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Some Terminology from Turbulence Theory

Reynolds number R = LU
ν

.

Energy injected into large
eddies.

Energy removed from small
eddies at viscous scale.

Transfer by interaction
between eddies.

Concept of inertial range

K41 : In the limit of ∞ R, all small scale statistical properties
depend only on the local scale, k, and the energy dissipation rate, P .
Dimensional analysis :

E(k) = cP
2

3 k−
5

3 Kolmogorov spectrum
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Structure Functions and the 4
5

Law

Structure functions : Sn(r) = 〈(u(x + r) − u(x))n〉.

Scaling form in stationary state:

lim
r→0

lim
ν→0

lim
t→∞

Sn(r) = Cn (Pr)ζn .

K41 theory gives ζn = n
3
.

4
5

Law : S3(r) = 4
5
Pr. Thus ζ3 = 1 (exact).
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General Characteristics of "Turbulence-like" Systems

Existence of a quantity, I , such as energy which is conserved
by the nonlinear interactions in the system.

Sources and sinks of I are well separated in phase space.
Existence of an inertial range.

Conservative dynamics transfer I from the source to the sink
resulting in a flux of I through the inertial range.

A stationary state is reached for large times where addition of I
at the source is balanced by dissipation at the sink. Constant
flux of I through the inertial range.

Non-equilibrium stationary state. Lack of detailed balance.
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General Characteristics of "Turbulence-like" Systems

Existence of a quantity, I , such as energy which is conserved
by the nonlinear interactions in the system.

Sources and sinks of I are well separated in phase space.
Existence of an inertial range.

Conservative dynamics transfer I from the source to the sink
resulting in a flux of I through the inertial range.

A stationary state is reached for large times where addition of I
at the source is balanced by dissipation at the sink. Constant
flux of I through the inertial range.

Non-equilibrium stationary state. Lack of detailed balance.

Questions : Is Kolmogorov phenomenology useful for studying
such systems? Is there a counterpart of the 4/5 law?
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Takayasu model.

Consider a lattice in d dimensions with massive point particles.
Nt(x,m)=number of particles of mass m on site x at time t.

Diffusion : rate D

Spatially homogeneous injection : rate J/m0

Aggregation Am1
+ Am2

→ Am1+m2
: rate λ
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Takayasu model.

Consider a lattice in d dimensions with massive point particles.
Nt(x,m)=number of particles of mass m on site x at time t.

Diffusion : rate D

Spatially homogeneous injection : rate J/m0

Aggregation Am1
+ Am2

→ Am1+m2
: rate λ

Interested in the probability P1(m, t) of finding a particle at a site:

∂P1(m)

∂t
= D∆P1(m) +

λ

2

∫

∞

0

dm1dm2 P2(m1,m2,+0)δ(m−m1−m2)

−
λ

2

∫

∞

0

dm1dm2 P2(m,m1,+0)δ(m2−m−m1)

−
λ

2

∫

∞

0

dm1dm2 P (m,m2,+0) δ(m1−m2−m) +
J

m
δ(m − m0).
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The Takayasu Model as a Toy Model of Turbulence

Mass is conserved by aggregation events

Aggregation events generate larger masses from smaller ones
leading to a flux of mass through mass space.

Source of masses at m = m0, no sink (usually). Inertial range,
m0 << m << ∞.

Non-equilibrium stationary state carries a constant flux, J , of
mass through mass space (takes infinite amount of time to be
set up).

Analogue of Kolmogorov spectrum ?

P1(m) = ckm
−x

Scaling of multi-point correlation functions in mass space?

Pn(m1, . . . ,mn,+0) = Pr.(n particles are in dV dm1 . . . dmn).
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Answers in d < 2

The critical dimension for the Takayasu model is 2. Mean field
scaling is correct for d > 2 but incorrect for d < 2. In d = 2 scaling
laws acquire logarithmic corrections.
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Answers in d < 2

The critical dimension for the Takayasu model is 2. Mean field
scaling is correct for d > 2 but incorrect for d < 2. In d = 2 scaling
laws acquire logarithmic corrections.
Corrections to scaling exponents in d < 2 can be calculated using
an ε-expansion where ε = 2 − d.
It is found that (Phys. Rev. Lett. 94, 194503 (2005) )

P1(m) ∼ m−
2d+2

d+2

and

Pn(m1, . . . ,mn) ∼ m−γnΦ

(

mi

mj

)

where

γn =
3

2
n +

n(n − 2)

2(d + 2)
ε + O(ε2).
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Discussion of results.

γn = 3
2
n + n(n−2)

2(d+2)
ε + O(ε2).

γ1 can be obtained from a dimensional arguments if one
assumes that P1 depends on mass m and mass flux J only.

Order ε correction to M.F. vanishes for 2-point function.
Numerics suggested γ2 = 3 exactly. Why?
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Can we find γ2 without recourse to ε-expansion?

Stationary Hopf equation for m > m0 :

0 =
λ

2

∫

∞

0

dm1dm2 P2(m1,m2) δ(m−m1−m2)

−
λ

2

∫

∞

0

dm1dm2 P2(m,m1) δ(m2−m−m1)

−
λ

2

∫

∞

0

dm1dm2 P2(m,m2) δ(m1−m2−m).

Assume scaling form for 2-point function :

P2(m1,m2) =
1

(m1m2)h
φ

(

m1

m2

)

φ is a scaling function: φ(x) = φ(1/x).
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Zakharov Transformations

m
2

m1

m 2

m 1

δ(

−
)

m−

m
1 m

2

δ(m−
−

)
m 1

m 2

δ(

−
)

m−

m

m
Change variables in the 2nd and 3rd
integrals in Hopf equation

(m1,m2) →
m

m′

2

(m′

1,m)

(m1,m2) →
m

m′

1

(m,m′

2).
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Zakharov Transformations

m
2

m1

m 2

m 1

δ(

−
)

m−

m
1 m

2

δ(m−
−

)
m 1

m 2

δ(

−
)

m−

m

m
Change variables in the 2nd and 3rd
integrals in Hopf equation

(m1,m2) →
m

m′

2

(m′

1,m)

(m1,m2) →
m

m′

1

(m,m′

2).

0 =
λ

2

∫

∞

0

dm1dm2 (m1m2)
−hφ

(

m1

m2

)

m2−2h

(

m2h−2 − m2h−2
1 − m2h−2

2

)

δ(m − m1 − m2)
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Constant Flux Relation for the Takayasu Model

After Z.T. we see that the RHS of Hopf equation is exactly zero
for h = 3/2.

We conclude that γ2 = 3 exactly (modulo some convergence
issues).N. B. γ2 = γMF

2 , but γ1 = 4/3 6= γMF
1 = 3/2.

CFR scaling exponent corresponds to a constant flux of mass
through the inertial range.

More generally, we might have a mass dependent kernel :

λ → λ(m1,m2)

which is homogeneous of degree ζ . Then CFR becomes

γ2 = 3 + ζ.
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Essential Ingredients for CFR

Nonlinear interactions which redistribute some conserved
quantity between the modes of the system.

Existence of an inertial range and a stationary constant flux
state at large time.

Identification of the correlation function responsible for
transfer of flux.

Scale invariance.
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Essential Ingredients for CFR

Nonlinear interactions which redistribute some conserved
quantity between the modes of the system.

Existence of an inertial range and a stationary constant flux
state at large time.

Identification of the correlation function responsible for
transfer of flux.

Scale invariance.

These features are not unique to Takayasu model. There should be a
CFR in many (most) turbulence-like systems.
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Energy CFR in wave turbulence: general considerations.

The Hamiltonian is H =
∫

d~kh(~k),

h(~k) = ω(~k)ā(~k)a(~k) + u(~k)

where u(~k) is a non-linear part of Hamiltonian density. Let
U =

∫

d~ku(~k).

Variables ā(~k), a(~k) are canonical, i. e.

{ā(~k), a(~k′)} = iδ(d)(~k − ~k′),

{ā(~k), ā(~k′)} = 0 = {a(~k), a(~k′)}

Continuity equation associated with conservation of energy:

〈u̇(~k) − ˙̄a(~k)
δU

δā(~k)
− ȧ(~k)

δU

δa(~k)
〉 = 0.
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δā(~k)
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Energy CFR in 3-wave turbulence.

u(~k0) =
∫ ∫

d~k1d~k2λ(k0; k1, k2)δ(~k0,12)
(

ā(~k0)a(~k1)a(~k2) + c. c.
)

,

where λ is homogeneous of degree γ.

Continuity equation for energy density takes the form
∫ ∫

kd−1
1 dk1k

d−1
2 dk2

(

λ(k; k1, k2)C(k, k1, k2)

−λ(k1; k, k2)C(k1, k, k2)

)

= 0,

where C(~k1, ~k,~k2) is angle average of 〈Re
(

a(~k1) ˙̄a(~k)ā(~k2)
)

〉.

We assume that C scales with exponent h, to be determined.

Zakharov transformation of the first integral:
k1 = k

k′

1

k, k2 = k
k′

1

k′

2.
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Energy CFR in 3-wave turbulence (continued).

The result of applying ZT to the continuity equation is

∫ ∫

kd−1
1 dk1k

d−1
2 dk2

(

(

k

k1

)3d+h+γ

− 1

)

λ(k1; k, k2)C(k1, k, k2) = 0,

which is identically satisfied if h = −3d − γ.

We conclude that C ∼ k−3d−γ .

In the limit of weak non-linearity C can be expressed in terms
of particle density n(k) using weak turbulence closure:

C = Re〈a1 ˙̄aā2〉 ∼ λn2ωδ(∆~k)δ(∆ω(k)) ∼ (k−d−γ)2k−d+γ ∼ k−3d−γ ,

which is consistent with CFR. However we expect CFR to hold
even in the regime where weak turbulence approximation is not
valid.
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Energy CFR in 4-wave turbulence.

u(~k) = 1
2

∫

d~k1d~k2d~k3 λ(k; k1, k2, k3)δ(~k + ~k1 − ~k2 − ~k3)
(

a(~k) a(~k1) ā(~k2) ā(~k3) + c. c.
)

Continuity equation after ZT:
0 =

∫

(k1k2k3)
d−1dk1dk2dk3λ(k, k1, k2, k3)C(k, k1, k2, k3)

[(

k
k1

)y

+
(

k
k2

)y

+
(

k
k3

)y

− 3
]

,

where C(k, k1, k2, k3) is angle average of
Re 〈ȧ(~k) a(~k1) ā(~k2) ā(~k2)〉; y = 4d + γ + h. h is a scaling
exponent of C.

Energy CFR: h = −4d − γ.

Weak turbulence limit:
C ∼ λn3ωδ(ω)δ(k) ∼ kγ−d(k−2/3γ−d)3 = k−γ−4d.
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Wave action CFR in 4-wave turbulence (inverse cascade).

Additional integral of motion: N =
∫

d~kā(~k)a(~k).

Particle density continuity equation in the inertial range:
0 =
∫

dk2dk3dk4 (k1k2k3k4)
d−1λ(k1, k2, k3, k4)C(k1, k2, k3, k4)

ky
1

[

k−y
1 + k−y

2 − k−y
3 − k−y

4

]

,
where y = h + γ + 4d and C is angle average of
〈ā~k1

ā~k2
a~k3

a~k4
〉.

CFR in inverse cascade: h = −γ − 4d.

Weak turbulence limit:
C ∼ λδ(k)δ(ω)n3 ∼ kγ−d−α(k−2γ/3+α/3−d)3 = k−4d−γ .
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d~kā(~k)a(~k).

Particle density continuity equation in the inertial range:
0 =
∫

dk2dk3dk4 (k1k2k3k4)
d−1λ(k1, k2, k3, k4)C(k1, k2, k3, k4)

ky
1

[

k−y
1 + k−y

2 − k−y
3 − k−y

4

]

,
where y = h + γ + 4d and C is angle average of
〈ā~k1

ā~k2
a~k3

a~k4
〉.

CFR in inverse cascade: h = −γ − 4d.

Weak turbulence limit:
C ∼ λδ(k)δ(ω)n3 ∼ kγ−d−α(k−2γ/3+α/3−d)3 = k−4d−γ .

Warwick, December 2005 – p. 17/20



Wave action CFR in 4-wave turbulence (inverse cascade).

Additional integral of motion: N =
∫
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More examples of systems constrained by CFR

1-D Burgers : 〈
(

u(r/2) − u(−r/2)

)3

〉 = Cr. Derived by

applying ZT to the continuity equation for spectral energy
density.

Burgers dynamics is essentially non-perturbative due to the
presence of shock waves.

Charge model : charges ±q0 are introduced into the system at
an equal rate. P2(q1, q2)〉 ∼ q−γ−4.

Charge model has two integrals of motion: charge Q and 〈Q2〉.
Q-flux is zeros but the flux of Q2 is constant. Charge model
provides an example of CFR associated with a quantity
conserved only on average.
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The Question of Locality

The scaling solution for the two point function must yield a
convergent integrand on the RHS of the Hopf equation in order for
it to be physically realisable.
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For more general aggregation problems, reaction rate is mass
dependent:

λ → λ(m1,m2)

λ(m1,m2) ∼ mµ
1m

ν
2 for m2 >> m1

Constant flux state is local if

σ >
1

2
(ν − µ − 1)
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Conclusions

An analogue of the 4
5
-law of Navier-Stokes turbulence exists for

many turbulence-like systems.

Locality of CFR law must be checked a posteriori. Need the
behaviour as x → 0 of the scaling function, φ(x).

For some systems which are close to MFT asymptotics of φ are
close to constant and locality holds provided MF locality
condition holds. Examples : Takayasu model, 4-wave
turbulence.

Even for systems which are not close to any MFT, CFR still
seems to hold. Examples: Burgers turbulence, Takayasu model
in d = 1. In fact, for BT the complete spectrum of scaling
exponents can be obtained by analyzing continuity equations
for < un >.

Open question : what happens for systems where locality is not
expected to hold?
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