Weak Turbulence for an Elastic Plate

Sergio Rica
Departamento de Física, Universidad de Chile
Laboratoire de Physique Statistique, Ecole normale superieure

PLAN

- Introduction to weak turbulence \& "wave condensation"
- Weak Turbulence Theory for an Elastic Plate
- Numerical simulations of nonlinear plate equations
- Conclusions \& Perspectives

Wave Turbulence

It is a thing which you can easily explain twice before anybody knows what you are talking about
A. Milne "The house at Pooh Corner"

$$
\frac{d A_{k}^{s}}{d t}+i s \omega_{\boldsymbol{k}} A_{k}^{s}=\sum_{s_{1} s_{2} s_{3}} \int L_{\boldsymbol{k} k_{1} k_{2} k_{3}} A_{1}^{s_{1}} A_{2}^{s_{2}} A_{3}^{s_{3}} \delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}-\boldsymbol{k}\right) d^{(D)} \boldsymbol{k}_{123}
$$

Wave Turbulence

It is a thing which you can easily explain twice before anybody knows what you are talking about
A. Milne "The house at Pooh Corner"

$$
\frac{d A_{k}^{s}}{d t}+i s \omega_{k} A_{k}^{s}=\sum_{s_{1} s_{2} s_{3}} \int L_{\boldsymbol{k} k_{1} k_{2} k_{3}} A_{1}^{s_{1}} A_{2}^{s_{2}} A_{3}^{s_{3}} \delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}-\boldsymbol{k}\right) d^{(D)} \boldsymbol{k}_{123}
$$

for a weak amplitude deformation

$$
A_{k}^{s}=\epsilon a_{k}^{s} e^{-i s \omega_{k} t}
$$

$$
\frac{d a_{\boldsymbol{k}}^{s}}{d t}=\epsilon^{2} \sum_{s_{1} s_{2} s_{3}} \int L_{\boldsymbol{k} \boldsymbol{k}_{1} k_{2} k_{3}} a_{1}^{s_{1}} a_{2}^{s_{2}} a_{3}^{s_{3}} e^{i\left(s w_{k}-s_{1} \omega_{1}-s_{2} \omega_{2}-s_{3} \omega_{3}\right) t} \delta^{(D)}\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}-\boldsymbol{k}\right) d^{D} \boldsymbol{k}_{123}
$$

A multi-scale analysis shows that, "wave turbulence" has a natural asymptotic -over long times- closure for higher moments: the fast oscillation drives the system close to gaussian statistics and higher moments are written in terms of the second order moment

Benney \& Saffman (1966), Zakharov, L'vov \& Falkovich (1992),
Newell, Nazarenko \& Biven (2001).

$$
\left\langle a_{k_{1}} a_{k_{2}}^{*}\right\rangle=n_{k_{1}} \delta^{(D)}\left(k_{1}+k_{2}\right)
$$

$\left\langle a_{k_{1}} a_{k_{2}} a_{k_{3}}^{*} a_{k_{4}}^{*}\right\rangle=\left\langle a_{k_{1}} a_{k_{3}}^{*}\right\rangle\left\langle a_{k_{2}} a_{k_{4}}^{*}\right\rangle+\left\langle a_{k_{1}} a_{k_{4}}^{*}\right\rangle\left\langle a_{k_{2}} a_{k_{3}}^{*}\right\rangle$
\&c.

Weak Turbulence

Kinetic Equation for 4-

wave resonance

$$
\left\langle a_{k_{1}} a_{k_{2}}^{*}\right\rangle=n_{k_{1}} \delta^{(D)}\left(k_{1}+k_{2}\right)
$$

$$
\frac{d}{d t} n\left(p_{1}\right)=\epsilon^{4} \operatorname{sgn}(t) \sum_{s_{1} s_{2} s_{3}} \int\left|J_{-p_{1} k_{1} k_{2} k_{3}}\right|^{2} n_{k_{1}} n_{k_{2}} n_{k_{3}} n_{p_{1}}\left(\frac{1}{n_{p_{1}}}+\frac{1}{n_{k_{1}}}-\frac{1}{n_{k_{2}}}-\frac{1}{n_{k_{3}}}\right)
$$

$$
\times \delta\left(\omega\left(p_{1}\right)+\omega\left(k_{1}\right)-\omega\left(k_{2}\right)-\omega\left(k_{3}\right)\right) \delta\left(k_{1}+k_{2}-k_{3}-p_{1}\right) d^{2} k_{123}
$$

Remarks:

-The mechanism for energy exchange is wave resonance

- sgn(t) \& reversibility

Conserved quantities

- "Mass" Conservation

$$
N=\int n_{k}(t) d^{D} k
$$

- Energy Conservation

$$
K=\int \omega_{k} n_{k}(t) d^{D} k
$$

- Momentum Conservation

$$
P=\int k n_{k}(t) d^{D} k
$$

- H-Theorem $\quad d \mathcal{S} / d t \geq 0 \quad \mathcal{S}(t)=\int \ln \left(n_{k}\right) d^{D} k \quad \dagger>0$

Stationary solutions

- Equilibrium: Rayleigh-Jeans distribution

$$
n_{k}^{e q}=\frac{T}{\omega_{k}-v \cdot k-\mu}
$$

- Non-equilibrium: KolmogorovZakharov spectra

$$
n_{k}^{K Z}=\frac{Q^{1 / 3}}{k(2 \beta+D-\alpha) / 3}
$$

$$
n_{k}^{K Z}=\frac{P^{1 / 3}}{k^{2 \beta / 3+D}}
$$

$$
J \sim k^{\beta} \quad \omega_{k} \sim k^{\alpha}
$$

Experimental evidence of Weak Turbulence in gravity (ocean) waves

Y. Toba (1973); Hwang et al. (2000).

$$
\left.\left.\langle | \zeta_{k}\right|^{2}\right\rangle=\frac{P^{1 / 3} g^{1 / 2}}{k^{5 / 2}}
$$

slope: $-5 / 2$

FIG. 8. A comparison of the omnidirectional spectra measured by ATM (crosses) and offshore buoy (ID 44014) (circles). (a) Average of the first 2 hours of data-quasi-steady condition, and (b) average of the last 2 hours of datadecaying wave field. Solid curves: $\chi(k)=0.06 u_{*} g^{-0.5} k^{-2.5}$ (Phillips 1985).

Experimental evidence of Weak Turbulence in capillary waves

Wright, Budakian \& Putterman (1996); Henry, Alstrøm \& Levinsen (2000); Brazhnikov, Kolmakov, Levchenko \& Mezhov-Deglin (2002).

d'après Wright et al.
slope: -4.2

$$
\left.\left.\langle | \zeta_{k}\right|^{2}\right\rangle=C \frac{P^{1 / 2} \rho^{1 / 4}}{\sigma^{3 / 4}} \frac{1}{k^{17 / 4}}
$$

$$
\left.\left.\langle | \zeta_{\boldsymbol{k}}\right|^{2}\right\rangle=C \frac{P^{1 / 2} \rho^{1 / 4}}{\sigma^{3 / 4}} \frac{1}{k^{17 / 4}}
$$

Brazhnikov, Kolmakov, Levchenko \&

$$
\left.\left.\langle | \zeta_{\omega}\right|^{2}\right\rangle=C \frac{P^{1 / 2} \sigma^{1 / 6}}{\rho^{2 / 3}} \frac{1}{\omega^{17 / 6}}
$$ Mezhov-Deglin (2002).

slope: -17/6

Wave Condensation

C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau \& SR (2005)

The nonlinear Schrödinger equation

$$
i \partial_{t} \psi=-\Delta \psi+|\psi|^{2} \psi
$$

Weak turbulence theory for NLS

$$
\begin{aligned}
\frac{d n_{\boldsymbol{p}_{1}}}{d t} & =\frac{4 \pi}{(2 \pi)^{D}} \int\left(n_{\boldsymbol{k}_{2}} n_{\boldsymbol{k}_{3}} n_{\boldsymbol{k}_{1}}+n_{\boldsymbol{k}_{2}} n_{\boldsymbol{k}_{3}} n_{\boldsymbol{p}_{1}}-n_{\boldsymbol{k}_{2}} n_{\boldsymbol{k}_{1}} n_{\boldsymbol{p}_{1}}-n_{\boldsymbol{k}_{3}} n_{\boldsymbol{k}_{1}} n_{\boldsymbol{p}_{1}}\right) \\
& \times \delta\left(\omega_{\boldsymbol{p}_{1}}+\omega_{\boldsymbol{k}_{1}}-\omega_{\boldsymbol{k}_{2}}-\omega_{\boldsymbol{k}_{3}}\right) \delta^{(D)}\left(\boldsymbol{p}_{1}+\boldsymbol{k}_{1}-\boldsymbol{k}_{2}-\boldsymbol{k}_{3}\right) d^{2} \boldsymbol{k}_{123}
\end{aligned}
$$

with $\quad \omega_{k}=k^{2}$

Equilibrium solution

$$
n_{k}^{e q}=\frac{T}{k^{2}-\mu},
$$

where the Lagrange multiplier are given by the initial condition for $E \& N$:

Equilibrium solution

$$
n_{k}^{e q}=\frac{T}{k^{2}-\mu},
$$

where the Lagrange multiplier are given by the initial condition for $E \& N$:

$$
\begin{array}{r}
\frac{N}{V}=4 \pi T k_{c}\left[1-\frac{\sqrt{-\mu}}{k_{c}} \arctan \left(\frac{k_{c}}{\sqrt{-\mu}}\right)\right] \\
\frac{E}{V}=\frac{4 \pi T k_{c}^{3}}{3}\left[1+3 \frac{\mu}{k_{c}^{2}}+3\left(\frac{-\mu}{k_{c}^{2}}\right)^{\frac{3}{2}} \arctan \left(\frac{k_{c}}{\sqrt{-\mu}}\right)\right]
\end{array}
$$

Condensation criteria in 3D

Condensation arises if $\mu=0$ or

$$
\frac{E_{c}}{N k_{c}^{2}}=\frac{1}{3}
$$

Numerical Evidence of wave-condensation in 3D

Elasticity of Plates

Energy/h $\sim h^{2}(\text { bending })^{2}+(\text { stretching })^{2}$

Lord Rayleigh, Theory of Sound
bending \sim linear in deformation
stretching \sim quadratic in deformation

Soliton envelope in a cilindrical shell

Wu, Wheatley, Putterman \& Rudnick (1988);

Elasticity of Plates

$$
\begin{aligned}
h \rho \partial_{t t} \zeta & =-\frac{E h^{3}}{12\left(1-\sigma^{2}\right)} \Delta^{2} \zeta+\{\zeta, \chi\} \\
\frac{1}{E h} \Delta^{2} \chi & =-\frac{1}{2}\{\zeta, \zeta\}
\end{aligned}
$$

Here: E is Young modulus and h the thickness of the plate \&

Elasticity of Plates

$$
\begin{aligned}
h \rho \partial_{t t} \zeta & =-\frac{E h^{3}}{12\left(1-\sigma^{2}\right)} \Delta^{2} \zeta+\{\zeta, \chi\} \\
\frac{1}{E h} \Delta^{2} \chi & =-\frac{1}{2}\{\zeta, \zeta\}
\end{aligned}
$$

Here: E is Young modulus and h the thickness of the plate \&

$$
\{f, g\} \equiv f_{x x} g_{y y}+f_{y y} g_{x x}-2 f_{x y} g_{x y}
$$

and $\{\zeta, \zeta\} / 2=\zeta_{x x} \zeta_{y y}-\zeta_{x y}^{2}$ is the Gaussian curvature

Properties

-Center of mass conservation: $\{\mathrm{f}, \mathrm{g}\}=\operatorname{div}($ something $)$

$$
\frac{\partial^{2}}{\partial t^{2}} \int \zeta(x, y, t) d x d y=0
$$

Properties

-Center of mass conservation: $\{\mathrm{f}, \mathrm{g}\}=\operatorname{div}($ something $)$

$$
\frac{\partial^{2}}{\partial t^{2}} \int \zeta(x, y, t) d x d y=0
$$

-Hamiltonian evolution

$$
\begin{aligned}
H\left[\zeta_{k}, p_{k}\right] / h & =\int\left[\frac{1}{2 \rho}\left|p_{k}\right|^{2}+\frac{E h^{2} k^{4}}{24\left(1-\sigma^{2}\right)}\left|\zeta_{k}\right|^{2}\right] d^{2} k \\
& +\frac{1}{4} \int V_{k_{1}, k_{2} ; k_{3}, k_{4}} \zeta_{k_{1}} \zeta_{k_{2}} \zeta_{k_{3}} \zeta_{k_{4}} \delta^{(2)}\left(k_{1}+k_{2}+k_{3}+k_{4}\right) d^{2} k_{1,2,3,4}
\end{aligned}
$$

where

$$
V_{12 ; 34}=\frac{E}{2(2 \pi)^{2}}\left(\frac{1}{2\left|\boldsymbol{k}_{1}+\boldsymbol{k}_{2}\right|^{4}}+\frac{1}{2\left|\boldsymbol{k}_{3}+\boldsymbol{k}_{4}\right|^{4}}\right)\left|\boldsymbol{k}_{1} \times \boldsymbol{k}_{2}\right|^{2}\left|\boldsymbol{k}_{3} \times \boldsymbol{k}_{4}\right|^{2}
$$

Properties (cont)

-Poisson Bracket $\quad\left[\zeta_{k}, p_{k^{\prime}}\right]=\delta^{(2)}\left(k-k^{\prime}\right)$
-Bending waves

$$
\omega_{k}=\sqrt{\frac{E h^{2}}{12 \rho\left(1-\sigma^{2}\right)}} k^{2}=h c k^{2}
$$

Canonical Variables

$$
\begin{aligned}
& \zeta_{k}=\frac{X_{k}}{\sqrt{2}}\left(A_{k}+A_{-k}^{*}\right) \\
& p_{k}=-\frac{i}{\sqrt{2} X_{k}}\left(A_{k}-A_{-k}^{*}\right) \quad \text { one has }
\end{aligned}
$$

$\left[A_{k}, A_{k^{\prime}}^{*}\right]=i \delta^{(2)}\left(k-k^{\prime}\right) \quad$ and with $\quad X_{k}=\frac{1}{\sqrt{\omega_{k} \rho}}$

$$
H\left[A_{k}, A_{k^{*}}^{*}\right] / h=\int \omega_{k}\left|A_{k}\right|^{2} d^{2} k+\frac{1}{4} \sum_{s_{1}, s_{2}, s_{3}, s_{4}} \int T_{k_{1}, k_{2} ; k_{3}, k_{4}} A_{k_{1}^{s}}^{s_{1}} A_{k_{2}^{s}}^{s_{2}} A_{k_{s}^{s}}^{s_{s}^{3}} A_{k_{4}^{s}}^{s_{k}^{4}} \delta^{(2)}\left(k_{1}+k_{2}+k_{3}+k_{4}\right)
$$

Weak Turbulence Theory for Elastic Plates

G.Düring, C. Josserand \& SR. (2005).

$$
\begin{aligned}
\frac{d}{d t} n_{p_{1}} & =12 \pi \epsilon^{4} \operatorname{sgn}(t) \int\left|J_{p_{1} k_{1} k_{2} k_{3}}\right|^{2} \delta\left(\boldsymbol{k}_{1}+\boldsymbol{k}_{2}+\boldsymbol{k}_{3}+\boldsymbol{p}_{1}\right) n_{k_{1}} n_{k_{2}} n_{k_{3}} n_{p_{1}} \\
& \times \sum_{s_{1} s_{2} s_{3}}\left(\frac{1}{n_{p_{1}}}+\frac{s_{1}}{n_{k_{1}}}+\frac{s_{2}}{n_{k_{2}}}+\frac{s_{3}}{n_{k_{3}}}\right) \delta\left(\omega_{p_{1}}+s_{1} \omega_{k_{1}}+s_{2} \omega_{k_{2}}+s_{3} \omega_{k_{3}}\right) d^{2} \boldsymbol{k}_{123}
\end{aligned}
$$

Energy Conservation $K=\int \omega_{k} n_{k}(t) d^{D} k$

H-Theorem

$$
\mathcal{S}(t)=\int \ln \left(n_{k}\right) d^{D} k \quad d \mathcal{S} / d t \geq 0
$$

Isotropic distributions

$$
\begin{aligned}
S_{k_{1}, k_{2}, k_{3}, k_{4}} & =\frac{1}{(2 \pi)^{3}} \int\left|J_{k_{1} k_{2} k_{3} k_{4}}\right|^{2} \delta^{(2)}\left(k_{1}+k_{2}+k_{3}+p_{1}\right) d \varphi_{2} d \varphi_{3} d \varphi_{4} \\
& =\frac{1}{(2 \pi)^{3}} \int \frac{\left|J_{k_{1} k_{2} k_{3} k_{4}}\right|^{2}}{\left|k_{2} \times k_{3}\right|} d \varphi_{4}
\end{aligned}
$$

For a power law distribution

$$
n_{k}=A k^{-2 x}
$$

one has:

$$
\operatorname{Coll}=3 \operatorname{Coll}_{2+2}+\mathrm{Coll}_{3+1}
$$

$\operatorname{Coll}_{2+2}=\pi A^{3} k^{4-6 x} \int_{\Omega_{u p}} k_{2} d k_{2} k_{3} d k_{3} S_{k k_{1} k_{2} k_{3}} k_{1}^{-2 x} k_{2}^{-2 x} k_{3}^{-2 x} k^{-2 x}$

$$
\times\left(k^{2 x}+k_{1}^{2 x}-k_{2}^{2 x}-k_{3}^{2 x}\right) \times\left(k^{6 x-4}+k_{1}^{6 x-4}-k_{2}^{6 x-4}-k_{3}^{6 x-4}\right)
$$

where $\quad k_{1}^{2}=k_{2}^{2}+k_{3}^{2}-k^{2}$
$\operatorname{Coll}_{3+1}=\pi A^{3} k^{4-6 x} \int_{\Omega_{\text {down }}} k_{2} d k_{2} k_{3} d k_{3} S_{k k_{1} k_{2} k_{3}} k_{1}^{-2 x} k_{2}^{-2 x} k_{3}^{-2 x} k^{-2 x}$
$\times\left(k^{2 x}-k_{1}^{2 x}-k_{2}^{2 x}-k_{3}^{2 x}\right) \times\left(k^{6 x-4}-k_{1}^{6 x-4}-k_{2}^{6 x-4}-k_{3}^{6 x-4}\right)$
where $\quad k_{1}^{2}=k^{2}-k_{2}^{2}-k_{3}^{2}$

Stationary Solutions

- Equilibrium: RayleighJeans distribution

$$
n_{k}^{e q}=\frac{T}{\omega_{k}}=\frac{T}{h c k^{2}}
$$

- Non-equilibrium: Kolmogorov-Zakharov

$$
n_{k}^{K Z}=C \frac{P^{1 / 3}}{k^{2}}
$$ spectra

However $C=0$, thus there is a $\ln (k)$ correction

Stationary Solutions

- Equilibrium: Rayleigh-Jeans distribution

$$
n_{k}^{e q}=\frac{T}{\omega_{k}}=\frac{T}{h c k^{2}}
$$

- Non-equilibrium: KolmogorovZakharov spectra

$$
n_{k}^{K Z}=C \frac{P^{1 / 3}}{k^{2}} \ln (k)^{z}
$$

Numerical simulation of Föppl equation

Numerical Evidence of the equilibrium distribution

Initial condition

Later evolution

NB. Plot3D of a partial zone of the full plate.

Wave action variation in time

Numerical Evidence of the Kolmogorov-Zakharov spectrum

$$
\begin{aligned}
& \left.\left.\langle | \zeta_{k}\right|^{2}\right\rangle=\frac{1}{\rho \omega_{k}} n_{k}^{Z} \\
& \quad=C \frac{P^{1 / 3}}{\rho \omega_{k} k^{2}} \ln (k)^{z} \sim \frac{P^{1 / 3}}{\rho h c k^{4}} \ln (k)^{z} \\
& 1024 \times 1024 \quad \text { Kc }=2 \pi \\
& h / L=0.001 \\
& t=630
\end{aligned}
$$

The log-correction to the KZ spectrum

$\left.\left.\langle | \zeta_{k}\right|^{2}\right\rangle k^{4}$

$\left.\left.\langle | \zeta_{k}\right|^{2}\right\rangle k^{4} \sim \ln k$

Conclusions

- Small oscillations of a vibrating elastic plate are described in long time by a weak turbulence theory.
- Equilibrium distribution is the Rayleigh-Jeans distribution $\sim T / k^{2}$. Numerical evidence.
- Although there is no formal a wave action flux spectrum there is a weak inverse cascade.
- Kolmogorov-Zakharov spectrum $\sim \operatorname{Ln}^{2}(k) / k^{2}$ is observed in elastic bending waves.

Comments \& Perspectives

- Larger elastic deformations (ridges d-cones) can arises easily breaking weak turbulence.
- Measurements of Kolmogorov-Zakharov spectrum in a elastic plate or tube.

- Measurements of Kolmogorov-Zakharov spectrum in a bass or piano string.

Perhaps... One can hear a Kolmogorov spectrum!

Experiment on a bass string

In collaboration with C. Brown (U. of Chicago), L. Oyarte(PUC), E. Cerda \& R. Labbé (U of Santiago).

Thick String equation

$$
\sigma \partial_{t t} \zeta-\tau \partial_{x x} \zeta-I \rho \partial_{x x t t} \zeta+E I \partial_{x x x x} \zeta+2 \tau \zeta_{x}^{2} \partial_{x x} \zeta=0
$$

where $\rho{ }_{8} E$ are the mass density and Young modulus of the material, $I=\frac{\pi}{4} R^{4}$ is the moment of inertia of the rod, $\sigma=\pi R^{2} \rho$ is the linear mass density and τ the tension imposed to the string

Dispersion Relation

$$
\omega_{k}=k \sqrt{\frac{\tau / \sigma+\frac{E I}{\sigma} k^{2}}{1+\frac{(k R)^{2}}{4}}}
$$

