^{\gamma-d} (k^{-2/3\gamma-d})^3 = k^{-\gamma-4d}.$

Mathematics Institute WM

• Additional integral of motion: $N = \int d\vec{k} \bar{a}(\vec{k}) a(\vec{k})$.

- Additional integral of motion: $N = \int d\vec{k} \bar{a}(\vec{k}) a(\vec{k})$.
- Particle density continuity equation in the inertial range: $0 = \int dk_2 dk_3 dk_4 (k_1 k_2 k_3 k_4)^{d-1} \lambda(k_1, k_2, k_3, k_4) C(k_1, k_2, k_3, k_4)$ $k_1^y \left[k_1^{-y} + k_2^{-y} k_3^{-y} k_4^{-y} \right],$ where $y = h + \gamma + 4d$ and C is angle average of $\langle \bar{a}_{\vec{k}_1} \bar{a}_{\vec{k}_2} a_{\vec{k}_3} a_{\vec{k}_4} \rangle.$

Warwick WMI

- Additional integral of motion: $N = \int d\vec{k} \bar{a}(\vec{k}) a(\vec{k})$.
- Particle density continuity equation in the inertial range:
 0 =
 ∫ dk₂dk₃dk₄ (k₁k₂k₃k₄)^{d-1}λ(k₁, k₂, k₃, k₄)C(k₁, k₂, k₃, k₄)
 k₁^y [k₁^{-y} + k₂^{-y} k₃^{-y} k₄^{-y}],
 where y = h + γ + 4d and C is angle average of ⟨ā_{k1}ā_{k2}a_{k3}a_{k4}⟩.
 CFR in inverse cascade: h = -γ 4d.

Warwick WM

- Additional integral of motion: $N = \int d\vec{k} \bar{a}(\vec{k}) a(\vec{k})$.
- Particle density continuity equation in the inertial range: $0 = \int dk_2 dk_3 dk_4 (k_1 k_2 k_3 k_4)^{d-1} \lambda(k_1, k_2, k_3, k_4) C(k_1, k_2, k_3, k_4)$ $k_1^y \left[k_1^{-y} + k_2^{-y} k_3^{-y} k_4^{-y} \right],$ where $y = h + \gamma + 4d$ and C is angle average of $\langle \bar{a}_{\vec{k}_1} \bar{a}_{\vec{k}_2} a_{\vec{k}_3} a_{\vec{k}_4} \rangle$.
- CFR in inverse cascade: h = -γ 4d.
 Weak turbulence limit:

 $C \sim \lambda \delta(k) \delta(\omega) n^3 \sim k^{\gamma - d - \alpha} (k^{-2\gamma/3 + \alpha/3 - d})^3 = k^{-4d - \gamma}.$

■ 1-D Burgers : $\langle \left(u(r/2) - u(-r/2) \right)^3 \rangle = Cr$. Derived by applying ZT to the continuity equation for spectral energy density.

■ 1-D Burgers : $\langle \left(u(r/2) - u(-r/2) \right)^3 \rangle = Cr$. Derived by applying ZT to the continuity equation for spectral energy density.

Mathematics Institute WM

Burgers dynamics is essentially non-perturbative due to the presence of shock waves.

■ 1-D Burgers : $\langle \left(u(r/2) - u(-r/2) \right)^3 \rangle = Cr$. Derived by applying ZT to the continuity equation for spectral energy density.

- Burgers dynamics is essentially non-perturbative due to the presence of shock waves.
- Charge model : charges $\pm q_0$ are introduced into the system at an equal rate. $P_2(q_1, q_2) \rangle \sim q^{-\gamma 4}$.

■ 1-D Burgers : $\langle \left(u(r/2) - u(-r/2) \right)^3 \rangle = Cr$. Derived by applying ZT to the continuity equation for spectral energy density.

Warwick WN

- Burgers dynamics is essentially non-perturbative due to the presence of shock waves.
- Solution Charge model : charges ±q₀ are introduced into the system at an equal rate. $P_2(q_1, q_2) > \sim q^{-\gamma 4}$.
- Charge model has two integrals of motion: charge Q and $\langle Q^2 \rangle$. Q-flux is zeros but the flux of Q^2 is constant. Charge model provides an example of CFR associated with a quantity conserved only on average.

The scaling solution for the two point function must yield a convergent integrand on the RHS of the Hopf equation in order for it to be physically realisable.

The scaling solution for the two point function must yield a convergent integrand on the RHS of the Hopf equation in order for it to be physically realisable.

This depends on the behaviour of $\phi(x)$ as $x \to 0$. For Takayasu model, if $\phi(x) \sim x^{\sigma}$, we require $\sigma > -\frac{1}{2}$. (In fact, $\sigma \sim \epsilon$).

The scaling solution for the two point function must yield a convergent integrand on the RHS of the Hopf equation in order for it to be physically realisable.

This depends on the behaviour of $\phi(x)$ as $x \to 0$. For Takayasu model, if $\phi(x) \sim x^{\sigma}$, we require $\sigma > -\frac{1}{2}$. (In fact, $\sigma \sim \epsilon$). For more general aggregation problems, reaction rate is mass dependent:

$$\lambda \to \lambda(m_1, m_2)$$

$$\lambda(m_1, m_2) \sim m_1^{\mu} m_2^{\nu} \qquad \text{for } m_2 >> m_1$$

The scaling solution for the two point function must yield a convergent integrand on the RHS of the Hopf equation in order for it to be physically realisable.

This depends on the behaviour of $\phi(x)$ as $x \to 0$. For Takayasu model, if $\phi(x) \sim x^{\sigma}$, we require $\sigma > -\frac{1}{2}$. (In fact, $\sigma \sim \epsilon$). For more general aggregation problems, reaction rate is mass dependent:

$$\lambda \to \lambda(m_1, m_2)$$

$$\lambda(m_1, m_2) \sim m_1^{\mu} m_2^{\nu} \quad \text{for } m_2 >> m_1$$

Constant flux state is local if

$$\sigma > \frac{1}{2}(\nu - \mu - 1)$$

Mathematics Institute WMI

An analogue of the $\frac{4}{5}$ -law of Navier-Stokes turbulence exists for many turbulence-like systems.

- An analogue of the $\frac{4}{5}$ -law of Navier-Stokes turbulence exists for many turbulence-like systems.
- Locality of CFR law must be checked a posteriori. Need the behaviour as $x \to 0$ of the scaling function, $\phi(x)$.

- An analogue of the $\frac{4}{5}$ -law of Navier-Stokes turbulence exists for many turbulence-like systems.
- Locality of CFR law must be checked a posteriori. Need the behaviour as $x \to 0$ of the scaling function, $\phi(x)$.
- For some systems which are close to MFT asymptotics of ϕ are close to constant and locality holds provided MF locality condition holds. Examples : Takayasu model, 4-wave turbulence.

- An analogue of the $\frac{4}{5}$ -law of Navier-Stokes turbulence exists for many turbulence-like systems.
- ▲ Locality of CFR law must be checked a posteriori. Need the behaviour as $x \to 0$ of the scaling function, $\phi(x)$.
- For some systems which are close to MFT asymptotics of ϕ are close to constant and locality holds provided MF locality condition holds. Examples : Takayasu model, 4-wave turbulence.
- Even for systems which are not close to any MFT, CFR still seems to hold. Examples: Burgers turbulence, Takayasu model in d = 1. In fact, for BT the complete spectrum of scaling exponents can be obtained by analyzing continuity equations for < uⁿ >.

- An analogue of the $\frac{4}{5}$ -law of Navier-Stokes turbulence exists for many turbulence-like systems.
- Locality of CFR law must be checked a posteriori. Need the behaviour as $x \to 0$ of the scaling function, $\phi(x)$.
- For some systems which are close to MFT asymptotics of ϕ are close to constant and locality holds provided MF locality condition holds. Examples : Takayasu model, 4-wave turbulence.
- Even for systems which are not close to any MFT, CFR still seems to hold. Examples: Burgers turbulence, Takayasu model in d = 1. In fact, for BT the complete spectrum of scaling exponents can be obtained by analyzing continuity equations for < uⁿ >.
- Open question : what happens for systems where locality is not expected to hold?
 Warwick, December 2005 - p. 20/2