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The system of Rossby waves is unstable with respect to modulations. This instability results in 
the generation of a large-scale zonal flow with zero mean vorticity. It is shown that in both stable 
and unstable situations, a finite-time singularity formation takes place in the system. Such a 
singularity has the form of peaks on the vorticity profile of the zonal flow. The situation is also 
considered when some zonal flow with nonzero mean vorticity is initially present. Solitary-wave 
solutions appropriate for the description of nonlinear behavior of such systems are found. In the 
case of weak mean vorticity of the zonal flow, the solitons break and the singularities develop. 
If the mean vorticity is strong, then the evolution of the system can be considered as the 
dynamics of a soliton gas. Soliton dynamics possesses some interesting properties, such as 
formation of soliton pairs and annihilation of solitons during collision. 

1. INTRODUCTION 

The interaction of Rossby waves with a background 
zonal flow is an important problem of the geophysical fluid 
dynamics.‘” Strong zonal winds are observed in the 
Earth’s atmosphere and in the atmospheres of other plan- 
ets of the solar system, such as Jupiter, Saturn, and 
Uranus.7 These zonal flows may result from the triple in- 
teractions of Rossby waves or from other nonlinear mech- 
anisms (Newell,* Hasegawa et al. ,9 Whitehead,” and 
Reznik and Soomere’ ’ ) . 

Previous works on the interaction of Rossby waves 
with zonal flows (see Killworth and McIntyre,4 and refer- 
ences therein, Fyfe and Held,s and Benilov et ~1.~) deal 
mostly with so-called rigid lid approximation under which 
the frequency of the waves on a beta plane is given by 

o=pp+pu 
Pk ’ 

(1) 

where 

k= (zw) 
is the two-dimensional (2-D) wave vector, p is the Rossby 
radius, and u is the x component of the zonal flow velocity. 
We assume that this flow is parallel to the x axis and that 
its velocity depends only on the y coordinate, v= (u,O), 
u = u (u,t), as shown in Fig. 1 (in the absence of Rossby 
waves, such flow would be stationary). 

Dispersion law [Eq. (l)] corresponds to the limit 
p2k$1, Pp’>u in a more general expression, taking into 
account both the fi effect and the effect of the background 
flow u (y,t) (Dyachenko et al. 12) : 

B+em~ 
wrw(k,y,t) =p”p l+p2 . 
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One can see from ( 1) that in the rigid lid approxima- 
tion the zonal flow affects Rossby waves through the ordi- 
nary Doppler shift. One of the main physical effects in this 
case is wave absorption in the critical layer, where the 
wave phase velocity is equal to the local velocity of the 
zonal flow. The linear problem of the Rossby wave absorp- 
tion in the critical layer has been solved by Dickinson.’ On 
the nonlinear stage the wave absorption is followed by an 
alternate reflection, absorption, reflection process at the 
critical layer (Stewartson Warn and Warn3 Killworth 
and McIntyre,4 and Haynes and McIntyre13). 

Working with the rigid lid approximation, Fyfe and 
Held’ have found another important property of the sys- 
tem: a steady propagation of the Rossby wave is possible 
only if the zonal flow is decelerated by less than 2/5 of its 
initial (near the source of the wave) value. 

It is noteworthy [see Eq. (2)] that Rossby waves pos- 
sess dispersion, even in the absence of p effect, which is due 
to the joint action of the background flow u (y,t) and finite 
Rossby radius p. For p2k2> 1 and p=O, we have, instead of 
Es. (I), 

w=pu 
( 1 

1-y . 
P: 

Such dispersion becomes more important than the usual 
one of the Rossby waves [the first term in ( 1 >] when the 
zonal wind is strong, u>pp2, which frequently takes place 
in the Earth’s stratospheric (especially polar) regions and 
in the atmospheres of the giant rotating planets of the solar 
system. For example, stratospheric wind can reach magni- 
tudes more than 75 m/s (McIntyre and Palmeri4), which 
is greater than /3p2 for the latitudes ~#~>48”. In this case 
therefore, the finiteness of radius of deformation is impor- 
tant even if it is large, p2k$ 1. 

The purpose of this paper is to investigate the dynam- 
ics of zonal flow nonlinearly coupled with Rossby waves. 
We will concentrate on the case of the intense zonal flows, 
which provide the major contribution to the wave disper- 
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FIG. 1. Geometry of the problem. 

sion (though the linear dynamics will be considered in the 
general case). As we will see, the zonal-flow-dominated 
dispersion (3) brings forth a new physics, compared to the 
rigid lid approximation describing the &effect-dominated 
dispersive waves [see ( 1 >]. 

We will assume that the characteristic length scale of 
the zonal flow, L- (a/ay> -l, is large compared to the 
wavelength of small-scale Rossby waves: 

kL, 1. 

Assume also that Rossby wave amplitude is small, so that 
one can neglect wave/wave interactions compared with the 
large-scale/small-scale interactions. 

Also, we will consider a one-dimensional (1-D) geom- 
etry, in the sense that all the vector and scalar fields (i.e., 
the zonal flow velocity and streamfunction, the spectrum 
of the small-scale Rossby wave turbulence; see below) de- 
pend on just one space coordinate, the “latitude” y, while 
the wave vector of small scales may have both components. 

Of course, this is a rather idealized setup that some- 
what limits the direct applicability of our results. However, 
this allows us to focus on essential new effects in their pure 
form. Issues of applicability and possible extensions of this 
study are discussed in the last section. 

Let us define the large-scale zonal flow streamfunction 
Y (y,t), according to 

a* 
KVJ) =ay , 

and introduce the wave-action spectrum of the small-scale 
turbulence: 

n=n(k,y,t) =&, 

where ~=e(k,y,t) is the energy spectrum of Rossby-wave 
turbulence. 

Then, under the assumptions made above, the equa- 
tions for Y and Rossby-wave turbulent spectrum n(k,y,t) 
can be obtained as the 1-D version of the 2-D equations of 
Dyachenko et al. :I2 

2 ($+11) 2$; (4) 

(5) 

and 

at2 am an au an -+-----=o; 
at aq ay ay aq (6) 

where the frequency w is given by (2). 
It is possible to neglect nonlinear interactions between 

small-scale motions if 

It is principally also possible to take into account nonlinear 
interactions among small scales by introducing a “colli- 
sional” term onto the rhs of (6) using, e.g., the theory of 
weak turbulence ( Longuet-Higgins and Gill, l5 Zakharov 
and L’vov, l6 and Reznik and Soomere”). Although some 
attempts have been made in this direction ( Benilov et al. 6), 
the correct expression for the collisional integral is not yet 
known. To derive such an expression, one should keep in 
mind that the background shear flow modifies not only the 
wave dispersion, but also the normal variables, in terms of 
which the equation of weak turbulence is to be written. The 
possibility of constructing the theory of weak turbulence 
on the background of a large-scale flow is discussed in the 
last section. 

Equations (4) and (6) conserve the energy: 

E= &=const. (7) 

The rhs of Bq. (4) is the Reynolds stress averaged over the 
small scales; it provides a source for large-scale motions 
due to the small-scale turbulence. We will show that the 
contribution of this term is positive at large times, which 
means that the energy cascade is inverse in such a system. 

Equation (6) for small scales has a form of phase vol- 
ume conservation in two-dimensional y-q space. This 
means that the method of contour dynamics (Zabusky 
et al. 17) can be applied for its numerical investigation when 
considering evolution of piecewise constant distributions 
n(q2y). 

We will use the set of Eqs. (4)-( 6) with w and A given 
by (2) and (5) correspondingly as the basic model. 

This paper is organized as follows: In Sec. II we ad- 
dress the questions of stability of a steady state with uni- 
form spatial distribution of the small-scale spectrum and 
with initially infinitesimal zonal flow. We demonstrate that 
for small enough azimuthal wave numbers of small-scale 
turbulence, the system is linearly unstable and generates 
nonzero zonal flow velocity. The stability criterion is not 
affected by the p effect, while finiteness of the deformation 
radius plays a destabilizing role. 
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In Sec. III we reduce Eqs. (4)-(6) for the case of a 
narrow-band spectrum of small-scale waves. We consider 
the limiting case 

u%Pp2, p2% L2, (8) 

when the contribution to the dispersion due to the zonal 
flow is dominant [see (2) and (3)], and compare it with 
the rigid lid approximation. We demonstrate the Hamil- 
tonian structure of the equations obtained. 

In Sec. IV we study nonlinear evolution of a nearly 
monochromatic wave and zonal flow in the stable (accord- 
ing to Sec. II) situation using equations derived in Sec. III. 
We notice an analogy of this case with Riemann wave 
propagation and demonstrate finite time singularity forma- 
tion having a form of tangential discontinuity on the zonal 
flow velocity profile. 

In Sec. V we investigate the unstable case. Analytical 
consideration of the early time nonlinear evolution of the 
unstable system indicates that the solution develops nonan- 
alyticity in a finite time. In other words, the nonlinear 
evolution of the instability also results in a finite time sin- 
gularity formation. We show that singularity may develop 
even faster than the linear instability. This is due to non- 
linear generation of the higher harmonics, which grow 
much faster (according to the linear analysis) than the 
lower harmonics. 

In Sec. V, the evolution of profiles with nonzero mean 
vorticity is considered. In this situation the small-scale az- 
imuthal wave number q(y) depends almost linearly on 
time (so that its graph is sliding up or down almost with- 
out changing its shape), except where it is close to zero. At 
those latitudes y where 1 q(y) 1 is small, most of the activity 
takes place, since the effect of the waves with large 1 kl on 
the zonal flow is weak [see (4) and (5)]. We construct a 
solution that has a form of solitary perturbation propagat- 
ing on the background of a constant-vorticity zonal flow. 
Such solitons are located around the points where the azi- 
muthal wave vector profile changes sign. They appear in 
pairs and annihilate during collisions. Both the formation 
and annihilation of the solitons take place when a local 
extremum of the azimuthal wave number profile q(y) 
crosses abscissa while sliding up or down with time. If q(y) 
is initially bounded, then it eventually becomes sign defi- 
nite, after which the absolute value I q 1 is ever increasing 
with time, and hence, according to (7), the energy is trans- 
ferred from the Rossby wave to the zonal flow (the inverse 
cascade). Numerical computation of the full dynamic 
equations confirms soliton formation and the profiles of 
simulated perturbations agree well with ideal soliton solu- 
tions. Moreover, we show that there exist singular soliton 
solutions analogous to shock waves. They can appear when 
a traveling regular soliton arrives at latitudes with suffi- 
ciently small mean vorticity. 

We discuss the results (in particular, the types of sin- 
gularities found) and possible generalizations of the work 
in sec. VII. 

II. LINEAR ANALYSIS 

Equation (6) describes conservation of the small-scale 
spectrum along trajectories in k-y space: 

dkw) =ndkmd, (9) 

where ko~ko(k,y,t>,yo~yo(k,r,t) are functions inverse to 
the solutions of the equations for Lagrangian trajectories, 

a0 
@= -z=O, i.e. p=const, 

am pp2kz a2y 
"=-&-=-m&T, (113 

. a@ 
Y=F 9 (12) 

with initial conditions k=h, y=yo. Here o is the fre- 
quency of Rossby waves propagating on the background of 
the zonal flow; see (2). 

The simplest solution of Bqs. (4)-(6) is the stationary 
state in which there are no large-scale motions and the 
small-scale wave distribution is homogeneous in space: 

9!=0, n-no(p,q), (131 

where no is an arbitrary function. 
Let us study the stability of this steady state. Consider 

perturbations of the form 

q=qo+z T=@, (14) 

\y,+cexp(at+iKy). (15) 

Note that perturbations in function y are unimportant for 
linear analysis because the steady state we consider does 
not vary in they direction. The meridional component of 
the wave number p does not vary in time [see (lo)]. 

Substituting expressions ( 15) into (4), we obtain 

- (p-2+K2)Ch= -lcG, (16) 

where 

s 

P4 
A=W k2~l+p2k2)[n0(p,q-~--n0(p,q)lm( 

= -“’ s 

P4 -an, 
k2( 1 fp2k2) qT&. 

Equation ( 11) yields 

A?= PP2F G\u 
1+p2kZ ’ 

(17) 

Substituting ( 18) into ( 17) and integrating by parts, we 
finally obtain the following dispersion relation: 

4 
,11=* 

s 
l+PW-3$ln dk 

(1+p2kv O * 
(19) 

Thus, we see that every wave number contributes lin- 
early into A2. Contribution of a wave with wave number 
k= (p,q) is unstable when 

p-2+p2-3q2> 0 (20) 
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[that is, if the spectrum no was localized at k= (p,q), the 
system would be unstable under this condition]. Note that 
according to instability criterion (20), the finite radius of 
deformation plays a destabilizing role. Also, the condition 
of instability is independent of K (i.e., of the length scale of 
initial perturbations) and of p. This instability is aperiodic 
(d is purely imaginary in the unstable case). 

Expression (19) allows us to write a simple estimate 
for the characteristic time r of the linear evolution in the 
both stable and unstable cases. For pk> PK- 1: 

where u, is the mean velocity magnitude of the Rossby 
wave. 

Reliable values of the Rossby wave parameters needed 
for the estimate are not available at present, due to the lack 
of resolution of the fine structure in stratospheric experi- 
ments. If we assume u,- 10 m/s (- 13% of the velocity in 
the fastest parts of the stream14), pk-3prc-2, we obtain 
~-3 weeks. 

For less intensive and shorter Rossby waves the time 
scale r can be as long as several months. Although this 
time would be comparable with the observed times of for- 
mation of the global stratospheric zonal flow, the neglect of 
the restoring forces and dissipation would not be valid for 
such a period of time. 

On the other hand, as we will show in the next two 
sections, the nonlinear interaction accelerates the process 
and leads to a finite-time singularity formation. The actual 
time of the singularity formation may be even much less 
than the characteristic time of the linear process. Also, the 
system evolves faster if a finite shear flow is initially 
present; a situation of this type will be considered in Sec. 
VI. 

III. INTERACTION OF NEARLY MONOCHROMATIC 
WAVE WITH ZONAL FLOW 

Hereafter, we will study the nonlinear behavior of the 
system in the case of a narrow-band spectrum of small- 
scale waves: 

n(ka,t) =N(y,~)W+PMp--Q). (21) 

In other words, the small-scale motion is nearly a mono- 
chromatic Rossby wave, characterized at each point (lati- 
tude) y by its amplitude N called wave activity,’ and wave 
vector K= (P,Q). Spatiotemporal evolution of K is gov- 
erned by (10) and (11): 

P=Po=const, (22) 

agw a P~P~w%~ -=- 
at au ( (l+p2K2) * 1 (23) 

The expression in the large parentheses should be consid- 
ered a function of y, not only through the velocity u, but 
also through K2 - p-!- Q 2. (Actually, P can be an arbitrary 
function of y, but we will consider only profiles with 
P=const for simplicity.) 

Equations for the wave activity N(y,t) and the stream- 
function of the zonal flow Y (y,t) can be obtained by sub- 
stitution of (21) into Eqs. (5) and (6), and integrating 
over dp, dq: 

=” (24) 

& f$-p-2y) =$ ( K2;~;&+$ (25) 

The set of Eqs. (23)-(25) is complete for the descrip- 
tion of a nonlinearly interacting, nearly monochromatic 
Rossby wave and large-scale zonal flow. These equations 
have a divergent form corresponding to the conservation of 
azimuthal impulse, the total wave activity, and potential 
vorticity of the zonal flow: 

s 
Q dy=const, (26) 

s 
N dy=const, (27) 

(28) 

The last conservation law is equivalent to the conservation 
of JY dy. Obviously, the conservation laws are valid if 
there is no source and dissipation, and the total flux of 
corresponding values through the boundaries is equal to 
zero (in the case of bounded systems). It can be seen from 
(23) and (28) that the conditions of absence of the total 
flux of Q in the case p2S L’ implies that the total vorticity 
is zero in the system. Otherwise, the azimuthal impulse is 
a linear function of time. 

It can be easily verified that Eqs. (23)-(25) conserve 
the total energy, 

(29) 
One can also obtain (29) from the more general expression 
(7) by substituting the spectrum of form (21) and intc- 
grating over k. 

Equations corresponding to the rigid lid approxima- 
tion can be obtained from (23)-(25) by taking the limit 
p2> L2, flp2>u. Expression for the Rossby wave frequency 
in this case is given by ( 1 ), so that the zonal flow affects 
waves through the ordinary Doppler shift, and the wave 
dispersion is due to the &effect only. 

By combining Eqs. (24) and (25), one can see that in 
this case the quantity 

u-pN (30) 

does not depend on time (see, e.g., Fyfe and Held’). 
The interaction of Rossby waves with zonal wind in 

rigid lid approximation has been studied in detail 
previously, ld so we will consider this case here. 

As mentioned in the Introduction, often the intensity 
of the zonal winds is strong and their effect on the wave 
dispersion is comparable or even greater than the one due 
to the p effect. Hereafter, we will consider the case (8), 
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when the wave’dispersion is completely determined by the 
zonal flow, and one can disregard the fi effect. 

Taking the limit p2) L2 (and therefore p2K2$ 1 ), 
fip2>u in Eqs. (23)-(25), one can see that the wave ac- 
tivity N does not depend on time in the leading order. For 
simplicity, we will assume that it does not depend on co- 
ordinate y either: 

N=No. 

Equations for the evolution of the azimuthal wave number 
Q and the large-scale vorticity, 

(31) 

in the leading order are 

(32) 

(33) 

These equations can be also written in the Hamiltonian 
form: 

with the Hamiltonian function (energy): 

H= I (;+$$)dy dQ. 

(34) 

(35) 

(36) 

Note the resemblance of the Poisson brackets to those of 
the KdV equation. 

Taking the time derivative of (32) and substituting 
SW& from (33 )into the resulting equation, we can elim- 
inate fi and write, instead of (32) and (33), one second- 
order partial differential equation (PDE) for Q: 

The criterion of instability (20) in this case looks like 

642i ’ 3, (38) 

(37) 

where PO and Q. stand for the components of the wave 
vector in the stationary state. If this condition is violated, 
then Eq. (37) is of the hyperbolic type (strictly, the lin- 
earized equation for small perturbations will be a linear 
hyperbolic PDE). If condition (38) is satisfied, then Eq. 
(37) is of the elliptic type. Nonlinear evolution in these 
two cases is considered in Sets. IV and V, respectively. 

IV. NONLINEAR DYNAMICS IN THE STABLE CASE 

Consider a steady state n(y,t) ~0, K=(P,,&); 
Po,Qc=const. Suppose that the initial wave vector of the 
Rossby wave I(= (Po,Qo) lies within stability bounds, i.e., 
condition (38) is violated. 

Then the perturbations of the stationary state will be 
governed by a hyperbolic equation. This means that phase 
modulations of the Rossby wave corresponding to Q and 
the perturbations of large-scale vorticity d will propagate 
along y at a constant phase velocity Vph. This velocity can 
be found by substituting (21) into ( 19) and taking the 
limit P~K~,~~K’> 1: 

Recall that in the situation we consider here [see (8)] 
the wave activity N does not depend on time, and so the 
perturbations of the Rossby wave amplitude do not evolve. 

If the initial perturbation of the stationary state is 
weak, then for the description of its early evolu_tion we can 
expand the governing equation (37) in small Q and retain 
only the leading order of nonlinearity. As a result, we get, 
in the reference frame moving with velocity Vph, the Rie- 
mann equation for Q: 

where 

4Qo (5&+3& 

C=Yph7&m* 

(40) 

The well-known breaking of the Riemann wave corre- 
sponds here to discontinuity formation on the prolile of Q, 
and, according to (32)) formation of a S-function-like peak 
on the vorticity profile a(y). The latter results from the 
fact that the time derivative in the case of weakly nonlinear 
wave motion is proportional to the spatial derivative. Note 
also that th_e large-scale velocity profile actually follows the 
profile of Q. 

Characteristic time of the nonlinear evolution de- 
scribed by Eq. (40) is close to zero for ~ZZ 3Qo. This 
means that the process is much faster in this case than 
predicted by the linear theory. 

To complement this and further considerations, we 
performed numerical integration of the governing equation 
(37). A central difference scheme was used with typically 
300 points per computational domain and the periodic 
boundary conditions; the Adams-Bashforth scheme in 
time was implemented. 

The result of the numerical integration of Eq. (37) in 
the stable case is presented in Fig. 2. The sine-like initial 
profile has been used, corresponding to a wave traveling in 
the positive y direction. Figure 2 clearly demonstrates the 
steepening wave of Q and the formation of a sharp peak on 
the profile of a. 

V. NONLINEAR DEVELOPMENT OF THE INSTABILITY 

Now, let us consider a situation with condition (38) 
satisfied. At the linear stage perturbations exponentially 
grow, which correspond to a large-scale vorticity genera- 
tion by the small-scale Rossby wave. 
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FIG. 2. Wave breaking and singularity formation in the stable case. (a) 
Tie evolution of the azimuthal wave number profile. (b) Time evolution 
of the vorticity profile. 

To describe the weakly non&rear state, we expand Eq. 
(37) over small perturbations Q and retain only the lead- 
ing order of nonlinearity, which yields [compare with 
(WI 

p a2Q - a2@ 
~-=-c*g+c2~7 (41) 

where 

(42) 

(43) 

We suppose that Ct > 0, which corresponds to the unstable 
case. A priori the role of nonlinearity is not clear: it can 
either stabilize the growth of unstable disturbances or 
make the instability even more dramatic, perhaps leading 
to a fume-time singularity formation. We  will show that 
the second possibility does actually take place. 

0.40 

0.20 
1 

-0.00 
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420 
t 

-- 
-- i 

I .._ L  -1 i __. L  . ..i. 
-8 w -6 00  -4.w -2.00 0.00 2.00 400 6.00 8.00 

GG. 3. Self-similar solutions in the unstable case for C=O.157 and 
Q-,=-1.04, -1.08, -1.12, and -1.16. 

We are looking for self-similar solutions of (41) in the 
following form: 

&&7); (4) 

(45) 

where t* is a constant. 
Substituting (44) into (41) and performing one-inte- 

gration over 71, we obtain the following equation for Q( 7) : 

a5 c -= a7j r12+c1-2c2~7 (46) 

where C is an arbitrary co_nstant. 
Accordingto (46)) aQ/aq tends to zero for 7 + f CO. 

The value of Q approaches some different constants, Q, m  
and Q-, , for q + + M) and n -* - M) correspondingly. 

The family of the self-similar solutions is two paramet- 
ric; one can choose C and-Q- co as independent parameters. 
Examples of profiles of Q for P,=2, Q,= 1, and different 
values of the parameters are shown in Fig. 3. 

As time approaches t*, the width of the transitional 
interval Ay, where Q(y) changes its value from Q-, to 
Q + m, turns to zero, so th_at a singularity having the form 
of a jump on the profile Q(y) develops in finite time. 

Figure 4 demonstrates the singularity formation ob- 
tained in the-numerical simulation of the unstable case 
with 6=3; Qc=O.5, and Qs=O. An almost perfect rect- 
angular shape develops from the initial sinusoidal profile in 
the time of order unity [Fig. 4(a)]. 

Therefore, we obs_erve a formation of two discontinui- 
ties of the function Q(y), and each of those can be de- 
scribed in terms of the discussed above self-similar solu- 
tions. On the large-scale vorticity profile these singularities 
manifest themselves as the development of sharp peaks 
[Fig. 4(b)]. 
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FIG. 4. Nonlinear development of the instability. (a) Formation of dis- 
continuities on the Q profile. (b) Formation of peaks on the vorticity 
profile. 

VI. SOLITONS PROPAGATING ON THE 
BACKGROUND OF A CONSTANT VORTICITY SHEAR 
FLOW 

Up to this moment we have considered the nonlinear 
evolution of perturbations of a steady state with initially 
zero large-scale vorticity. Evolution of protiles with non- 
zero mean vorticity is different. If the mean vorticity of the 
zonal flow is not zero, then according to (32), the total y 
impulse of a Rossby wave JQ dy is a linear function of 
time, rather than a constant, as in the case of zero mean 
vorticity. For example, in the case of uniform vorticity 
distribution, wave number Q linearly increases or decreases 
(depending on the sign of the vorticity) at the same rate 
for ally. In other words, the graph of Q(y) slides upward 
or downward without changing its form. According to 
(33), at large 1 Ql the feedback from Rossby waves to the 
zonal flow is vanishing, so all the activity takes place 
around the points (latitudes), where the graph of Q(y) 
intersects the abscissa. Recall that, according to (38), 
small 1 Ql means instability, while large I Q I corresponds 
to the stable situation. As the graph of Q slides vertically, 

the points where Q(y) =0 also move, and domains of ac- 
tive wave--flow interaction move along with them. 

The basic equation (37) has a family of steadily trans- 
lating analytical solutions of the form Q=Q(y-ct) repro; 
senting the above mechanism in its simplest form. These 
solutions can be written in an implicit form: 

v=p (47) 

where v=y-ct is the moving coordinate, and a and c are 
free parameters (recall that the constant PO stands for the 
value of the x component of the wave vector; therefore, it 
is fixed and determined by the state of the system in the 
unperturbed region, y+ * CQ ) . Every such solution repre- 
sents a linear dependence of Q on t and y at large I q I, 

Q - qa/c2, 

with some nonlinear behavior when Q lies within the un- 
stable domain around zero (according to the linear theory, 
see Sets. II and III). Note that by virtue of (32)) 

for steadily translating solutions. Therefore, for such solu- 
tions large-scale vorticity is constant at f 03, with 

and features a localized disturbance around r]=O (how- 
ever, fi cannot change sign). The sample profiles of Q and 
fi are shown in Fig. 5. We shall identify these solutions as 
solitons (which does not mean integrability here). 

Obviously, for Q( r]) to be single values, the function 
q(Q) should be monotonic. This implies the following reg- 
ularity criterion: 

c>cc,, where cCr=yrE, 
0 

or, in terms of a and Q, 

(48) 
The criterion appears in a rather natural form, namely that 
the translation speed should be high enough, so that the 
instability in the domain of small wave numbers Q would 
not have enough time to develop singularities. When c is 
decreasing and approaching c,,, derivatives of Q become 
unbounded (as during the Riemann wave breaking), and 
fi becomes unbounded too. 

When condition (48) is violated, one can construct the 
soliton solution with a discontinuous profile of Q. The 
function Q(q) defined by (47) is multivalued in this case 
[see Fig. 5 (a)] and to obtain the profile, we have to tlnd the 
position of the jump connecting the upper and the lower 
branches of the function Q(n). This can be done in the 
same way as in the shock-wave theory, i.e., by tinding the 
conditions on the jump using the conservation laws. 
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FIG. 5. Solitary wave on the background of the uniform shear flow; (a) 
profiles of Q. (b) Profiles of the large-scale vorticity. 

Namely, the conservation of impulse JQ dy (more pre- 
cisely, its linear dependence on time in the present case) 
implies that the areas of the segments cut by the jump on 
the graph of Q(q) (see Fig. 6) must be equal. 

Solitary wave solutions are of great importance for the 
dynamics of our system, as they develop naturally at the 

Qt 

FIG. 6. The Q profile for the singular soliton. 

(4 

FIG. 7. Results of the numerical simulation of evolution equation (37). 
Creation, growth, and annihilation of the solitons. (a) Evolution of the Q 
profile. (b) Evolution of the vorticity profile. 

points where Q(y) changes sign. To demonstrate this we 
take the initial condition CI= -20, q= - 14- 10 cos 25-y 
at t= 0 and integrate Eq. (37) numerically. The solution is 
shown in Fig. 7. One can see that the overall evolution is 
governed by Q(y,t) =Q(y,O> -CM, except when Q is close 
to zero (the domain of instability). Strong traveling dis- 
turbances of vorticity develop at these locations. In Fig. 8 
we compare instantaneous profiles of Q(y) and Cl(y) at 
-fint=24, with the solition solutions corresponding to the 
same translation velocity and slope aQ/G’q [that is, 
a/c = fi m = - 20, a/c’ = (aQ/av ) m = 204. It can be seen 
that the numerical solution follows ideal soliton profiles 
rather closely. Discrepancies are better seen in fi, and they 
are due to both nonstationarity of the numerical solution 
and a weak smoothing introduced in the numerical scheme 
to suppress very high-wave number numerical instability. 

As is clearly seen in Fig. 7, a pair of solitons appear at 
the moment when local maximum of the Q profile reaches 
zero, and they “annihilate” at t.he moment when the min- 
imal value of Q is zero (it should be kept in mind when 
considering Fig. 7 that the boundary conditions are peri- 
odic in our computation). During its life cycle, the ampli- 
tude of the soliton reaches its maximum value, which cor- 
responds to the slowest soliton speed, at the moment when 
Q(y) intersects the abscissa at the steepest slope. 

If the profile of Q is too steep, or the value of Cl, is too 
small, then, according to the criterion (48), the solitons 

Phys. Fluids, Vol. 6, No. 3, March 1994 D. Yu. Manin and S. V. Nazarenko 1165 

Downloaded 12 Dec 2006 to 150.203.179.65. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



(4 
OIlE@ 

FIG. 8. Comparison of the shapes of the perturbations obtained numer- 
ically (see Fig. 6), with the analytical sol&on solution. (a) The Q profile. 
(b) The vorticity profile. 

with smooth profiles do not exist. In our computations we 
observe the singularity formation in this case. We can see 
this tendency up to the moment when the solution becomes 
unstable due to the high-wave number instability. The type 
and location of these singularities are in quantitative agree- 
ment with the singular soliton solution. Namely, the sin- 
gularities have a form of two symmetrically located 
“walls” on the Q profile, corresponding to two peaks on 
the vorticity profile. Therefore, the criterion (48) and the 
singular solition solution can be used to predict singularity 
formation and its type. 

VII. CONCLUSION 

Summarizing the results, we would like to emphasize 
basic physical effects resulting from nonlinear interaction 
of small-scale Rossby waves with zonal flow in our 1-D 
formulation. 

First, the system of Rossby waves can be modulation- 
ally unstable. The smaller Rossby radius, the larger is the 
domain of instability in k space [see the dispersion relation 
(19) and the criterion (20)]. This instability generates 
large-scale zonal flow with zero mean vorticity. 

Nonlinear evolution in both stable and unstable cases 
leads to singularity formation. The singularity has a form 
of jump(s) on the azimuthal wave number profile and cor- 

responding peak(s) on the large-scale vorticity profile. The 
singularity formation has been explained in terms of the 
Riemann wave breaking and self-similar solutions in the 
stable and unstable cases, respectively. 

Second, if some flow with nonzero mean vorticity is 
initially present in the system, then the nonlinear dynamics 
of this system can be described in terms of so&on dynam- 
ics. The solitons move along the y axis, their amplitudes, 
and velocities may change, they appear in pairs and aa- 
hilate upon collision. At certain moments of time a pair of 
such solitons moving in opposite directions can be created 
in the process of evolution. 

If the background vorticity is small and/or the profile 
of azimuthal wave number is steep, then solitons may in- 
crease in amplitude beyond the regularity limit, and then 
break down because of singularity formation. The condi- 
tion of breaking is the opposite of (48). The type of sin- 
gularity in this case is again the jump on the azimuthal 
wave number profile and the peak on the profile of large- 
scale vorticity. 

Formation of such singularities qualitatively agrees 
with the observed steep gradient regions in the velocity 
profile of the Jovian zonal flows (see, e.g., Nezlin”). Lat- 
itude variation of the vorticity profile in the Earth’s strato- 
sphere also exhibits the regions of sharp transition (McIn- 
tyre and Palmeri4). To make quantitative comparisons 
with observations other physically important factors, such 
as dissipation and restoring forces, should be incorporated 
into the model. The rest of this section is devoted to the 
discussion of applicability limits of our theory, and possible 
ways of its further generalization. 

We neglected the /3 effect when studying the nonlinear 
dynamics. The possibility of zonal flow breaking in the 
rigid lid approximation (where the wave dispersion is due 
to p effect rather than the zonal flow) has been reported by 
Benilov et aL6 Hence, the singularity formation seems to be 
a rather robust effect for the system of Rossby waves non- 
linearly coupled with the zonal flows. It is possible to in- 
vestigate a more general system, incorporating the effects 
of both tinite p and the zonal flow on the Rossby-wave 
dispersion using Eqs. (23)-(25). 

It should be mentioned that due to the vorticity profile 
steepening, the zonal flow may become unstable, 

aa 

hence to make correct predictions about the further evolu- 
tion of the system it is necessary to consider the full 2-D 
dynamics. On the other hand, as the characteristic length 
scale of zonal flow decreases, the scale separation assump- 
tion will eventually become invalid as well. 

In other words, the observed singularity formation in 
our model indicates that in the real system an amplification 
of velocity gradients of the zonal flow should take place at 
least until the moment when 2-D instability comes into 
effect and/or when the length of zonal flow variation be- 
comes comparable to the Rossby wavelength. 

Therefore, further investigation is needed to explore 
the long-time behavior of the system when the present 
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model becomes invalid. For example, to study the dynam- 
ics of the system with an unstable zonal flow, one can use 
2-D equations derived by Dyachenko et all2 and, as pro- 
posed in this paper, the numerical method exploiting the 
phase volume conservation of the small scales and analo- 
gous to the particle-in-cell method. In this case, the inter- 
action of the 2-D zonal-flow perturbations via the vector 
nonlinearity will cause developing of a strongly turbulent 
state characterized formation and interaction of the 2-D 
vortices. 

Another important problem is to take into account the 
nonlinear interaction of small-scale Rossby waves with 
each other. As was mentioned in the Introduction, there is 
no straightforward way to do it, even in the case of weak 
interactions, because the zonal flow not only affects the 
wave dispersion, but it also modifies normal variables of 
this problem. This follows from the fact that the relation 
between the energy and wave action (i.e., the square of the 
modulus of the normal variable), ek=@@k, which usually 
holds in the weak turbulence theory, is not generally valid 
when Rossby waves propagate on the background of the 
zonal flow [see the expression for energy (7)]. In our opin- 
ion the right way to construct the theory of weak turbu- 
lence on the background of the zonal flow is to derive it 
from the first principles using the diagram technique de- 
veloped by Zakharov and L’vov.‘~ The fact that we know 
the expression for the square of modulus of the normal 
variable, i.e., the spectrum of wave action n(k,y), may 
appear to be helpful for such a derivation. 
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