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A general approach is developed for determining whether the anisotropic weak-turbulence
Kolmogorov spectra which have recently been derived by several investigators in a variety of
physical problems can be realized in practice. The conditions under which these spectra are local
and the condition for their stability are found. Turbulent states near Kolmogorov spectra are
derived. New nonequilibrium solutions of kinetic equations for waves are derived. The turbulence
of drift waves or Rossby waves is discussed as an example.

1. INTRODUCTION

Spectra of turbulence in anisotropic media have recent-
ly been derived in several problems in hydrodynamics, plas-
ma physics, and astrophysics on the basis of Zakharov’s con-
cept"? of weak-turbulence Kolmogorov spectra. A
“Kolmogorov spectrum” is any spectrum which is deter-
mined by a flux of conserved quantities, e.g., energy or mo-
mentum, through a system (or, in other words, by the rate of
dissipation in the system).” Zakharov' discovered a remark-
able property of weak-turbulence Kolmogorov spectra:
They can be derived systematically from the equations of the
medium. In other words, they are exact solutions of wave
kinetic equations

an

8_t=St[n] (1)

(which are found by taking an average of the dynamic equa-
tions of the medium). Heren = n,, = ¢, /w, is the spectrum
of the wave action, ¢, is the energy spectrum, o, is the dis-
persion law, St[#] is a collision integral, which in the case of
a decay dispersion law w, takes the form?

Stln]= j (Ro1z—Ri0z—Ra10) dky dks, (2)

where

R01z=2ﬂ I Volezé (k_‘ki—kz)6((1)"'(04—&)2) (n,nz—nn,—nnz) ,

and V,,, = V(k, k,, k,) is a matrix element of the medium.
Here w, = o, and n;, =n,; (i=1,2).

Weak-turbulence Kolmogorov spectra were introduced
in a pioneering paper by Kuznetsov* in order to describe
weak turbulence in anisotropic media. Kuznetsov derived
the turbulence spectra of ion acoustic waves in a magnetized
plasma:

m=C\P"|k:|~"2|k|7%,  m=C.Q"| k|| k .|, (3)

where the x axis is parallel to the magnetic field, and |k, | =
(k2 + k?2)'?. Here and below, P is the energy flux, Q is the
flux of x momentum (through the system), and C, and C,
are dimensionless constants which depend on only the prop-
erties of the medium. Kanashov® found the Kolmogorov
spectra of a turbulence of the magnetized plasma waves
(Langmuir waves) in various physical situations. In the case
o,>0y, {(0,andoy are, respectively, the plasma frequency
and Larmor frequency), for example, he found

ne=CP"| k|| k|~ : 4)
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Monin and Piterbarg® derived Kolmogorov spectra for di-
vergence-free Rossby waves:

me=C P k|~ m=CoQ"| k| ~/*| k|~ (3)

(the x axis is in the direction of increasing latitude). Mikha-
flovskii et al.”-'* have derived anisotropic Kolmogorov spec-
tra for numerous problems in plasma physics. They have
found spectra for oblique electron drift waves, ion drift
waves, wave branches in a highly inhomogeneous plasma,
and electron acoustic, magnetosonic, Alfvén, and other
wave modes. For example, the Kolmogorov spectra of tur-
bulence of drift Alfvén waves in an inhomogeneous magne-
tized plasma take the form®

m=C P | ka| =% [k | =°| e | 2,
’ (6)
nh=CzQ%|kxl_‘h|kul_klkll_s ’

where the magnetic field is directed along the z axis, and the
density gradient along the y axis. Fridman and Dolotin''
used weak-turbulence Kolmogorov spectra to describe den-
sity-wave turbulence in gravitating astrophysical entities.

Anisotropic Kolmogorov spectra are thus widely used
to describe turbulence in a variety of physical situations.
However, the question of whether these spectra can be real-
ized physically has not yet been resolved. Can these spectra
be observed in practice? If so, under what conditions? What
sort of agreement with experimental data should be expect-
ed? Answering these questions is the purpose of the present
paper.

A first necessary condition for the realizability of Kol-
mogorov spectra is that the turbulence be “local” in the
sense that the behavior of the turbulence is determined pri-
marily by interactions between waves which are of approxi-
mately the same scale (as we know, the Kolmogorov-Obuk-
hov spectrum is based on the assumption that the turbulence
is local).! A first condition which must be satisfied if the
turbulence is to be local is that the collision integral converge
for theKolmogorov spectrum (Ref. 2; only in this case is the
Kolmogorov spectrum a solution of the kinetic equation).
This property is referred to as the “‘stationary localness’” of
Kolmogorov spectra. The stationary localness of Kolmo-
gorov spectra is not by itself sufficient to ensure the localness
of turbulence, as was found in Ref. 13. In the case of station-
ary localness, there may be an evolutionary nonlocalness, in
which the evolution of a spectrum which initially differs by
an arbitrarily small amount from a Kolmogorov spectrum is
not determined exclusively by interactions between waves of
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approximately the same scale. If some arbitrarily small per-
turbation of a Kolmogorov spectrum is specified, its time
evolution leads to a spectrum such that the collision integral
is dominated by the edge of the inertial interval.

Another question of fundamental importance to the
physical realizability of Kolmogorov spectra is the stability
of such spectra with respect to both initial perturbations and
an external perturbation, in which case a term I'"[n], de-
scribing a weak auxiliary source, is added to Eq. (1):

Z—Z=St[n]+l"[n] @h)

[the source primarily responsible for forming the Kolmo-
gorov spectrum does not appear explicitly in the kinetic
equations (1) and (7); Ref. 2].

The questions of the localness and stability of Kolmo-
gorov spectra also arise in the analysis of turbulence in iso-
tropic media. Balk and Zakharov'? have posed these ques-
tions in a rigorous mathematical way, have developed
mathematical tools for studying them, and have described
all possible situations in which weak-turbulence Kolmo-
gorov spectra can be stable. They studied the questions stat-
ed above in the case of isotropic media. In particular, they
proved the evolutionary localness of Kolmogorov spectra
for capillary, gravity, and sound-wave turbulence, and they
analyzed the stability of these spectra.

In the present paper we examine the localness and sta-
bility of weak-turbulence Kolmogorov spectra in the aniso-
tropic case. In particular, we derive a condition for the sta-
bility of these spectra (Sec. 4). We find the conditions under
which a steady-state perturbation I'[#] leads to the forma-
tion of a steady-state spectrum n(k), and we describe the
shape of this spectrum (Sec. 5).

The results of this paper apply in general to all solutions
of the kinetic equation (1) which are power functions of the
components of the vectors k [by analogy with Kolmogorov
spectra (3)-(6); Sec. 2]. The kinetic equations (1) can
have, in addition to Kolmogorov and thermodynamically
equilibrium spectrum, one- or two-parameter families of
power-law solutions, whose existence was pointed out in
Ref. 5. In addition, we construct solutions of the kinetic
equations (1) as the sums of several power functions (Sec.
6).

The general results derived here are used to analyze the
turbulence described by the Charney-Hasegawa-Mima
equation with scalar and vector nonlinearities. That equa-
tion arises in several important physical problems (Sec. 7).

2. POWER-LAW SOLUTIONS OF KINETIC EQUATIONS

To derive a Kolmogorov spectrum, one assumes that
the medium is scale-invariant® in terms of the components of
the vector £:

o (k) =k,
(8)
V(gk, qki, qk,) =¢*V (k, ki, k»)

(g is a vector with positive components). Here and below,
the multiple-index notation makes it possible to describe in a
general way all the situations which arise. We introduce the
dimensionality vector of the medium, d. If the medium is
two-dimensional [k = (k,, k,)] and scale-invariant with
respect to k, and k,, we assume
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d=(1,1),
ka:ikxlaxlkﬂlavy

B=(§=7 BV)!
gk=/(q.ks, q,k,) etc.;

== (a'xv all) ’ 2 (9;)

If the medium is three-dimensional [k = (k,,k,,k,)] and

scale-invariant with respect to £,k , and k,, we assume
d=(11 11 1)a ﬁ.—_—(ﬁx’ Bv’ Bl)y

o=k o= k%o [ Ko™, gh=(q.ke, @iFu, q.k.) setc.;

o= (axv avv az) 1

(9b)

If the medium is three-dimensional [k = (k,,k, )] and
scale-invariant with respect to k, and the absolute value of
the vector k;, = (k,,k, ), we assume

d=(1,2), B=(B., BL),
ko= I k*l i l ko I o, qk: ( quxy QJ.kJ.) ,ete.

o= (axy a.L) ]

(9¢c)

(g, is ascalar). The sum of the components of the vector d is
equal to the dimensionality of the medium. We denote by /
the number of components in the vectors a, S, and d. For
isotropic media, e, 3, and d are scalars, and we have / = 1.

We assume that the continuous medium has, in addi-
tion to scale invariance, the following symmetry (which is
analogous to the isotropy of the medium in the case of iso-
tropic Kolmogorov spectra®): In cases (9a) and (9b), the
expression for |V,,,|? is invariant under a change in sign of
any component of all the vectors &, k,, and k,, e.g., k,
Ky Ky = —ky. In case (9c), the
expression for | V,,,|? is invariant under a change in sign of
the x components of the vectors k; (=0, 1, 2) and also
under rotations of the vectors k;, (i=0, 1, 2) through a
common angle.

It can then be shown®*7 that the kinetic equation (1)
has an exact steady-state solution

n*(k)=C.P"k~, v=d+p (10)

- _kx’ klx’—' -

[the power is understood as in (9); cf. expressions (3)-
(6) ], which is a Kolmogorov spectrum with an energy flux
P.

If the state of the medium is described in coordinate
space by a single real function, we have

n(k)y=n(~k), (1)

and the phase variables of the system are the amplitudes of
waves with wave vectors k from only half of k space (Ref. 14,
for example). We assume that the x axis is directed in such a
way that this half-space is the half with &, > 0. In kinetic
equations (1) and (7) we should thus assume &, >0 and
that the integration is carried out over the half-spaces
k. >0 and k,, >0. In this situation, the kinetic equation
(1) also has a Kolmogorov solution with an x-momentum
flux Q (Refs. 4, 6,and 7):

no (k) = C,0""k™, v=d+ B+ (—a)2 e=(1,0...0)

-1

(12)

The property (11) holds for the physical situations listed in
Sec. 1, corresponding to Kolmogorov spectra (3)—(6), ex-
cept (4). In this case we thus have only a single Kolmogorov
spectrum (with an energy flux), while in each of cases (3),
(5), and (6) we have two spectra. Spectra (3)—(6) are ex-
amples of Kolmogorov spectra (10) and (12) in problems
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differing in geometry [(9a), (9b), (9¢c)]. We recall that a
.Kolmogorov spectrum is actually a solution of Eq. (1) only
if the collision integral converges for this spectrum, i.e., only
if this spectrum is a local spectrum in the stationary sense.
Kolmogorov spectra are exact solutions of kinetic equations
along with Rayleigh-Jeans thermodynamic-equilibrium
spectra

T

ey

(T=const, v==const); (13)

the latter cause the integrand of St[n] to vanish identically,
instead of merely causing the entire collision integral to van-
ish. In particular, the family of solutions (13) contains the
power spectrum n° = Tk ~ . If the property (11) holds, it
also contains the power spectrum n° = (T /v, )|k, | ™"

It was pointed out in Ref. 5 that, in addition to Kolmo-
gorov and thermodynamic spectra, the kinetic equation (1)
has some other power-law solutions:

n'(k)=%Rk= (A=const), (14)
whose powers are determined from the equation
St[k—"] =k#+e-(v) =0 (15)

This equation specifies a linc [in cases (9a) and (9¢c)] ora
surface [in case (9b)] in the exponent space v (dim v = /).

3. BASIC EQUATIONS

To study the stability of any power-law solution (14)
(in particular, a Kolmogorov or thermodynamic spec-
trum), we set

n=n'(1+4), A=A(k,1), ' (16)

in Eq. (7). Assuming that the perturbation 4 is small, we
find for it the following linearized equation:

24 '
—_—— +Y.
= Z ()t (17)

Here . (A) is a linear operator whose form is determined
from the expression (1/n°)St[#°(1 + 4)] by discarding all
terms higher than first order in 4:

1
y=v(k,t) =—£0—I‘[n°].

The quantity y is assumed to be small (Sec. 1), so we ignore
the term 4. We expand the perturbation 4 in an orthonor-
mal system of eigenfunctions ¥ of the operator .£":

A(k,t)=2.sz¢’"(k,t)Y’". (18)

This system of eigenfunctions is such that the expansion co-
efficients here depend only on the absolute values of the
components of the vector k, while the dependence on the
sign of the components k., k,, k, or on the direction of the
vector k [in case (9c) ] is reflected by the functions Y (cf.
Ref. 13). The system of eigenfunctions Y™ évidently de-
pends on the geometry of the problem [see (9a), (9b), and
(9¢)] and on satisfying condition (11). In case (9a), for
example, with property (11), the expansion (18) is an ex-
pansion of the function A4 in a sum of odd and even parts (in
terms of the variable £, ):
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A(ka t)=.52¢°(|kxl, |kv|7 t) Y0+‘9¢i(lk=|1 |k,l, t) Y, (19)
where

pot,

1
o Y= grsienhy (20)

If the property (11) does not hold, then four eigenfunctions
are involved in the expansion (18) in case (9a):

Y0=1/2’

- Y:='[,sign k.,

Y'='/,signk,,
Y3=!/,sign k. sign k,.

The functions Y are chosen for case (9b) in a similar way.
In case (9¢), the eigenfunctions are as follows:

mo__ imw’ =0’i1, :!:2...,
(231;) h m
if the property (11) holds or

, 1 1 .

m—_= eme
2% (2n)*

Y™ = — sign kx__j_'__ em™, m=0,+1,%2,...

2% (2m) "

if it does not.

Substituting expansion (18) into Eq. (17), we find
equations for the functions .&/™(k, t) which are not coupled
with each other. For the Mellin transform G,, (s, t) of the
functions 4 " (k, t) we find an equation (cf. Ref. 13)

G (5FHh, 1) =W (5) Gn(s, ) T ¥ n(s+h, ). (21
Here s = o -+ iw is a complex vector variable (dim s = /),

Gon(s,t)= ) Ak, ) Ymhe— dE, (22)
and

W (s 8) = ) y (&, &) T k. (23)

[The integration in (22), (23), and other equations is car-
ried out over the same set of wave vectors as in the collision
integral: Over the entire space R’ if the property (11) does
not hold, or over the half-space k, >0 if the property (11)
does hold.] In (21) we also have

h=a—2p—d+v, (24)

and W,, (s) is the Mellin function.'* A symmetrized explicit
expression for this function can be derived with the help of
the formula

—.(%(Zn) 1§ (r—s) W,"(s)=f Err-aYn @ [ (k) - Y 1dk

= j (27) | Vouo |28 (k—Fi—k2) 8 (0— @ (—»)
X k=ky =k~ {[ (k=* Y™k, Y™
+ kY (B =k —ky)
T Al R A AN IT
—EMY kT Y, dk dk, dis, (25)
where

p=0—2p—2d+2v, (26)
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so the degree of homogeneity of the integrand in (25) is 0. At
this point we assume % = 1. In the two-dimensional case
[(19), (20) ], Eq. (25) leads to the following expression for
the Mellin function:

Wa(s)= 527‘ l V{1, ki ks) | *8(1—k,—Fk,)8 (1—0,— @) ki k,~
X { [ (1+k,~* (sign ky,)™+k,~* (sign kay) ™) (1—k,"~k,")
-1~k (sign kyy)™
— &, (sign k2y)™) 1[1—K"" (sign Fuy)™

—k; " (sign koy) ™1} dk, dky
(m=0,1; 1=(1,1)). (27)

In the Appendix, the integral in (27) is put in a form conven-
ient for calculations in the case a, = 1, which is a case of
physical importance.

Since the spectrum (14) is a solution of Eq. (1) for any
constant 72, the function 4 =const must be a solution of the
linearized version of Eq. (17) with y = 0, so the Mellin func-
tion corresponding to the eigenfunction Y° = const should
vanish at the point s = 0:

W,{0) =2 j 27| Vi |28 (k—k1—k,) 6 (0—0,— @)
X =k~ k([ K"k =k [k —k "=k} K dk, dk,=0. (28)

The condition (28) is an equation which determines the ex-
ponents v of the spectra (14). In general, it can be shown
that the following identity holds for all v:

f(V)Ei/JVo(O) (29)

[the function f is defined in (15)]. The exponents of the
power-law thermodynamic and Kolmogorov spectra are
found by equating the expression in braces (curly brackets)
in (28) to zero (the §-function is taken into account).
Mellin functions have the following important proper-
ties (cf. Ref. 13).
I. The function W,, (s) is analytic in a cylindrical region

TQ,={s=o0+iolc=Q., o=R'}, (30)

where Q,, is a region in R’ It is assumed that Q,, is the
widest of such regions, so (1, is a convex region. "

I1. The function W, (s) and 1/ W, (s) increase no more
rapidly than algebraically in the limit Im 5— .

II1. The value of the function W, (s) becomes asymp-
totically real (negative) in the limit Im s— ; i.e.,

ImW.(s)/Re W,.(s)>0, ReW(s)<<0 as Im s—oo,

The latter property arises because part of the expression in
braces in (25) oscillates rapidly in the limit Im s — 0, while
the rest can be written in the form

(kr—k k) (' —k—k,* ) — (k4o R py).
Property I1I then follows by virtue of (28).

4. STABILITY CONDITION

Using the real, nondegenerate matrix R, we can per-
form a linear transformation of the variable s in Eq. (21),
ie., s=R{ (= + in is a new complex variable), such
that the vector e [see (12) ] becomes the vector & [see (24) ]:
h = Re. Introducing
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Wn(E)=Wn(s), gn(L)=Gn(s), « -
Hm(t) =¥an(s)with s=RE, ’
we rewrite Eq. (21) as
&n(Bat, Tay 1) =wm(T1, T2) 8 (Ts, Ca ) F9m(TiHd, §oy £). (31)

Here the complex vector &, consists of all components of the
vector £ except the first, §,. The variable {, appears as a
parameter in Eq. (31). This equation can be solved at a fixed
&, for the function g,,, which depends on the one scalar vari-
able £,. This circumstance makes it possible to analyze Eq.
(31) by the method developed in Refs. 13.

We introduce a rotation function x,, (£,7,), as the com-
plete increment in the argument of the complex quantity w,,
(&, + in,,¢,), divided by 27, as 7, varies from — oo to

+ . By virtue of property III of the Mellin functions, the
rotation function can take on only integer values. We define
a zero-rotation set Z,, of Mellin function W, (s):

Z""= {G=REEQMHKM(§7 7]2) =0 for all T]z}.

In other words, Z,, is the set of all o € ,,, such that the total
increment in the argument of the complex quantity
W, (o + i®) as o moves along any straight line parallel to
the vector & is zero. It can be shown that Z,, is a convex
region. On the basis of the results derived in Ref. 13, we find
a condition for the stability of power-law spectra:

The spectrum (14) is stable against small perturbations
of the form Y, if and only if there exists a zero-rotation region
Z,, and either this region contains the null point, i.e.,

#m(0,12) =0, forall m,, (32)

or the null point lies on the boundary of this region {in which
case spectrum (14) is neutrally stable].

It can be shown that Z,, is a zero-rotation region if and
only if the Mellin function W,, (s) does not vanish in the
cylindrical region

TZn={s=0+io|o€Zn, o=RY, (33)

The region Z,, thus does not depend on the vector 4. Conse-
quently, the stability of the spectrum (14) is also indepen-
dent of the vector 4 (the vector 4 can be chosen arbitrarily in
a test of the stability of this spectrum). Just how the spec-
trum is established and how its perturbations behave, on the
other hand, depend strongly on the vector 4. Using Refs. 13,
we can write explicit solutions of Eq. (21) and determine the
evolution of the perturbations 4 (k,f).

Working from the stability condition formulated above,
we can derive an extremely simple necessary condition for
stability. A violation of this condition frequently accompa-
nies an instability of spectrum (14).

Since the kinetic equation is real, we can write'

Wn(s)=Wn(s). (34)

If W, (0) >0, then the rotation x,, (0,0) is odd, and spec-
trum (14) is definitely unstable. 4 necessary condition for the
stability of spectrum (14) against perturbations of the form
Y™ [see (18)1] is thus

Wa(0)<0. (35)

For perturbations corresponding to the eigenfunction
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¥Y? = const we would always have W,(0) = 0, so we would
have to use an expansion of the function W;(s) in a Taylor
series, in which terms of up to third order are retained, in
order to derive the necessary condition for stability corre-
sponding to condition (35):

Wo(s)=as+bs,+/,Ks2+!/,Ls}+Ms,s,. (36)

Here and below, in writing some of the equations we
assume the two-dimensional case, (9a), for definiteness. At
small values of |£ | and |7,|, the rotation »,(£,7,) is even if
and only if we have Re W;(s) <0 and Im W,(s) =0ina
small neighborhood of the point s = 0. Using (36), we then
find that a necessary condition for the stability of the spec-
trum (14) against perturbations of the form YCis

Kb*+La*—2Mab>0. (37)

If this spectrum is indeed stable, so that a zero-rotation re-
gion Z, exists, and its boundary passes through the null
point, then the tangent to the boundary of this region at the
point o = O is orthogonal to the vector («, b), and the region
Z, itself lies with the vector (a,b) on the different sides of
this tangent.

The first derivatives of Mellin function W,(s) at the
point s = 0 coincide?’ with the first derivatives of the func-
tion f (v):

oW,| _ of AW, of

aq=— b=— =

—, .
08s | ymo OV 0sy Vemo 0wy

(38)

If the power spectrum is a Kolmogorov spectrum, then the
second derivatives of the function W,(s) at the point s =0
are (within a factor of 1/2) equal to the corresponding de-
rivatives of the function f (v):

_ W, 1% _ o'W, 1%
T8t e 2 0w B ds? lamo 2 0w’
*wW 1 @
M= : _1 9 (39)
85208y 1 4mo 2 0Ovs vy,

[expressions (38) and (39) can be verified by direct calcula-
tion; see (25)-(29)].

In the case of Kolmogorov spectra, the property (39)
makes it possible to offer a simple geometric interpretation
of the condition (37), which is a necessary condition for
stability. We denote by ¥ the exponent of some Kolmogorov
spectrum. Equation (15) specifies a curve of the exponents v
of the power-law solutions of Eq. (1) which passes through
the point ¥. According to (38) and (39), Eq. (15) can be
written as follows near the point v:

F(9:48, 9,48,) =ab,+b6,+ K62+ L8, +2M5,8,~0.

Hence §, = 8V + 62, where

b 1
8= — — 38, 8 =— 7(KburLa*—zMab) 8,

(Fig. 1). Inequality (37) is equivalent to the condition
5% a <0. A necessary condition for the stability of a Kolmo-
gorov spectrum [ (10)or (12) ] with exponent v = v with re-
spect to perturbations of the form of Y ° is that the curve de-
fined by Eq. (15) be convex toward positive values of the
Sfunction f at the point v (Fig. 1).
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FIG. 1. Diagram used in deriving a geometric necessary condition for the
stability of a Kolmogorov spectrum with respect to perturbations of the
form of Y°.

P

5. INTERVAL INSTABILITY AND EVOLUTIONARY LOCALITY

If there is a constant external agent [y = y(k)], Eq.
(17) can generally have steady-state solutions which are de-
scribed by (18) in which we have

oxtiom  aytico

sr=stm ()= |

Gx—io0 oy—ico

ds, dsy '
—— G (8) k*,
2ni 2mi (s) (40)

where G, (s) is a steady-state solution of Eq. (21),

¥, (sth)
Gun(s)= W (41)
As in Ref. 13, we assume that ¥ (k) is a finite function [i.e.,
y(k) =0, where any component of the vector k is close to 0
or « ]. The function ¥,, (s) is then an entire function, and
the poles of the function (41) are determined by the zeros of
Mellin function W,, (s). The existence of a steady-state solu-
tion of (40) requires the presence of a cylindrical region of
such a nature that the function G,, (s) has no poles in this
region or, equivalently, the function W, (s) has no zeros in
it. A steady-state solution of (40) thus exists if and only if
there exists a zero-rotation region Z,, [see the assertion just
before (33) in Sec. 4], and the parameter o in (40) must
belong to region Z,,. According to the results of Refs. 13, a
steady-state solution of (40) of this type is thus established

in the system as f— .
To see the asymptotic behavior of solution (40), it is

convenient to transform to logarithmic variables:

A.=In Ikxl’ Ay=In Ikvl; A= (A, 7"10) .
We can then rewrite (40) as

Oxtico qy+t'ee

s iy= |

Ox—ico oy—ioo

ds, dsy

2ni 2ni

Gn(s)e™ P, (42)

" where (s,4) = (s,4,,5,4, yoeZ,,. As A goes off to infinity

along any direction specified by the vector v, ie.,
A =vr,7— + 0, we have

™ (M) =0 (e~ o), 1>+ (A=vT), 0=Zn. (43)

A.M.Balk and S. V. Nazarenko 1035



. . . : I3
Gy I) a' .y

Zm

The assertion (43) becomes progressively stronger as (o,v)
increases. Figure 2a shows how to find the point o which
determines the best estimate of (43) at a fixed value of the
vector v. If the region Z,, contains the point o = 0, the quan-
tity &/ ™ (A) vanishes exponentially along all directions. This
effect corresponds to stability of spectrum (14) (Sec. 4). If
the point o = 0 lies on the boundary of the region Z,, , then
2/ (A) tends toward zero along all directions expect the one
direction v, (Fig. 2b), along which the quantity |.o/™(1)]
approaches a nonzero constant (this case corresponds to a
neutral stability). The latter situation always holds for per-
turbations of the form of Y° and in this case we have
vo = (a,b) (Sec. 4). If the point o = 0 does not belong to the
region Z,,, the quantity /"' (1) approaches zero only along
directions outside a certain cone determined by the region
Z,, (Fig. 2c). In this case, the spectrum (14) is unstable (in
accordance with the stability condition).

As aresult of this instability, a constant external source
[¥ = v(k)] givesrise to a steady-state spectrum n (k) whose
relative deviation from the power-law spectrum (14) in-
creases with distance from the source in a certain region of k
space (corresponding to this cone in A space). Elsewhere in
k space there is an approximately Kolmogorov spectrum.
Such an instability is called an interval instability'* and is of
an asymptotic nature: Perturbations of the spectrum (14)
are quite large if the inertial interval is large.

When there is no zero-rotation region Z,, at all, pertur-
bations of the spectrum (14) of the form of ¥,, can behave in
two ways, according to Refs. 13 [see (18)].
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FIG. 2. Zero-rotation region Z,,,. a: The point & corre-
sponds to best estimate (43) at a fixed v (the tangent to
the boundary of region Z,, at the point & is orthogonal
to the vector v). This diagram corresponds to the case
of stability. b: Case of neutral stability. Here v, is the
unique direciton in 4 space for which a relative pertur-
bation does not decrease (the vector v, is orthogonal to
the tangent to the boundary of region Z,, at the point
o=0). c: Case of interval instability. The (v, v,)
cone of directions of v in 4 space, along which the rela-
tive perturbation increases, is shown (the vectors v,
and v, are orthogonal to the tangents /' .# , and & .4 »,
respectively, to the boundary of region Z,,, ).

1) Evolutionary nonlocalness. The evolution of such
perturbations is not determined exclusively by the interac-
tions between waves of approximately the same scale. Their
evolution gives rise to a spectrum which is of such a nature
that the collision integral is dominated by the extremities of
the inertial interval (see also Sec. 1).

2) Absolute instability. Perturbations grow exponential-
ly over the entire inertial interval, and a steady state is not
approached (“secondary turbulence”).

Only in the case of isotropic media has it been found
possible to make a clear distinction between these two situa-
tions.'* A sufficient condition for the evolutionary nonlocal-
ness of the spectrum ( 14) is that there be no region of analy-
ticity of TQ,, [i.e., no region in which the integral which
determines the Mellin function W,, converges; see (25) and
(27)]. A sufficient condition for evolutionary localness is
the existence of a zero-rotation region Z,,.

For power-law thermodynamic spectra in the case in
which there is a region in which the Mellin function W,, (s)
is analytic, there always exists a zero-rotation region Z,,,,
which is symmetric with respect to the point g, = (v — )/
2. This conclusion follows from the circumstance that Mel-
lin function W,, (s) has the following properties in this case:

W (0ots) =W, (00—5), Wa(cotin)<0
[see (25) and (27)]. An absolute instability is thus not pos-

sible for thermodynamic spectra, while evolutionary nonlo-
calness with respect to perturbations of the form of ¥ can
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occur only if there is no region in which Mellin function W,
is analytic.

We conclude this section by pointing out a property of
the steady-state nonlocalness which holds only for Kolmo-
gorov spectra: In the case of a Kolmogorov spectrum, the
collision integral cannot diverge only at the origin or only at
infinity.

6. SPECTRA WHICH ARE SUMS OF POWER FUNCTIONS

We first consider steady-solutions of the kinetic equa-
tion (1) near the power spectrum (14), i.e., solutions n(k)
of the form (16), where the function 4 (k) is a steady-state
solution of Eq. (17) with = 0. The form of this solution
A (k) is determined, as in the case of isotropic media, by the
zeros of the Mellin functions:

A= v | Ba(g)kdg,

m Win(g)=0

(44)

where B,, (q) is an arbitrary function, and the integration is
over the set of zeros of Mellin function W,, (s). While these
zeros are isolated points in the isotropic case, in the aniso-
tropic case they form surfaces in a complex space of dimen-
sion / [see (9) ]. Steady-state solutions of the type in (44) are
not limiting solutions for the solutions 4 (k,?) of Eq. (17) as
t— o, but they may determine the asymptotic behavior of a
solution A(k,t) ast— 0 and A — .

Let us assume that spectrum (14) is a Kolmogorov or
thermodynamic spectrum. Kats and Kontorovich'® have
shown, for the case of isotropic media, that among the power
solutions (44) there are some which are universal (i.e.,
which do not depend on the particular form of the matrix
element),

A (k)=const k~rY™, (45)

and which specify so-called drift corrections to Kolmogorov
and thermodynamic spectra (with the help of a correction of
this type, one could, for example, superpose a small momen-
tum flux on a Kolmogorov spectrum with an energy fiux).
Corresponding corrections exist for the case of anisotropic
media. Indeed, as is easily seen from (25) and (27), if the

(

TABLE L

power spectrum is a Kolmogorov or thermodynamic spec-
trum then the Mellin functions have universal zeros
s=p[W, (s)|;=, = 0]. These universal zeros are listed in
Table I for various values of the power v and the index m.
They determine universal power-law corrections of the form
(45).

We can now show that in the case of anisotropic media
the nonlinear kinetic equation (1) can have exact steady-
state solutions in the form of sums of several power func-
tions: '

. .
n (k) = 2 C'_k—vg
i=t

(it is not being assumed here that one of these power func-
tions dominates the others). When (46) is substituted in the
collision integral (2), the result is

(46)

I I .
St[n, n]=2 CEf(vo) ko=t 2 Z F(vi,v;) CCRA™,

i=t i1,
i<

(47)

where
A=2p—a+d,
F(vi, vy =F (v;,vs)
1o (StLE™, k1] +St[k, k-%]) k-G,
F(viy vi) =f(vi). ‘

[Here we are writing the collision integral in the form
St[n,n] to stress its quadratic dependence on the spectrum
n(k). To derive the function F(v,v, ) we need to replace
terms of the form 7,7, in the collision integral (2) by (1/
2) Mk "k "+ k, ".] If the expression (47) is to vanish
identically, it is necessary to satisfy 7(I + 1)/2 relations in
(! + 1)1 — 1 unknowns (one of the constants C; is always
arbitrary). We thus have I<4 at / =2 [see (9a) and (9¢)]
and I<7 at/ =3 (see (9b)]. With/ =2 and I = 3, for exam-
ple, the system of these inequalities may be of either of two

types:
1) F(v,,v;) =0 (ij = 1,2,3), with C,,C,,C; arbitrary;

m=0

Power of spectrum

(even perturbations)

m=1
(odd perturbations)

vN=0O
(» = 3a — 2 — 2d)

P=v—(0.)=a—(@O1)
p=0.1)—p=28

[¢4
p=(1.0)—p — 2B + &) — 30 }dy— 30+ (0.1)
F(1.0)

=(1,0 —v—a—(0,1) — —v— (0,0 = (1, —1
wea—550 Pov—as0h s p=v—(0,0) = (1, —1)

+2(1.0)) p=a—p=28"Ld)—(2,0 | p=(00)—p=28

p=(10)—p =) Fay-a (-2
ve=d+B pe=—p =0 p=(0.0) —p=(0.1) —a

b =a) p={(1.0)—pn=(1.0)—a

v=d+B+1:[(1,0)—a]
(v=(1.0)
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p=(0.)—p=(—1,1)
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Qv+ v, =2 (v)) =f(v;) =F (v,v3)
=F (vv3) =0, 2C,C,F (vi,»,) + C3f(v;) =0.
For I’>3 the powers v; and also the constants C; may be
complex, but they must appear in complex conjugate pairs in
(46). [The sum in (46) is positive only in a certain part of k
space, which must include the inertial interval.] An even
larger family of solutions of Eq. (1) can be found by adding

several terms of the type C [k v sign K, to the sum in (46).

7. DRIFT-WAVE TURBULENCE

We consider a Charney-Hasegawa-Mima equation with
scalar and vector nonlinearities:

a(A‘I" w) ov
ot dx
oY JAY OV IAY ov?
—.2¢(———-——— )+$——=0. (48)
dx dy dy Oz or

This equation describes Rossby-wave turbulence,®'*!?
drift-wave turbulence in plasmas,”*!® and density-wave
turbulence in galactic gaseous disks.'' In this case the disper-
sion law is

ks
@ =W1 k= (k. kv); ) (49)
the matrix elements of the scalar and vector nonlinearities
are of the form®'"
Va=const| k.kicks.| ™, (50)

V¢ﬂ=const|kxkukz=|'/’( 1-1:-vk2 - 1_?_}:‘2 - 1_?_2];2), (51)
respectively; the x momentum is also called the “en-
strophy.” A scale invariance of the form (8) holds for mo-
tions which are approximately zonal flows with |k, | > &, for
either large or small values of k[d = (1,1); see (9a) ]. Kol-
mogorov spectra were derived for short waves by Monin and
Piterbarg® (Ref. 6); for long waves, they were derived by
Mikhailovskii et al.* (Refs. 7-9).

We first consider the case of a vector nonlinearity

(A =0). ~  For° short-wavelength turbulence
(|k|>»1L,]k,|>k,) we have -
m=kx/k’u2, a=(11 _2)’
1 1
Vw=const|k¢kmku|"’(-—-——-*1—) . B=C7y—1).

The corresponding Kolmogorov spectra are given in (5).
The collision integral in (2) converges for only those power-
law spectra (14) (in addition to the thermodynamic spec-
tra) for which the conditions v, =0, 7/3 <v, <8/3 hold,
including Kolmogorov spectra as in (10) with exponent
v = (5/2,0). For a Kolmogorov spectrum as in (12) with
v = (5/2,1), the collision integral diverges at both large and
small wave numbers. Regardless of the value of v, Mellin
function W, (s) has no region of analyticity for either m = 0
or m = 1. All the power spectra are thus nonlocal from the
evolutionary standpoint against both even and odd pertur-
bations [see (19) and (20)].

For long-wavelength turbulence (|k | €1,]k,|>k, ) we
have

o=k.(1—k}?), a=(4,2),
(52)

V@ﬂ=con5t|kxkizk2x| h (kys_kxya—kzvs) ’ 5= (3/27 3)
[dispersion law (52) can be regarded as scale-invariant be-
cause the collision integral contains §-functions of the wave
vectors]. Figure 3a shows regions of v for which the Mellin
functions have a region of analyticity. These regions are
shown by the lines, which specify families of the power solu-
tions (14); the exponents of the thermodynamic and Kol-
mogorov spectra are specified (by the points).

A Kolmogorov spectrum with an energy flux [see

(10)]
n,=CP*k, "2k, ’ (53)

is local in the stationary sense but nonlocal in the evolution-
ary sense, with respect to both even and odd perturbations
(there are no regions in which Mellin functions W, and W,
are analytic). Interestingly, while the collision integral con-

FIG. 3. Power spectra n’ « k = ¥, The region of values of v
for which Mellin function W, has an analyticity region is
the parallelogram B, B,B,B; in the case m = 0 or the par-
allelogram B B,B,B, in the case m = 1. The curved lines
show a family of power-law solutions (14) of kinetic
equation (1). These curves were found through a numeri-
cal solution of Eq. (28). The dashed lines, which are con-
tinuations of these curves outside the region in which the
collision integral converges, correspond to solutions of
Eq. (28) in which the integral is replaced by an integral

vy
51
ll =
Y
)
J BZ7< a al-
[ Bz N
2 14 // 2
e I {
[ | g 1}
\
0 \ 2, 1 0
LTRN Z J 418y VJ
\ z
-1+ N5
S
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sum, used in a numerical calculation. One of these curves
passes through power-law thermodynamic spectra
[v=1(1,2) and v=(1,0)], while the other passes
through Kolmogorov spectra, shown by points P and Q.
a—Vector nonlinearity; b—scalar nonlinearity.
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FIG. 4. Base of the region of analyticity of the func-

verges for the spectrum (53), it diverges in the long-wave-
length region (|k |—~0) for power-law spectra with expo-
nents which are arbitrarily close to the Kolmogorov
exponent v = (5/2,4). A Kolmogorov spectrum with an en-
strophy flux [see (12)]

ny=C,Q"k""k, ™ (54)

is local in the stationary sense but nonlocal in the evolution-
ary sense with respect to odd perturbations, since there is no
region in which the Mellin function W, (s) is analytic. For
both Kolmogorov spectra in (53) and (54), the expression
L(k")y~* signk;]1(k)| [.Z is alinearized collision inte-

2y

tion W, (the parallelogram Q,) and the zero-rota-
tion region Z, for a Kolmogorov spectrum which is
unstable in an interval fashion (and thus local in
the evolutionary sense) with respect to even pertur-
bations. Also shown here is the cone of directions in
A space along which a relative perturbation of a
Kolmogorov spectrum grows (cf. Fig. 2¢). a—Vec-
tor nonlinearity, Kolmogorov spectrum (54) with
an enstrophy flux @; b—scalar nonlinearity, Kol-
mogorov spectrum (55) with an energy flux P.

— Gz

gral; see (17)] is an integral which diverges for all s as
k'—(0,2k,).

It apparently follows that the presence of odd perturba-
tions leads to a very nonlocal interaction between the waves
and the zonal flow. It can be shown'® that the nonlocal inter-
action tends to make the spectrum symmetric with respect to
the k, axis. For these or other reasons, perturbations of the
Kolmogorov spectra which are odd in k,, may be forbidden,
and one would study the localness of the Kolmogorov spec-
trum and its stability with respect to even perturbations. Nu-
merical simulations of drift turbulence are frequently car-
ried out with the help of “even’ computation schemes (in
which odd spectra are not possible). According to the dis-
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FIG. 5. Case of a power spectrum ( 14) for which both
Mellin functions W, and W, have regions of analytic-
ity, T, and TQ,. This spectrum, which is stable with
respect to even perturbations, is unstable in an interval
fashion with respect to odd perturbations. Also shown
here is the cone of directions in 4 space along which a
relative perturbation of a Kolmogorov spectrum
grows (cf. Fig. 2c). a—Vector nonlinearity, v = (3.8,
1.55); b—scalar nonlinearity v = (1.2,2.4).
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FIG. 6.

Hodographs of the Mellin function w,(in,,in,)
X (= o <7, < + =) for Kolmogorov spectrum (55) and various val-
ues of 7, (1—1, = 0; 2—, = 0.2; 3-—=, = 0.4). For certain values of 77,,
there is a rotation 7,(0,7,) = 1, so Kolmogorov spectrum (55) is unsta-
ble with respect to even perturbations.

cussion above, results calculated by such even schemes may
be quite different from the results found through the use of
complete computation schemes (in which the spectra n, are
not necessarily even).

Because of the geometric necessary condition for stabil-
ity (see the discussion at the end of Sec. 4), the Kolmogofov
spectrum (54) is unstable against even perturbations (Fig.
3a). For this spectrum, a zero-rotation region Z, has been
found by numerical calculation (Fig. 4a). The instability of
the spectrum (54) is therefore an interval instability (Sec.
5). This instability results in the establishment of a steady-
state spectrum whose relative deviation from a Kolmogorov
spectrum decreases in all directions (in 4 space; Sec. 5) out-
side the direction cone shown in Fig. 4a.

It is also worthwhile to study the stability of the power
spectra (14) for which both Mellin functions W, and W,
have a region of analyticity (Fig. 3a). A study has been made
of one such spectrum, with the exponent v = (1.55, 3.8). It
turned out to be stable with respect to even perturbations
(there exists a region Z,, and the point o = 0 lies at the
boundary of this region) and to be unstable in an interval
fashion with respect to odd perturbations (Fig. 5a). In this
case the region of analyticity 7Q, of Mellin function W, (s)
does not contain the point s = 0.

We now consider the case of a scalar nonlinearity
[« = 0in Eq. (48)]. Since a vector nonlinearity outweighs
a scalar nonlinearity in the short-wavelength limit ( |k |> 1)
in most physical situations, we will consider only the long-
wavelength turbulence (|k | € 1). In this case the dispersion
law is as in (52), and the matrix element is given by (50). Its
degree of homogeneity is § = (3/2,0). The powers of pow-
er-law solutions (14) are shown in Fig. 3b. Both Kolmo-
gorov spectra [see (10) and (12)],
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ny=C.P*k "k, o (59)
ny=CaQ" k. . (56)

are local in the stationary sense but nonlocal in the evolu-
tionary sense with respect to odd perturbations. As in the
case of a vector nonlinearity, the presence of odd perturba-
tions results in a nonlocal interaction of the waves with a
zonal flow.

Because of the geometric necessary condition for stabil-
ity, both Kolmogorov spectra (55) and (56) are unstable
with respect to even perturbations (Fig. 3b). We have ob-
served an instability of these spectra, and also of the spec-
trum (54), through a direct application of the stability con-
dition [this approach is illustrated for the case of the
spectrum (55) in Fig. 6].

The Kolmogorov spectrum (55) is interval-unstable
against even perturbations (Fig. 4b) and is thus local in the
evolutionary sense with respect to these perturbations. The
Kolmogorov spectrum (56) is nonlocal in the evolutionary
sense or absolutely unstable (Sec. 5) against even perturba-
tions, since there is no zero-rotation region Z,, for it.

The stability of the spectrum with exponent v = (1.20;
2.40), for which both Mellin functions W, and W, have re-
gions of analyticity, was also studied (Fig. 3b). Like the
corresponding spectrum in the case of a vector nonlinearity,
this spectrum is stable against even perturbations and inter-
val-unstable against odd perturbations (Fig. 5b).

In all these cases, there is only a single local Kats-Kon-
torovich correction (the zero of the Mellin function which
corresponds to this correction falls in its region of analytic-
ity). This correction occurs in the case of a scalar nonlinear-
ity for the Kolmogorov spectrum (55) and is given by the
value p = (0,2) Table I). It describes a small enstrophy flux
against the background of a Koimogorov spectrum with an
energy flux.

The general results derived in this study can also be
used to analyze weak turbulence in many other situations,
e.g., those mentioned in Sec. 1. The results can easily be
extended to nondecay situations and to various other kinetic
equations in anisotropic media.

This analysis of the stability and locality of Kolmo-
gorov spectra makes it possible to draw some important con-
clusions about the structure of the turbulence and the nature
of the transfer of integrals of motion from scale to scale.

We are deeply indebted to V. E. Zakharov for valuable
ideas, for useful discussions, and for stimulating interest in
this study.

APPENDIX

In order to calculate the Mellin functions we need to
transform the integral which determines them from an inte-
gral over a resonant manifold into an integral over a simple
region. We will do this in the case of two-dimensional media,
(%9a), (19), (20), (25), with a, = 1 (this value holds in
most physically interesting situations®®'! ). Since the inte-
gral (25) is symmetric with respect to &, and k,, we assume
|k, | > |k, |, inserting a factor of 2 in front of the integral.
We introduce ¢, = |k,,| (i=1,2). We now change vari-
ables (k,, .k, )—(6,,8,):

0=k tho,  0:=kiq "+ kg,
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a (eh 62)
T = oy q,% | #£(),
3 (leyms Froe) | g2v—q:%¥|
By virtue of the three S-functions

8(1—6,), 85(1—86,), and 8(1 —k,, — k,,) in the inte-
gral, we can integrate over the variables ¢,, 6,, and k.
Using k,,,k,, >0, we then find the single integral

1
1
Wm(s) =2 j 23'(' V(i, ki, kz) |2k{_vk3_v——-—u——;—
| g="v—q:|

X[ (1+k, = (—1)™+k,~") (1—k,"—k.")

— 1=k ()" +ET)]

n+s

X[1—Fk* (=1)™—k," " ldq.,

where all the variables are functions of ¢,:

kyw=—qu, kzv=q2=1+qlv
g:."v—1 g,—1
kza: =

= .
g2 =™ g =™

k=

This expression makes it possible, in particular, to de-
termine the stationary localness of the power-law spectra
and to find the regions of analyticity of the Mellin functions.

U In case (9¢), under condition (34), the medium must also be symmetric
under mirror reflections in the £, = O plane.

2 Pointed out by G. E. Fal’kovich. .

3 Expressions for the weak-turbulence Kolmogorov spectra of Rossby
waves were derived previously on the basis of dimensional consider-
ations by Pelinovskil and Sazontov."”

4 Mikhailovskii er al.” also discuss the localness of these Kolmogorov
spectra. In their paper, “localness” is understood as being nearly (but
not exactly) the same as a stationary localness.
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