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Plan

0. Problems of Kolmogorov´s theory and KAM

theory.

1. General properties of wave interactions in

systems with periodic boundary conditions (res-

onators), construction of discrete classes of in-

teracting waves.

2. Example of transition from the resonator to

an infinite domain (for Rossby waves).

3. Interconnections between discrete classes and

KAM tori.
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Problems appear in:

• resonators

• Faraday instability

• zonal flows in atmosphere and oceans

• ”frozen turbulence” + power-law spectrum

• many other situations...
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KAM theory - an attempt to improve Kolmogorov´s

theory, at least is a simpler setting of weak tur-

bulence (K.,A.,M. 1954-1963).

The basic mathematical fact used in KAM the-

ory is Thue theorem (1909), giving low es-

timate for the distance between any algebraic

number α of degree n > 2 and a rational num-

ber p/q ∈ Q:

|α− p

q
| > c(α)

qε+1+n/2
, ∀ε > 0

where c(α) is a constant depending on α and ε

can be arbitrary small.
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This fact allows to construct KAM tori (α from

Thue theorem being a ratio of frequencies for in-

teracting waves) and KAM theorem states then

that almost all tori are preserved.

Almost means in particular that tori with ratio-

nally related frequencies are explicitly excluded

from consideration.

Since the union of invariant tori has positive

measure and Q has measure 0, this exclusion is

supposed to be not very important.

Notice that due to KAM theory spectral space

is decomposed into disjoint invariant sets, and

though it contradicts Kolmogorov´s ergodicity

but not very substantially as the size of the sys-

tem tends to infinity (Arnold, 1964).
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Resonators, i.e. systems with discrete spec-
tra have qualitatively different properties (Kar-
tashova 1990, 1994, 1998):

• (a) all interacting waves with wave vectors
ki satisfying condition

∑

i

±ω(~ki) = 0

are divided into disjoint discrete classes

• (b) interactions are local

• (c) number of interacting waves depends on
the form of boundary conditions and for the
great number of boundary conditions inter-
actions are not possible

• (d) major part of the waves do not interact

• (e) these properties hold for some 0 < ε <<

1:
∑

i

±ω(~ki) = ε,
∑

i

±~ki = 0, ki,j ∈ Z
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How to construct classes (a)?

Example: Let dispersion function is

ω = c|~k|−1/2, ~k = (m, n), m, n ∈ Z

corresponding to planetary waves in a square do-

main, and equation for frequencies of interacting

waves is

± 1√
m2

1 + n2
1

± 1√
m2

2 + n2
2

± 1√
m2

3 + n2
3

= 0.

Necessary condition for the existence of integer

solutions is following: all frequencies have the

same irrationality, i.e. each ωi = ω(~ki) can be

presented as

ωi = ai
√

q, ai ∈ N ∀i = 1,2,3

with different constants ai and the same square-

free q. Vectors with the same q form a discrete

class Clq.

Since ωi/ωj ∈ Q ∀i, j = 1,2,3, these classes

describe the waves which are excluded from

KAM theory.
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IMPORTANT REMARK:

(a) is necessary condition: if vectors ki satisfy
∑

i

±ωi = 0,

then they belong to one class; this condition

gives no information about the existence of a

solution of the system
∑

i

±ωi = 0,
∑

i

±~ki = 0.

Thus, though each class contains infinite num-

ber of waves but only a small number of them

do interact (due
∑

i±~ki = 0).
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(b) locality of interactions: there exists spec-

tral domain of the finite radius R to which all

the waves belong interacting with a given one

(m, n)

spherical Rossby waves: ω = m/n(n + 1) ⇒

R = 2(n2 + n− 1)

Rossby waves in square basin: ω = 1/
√

k ⇒

R = k2 + k, k = |~k|

Gravity-capillary waves: ω2 = gk + ak3 ⇒

R =
16

9
k3
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(e) dependence on the form of resonator:

Example:

”square” dispersion ω = 1√
m2+n2

in a square

domain axa

transforms into

”rectangular” dispersion ω = 1√
(am)2+(bn)2

in a

rectangular domain axb

⇒ solutions in a rectangular domain are a sub-

set of solutions in a square domain, such that

m is divisible by a and n is divisible by b.

Example: wave (4,6) takes part in resonant in-

teractions in axa but not in ax2a
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(d) existence of non-interacting waves:

spherical Rossby waves: ω = m/n(n + 1) ⇒

< 60% of all waves do interact; 80% of all in-

teracting waves are parts of only one triad and

less then 2% of waves take part in 4 triads or

more, i.e. chains of the coupled triads soon

break

Rossby waves in square basin: ω = 1/
√

k ⇒

< 80% of all waves do interact, chains break

Capillary waves: ω2 = k3 ⇒ no 3-wave inter-

actions
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Numerical simulations have been done with

BVE on a sphere in a form

∂4ψ

∂t
+ 2

∂ψ

∂λ
+ εJ(ψ,4ψ) = 0.

Here ψ is the stream-function; variables t, φ and

λ physically mean the time, the latitude (−π/2 ≤
φ ≤ π/2) and the longitude (0 ≤ λ ≤ 2π) respec-

tively; 0 < ε << 1 is small parameter. The

spherical Laplacian and Jacobian are given by

formulae

4ψ =
∂2ψ

∂φ2
+

1

cos2 φ

∂2ψ

∂λ2
− tanφ

∂ψ

∂φ

and

J(a, b) =
1

cosφ
(
∂a

∂λ

∂b

∂φ
− ∂a

∂φ

∂b

∂λ
)

respectively.
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Example of transition from discrete to contin-
uous spectra for BVE on a unit sphere.

A linear spherical wave in this case has form

ψsphere = APm
n (sinφ) exp i[mλ +

2m

n(n + 1)
t]

with ω = m/n(n+1) and Pm
n (x) is the associated

Legendre function of degree n and order m; and
a linear plane wave is

ψplane = A exp i(kxx + kyy + ω)

with ω = kx/(1+k2
x+k2

y). Regarding m ∼ n >> 1
and using asymptotic approximation for Legen-
dre functions, one can ”convert” (not always
but in a bounded latitudinal belt with the width
∼ n−1) one spherical wave into a linear combi-
nation of two plane waves

A exp i(kx(ϕ0)x± ky(ϕ0)y + ω),

where local wave numbers k(ϕ0)x, k(ϕ0)y ∈ R are
functions of the initial spherical wave number
m, n and of the so-called interaction latitude
ϕ0 = ϕ0(m1, .., n3) which is explicit function of
all three interacting vectors. If 0 < cos2 ϕ0 < 1,
plane images of spherical waves interact as in
classical β-plane approximation.
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INTERESTING:

• Not all spherical waves have plane images

(transition is not always possible)

• Plane wave system keeps memory about

spherical interactions: coupling coefficient

of the plane images of spherical waves is

∼ n3/2 and ∼ n7/6 otherwise.

Transition from a square domain to infinite β-

plane gives even more substantial difference in

magnitudes of coupling coefficients: ∼ n2 for

plane images of the waves from square domain

and ∼ n otherwise.

Conclusion: long-wave part of spectrum is dom-

inated by a few exactly interacting waves with

huge amplitudes while short-wave part of the

spectrum consists of many approximately inter-

acting waves with substantially smaller ampli-

tudes.
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Continuous WT (CWT) describes energetic be-
havior of a wave system for the whole spec-
trum leaving some gaps in the spectrum which
are supposed to be not important in short-wave
part.

Discrete WT (DWT) fills the gaps all over the
spectrum.

In fact we have two layers of turbulence - CWT
(layer I) and DWT (layer II), which are mutually
complementary and should be regarded simulta-
neously ⇒

A model of laminated turbulence:

Layer I: KAM tori and stochastic enough turbu-
lence in the short-waves range with power-law
spectra; direct/inverse energy cascades; wave-
numbers range of energy pumping influences the
results.

Layer II: a countable number of waves with big
amplitudes all over the wave spectrum; some of
the waves do not change their energies (non-
interacting waves) and others do exchange en-
ergy within small independent groups; no energy
cascades; results do not depend on the wave-
numbers range of energy pumping.
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According to apocryphal story, Werner Heisel-

berg said on his deathbed:

”When I meet God, I am going to ask him two

questions:

Why relativity?

And why turbulence?

I really believe he will have the answer for the

first.”

THE END
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