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Wave Turbulence
It is a thing which you can easily explain twice before anybody knows what you are talking about

A. Milne “The house at Pooh Corner”
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for a weak amplitude deformation
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Benney & Saffman (1966), Zakharov, L’vov & Falkovich (1992), 
Newell, Nazarenko & Biven (2001).

A multi-scale analysis shows that, “wave turbulence” has a 
natural asymptotic -over long times- closure for higher 
moments: the fast oscillation drives the system close to 
gaussian statistics and higher moments are written in terms of 
the second order moment
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Weak Turbulence 
Kinetic Equation for 4-

wave resonance 
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-The mechanism for energy exchange is wave resonance
- sgn(t)  & reversibility
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Conserved quantities

“Mass” Conservation

Energy Conservation

Momentum Conservation

H-Theorem
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Stationary solutions

Equilibrium: Rayleigh-Jeans 
distribution

Non-equilibrium: Kolmogorov-
Zakharov spectra
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Experimental evidence of Weak 
Turbulence in gravity (ocean) waves

Y. Toba (1973); Hwang et al. (2000).
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FIG. 4. Four consecutive images of the topography of ocean surface waves measured by the airborne scanning lidar system. The intensity
level indicates the surface elevation (the unit of the grayscales is in meters).

lation issue (the familiar Doppler shifting of frequency
or wavenumber) and will be discussed in the next sec-
tion on wavenumber spectrum. The time lag in a cross-
track row with respect to the central element is plotted
in Fig. 3c. The data segment that is coherent to within
0.1 s is limited to the central 37% region. As the time
lag allowance increases, the percentage of image within
a given time lag also increases. With a 0.5-s lag the
fraction is 65%, and for a 1 s lag it is 87%. The max-
imum time lag is 1.99 s at the two edges. For our purpose
of resolving wave components longer than 12 m (the
conservatively estimated Nyquist wavelength), the
equivalence of approximately 1-Hz sample rate in the
cross-track direction is sufficient. Higher precision can
be achieved at the expense of discarding data near the
two edges of the swath.
The vertical resolution of the ranging is dictated by

the determination of the aircraft position. The theoretical
resolution of the kinematic GPS system is 0.01–0.02 m.

A dynamic calibration of the GPS measurements and
the laser ranging of a calm water body shows that the
rms error of the vertical resolution to be 0.08 m (Krabill
and Martin 1987). The total error budget for an indi-
vidual laser footprint location comprises 0.03 m (rms)
for range, 0.05 m for GPS position, and 0.05 m for
attitude-induced errors.

4. Wavenumber spectral analysis

a. Data processing procedure

Figure 4 shows a sequence of four consecutive images
of the ocean surface topography obtained by the scan-
ning lidar system. The coordinates of latitude/longitude
in the original data have been rotated to the orthogonal
coordinates referenced to the along- and cross-track di-
rections, represented by x1 and x2 respectively. The im-
age intensity is proportional to the wave elevation.

NOVEMBER 2000 2763H W A N G E T A L .

FIG. 8. A comparison of the omnidirectional spectra measured by ATM (crosses) and offshore buoy (ID 44014)
(circles). (a) Average of the first 2 hours of data—quasi-steady condition, and (b) average of the last 2 hours of data—
decaying wave field. Solid curves: !(k) " 0.06u

*
g#0.5k#2.5 (Phillips 1985).

range in wind-generated waves. Extensive discussions
are given for both wavenumber and frequency spectra.
Through a detailed analysis, he reaches the conclusion
that in the equilibrium range the 2D spectral density,
$(k), of gravity waves increases linearly with wind
friction velocity, u

*
, and the spectral slope is#3.5. This

can be expressed as $(k) % u
*
k#3.5 or, equivalently, for

the 1D spectrum, !(k) % u
*
k#2.5. More precisely, the

omnidirectional and the traverse spectra are

#0.5 #2.5!(k) " 2&u*I(p)g k , and (7)

#0.5 #2.5!(k ) " 2&u*I(p ' 3/2)g k . (8)1 1

In both equations, & is the dimensionless spectral co-
efficient, p is the exponent of the directional distribution
represented by cosp(, and I(x) " cosx( d(. In the)/2##)/2

past, the major data sources for the study of ocean wave
spectral properties are frequency spectra from point
measurements. A limited number of spatial measure-
ments include wave gauge array data (e.g., Donelan et
al. 1985) and stereo photographic measurements (e.g.,
Cote et al. 1960) were also used. Here we investigate
the spectral slope and dimensional coefficient obtained
from wavenumber spectra of the ocean surface topog-
raphy obtained by airborne scanning lidar ranging.

1) DIMENSIONLESS SPECTRAL COEFFICIENTS IN THE

EQUILIBRIUM RANGE

The dimensionless spectral coefficient & can be cal-
culated from the measured wavenumber spectra using
(7) or (8). Due to the limitation of wavenumber reso-
lution in the ATM dataset, the range of 0.2 ! k ! 0.5
rad m#1 (2–5kp, or equivalently 1.4–2.2*p) is selected
as approximately within the equilibrium range. As il-
lustrated in Fig. 6 and to be further discussed in Part
II, the directional distribution displays multiple lobes as
wavenumber increases and obviously deviates from the
simple cosp( functional form. Equations (7) and (8) re-
main valid, however, for a more general directional dis-
tribution function D(k, (), if the integration function is
redefined as I(q) " D(k, () d(. For the discussion)/2##)/2

here, the functional form of the directional distribution
D(k, () will not be specified, thus the quantity &I(q)
instead of & is investigated. In this fashion, the direc-
tional distribution is absorbed into the spectral coeffi-
cient &I, which can be calculated directly from the mea-
sured wavenumber spectra using (7) or (8).
The calculated spectral coefficients display a trend of

slight increase with wavenumber (Fig. 9, plotting the
results in both logarithmic and linear scales). The trend

slope: -5/2
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Diffusing Light Photography of Fully Developed Isotropic Ripple Turbulence

William B. Wright, Raffi Budakian, and Seth J. Putterman

Physics Department, University of California, Los Angeles, California 90095
(Received 6 February 1996)

The instantaneous height of the entire surface of a fluid executing high amplitude motion can be
obtained by photographing light that has been forced to diffuse through the liquid. This technique
has been applied to resolve solitons and observe the frequency and wave-number spectra of ripple
turbulence. Higher order correlations and various models of turbulence can be probed with this method.
[S0031-9007(96)00368-7]

PACS numbers: 47.27.Gs, 47.20.Ky

An abiding goal of the physics of continuum mechanics
is to understand the fate of energy which is injected into a
system so as to drive it far from equilibrium. Prior to its
dissipation into heat the energy throughput experiences a
competition between randomization and structure forma-
tion which in the limit of high amplitude is the problem of
turbulence. Capillary waves which propagate on the sur-
face of a fluid make these issues accessible to experimen-
tal investigation with a table-top apparatus. At low levels
of excitation structural symmetries akin to crystals with
dislocations [1], quasicrystals and quantum scars [2] can
be seen. Here we report a new imaging technique which
makes it possible to simultaneously measure at over 106

points the position of a fluid surface whose variations in
height are so large that the spectrum of ripple motion is
fully developed wave turbulence. For vortex turbulence
[3,4] this limit has been demonstrated in nature [5] while
laboratory work even at major facilities [6] has been lim-
ited to measurements at a couple of points. The acces-
sibility of capillary wave turbulence to controlled labora-
tory measurements makes it possible to probe not only the
power spectrum but also the transition to turbulence, the
“Stosszahl ansatz,” motion on ultralong time scales and
collective modes of turbulence. These correlations probe
the foundations of our understanding of turbulence and lie
beyond the range of various dimensional and kinetic the-
ories of vortex and wave turbulence [3,4,7–12].
For capillary waves knowledge of the surface height z

as a function of position !r and time t uniquely character-
izes the motion. In order to quantitatively measure z !!r, t"
for high amplitude motion we suspend in the water 0.04%
concentration of polystyrene spheres [13,14] whose diam-
eter (1mm) maximizes the scattering of visible light. The
concentration is small enough so as not to affect the vis-
cosity [15] but large enough so that light is scattered so
strongly that it diffuses through the water [16]. Figure 1
displays a rendering of the surface when a cell contain-
ing the fluid !16.5 3 19 3 3 cm deep" is parametrically
excited by vibration (at 50 Hz) perpendicular to the free
surface at low and high amplitudes.
To obtain the photos from which Fig. 1 is constructed

a flashlamp is used to illuminate the transparent bottom of

the cell for 6 msec. The light then diffuses through the
water to the top surface where it is photographed with
a Princeton Instruments charge coupled device (CCD)
camera !1024 3 1024 pixels" with 16 bits of dynamic
range (65 000 gray scales) focused on the surface with
a lens. To minimize photon shot noise the signal was
binned into 512 3 512 superpixels. The exiting intensity
is inversely proportional to the local depth so that darker
regions are higher !z . 0" and the lighter regions are
lower than the undisturbed surface height !z " 0".
Quantitative information about the surface is obtained

by calibrating the transmission of light as a function of
fluid depth [17]. For the CCD, experimental parameters
can be adjusted so that the change in intensity with
depth is 1500 gray scales per mm (the sensitivity is
6 electrons per gray scale which are recorded with a
quantum efficiency of 80%) and is linear within 10% over
the measured range of heights. Deviations from linearity
are corrected for, pixel by pixel.

FIG. 1. Renditions of diffusing light photos of the surface
of water at low (top) and high amplitudes of excitation. The
photos record light that diffuses through the fluid, in contrast
with shadowgraphs which image the arrival of light fronts (and
caustics) on a diffusing plate above the system being probed.
Displayed is a 7.55 3 7.55 cm region of a photo which records
15.1 3 15.1 cm. The square patterns characteristic of low
drive have an rms displacement of 0.17 mm and the turbulent
state has an rms amplitude of 1.5 mm.
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The diffusing light technique works when the transport

mean free path (the distance over which a ray scatters

through a large angle) of the light is larger than the surface

displacement z but smaller than the fluid depth [17]. An
important feature of this new method of imaging is that

the local surface slope does not affect the amount of

light transmitted through a small aperture focused onto

the surface. Changes in the solid angle of collected light

due to refraction are offset by changes in the surface area

subtended by a fixed aperture.

In the absence of polyballs, light propagating through

the water will suffer varying amounts of refraction as de-

termined by the local curvature of the surface. The exiting

rays form distinctive shadowgraph patterns on a diffusing

glass plate located above the surface [2,18]. For ampli-

tudes z , substantially smaller than those shown in Fig. 1,
these rays cross and form caustics and so prevent the de-

convolving of z from the shadowgraph. The higher the

amplitude, the worse is this catastrophe. The advantage

of the diffusing light technique is demonstrated by the

smoothness of the renditions in Fig. 1 and is also illus-

trated by Fig. 2 which shows a topographical reconstruc-

tion of the instantaneous state of a nonpropagating soliton

[19]. The surface slopes (i.e., Mach numbers) in this state

range from 11 to 21, yet no distortions are apparent; in
fact, cross sections taken along the length of the channel

accurately match the hyperbolic secant profile characteris-

tic of this high amplitude self-localized motion [20].

Figure 3 displays the power spectrum of the motion as

obtained by averaging the Fourier transforms of many pho-

tos taken under the same conditions as Fig. 1 (bottom).

Note that the harmonic response characteristic of low drive

levels transitions to a broadband spectrum at high ampli-

tude. The high amplitude or wave turbulent motion is char-

acterized by a peak at the wave number 6.4 cm21 (which

corresponds to the primary parametric response at 25 Hz;

half the drive frequency) where energy is injected into the

fluid. The energy then cascades to shorter wavelength or

FIG. 2. Perspective of a high amplitude nonpropagating soli-
ton on the surface of water reconstructed from a diffusing light
photo. The soliton is localized along the length of the chan-
nel. Note the different scales for the length and width of the
channel.

higher wave number k where the energy per unit wave

number is proportional to a power of “k.” This is the in-

ertial region of the turbulent motion. At still higher wave

numbers the spectrum merges into the noise. The triangu-

lar points in Fig. 3 show the power spectrum contained in

a 45± segment of the Fourier transform of a single photo.

Since it closely approximates the average, we conclude that

the wave turbulence is isotropic. Parametric excitation of

waves differs from wind generated waves [21] in that there

is no preferred direction.

The power law for the spectrum in the inertial region

can be derived in parallel with Kolmogorov’s law of

vortex turbulence. If Ek denotes the ripple energy per unit

area between k and 2k then the rate at which nonlinear

interactions cause energy to rollover (or cascade) to the

range (2k,4k) is given by

dEk

dt

É
1

! G2vkE2
k"s 2 4mk2Ek , (1)

where s is the surface tension and m is the kinematic

viscosity. The nonlinear coefficient of interaction [22] is

given by

G2 ! 8p4"13 . (2)

For capillary waves the dispersion law bends upward

v2 ! #s"r$k3, (3)

where r is the fluid density. According to this so-called

decay spectrum two capillary waves can interact to create

a third wave. For this reason the lowest order nonlinear

term, as in Eq. (1), which describes the change in the

spectrum of ripples due to scattering, is quadratic in the

FIG. 3. Spectrum of surface height motion as a function of
wave number as obtained from Fourier transforms of Fig. 1.
The triangles display the power in a 45± sector of the Fourier
transform as obtained from a single photo. The straight line has
a slope of 24.2. For reference the frequency as determined by
the dispersion law is plotted on the top axis.
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Fig. 1 – Scheme of the experimental set -up.

technique provides a possibility to use the pumping force with very high degree of isot ropy,
that is a crucial requirement for establishing the power spect rum (1), see [2].

In the experiments with water, we could not excite the surface by elect ric forces as was
done in the experiments with hydrogen, because the water density substant ially exceeds the
hydrogen density. Therefore, in the experiments with water, we used the known technique of
mechanical excitat ion of surface oscillat ions by a ring immersed in water, which retained, in
our opinion, the above-ment ioned advantages of the technique of elect ric excitat ion.

Measurement of the surface oscillat ions and processing of the experimental data were
carried out using the same technique applied in our experiments [9,10,12] with hydrogen (see
below).

Experiment. – The scheme of the experiment is shown in fig. 1. The invest igat ions were
conducted using a cylindrical cell of 77 mm internal diameter and of 5.5 mm in depth. Thecell
was installed on a vibroinsulated plat form. Water was poured into the cell. A thin metallic
ring (of outer diameter 76 mm) was installed in uniform contact with the water surface. The
ring was connected to the mobile membrane of a low-frequency dynamic speaker by a rod.
Vert ical harmonic oscillat ions of the ring, their amplitude and frequency were controlled by a
low-frequency generator. Cylindrical waveswere excited on thewater surface at the frequency
of ring oscillat ions.

The spect rum of the int rinsic oscillat ions of the liquid surface in a cylindrical cell with
finite size is discrete. For this cell a frequency of ω/2π = 3.8 Hz corresponds to the first
resonance. The average separat ion between resonances in the range from 10 to 100 Hz is
about 5-6 Hz. This separat ion increases as the frequency increases in accordance with the
dispersion law of the capillary waves.

Oscillat ions were monitored by recording the power variat ion of reflected laser light from
thewater’s surface. Thebeam was incident on thesurfaceat a small grazing angleα ≈ 0.2 rad.
Themaximal angle of the slope of thewater surface from the flat state (the inclinat ion) ϕ did
not exceed 0.04 rad, i .e. it was much smaller than the grazing angle, ϕ " α. The maximum
wave amplitude at thewater’s surface (with pumping frequencies above 30 Hz) did not exceed
0.1 mm. The axes of the ellipt ic spot formed by the beam on the nondisturbed surface
amounted to 5 mm (along the cell radius) and 1 mm. The beam reflected from the oscillat ing
surface was focused onto the photodetector by a lens. The voltage on the photodetector was
proport ional to the power of the reflected laser beam. The variable component of the laser
beam power P (t) was recorded by a computer through a high-speed 16-bit A/ D converter,
with a digit izing frequency of 40 kHz for several seconds.

We analyzed the frequency spect rum Pω obtained by the t ime Fourier-t ransform of the
recorded P (t)-dependence (Pω denotes the absolute value of the Fourier t ransform).

The power variat ion P (t) of the laser beam reflected from the liquid surface is determined
by the relat ion between the sizes of the light spot , the wavelength of the liquid surface λ and
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Fig. 2 – Dist ribut ions P 2
ω for two different excitat ions. a) Pumping at 34 Hz, the wave amplitude

at the pumping frequency is 0.07 mm. b) Pumping at 184 Hz, the wave amplitude at the pumping
frequency is 0.04 mm. The slope of the solid lines is −17/ 6.

also by the inclinat ion of the water surface ϕ (see ref. [13]).
If the wavelength of the ripples is much greater than the axis of the light spot (λ ! l),

then the beam can be considered to be thin. Due to the small sizes of the grazing angle and
deviat ion of surface from equilibrium (ϕ " 1, α " 1), the power variat ion of the thin laser
beam is proport ional to the deviat ion angle, P (t) ∼ ϕ(t). The angle ϕ can be writ ten as the
rat io of the wave amplitude η to its length λ. For the capillary waves this means that the
Fourier t ransform of the surface elevat ion is proport ional to ηω ∼ k− 1ϕω ∼ ω− 2/3ϕω. Then,
the correlat ion funct ion of surface elevat ion (in this “ low-frequency” limit ) can be writ ten in
the frequency representat ion as follows:

Iω = 〈|ηω|2〉 ∼ (ω− 2/3ϕω)2 ∼ P 2
ωω− 4/3 . (3)

In the opposite case (λ < l), when several wavelengths are placed on the spot area, the
registered power of the reflected beam is determined through the value of the inclinat ion of
the surface which is averaged over the area of a light spot . The calculat ions show that the
change in the reflected beam power as a whole is proport ional to the product of the amplitude
of angle variat ion ϕ by the wavelength λ, Pω ∼ λϕω. This results in the following relat ion
(the “ high-frequency” limit ):

Iω ∼ P 2
ω . (4)

The transit ion from the low- to high-frequency limit occurs at the range of frequencies near
30Hz. Thenumerical analysisof thecondit ionsof the laser beam reflect ion from theoscillat ing
surface shows that in our experiments the Fourier t ransform of the surface elevat ion can be
treated using the high-frequency relat ions at frequencies above 100 Hz. So, the correlat ion
funct ion of surface elevat ion can be determined from the recorded signal using the relat ion (4)
at frequencies ω/2π > 100 Hz. The pumping frequencies in the given experiments exceeded
30 Hz. Therefore the t ransit ion influences the results of t reatment only at frequencies of a
few lowest resonances.

Experimental results and their discussion. – Two spect raP 2
ω obtained in theexperiments,

when thepumping frequenciesωp/2π were34 and 184 Hz are shown in figs. 2a, b, respect ively.
The first peak in the plots corresponds to the first harmonic excited by an external force (i .e.

 Brazhnikov, Kolmakov, Levchenko & 
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Equilibrium solution

where the Lagrange multiplier are given by the initial condition 
for E & N:
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Condensation criteria in 3D
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served and studied experimentally, in relation to the re-
cent proposal of condensation for photons [12]. More-
over, the formal reversibility of the condensation process
could be demonstrated by means of an optical phase-
conjugation experiment [13]. In addition to optics, wave
condensation could be relevant for hydrodynamic surface
waves [14], on the basis of the recent progress on mea-
surements of Zakharov’s spectra. Moreover, our work is
also relevant to the important issue of strong wave turbu-
lence [15], where the emergence and persistence of large
scale coherent structures in the midst of small scale fluc-
tuations is a common feature of many turbulent fluids,
plasmas and optical wave systems.

We consider the normalized defocusing NLS equation
in D spatial dimensions for the complex function ψ[16]:

i∂tψ = −∆ψ + |ψ|2ψ (1)

where ∆ stands for the Laplace operator in dimen-
sion D. This equation describes the evolution of de-
focusing interacting waves through the cubic nonlin-
ear term. The dynamics conserves the mass (particle
number) N =

∫ |ψ|2dDx, and the total energy H =∫ (|∇ψ|2 + 1
2 |ψ|4

)
dDx.

We address the dynamical formation of the conden-
sate starting from a non-equilibrium stochastic initial
condition for the wave ψ, which we take to be of zero
mean and statistically homogenous. In spite of the for-
mal reversibility of the NLS equation, the nonlinear wave
ψ is expected to exhibit an irreversible evolution to-
wards thermal equilibrium, as a result of an effective
process of diffusion in phase-space. The salient prop-
erties of this evolution may be described by the weak-
turbulence theory, which is essentially based on the ran-
dom phase approximation (assumption of quasi-Gaussian
statistics) [11]. This approximation breaks the time re-
versal symmetry of the NLS equation, which allows to
derive an irreversible kinetic equation for the averaged
wave spectrum (here

〈
ak1

a∗
k2

〉
= nk1

δ(D)(k1 − k2), ak

being the Fourier transform of ψ defined by ak(t) =∫
ψ(x, t) e−ik·xdDx [11]):

∂tnk1
(t) = Coll[nk1

] ≡
∫

dDk2d
Dk3d

Dk4Wk1k2k3k4

(nk3
nk4

nk1
+nk3

nk4
nk2

−nk1
nk2

nk3
−nk1

nk2
nk4

)(2)

where the collision term Coll[nk] provides a kinetic de-
scription of the four-wave interaction with Wk1,k2;k3,k4

=
4π

(2π)D δ(D)(k1 +k2 −k3 −k4) δ(1)(k2
1 + k2

2 − k2
3 − k2

4) [11].

As for the usual Boltzmann’s equation, Eq.(2) conserves
the mass N = V

∫
nk(t)dDk, the kinetic energy E =

V
∫

k2nk(t)dDk (being V the system volume for D = 3
and the surface for D = 2), and exhibits a H-theorem
of entropy growth dS/dt ≥ 0, where S(t) =

∫
ln(nk) dDk

is the non-equilibrium entropy. Accordingly, the kinetic
equation (2) describes an irreversible evolution of the
wave-spectrum towards the Rayleigh-Jeans equilibrium

distribution [11]:

neq
k =

T

k2 − µ
, (3)

where T and µ(≤ 0) are, by analogy with thermodynam-
ics, the temperature and the chemical potential respec-
tively. The spectrum (3) is lorentzian and the correlation
length of the wave ψ is determined by µ, λc & 1/

√−µ.
The distribution (3) realizes the maximum of the en-

tropy S[nk] and vanishes exactly the collision term,
Coll[neq

k ] = 0. However, it is important to note that
Eq.(3) is only a formal solution, because it does not lead
to converging expressions for the energy E and the mass
N in the short-wavelength limit k → ∞. To regularize
this unphysical divergence, we introduce an ultraviolet
cut-off kc, i.e., we assume nk(t) = 0 for k > kc. Note
that this cut-off arises naturally in numerical simulations
through the spatial discretization of the NLS equation,
and manifests itself in real physical systems through vis-
cosity or diffusion effects at the microscopic scale [11].

To begin let us analyze the equilibrium distribution (3)
in 3D. From energy and mass conservation one gets

N

V
= 4π Tkc

[
1 −

√−µ

kc
arctan

(
kc√−µ

)]
(4)

E

V
=

4π Tk3
c

3

[
1 + 3

µ

k2
c

+ 3

(−µ

k2
c

) 3

2

arctan

(
kc√−µ

)]
(5)

These equations should be interpreted as follows. The
initial non-equilibrium state of the field ψ is characterized
by a mass N and an energy E. The wave spectrum then
relaxes to the equilibrium distribution (3), whose tem-
perature T and chemical potential µ are determined by
Eqs.(4,5): a given pair (N, E) then determines a unique
pair (T, µ). An inspection of Eq.(4) reveals that µ tends
to 0, i.e. λc diverges to infinity, for a non-vanishing tem-
perature T (keeping N/V constant), or a finite density
N/V (keeping T constant). By analogy with the Bose-
Einstein transition in quantum systems, this reveals the
existence of a condensation process. The same conclusion
follows from the analysis of the energy per particle E/N .
There exists a non-vanishing critical energy per particle
Etr/N = k2

c/3 such that µ = 0. Dividing (5) by (4), one
gets (E − Etr)/(Nk2

c ) = π
√−µ/(6kc) + O (−µ/k2

c

)
. De-

creasing the energy per particle effectively cools the sys-
tem, and one reaches a finite threshold Etr, below which
condensation occurs.

The same analysis in 2D readily gives N/V =
πT ln(1 − k2

c/µ) and E/N = µ + k2
c/ ln(1 − k2

c/µ). In
this case µ reaches 0 : (i) for a vanishing temperature
T (N/V constant), (ii) for a diverging density N/V (T
constant), (iii) for a vanishing energy per particle E/N .
It results that condensation no longer take place in 2D.
We have confirmed this result by direct numerical simu-
lations of the wave equation (1). In contrast to the 3D
case where the field ψ generates a coherent plane-wave
(condensate), in 2D ψ remains a stochastic field of zero
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Elasticity of Plates

Energy/h ~ h2 (bending)2 + (stretching)2

bending ~ linear in deformation

stretching ~ quadratic in deformation

Lord Rayleigh, Theory of Sound



Soliton envelope in a 
cilindrical shell 

Wu, Wheatley, Putterman & Rudnick (1988); 



Elasticity of Plates
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and is the Gaussian curvature 



Properties
-Center of mass conservation: {f,g} = div(something)
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Weak Turbulence Theory 
for Elastic Plates
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(D)(k1 + k2)

K =
∫

ωknk(t)dDk

P =
∫

knk(t)dDk

dS/dt ≥ 0

2

d

dt
n(p1) = ε4sgn(t)

∑
s1s2s3

∫
|J−p1k1k2k3 |2nk1nk2nk3np1

(
1

np1

+
1

nk1

− 1
nk2

− 1
nk3

)
× δ(ω(p1) + ω(k1)− ω(k2)− ω(k3))δ(k1 + k2 − k3 − p1)d2k123

(2)

hρ∂ttζ = − Eh3

12(1− σ2)
∆2ζ + {ζ, χ}; (3)

1
Eh

∆2χ = −1
2
{ζ, ζ}. (4)

{ζ, ζ}/2 = ζxxζyy − ζ2
xy

sigma
σ

sigma

rho
ρ

rho

aqui

{f, g} ≡ fxxgyy + fyygxx − 2fxygxy.

aqui

N =
∫

nk(t)dDk

〈
ak1a

∗
k2

〉
= nk1δ

(D)(k1 + k2)

K =
∫

ωknk(t)dDk

P =
∫

knk(t)dDk

dS/dt ≥ 0

2

, where

S(t) =
∫

ln(nk) dDk

neq
k =

T

ωk − v · k , (5)

neq
k =

T

ωk − v · k − µ
, (6)

nKZ
k =

P 1/3

k2
. (7)

〈|ζk|2
〉

= C
P 1/2ρ1/4
σ3/4k15/4

.

〈|ζω|2〉 = C
P 1/2σ1/6
ρ2/3k15/4

.

σ∂ttζ − τ∂xxζ − Iρ∂xxttζ + EI∂xxxxζ + 2τζ2
x∂xxζ = 0

3

G.Düring, C. Josserand & SR. (2005).

d

dt
np1 = 12πε4sgn(t)

∫
|Jp1k1k2k3 |2δ(k1 + k2 + k3 + p1)nk1nk2nk3np1

×
∑

s1s2s3

(
1

np1

+
s1

nk1

+
s2

nk2

+
s3

nk3

)
δ(ωp1 + s1ωk1 + s2ωk2 + s3ωk3) d2k123

(1)

Coll = 3Coll2+2 + Coll3+1

Coll2+2 = 12π

∫
|Jp1k1k2k3 |2δ(k1 + k2 + k3 + p1)nk1nk2nk3np1

×
(

1
np1

+
1

nk1

− 1
nk2

− 1
nk3

)
δ(ωp1 + ωk1 − ωk2 − ωk3) d2k123

(2)

Coll2+2 = 12π

∫
|Jp1k1k2k3 |2δ(k1 + k2 + k3 + p1)nk1nk2nk3np1

×
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1
np1

− 1
nk1

− 1
nk2

− 1
nk3

)
δ(ωp1 − ωk1 − ωk2 − ωk3) d2k123

(3)

nk = Ak−2x

Coll2+2 = πA3

∫
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k2dk2k3dk3Skk1k2k3

× k−2x
1 k−2x

2 k−2x
3 k−2x

(
k2x + k2x

1 − k2x
2 − k2x

3

)
× k4−6x

(
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1 − k6x−4
2 − k6x−4

3

)
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∫
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3

)
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(
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3

)
(4)

Sk1,k2,k3,k4 =
1

(2π)3

∫
|Jk1k2k3k4 |2δ(2)(k1 + k2 + k3 + p1)dϕ2dϕ3dϕ4,

=
1

(2π)3

∫ |Jk1k2k3k4 |2
|k2 × k3| dϕ4

1



Coll = 3Coll2+2 + Coll3+1

nk = Ak−2x

Coll2+2 = πA3

∫
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(
k2x − k2x

1 − k2x
2 − k2x

3

)
× k4−6x
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∫
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E
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1
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)
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dEk
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= −dP
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+ In −Out

d
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P1 = P2 = P

⇒
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k
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k =
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2 As3
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For a power law distribution
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∫
Ωup

k2dk2k3dk3Skk1k2k3

× k−2x
1 k−2x
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)
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∫
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×
∑

s1s2s3

(
1

np1

+
s1

nk1

+
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δ(ωp1 + s1ωk1 + s2ωk2 + s3ωk3) d2k123
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∫
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×
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(2)
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∫
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×
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)
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(3)
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∫
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∫
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∫
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∂2

∂t2

∫
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Isotropic distributions



d

dt
np1 = 12πε4sgn(t)

∫
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∑
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+
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+
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(1)
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∫
|Jp1k1k2k3 |2δ(k1 + k2 + k3 + p1)nk1nk2nk3np1
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∫
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∑
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(2)

Coll3+1 = 12π

∫
|Jp1k1k2k3 |2δ(k1 + k2 + k3 + p1)nk1nk2nk3np1
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∫
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(2π)3

∫ |Jk1k2k3k4 |2
|k2 × k3| dϕ4

1
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d

dt
np1 = 12πε4sgn(t)
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×
∑
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1
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δ(ωp1 + s1ωk1 + s2ωk2 + s3ωk3) d2k123

(1)

Coll = 3Coll2+2 + Coll3+1

Coll2+2 = 12π

∫
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×
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(2)

Coll3+1 = 12π

∫
|Jp1k1k2k3 |2δ(k1 + k2 + k3 + p1)nk1nk2nk3np1

×
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1
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− 1
nk1

− 1
nk2

− 1
nk3

)
δ(ωp1 − ωk1 − ωk2 − ωk3) d2k123

(3)

nk = Ak−2x

Coll2+2 = πA3k4−6x

∫
Ωup

k2dk2k3dk3Skk1k2k3k
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× (
k2x − k2x

1 − k2x
2 − k2x

3

)× (
k6x−4 − k6x−4
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3

Sk1,k2,k3,k4 =
1

(2π)3

∫
|Jk1k2k3k4 |2δ(2)(k1 + k2 + k3 + p1)dϕ2dϕ3dϕ4,

=
1

(2π)3

∫ |Jk1k2k3k4 |2
|k2 × k3| dϕ4

1

d

dt
np1 = 12πε4sgn(t)

∫
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×
∑
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1
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+
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+
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+
s3

nk3

)
δ(ωp1 + s1ωk1 + s2ωk2 + s3ωk3) d2k123

(1)
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Coll2+2 = 12π

∫
|Jp1k1k2k3 |2δ(k1 + k2 + k3 + p1)nk1nk2nk3np1

×
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1
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1
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− 1
nk2

− 1
nk3

)
δ(ωp1 + ωk1 − ωk2 − ωk3) d2k123

(2)

Coll3+1 = 12π

∫
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×
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1
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− 1
nk1

− 1
nk2

− 1
nk3

)
δ(ωp1 − ωk1 − ωk2 − ωk3) d2k123

(3)

nk = Ak−2x

Coll2+2 = πA3k4−6x

∫
Ωup

k2dk2k3dk3Skk1k2k3k
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2 k−2x
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|k2 × k3| dϕ4

1

where



Equilibrium: Rayleigh-
Jeans distribution

Non-equilibrium: 
Kolmogorov-Zakharov 
spectra

Stationary Solutions

However  C=0, thus there is a 
ln(k) correction

P =
∫

knk(t)dDk

dS/dt ≥ 0

, where

S(t) =
∫

ln(nk) dDk

neq
k =

T

ωk − v · k , (5)

neq
k =

T

ωk
=

T

hck2

nKZ
k = C

P 1/3

k2

nKZ
k = C

P 1/3

k(2β+D−α)/3

J ∼ kβ ωk ∼ kα〈|ζk|2
〉

= C P 1/2ρ1/4

σ3/4
1

k15/4 〈|ζω|2〉 = C
P 1/2σ1/6

ρ2/3

1
ω17/6

σ∂ttζ − τ∂xxζ − Iρ∂xxttζ + EI∂xxxxζ + 2τζ2
x∂xxζ = 0

3



Stationary Solutions

Equilibrium: Rayleigh-Jeans 
distribution

Non-equilibrium: Kolmogorov-
Zakharov spectra

P =
∫

knk(t)dDk

dS/dt ≥ 0

, where

S(t) =
∫

ln(nk) dDk

neq
k =

T

ωk − v · k , (5)

neq
k =

T

ωk
=

T

hck2

nKZ
k = C

P 1/3

k2

nKZ
k = C

P 1/3

k(2β+D−α)/3

nKZ
k = C

P 1/3

k2
ln(k)z

J ∼ kβ ωk ∼ kα〈|ζk|2
〉

= C P 1/2ρ1/4

σ3/4
1

k15/4 〈|ζω|2〉 = C
P 1/2σ1/6

ρ2/3

1
ω17/6

σ∂ttζ − τ∂xxζ − Iρ∂xxttζ + EI∂xxxxζ + 2τζ2
x∂xxζ = 0

3

neq
k =

T

ωk
=

T

hck2

nKZ
k = C

P 1/3

k2

nKZ
k = C

P 1/3

k(2β+D−α)/3

nKZ
k = C

P 1/3

k2
ln(k)z

nKZ
k = C

P 1/3g1/2

k7/2

〈|ζk|2〉 =
P 1/3g1/2

k5/2〈|ζk|2〉 k4 ∼ ln k

J ∼ kβ & ωk ∼ kα

〈|ζk|2〉 = C
P 1/2ρ1/4

σ3/4

1
k15/4

〈|ζω|2〉 = C
P 1/2σ1/6

ρ2/3

1
ω17/6

σ∂ttζ − τ∂xxζ − Iρ∂xxttζ + EI∂xxxxζ + 2τζ2
x∂xxζ = 0

H[ζk, pk]/h =
∫ [

1
2ρ

|pk|2 +
Eh2k4

24(1− σ2)
|ζk|2

]
d2k

+
1
4

∫
Vk1,k2;k3,k4ζk1ζk2ζk3ζk4δ

(2)(k1 + k2 + k3 + k4)d2k1,2,3,4

[ζk, pk′ ] = δ(2)(k − k′)

3



Numerical simulation of 
Föppl equation
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Numerical Evidence of the 
equilibrium distribution

slope: -4
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Can we hear the Kolmogorov spectra?
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We study the long-time evolution of waves of a thin elastic plate in the limit of small deformation
so that modes of oscillations interact weakly. According to the theory of weak turbulence a nonlinear
wave system evolves in longtime creating a slow transfer of energy from one mode to another. We
derive this kinetic equation for the spectral transfer in terms of the second order moment. We show
explicitly that such a non-equilibrium description describes the approach to an equilibrium wave
spectrum, and describes also an energy cascade, often called the Kolmogorov-Zakharov spectrum.
We perform numerical simulations confirming this scenario.

Introduction.– Since more than forty years it was es-
tablished that long time statistical properties of a ran-
dom fluctuating wavy system possess a natural asymp-
totic closure because of the dispersive nature of waves
and the weakly nonlinear wave interaction [? ? ? ]. In-
deed this so-called “weak turbulence theory” has shown
to be a powerful method to study the evolution of non-
linear dispersive wave systems. Moreover, it results that
the longtime dynamics is driven by a kinetic equation for
the distribution of spectral densities. This method, was
developed for surface gravity waves [? ? ], surface capil-
lary waves [? ], plasma waves [? ], nonlinear optics [? ],
etc.

The actual kinetic equation posses similar non-
equilibrium properties than the usual Boltzmann equa-
tion for diluted gases, thus it conserves energy per vol-
ume, momentum per volume, and there exist an H-
theorem driven the system to equilibrium, characterized
by the named Rayleigh-Jeans distribution. Moreover, be-
sides the elementary equilibrium (or thermodynamic) so-
lution, Zakharov has shown [? ] that non-equilibrium
solutions also arises, namely the Kolmogorov–Zakharov
(KZ) solution or KZ spectrum, which describe the trans-
fer of conserved quantities (e.g. energy) between large
and small length scales.

Experimental evidence of KZ spectra have been ob-
served in atmospherical sciences [? ] and in capillary
surfaces waves [? ? ? ]. On the other hand, numeri-
cal simulation of surface waves by Zakharov and collab-
orators shows the realization of KZ spectrum for weak
turbulent capillary waves [? ] and, more recently, for
gravity waves [? ].

In this article an oscillating thin elastic plate or shell
is considered. Adding inertia to the well known (static)
theory of thin plates one finds the existence of ballistic
dispersive waves, which interact among them via non-
linear terms that are weak if the plate deformations are
small. Previous work deals with the solitary wave prop-
agation on the surface of a cilindrical shell [? ]. We
develop a weak turbulence theory for the surface deflec-

tion of an oscillating thin elastic plate. In short bending
waves travel randomly over the system from every where
to everywhere, because of the weak nonlinearities, reso-
nant waves interact among them, allowing energy sharing
from one mode to another. The mathematics beyond the
resonant condition is formally identical to the conserva-
tion of energy and momentum in classical gas of particles
. Indeed, an isolate system evolves from a complete ran-
dom initial condition to a situation of statistical equilib-
rium like a gas of classical particles does. Fig. ?? displays
the initial deflection of a random initial condition, and
its later evolution.
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FIG. 1: Zoom over a portion of the surface plate deflection
ζ(x, y), the left had image is the initial condition while the
right hand image represents a late evolution of the elastic
plate.

Calculations show that the spectral distribution of
waves deformation (the fluctuations) satisfies a four wave
interaction type Boltzmann equation. In addition to the
formal existence of an equipartition distribution, it is pos-
sible to show the existence of an energy cascade from the
large scales where energy is introduced to the system to
the small scales (of the order of the thickness) where it is
dissipated. Numerical simulations are finally performed,
showing good agreement with the theory.

Theory.– The starting point is the dynamical version
of the Föppl–von Kármán equations [? ? ? ] for the
amplitude of the deformation ζ(x, y, t) and for the Airy

NB. Plot3D of a partial zone of the full plate. 
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Numerical Evidence of the 
Kolmogorov-Zakharov spectrum
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slope: -4

1024 x 1024    kc = 2π
h/L = 0.001

t = 630

4

this spectrum does not vanish the second part of the col-
lision term Coll3+1, this is because of the non conserva-
tion of the wave action mentioned above. Therefore, an
important consequence is the non existence of a second
cascade nk ∼ 1/k4/3 that could be guessed by dimen-
sional analysis. This fact reveals an important difference
with the case of gravity waves or the NLS equation where
an inverse cascade of wave action takes place. Neverthe-
less, wave action is only weakly not conserved as we can
see in a direct numerical simulation see the inset of Fig.
?? or direct computation of the integrals in Coll2+2 and
Coll3+1.

Numerics.–We have performed numerical simulation
of the full non linear system of PDE (??) and (??)
in order to compare with the predictions of the weak
turbulence theory. For the numerics we have taken

c =
√

E
12(1−σ2)ρ = 1, the ratio h over the size of the

plate is the only dimensionless parameter in the numer-
ics. Finally, we consider a regular grid with periodic
boundary conditions. Taking advantage of the structure
of the equation in Fourier space a pseudo-spectral scheme
is needed where the Fourier transforms are made using
FFT routines [? ]. Equation (??) reads in Fourier space

ζ̈k = −ω2
kζk + {ζ, χ}k

where the nonlinear source term {ζ, χ}k is the Fourier
transform of {ζ, χ} which is computed in real space as
well as the Airy stress functions is calculated using (??).
Finally The linear part of the dynamics is calculated ex-
actly:

ζk(t + ∆t) = ζk(t) cos(ωk∆t) +
ζ̇k(t)

ωk
sin(ωk∆t).

The integration in time of the nonlinear terms is per-
formed with an Adams-Bashford scheme, which interpo-
lates the nonlinear term as a polynomial function of time
(of order one in the present calculations). Finally, the ini-

tial condition has been chosen: ζk = ζ0e−k2/k2

0eiϕk with
a ϕk a random phase in [0, 2π], and null velocity field
ζ̇k = 0. As time evolves, the random waves oscillates
with a disorganized behavior, as shown in FIG. ??.

However, after a long time evolution the the sys-
tem build an equilibrium distribution in agreement with
the Rayleigh-Jeans nk ∼ 1/k2 spectrum. Indeed, after
canonical variables one has that the power spectrum of
the plate deflection becomes:

〈
|ζk|2

〉
= X2

knk = nk

ρωk
=

T
ρh2c2k4 . Direct numerical simulation agrees, as showing
in FIG. ??, with such a plate deflection spectrum.

Non equilibrium distribution may be, also, easily ob-
served. One requires to input energy at low wavenum-
bers (k < kin) and dissipate it at large wavenumbers
(k > kout) establishing a non- equilibrium Kolmogorov
spectrum at the window of transparency kin < k < kout,
in this case one sees that the Kolmogorov spectrum
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FIG. 2: Average power spectrum of mean square plate deflec-
tion

〈
|ζk|

2
〉

versus wave number for the decaying type spec-

trum, the line plots the power law 1/k4.

presents a deviation from the 1/k4 spectrum in agree-
ment with a logarithmic correction (??).
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FIG. 3: Average power spectrum
〈
|ζk|

2
〉

for the energy cas-

cade, the line plots the power law 1/k4. Inset plots k4
〈
|ζk|

2
〉

vs. log k showing a clear logarithmic deviation.

Conclusions.– An oscillating plate propagates bending
waves that interacts via the weak nonlinear stretching.
Longtime dynamics of the interacting waves is ruled in
terms of a kinetic equation that describes a thermal equi-
librium for an isolate system and a Kolmogorov-Zakharov
spectrum in the case of a non equilibrium situation. Nu-
merical simulations of the plate equation confirms this
scenario. Moreover, power spectrum of a laser deflection
time signal of a single oscillating point in a forced plate
indicates |zetaω|2 ∼ ω−2.3 [? ] close to the ω−2 predicted
by weak turbulence. As amplitude deformation becomes



The log-correction to the KZ spectrum
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Conclusions
Small oscillations of a vibrating elastic plate are 
described in long time by a weak turbulence 
theory.

Equilibrium distribution is the Rayleigh-Jeans 

distribution ~ T/k2. Numerical evidence.

Although there is no formal a wave action flux 
spectrum there is a weak inverse cascade.

Kolmogorov-Zakharov spectrum ~ Lnz(k)/k2 is 
observed in elastic bending waves. 



Comments & Perspectives
Larger elastic deformations (ridges d-cones) 
can arises easily breaking weak turbulence.

Measurements of Kolmogorov-Zakharov 
spectrum in a elastic plate or tube.

Measurements of Kolmogorov-Zakharov 
spectrum in a bass or piano string.

Perhaps... One can hear a Kolmogorov spectrum!



Experiment on a bass string
In collaboration with C. Brown (U. of Chicago), L. Oyarte(PUC), E. Cerda & R. Labbé (U of 

Santiago).
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Thick String equation

Dispersion Relation


