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KLB theory

Kraichnan, Leith, and Batchelor (KLB) proposed that in two-dimensional turbulence there
is an upscale energy cascade and a downscale enstrophy cascade. The energy
spectrum in the upscale energy range is

E(k) = Cirε
2/3k−5/3, (1)

and in the downscale enstrophy range is

E(k) = Cuvη
2/3k−3[χ+ ln(k�0)]

−1/3. (2)

Falkovich and Lebedev (1994) predict that the vorticity ζ structure functions have
logarithmic scaling given by

〈[ζ(r1) − ζ(r2)]n〉 ∼ [η ln(�0/r12)]2n/3. (3)

Confirmed using spectral reduction by Bowman, Shadwick and Morrison (1999).
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KLB energy spectrum
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k0 = forcing wavenumber

kir = IR dissipation wavenumber

kuv = UV dissipation wavenumber

ε = upscale energy flux

η = downscale ensrropht flux
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Motivation

The study of two-dimensional turbulence was originally motivated by the hope that
it would prove a useful model for atmospheric turbulence.

This idea was later encouraged by Charney (1971) who claimed that
quasi-geostrophic turbulence is isomorphic to two-dimensional turbulence.

Early observations suggested that the energy spectrum of the atmosphere follows
a k−3 power law behavior (see Tung and Orlando (2003) for review).

Analysis of GASP measurements by Nastrom and Gage (1984) shows a transition
to k−5/3 scaling.
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Nastrom-Gage spectrum
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Nastrom-Gage spectrum schematic
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k−3 → 3000km − 800km

k−5/3 → 600km− � 1km

kt ≈ 700km
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The k−5/3 part of NG spectrum

The Nastrom-Gage energy spectrum was confirmed recently with MOSAIC
program and GCM simulation

The k−3 is interpretated as downscale enstrophy cascade.

An explanation of the k−5/3 in terms of internal gravity waves was ruled out by
Gage and Nastrom (1986).

Gage and Nastrom (1986) suggest a large-scale source of enstrophy (baroclinic
instability) and a small scale source of energy that sends some energy upscale
and downscale.

Lilly (1989) theorized that energy source at small scales can be attributed to
thunderstorms.

The k−5/3 portion of the spectrum, appears to be approximately the same
whether it is in winter or summer, and whether the airplane flew over storms or not.
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NLV spectrum I

In superfluid turbulence there is a predicted energy spectrum by L’vov, Nazarenko
and Volovik (2004) which transitions from k−3 to k−5/3.

Slope steepens at large scales due to effective linear damping.

The energy spectrum for a 3D downscale energy cascade with Ekman damping is
predicted as

E(k) = Cε−2/3(k)k−5/3 (4)

∂ε(k)

∂k
= −ΓE(k) = −ΓCε−2/3(k)k−5/3 (5)

which leads to the solution

E(k) = C[ε
1/3
0 − ΓCk−2/3]2k−5/3 ≈

⎧⎨
⎩ Cε

2/3
0 k−5/3, k � kt

C3Γk−3, k � kt

(6)
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NLV spectrum II

Is the k−3 slope in the Nastrom-Gage spectrum caused by Ekman damping?

The predicted transition wavenumber kt is given by

kt =

√
(ΓC)3

ε0
(7)

Using the energy flux ε0 from Cho and Lindborg (2001) and the estimated Ekman
damping Γ:

ε0 ≈ 6 × 10−11 km2s−3, Γ ≈ (1/7) days−1, C ≈ 1 (8)

we get an estimated transition scale

�t =
√

2πkt ≈ 23000 km � 700 km (9)

The ε0 estimate involves assumptions that need to be confirmed.
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The double cascade theory. I

Tung and Orlando (2003) conjectured that the observed atmospheric energy
spectrum results from the downscale cascade of enstrophy and energy injected at
the large scales by baroclinic instability and dissipated at the smallest length
scales.

If ηuv is the downscale enstrophy flux and εuv is the downscale energy flux, the
transition from −3 slope to −5/3 slope occurs at the transition wavenumber kt

with order of magnitude estimated by

kt ≈
√
ηuv/εuv . (10)
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The double cascade theory. II

Recent measurements and data analysis by Cho and Lindborg (2001) have
confirmed the existence of a downscale energy flux and estimate

ηuv ≈ 2 × 10−15s−3 (11)

εuv ≈ 6 × 10−11km2s−3 (12)

From these estimates we find the mean value of the transition scale

kt =
√
ηuv/εuv ≈ 0.57 × 10−2km−1 =⇒ λt = 2π/kt ≈ 1 × 103km (13)

which has the correct order of magnitude.

Tung and Orlando (2003) have also demonstrated numerically that a two-layer
quasi-geostrophic channel model with thermal forcing, Ekman damping, and
hyperdiffusion can reproduce the atmospheric energy spectrum.
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The two-layer model

The governing equations for the two-layer quasi-geostrophic model read:

∂ζ1

∂t
+ J(ψ1, ζ1) = d1 + f1,

∂ζ2

∂t
+ J(ψ2, ζ2) = d2 + f2, (14)

where ζ1 is the potential vorticity of the top layer and ζ2 the potential vorticity of the
bottom layer. The relationship between the vorticities ζ1 and ζ2 and the streamfunctions
ψ1 and ψ2 reads:

ζ1 = ∆ψ1 − k2
R

2
(ψ1 − ψ2), ζ2 = ∆ψ2 +

k2
R

2
(ψ1 − ψ2), (15)

Here, kR ≡ (2
√

2f)/(hN) is the Rossby radius of deformation wavenumber, and

f1 =
k2

R

2f
Q, f2 = −k

2
R

2f
Q, d1 = ν(−∆)κ+1ψ1, d2 = ν(−∆)κ+1ψ2−νE∆ψ2 (16)
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Tung and Orlando spectrum
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Debate

Smith (2004) debated the theory of Tung and Orlando (2003) by arguing that the
downscale energy cascade can never have enough flux to move the transition
wavenumber kt into the inertial range.

Smith (2004) uses two-dimensional Navier-Stokes for his argument. Tung (2004)
replies that the two-layer model is a different dynamical system than the
two-dimensional Navier-Stokes equations

Debate clarified further in a series of papers by Gkioulekas and Tung:

1. K.K. Tung (2004), J. Atmos. Sci., 61, 943-948.

2. E. Gkioulekas and K.K. Tung (2005), Discrete and Continuous Dynamical
Systems B, 5, 79-102

3. E. Gkioulekas and K.K. Tung (2005), Discrete and Continuous Dynamical
Systems B, 5, 103-124.

4. K.K. Tung and E. Gkioulekas, J. Atmos. Sci., submitted. [nlin.CD/0507042]

Warwick – December – p.15/25



Superposition principle. I

Gkioulekas and Tung (2005) have shown that a leading downscale enstrophy cascade
and a subleading downscale energy cascade contribute linearly to the total energy
spectrum:

E(k) = E
(ε)
uv (k) + E

(η)
uv (k) + E

(p)
uv (k), ∀k�0 � 1, (17)

where E(ε)
uv (k), E(η)

uv (k) are the contributions of the downscale energy and enstrophy
cascade, given by

E
(ε)
uv (k) = auvε

2/3
uv k

−5/3D
(ε)
uv (k�

(ε)
uv )

E
(η)
uv (k) = buvη

2/3
uv k−3[χ+ ln(k�0)]−1/3D

(η)
uv (k�

(η)
uv ),

(18)

Thus, in the inertial range where the effect of forcing and dissipation can be ignored, the
energy spectrum will take the simple form

E(k) ≈ auvε
2/3
uv k

−5/3 + buvη
2/3
uv k−3[χ+ ln(k�0)]

−1/3. (19)
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Superposition principle. II

Justification based on work by L’vov and Procaccia as follows:

Define the fully unfused correlation tensors for velocity uα and vorticity ζ:

Fα1α2...αn
n ({xk,x

′
k}n

k=1, t) =

〈[
n∏

k=1

uαk (x, t) − uαk (x′, t)

]〉
, (20)

Vn({xk,x
′
k}n

k=1, t) =

〈[
n∏

k=1

ζ(xk, t) − ζ(x′
k, t)

]〉
(21)

The relation between Fn and Vn is Vn = TnFn or:

Vn({xk,x
′
k}n, t) =

n∏
k=1

[εαkβk
(∂αk,xk + ∂αk,x′

k
)]Fα1···αn

n ({xk,x
′
k}n, t) (22)
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Superposition principle. III

Fn and Vn satisfy the balance equations:

∂Fn

∂t
+ OnFn+1 + In = DnFn +Qn (23)

∂Vn

∂t
+ TnOnFn+1 + In = DnVn + Qn (24)

Here Qn,Qn are forcing terms and In, In are sweeping terms, On local
interactions, and Dn the dissipation operator.

Belinicher, L’vov and Procaccia (1998) argue that in 3D turbulence, the scaling of
the downscale energy cascade originates from the solvability condition on the
homogeneous equation

OnFn+1 = 0 (25)

This argument predicts multifractal scaling.

Use Feynman mind-trick: “The same equations have the same solutions”
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Superposition principle. IV

The enstrophy cascade solution demands that the vorticity statistics be stationary.
True in 2D. Not true in 3D.

In two-dimensional turbulence, homogeneous solutions originate from

OnFn+1 = 0 =⇒ 1 solution: energy cascade (26)

TnOnFn+1 = 0 =⇒ 2 solutions: energy and enstrophy cascade (27)

The balance equations essentially have two homogeneous solutions
(energy/enstrophy cascade) and a particular solution (coherent structures) which
is caused by Qn and In.
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Superposition principle. V

The realistic solutions for each cascade include a dissipation range. These
solutions originate from the modified equation

TnOnFn+1 − TnDnFn = 0. (28)

The dissipative terms Dn modify the linear operator On and in doing so modify the
homogeneous solutions responsible both for the leading and subleading cascades
both downscale and upscale. The modification amounts to truncating the inertial
range with the dissipation range.

The location of the dissipation scale corresponding to one of the homogeneous
solutions present is independent of the energy or enstrophy flux corresponding to
the other homogeneous solutions.

Thus, the dissipation scales can be estimated with dimensional analysis.
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KLB limit

The dissipation scale �(η)
uv of the downscale enstrophy cascade and the dissipation

scale �(ε)uv of the downscale energy cascade are given by

�
(η)
uv = �0

⎡
⎣ R

(η)
uv

R
(η)
0,uv

⎤
⎦
−1/(2κ)

=

⎡
⎣ 1

R
(η)
0,uv

η
1/3
uv

ν

⎤
⎦
−1/(2κ)

(29)

�
(ε)
uv = �0

⎡
⎣ R

(ε)
uv

R
(ε)
0,uv

⎤
⎦

3/(2−6κ)

=

⎡
⎣ 1

R
(ε)
0,uv

ε
1/3
uv

ν

⎤
⎦

3/(2−6κ)

(30)

In the KLB limit R
(η)
uv → +∞ the dissipation scale of the subleading downscale

energy cascade is given asymptotically by

�
(ε)
uv ≈ �

(η)
uv

⎛
⎝ R

(ε)
0,uv

R
(η)
0,uv

⎞
⎠

3/(6κ−2)

, and ktλuv → 1 (31)
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Danilov Inequality. I

Why is the downscale energy cascade hidden in two-dimensional turbulence?

In two-dimensional turbulence, the energy flux ΠE(k) and the enstrophy flux
ΠG(k) are constrained by

k2ΠE(k) − ΠG(k) < 0, (32)

for all wavenumbers k outside of the forcing range.

The transition wavenumber kt where the break from k−3 to k−5/3 should occur,
approaches the dissipation scale from the dissipation range, thus a transition
cannot be seen visually in two-dimensional turbulence.

Thus, the contribution of the downscale energy cascade to the energy spectrum is
overwhelmed by the contribution of the downscale enstrophy cascade.
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Danilov Inequality. II

Recall that in the two-layer model, the dissipation terms read:

d1 = ν(−∆)κ+1ψ1, (33)

d2 = ν(−∆)κ+1ψ2 − νE∆ψ2 (34)

We have shown that it is the asymmetric presence of Ekman damping on the
bottom layer but not the top layer which causes the violation of the Danilov
inequality in the two-layer model and moves the transition wavenumber k t into the
inertial range.

A necessary (but not sufficient) condition to violate Danilov’s inequality is

νE > 2νk2p
max

(
kmax

kR

)2

(35)

Many open questions remain.
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Open question: Helicity cascade

It has been claimed that in the Nastrom-Gage spectrum we have a transition from
k−7/3 (downscale helicity cascade), instead of k−3, to k−5/3. References
advocating this position include:

1. A.Bershadskii, E.Kit, and A. Tsinober, Proc. R. Soc. Lond. A 441 (1993),
147–155.

2. S.S. Moiseev and O.G. Chkhetiani, JETP 83 (1996), 192–198.

3. H. Branover, A. Eidelman, E. Golbraikh, and S. Moiseev, Turbulence and
structures: chaos, fluctuations, and helical self-organization in nature and the
laboratory, Academic Press, San Diego, 1999.

Cho and Lindborg (2001) showed that S3(r) ∼ r3 (diagonal components) in the
polar stratosphere data, which supports an enstrophy cascade. There is also an
unexplained robust r2 contribution to the off-diagonal components in the
stratosphere from 10 km to 1,000 km in scale.

Open question. Need transition scale calculation to confirm or deny.
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Conclusion

The k−5/3 portion of the Nastrom-Gage spectrum is a downscale energy cascade.

The k−3 interpretation for small wavenumbers could be wrong.

The k−3 → k−5/3 interpretation can be accounted for with a two-layer model

The dynamics of the two-layer model are interesting and not well-understood.
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