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We investigate the passive scalar (concentration of
pollutants or temperature) evolution in the random
(turbulent) flows near the boundary (wall). If the
Schmidt number (which is the relation of the kine-
matic viscosity to the diffusion coefficient) is large
then just the peripheral regions dominate the ad-
vanced stages of the passive scalar homogenization
(decay). There are some peculiarities of the decay
related to the character of the velocity dependence
near the wall. However, the decay has universal
features, and our goal is to establish the features.



Peripheral Regions:
We analyze the passive scalar dynamics in laminar

boundary layers characterized by smooth in space
and random in time velocity field. Such layers are
formed near walls for the cases of developed turbu-
lence or elastic turbulence. The last one is excited in
polymer solutions if the characteristic velocity gra-
dient exceeds the inverse polymer relaxation time.
Elastic Turbulence: A. Groisman and V. Stein-

berg, Nature 405, 53 (2000); Phys. Rev. Lett. 86,
934 (2001); Nature 410, 905 (2001).
Though the velocity is smooth in the peripheral

regions it randomly varies in time there.



The passive scalar dynamics (in the absence of
pumping) is described by the equation

∂tθ + v∇θ = κ∇2θ .

In the main approximation the wall can be treated
as flat. Let x, z are coordinates along the wall and
y is coordinate in the perpendicular direction. The
incompressibility condition ∂xvx + ∂yvy + ∂zvz =
0, the boundary condition v|y=0 = 0 and the
smoothness of the velocity lead to

vy ∝ y2 , vx, vz ∝ y .

The law is correct for small y/η where η is the width
of the boundary layer.



We assume Sc = ν/κ À 1. Then mixing in the
peripheral region is slow comparing to bulk. The
relatively fast mixing in bulk leads to an effective
homogenization there, and at the analysis of the
peripheral dynamics θ can be treated as constant
in bulk. We choose the constant to be equal to zero.
Let us establish boundary conditions for the

passive scalar field
In the main approximation the wall is flat, y = 0.
Concentration of pollutants: ∂yθ|y=0 = 0;
Temperature (fixed on the wall): θ|y=0 = ϑ0.
θ → 0 if y → ∞ (that corresponds to bulk where

mixing is perfect).



The slow character of the passive scalar evolution in
the peripheral region justifies the turbulent dif-
fusion approximation. Say, for the first moment
of the passive scalar and for its pair correlation func-
tion F (t, r1, r2) = 〈θ(t, r1)θ(t, r2)〉 one obtains

∂t〈θ〉 = ∇
[
D̂(r, r)∇〈θ〉

]
+ κ∇2〈θ〉 ,

∂tF (t, r1, r2) = κ(∇2
1 +∇2

2)F

+∇1

[
D̂(r1, r1)∇1F

]
+∇2

[
D̂(r2, r2)∇2F

]

+∇1

[
D̂(r1, r2)∇2F

]
+∇2

[
D̂(r2, r1)∇1F

]
,

which are closed second-order differential equations.



Here D̂ is turbulent diffusion tensor. We
assume that the flow is statistically homogeneous
in time. Then the turbulent diffusion tensor is t-
independent and is introduced via the integral

Dαβ(r1, r2) =

∫ ∞

0
dt 〈vα(t, r1)vβ(0, r2)〉 .

However, it is non-homogeneous in space and
strongly anisotropic. Say, Dxx ∝ y2 whereas
Dyy ∝ y4. Statistical properties of the flow are
assumed to be homogeneous along the wall. Then
D̂ depends on the differences of the longitudinal co-
ordinates like x1 − x2.



We assume that initially the passive scalar is a
large-scale field. Then after the homogenization in
space the passive scalar moments are slowly varying
along the wall. Say, the first moment 〈θ〉 depends
on y mainly and we find the equation

∂t〈θ〉 = µ∂y

(
y4∂y〈θ〉

)
+ κ∂2

y〈θ〉 .
The coefficient µ in the equation can be estimated as
µ ∼ τV 2/η4 where V is characteristic velocity fluc-
tuation at y ∼ η that is on the edge of the boundary
layer. Kolmogorov estimates give µ ∼ ε/ν2, where
ε is energy flux.



Comparing different terms in the equation for 〈θ〉
we find a thickness of the boundary diffusion layer

rbl = (κ/µ)1/4 .

For y < rbl the molecular diffusion dominates and
for y > rbl the turbulent diffusion dominates. Kol-
mogorov:

rbl/η ∼ (κ/ν)1/4 = Sc−1/4 .

Thus, rbl ¿ η at our assumption Sc À 1. Note that
rbl is much larger than the bulk diffusion length, it
is related to slow advection in the direction perpen-
dicular to the wall.



We examine the passive scalar evolution in the pe-
ripheral region, which begins after its homogeniza-
tion in bulk is finished. Then it is natural to expect
that the initial distribution of the passive scalar has
the characteristic length η in the y direction. The
subsequent evolution is divided into two stages. At
the first stage the thickness δ of the layer, where θ is
concentrated, diminishes as δ = (µt)−1/2. When δ
reaches rbl, the second stage starts, which is charac-
terized by the fixed spatial scale rbl. Power time
dependencies are characteristic of the first stage
whereas exponential decay should be observed at
the second stage.



First stage (diffusionless). At times when rbl ¿
δ ¿ η one obtains a universal profile

〈θ(t, y)〉 = ϑ0

[
erf

(
δ

2y

)
− δ√

π y
exp

(
− δ2

4y2

)]
.

The expression implies contraction of the region oc-
cupied by the passive scalar. If y À δ then

〈θ〉 ≈ ϑ0δ
3

6
√

πy3
.

If y ¿ δ then 〈θ〉 = ϑ0. So, the value of θ is
practically unchanged inside the layer y < δ.



Note that though the equation for 〈θ〉 is the con-
servation law, the total amount of the passive scalar
in the peripheral region

∫
dy 〈θ〉 ∼ ϑ0δ appears to

be time dependent. The reason is that the consid-
ered solution corresponds to non-zero passive scalar
flux directed to large y, i.e. to the bulk, which can
be treated as a big reservoir. This flux is µy4∂y〈θ〉.
Note also that the passive scalar evolution at the
first stage is insensitive to the boundary conditions,
and therefore it is described identically for the con-
centration of pollutants and temperature.



Now we analyze the passive scalar behavior at the
second stage, then the diffusion term can not be
ignored. Let us first examine the case when the
passive scalar represents the concentration of pollu-
tants. At long times, only the contribution related
to the minimal decay increment is left. That leads to
the exponential decay 〈θ〉 ∝ exp(−γt). The decre-
ment is γ = 1.81

√
κµ, where the factor is found

numerically. The asymptotic behavior of 〈θ〉 can be
related to the initial value of the passive scalar ϑ0
near the wall: 〈θ〉|y=0 = 1.55ϑ0 exp(−γt). The to-
tal amount of the scalar near the boundary behaves
as

∫
dy 〈θ〉 = 1.55ϑ0rbl exp(−γt).



Now we turn to the case where the passive scalar
θ represents temperature, assuming that it is fixed
at the boundary: θ|y=0 = ϑ0. Then after the
first stage a quasi-stationary distribution of 〈θ〉 is
formed, since the bulk can be treated as a big reser-
voir having a constant temperature. This quasi-
stationary distribution can be found explicitely

〈θ〉 =
2
√

2

π
κ3/4µ1/4ϑ0

∫ ∞

y

dq

µq4 + κ
.

At y À rbl we find, again, 〈θ〉 ∝ y−3. That corre-
sponds to a non-zero passive scalar flux (heat flux)
to the bulk. This flux is time-independent.



High moments (similar to the first one) depend
mainly on y. At the first stage the diffusive term in
the equation for the passive scalar correlation func-
tions can be omitted. Then a closed equation for
the high moments of the passive scalar can be for-
mulated (analogous to the one for the first moment)
which leads to the same universal expression

〈θn〉 = ϑn
0

[
erf

(
δ

2q

)
− δ√

π q
exp

(
− δ2

4q2

)]
,

The expression shows that in the region q À δ,
〈θn〉 ≈ ϑn

0δ3/(6
√

π q3).



At the second stage diffusion starts to be relevant,
and it is impossible to obtain closed equations for
the moments 〈θn(t, q)〉. To find the moments one
has to solve the complete equations for the pas-
sive scalar correlation functions, that is a compli-
cated problem. One can say only that 〈θn(t, q)〉 ∝
exp(−γnt) where γn ∼ √

κµ. However if y À rbl
then for high moments we obtain the same equation
as for the first one and therefore

〈θn(t, q)〉 ∝ q−3 .

at q À rbl. The laws correspond to non-zero fluxes
of θn to bulk.



Now we can turn to the case when the passive scalar
is temperature, fixed at the boundary. If the tem-
perature in the bulk is different from that at the
boundary then a heat flow is produced from the
boundary to the bulk. Since the bulk is a big reser-
voir then in the main approximation its tempera-
ture can be treated as time-independent. In this
case statistics of θ becomes quasistationary at the
second stage (all the correlation functions are in-
dependent of time). Inside the diffusion boundary
layer θ ∼ ϑ0, where ϑ0 is the temperature at the
boundary. For y À rbl we have 〈θn〉 ∼ ϑn

0 (rbl/y)3.



We established that if y À δ at the first stage or
if y À rbl at the second stage then the law 〈θn〉 ∝
y−3 is valid. It can be treated as a manifestation of
an extreme anomalous scaling since the exponents
here are independent of n. Moreover, it is possible
to formulate the estimates

〈θn〉
〈θ〉n ∼

(y

δ

)3(n−1)
,

〈θn〉
〈θ〉n ∼

(
y

rbl

)3(n−1)

,

for the first and second stages. The estimates show
that the high moments of the passive scalar are
much larger than their Gaussian evaluation, this
property implies strong intermittency in the system.
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FIG. 1: Typical distribution of pollutant particles near the wall
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FIG. 2: Typical distribution of pollutant particles near the wall



For y À rbl the passive scalar distribution is char-
acterized by long narrow tongues, each tongue is
stretched along a Lagrangian trajectory. Fluid par-
ticles in a vicinity of the trajectory move in accor-
dance with the equations

∂ty = βααy2, ∂t%α = −2yβασ%σ,

where %α = (x, z) is the particle separation from the
trajectory (along the wall), and βασ determines the
velocity derivatives. It follows from the equations
that for a trajectory bunch its cross-section area be-
haves as A ∝ y−2. Therefore the thickness of the
tongue diminishes as y increases.



One can introduce the “smoothed” value of the
passive scalar

θR(r0) =
3

4πR3

∫

|r−r0|<R
d3r θ(r) .

If R is less than the tongue thickness then statistics
of θR does not differ from that of θ. In the opposite
case θR has essentially different statistics. Namely,

〈θn
R〉 ∝ R2−2ny−1−2n.

We see that the intermittency is “smeared”, if we
consider the “smoothed” passive scalar. Therefore
one should be careful at interpreting experimental
or numerical data.



Now we discuss the case when the passive scalar
decays along a pipe in a statistically homogeneous
flow, which is assumed to be chaotic and has an av-
erage velocity u along the pipe. Such setup was used
by Groisman and Steinberg in their experiments. In
this case the chaotic flow (elastic turbulence) was ex-
cited in a polymer solution pushed through a curvi-
linear pipe. The scalar dynamics is then governed
by the equation

∂tθ + u∂zθ + v∇θ = κ∇2θ,

where v is fluctuating part of the velocity (with zero
mean) and z is coordinate along the pipe.



If the pressure difference, pushing the flow, is con-
stant, the flow is statistically stationary and homo-
geneous along the pipe. Then u is independent of z
and the velocity statistics is homogeneous both in t
and z. In the turbulent diffusion approximation one
obtains for the passive scalar correlation functions

u∂zFn = κ

n∑

m=1

∇2
mFn +

n∑

m,k=1

∇m

[
D̂∇kFn

]
,

where n is the order of the correlation function. The
time derivative is substituted here by the advection
term along the pipe.



As previously, we introduce the coordinate y mea-
suring a separation from the wall. The average ve-
locity u behaves ∝ y near the wall. Therefore the
equation for the first moment turns to

sy∂z〈θ〉 =
[
µ∂yy

4∂y + κ∂2
y

]
〈θ〉.

Despite the factor y in the left-hand side of the equa-
tion, the qualitative picture of evolution remains the
same. At the first stage the scalar is mostly situated
in the layer of the width δ = s/(µz). The decay at
this stage is algebraic with the longitudinal coordi-
nate z. When δ reaches the boundary layer width
rbl, the molecular diffusion becomes relevant, and
the scalar decay starts to be exponential.



As in the previous case, it is possible to obtain
complete statistical properties of the scalar at the
first stage when the molecular diffusion is negligi-
ble. Then the equations for the passive scalar mo-
ments are identical. Solving the equations we find a
universal profile

〈θn(z, y)〉 =
ϑn

0δ3

6y3
exp (−δ/y) 1F1 (1, 4, δ/y) .

If y À δ then both the exponent and 1F1 can
be substituted by unity to obtain 〈θn(z, y)〉 ≈
ϑn

0δ3/(6y3). If y ¿ δ then 〈θn(z, y)〉 ≈ ϑn
0 .



When δ diminishes down to rbl another regime
comes. For the density of pollutants the regime is
characterized by an exponential decay of the passive
scalar moments along the pipe:

〈θn〉 ∝ exp(−αnz) ,

where αn ∼ κ1/4µ3/4s−1. For the first moment
the eigenvalue problem can be solved numerically,
then one obtains α ≈ 3.72κ1/4µ3/4s−1. The law
αn ∝ κ1/4 was checked experimentally for the pas-
sive scalar decay in the elastic turbulence case:
T. Burghelea, E. Serge, and V. Steinberg, Phys.

Rev. Lett. 92, 164501 (2004).



All properties of the “smoothed” passive scalar mo-
ments established for the decay in time are valid also
for the decay in space. The reason is that the tongue
(filament) formation is relatively fast process which
is realized irrespective to the character of the pas-
sive scalar decay. At y À rbl the tongues are well
separated that leads to the behavior

〈θn
R〉 ∝ R2−2ny−1−2n.

already discussed for the passive scalar decay in
time.



At our analysis, we neglected an inhomogeneity of
the passive scalar along the wall. The inhomogene-
ity can be involved into consideration. It does not
change any qualitative feature. Particularly, the pic-
ture of tongues and consequences of the picture re-
main the same. However, the wall inhomogeneity
could influence essentially the character of the pas-
sive scalar decay. Say, angles or craters lead to some
peculiarities of the passive scalar evolution near the
defects. It is a subject of separate investigation.



The peripheral region supplies the passive scalar
to the bulk. Because of the slow dynamics, it can
be considered as a quasi-stationary stochastic source
of the passive scalar for the bulk, where the passive
scalar correlation functions adjust adiabatically to
the level of the supply. This prediction seems to be
in agreement with experimental data
T. Burghelea, E. Serge, and V. Steinberg,
Phys. Rev. Lett. 92, 164501 (2004),

where a space dependence of the correlation func-
tions close to logarithmic one was observed. It is just
the Batchelor-Kraichnan behavior in the smooth ve-
locity field (characteristic of the elastic turbulence).



The final remark concerns an extension of our re-
sults to other problems. As it was noted in the
paper
M. Chertkov and V. Lebedev,
Phys. Rev. Lett. 90, 134501 (2003);

the scheme developed for the passive scalar decay
can be without serious modifications applied to fast
binary chemical reactions. We believe that minor
modifications of the scheme can make it applicable
for more complicated chemical reactions. The other
problem, which can be posed for the peripheral re-
gion, is the stochastic polymer dynamics (say, for
the case of the elastic turbulence).


