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Abstract

Time evolution equation for the probability distribution function (PDF) is derived for system of weakly interacting waves,
dominated by the four-wave process. It is shown that a steady state for such system may correspond to strong intermittency.
Numerical simulation performed on the surface gravity waves equations demonstrate an order of magnitude increase of proba-
bilities of long large-amplitude waves with respect to Rayleigh distribution.

0 2005 Elsevier B.V. All rights reserved.

1. Introduction

Wave turbulence (WT) is a common name for the fields of dispersive waves which are engaged in sto-
chastic weakly nonlinear interactions over a wide range of scales. Numerous examples of WT are found in
oceans, atmospheres, plasmas and Bose—Einstein condejisi€k For a long time, describing and pre-
dicting the energy spectra was the only concern in WT theory. More recently, some attention was given to
the study of turbulence intermittency. WT intermittency, or “burstiness” of the turbulent signal, was observed
experimentally and numerically and was attributed, as in most turbulent systems, to the presence of coher-
ent structures. Examples include collapsing filaments in Bose—Einstein condensates with attractive potentials
[9,11], condensate quasi-solitons in systems with repulsive poterifidl®,13] white caps of sea waves at
small scale§14], freak ocean waves at larger sca]&5]. Often, such coherent structures are intense but quite
sparse so that in most of the space waves remain weakly nonlinear and mostly unaffected by these struc-
tures.
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Recent analysis of the higher order cumuldh® showed that WT becomes strongly non-Gaussian at the same
length scale where it fails to be weakly nonlinear. In scale invariant systems, the ratio of nonlinear time to the linear
wave period grows as a power-law either in to small or toward large wavenumbers. When this growth coincides
with the cascade direction then one expects the WT breakdown if the inertial range is large enough. Otherwise
intermittency never occurs provided that turbulence is weak at the forcing[4@@/€-urther, even if a significant
non-Gaussianity occurs, it does not in itself imply intermittency because PDF may remain, in principle, of the
same order as Gaussian in all of its parts. This motivates us to study PDFs in WT. Study of PDF in WT context can
be traced back to as early as the work of Pigt], and, latter, if19,20], who considered waves in anharmonic
crystals, a special case of 3-wave systems. Recently, equations for multimode and one-mode PDFs where derivec
and analyzed for the general case of 3-wave sysfeing2] PDFs of the three wave systems were also studied to
explain entropy production in three-wave turbulence sys{@3is In the present Letter, we will be concerned with
the 4-wave case, and will derive the time evolution equation for the one-particle PDF, and will demonstrate that
its steady state solution may correspond to intermittency. We are also motivated by a puzzling numerical evidence
of a low-wavenumber intermittency in the system of water-surface gravity Wasgevhereas the analysis (6]
predicts intermittency at high wave numbers only. Explaining this fact is the subject of this Letter and it could shed
light on the phenomenon of freak wavé$].

The idea of the present Letter is based on the observation that even if the “hard” breakdowfl@sdoes
not occur, there will always be a part of the PDF tail for which the amplitudes are too high for WT to work. Such a
“mild” breakdown will modify the PDF tail in a way that may correspond to intermittency. In fact, this case is easier
to study analytically because WT still works for most of the PDF. Consequently the wave breaking phenomenon can
be modeled simply as a phenomenological cutoff of the PDF tail, consistent with the fact that no waves exist above
the breaking amplitude. The wave breaking causes “leakage” and, therefore, a fluamptitede space which
is the key phenomenon leading to deviations from the Gaussian equilibrium and intermittency. Note an analogy with
the well-knownk-space fluxes (cascades) corresponding to Kolmogorov turbulence which is qualitatively different
from the thermodynamic equilibrium state. In this Letter we will derive an equation for the wave amplitude PDF
and we will find its steady state solutions corresponding to the finite flux iartiplitude space. Consequently, we
will show that the resulting wave fields are intermittent at each wavenumber with an anomalously large probability
of the large-amplitude waves.

2. Definition of RPA fields

Previously, the random phase approximation (RPA) has typically assumed that the phases evolve much more
rapidly than the amplitudes and, therefore, there exist time intervals where the phases are random but the amplitude:
are deterministi¢l]. However, numerical simulations indicate that the phase and the amplitude vary at the same
time scale[10,13] Thus, we need to generalize RPA to the case where both the phases and the amplitudes are
random quantities. Such generalization was donR1in22,24]where 3-wave systems were considered. In the
present Letter, we will be dealing with 4-wave systems.

Let us consider a wavefield(x, t) in a periodic box of volumé&’ and let the Fourier transform of this field be
a; wherek € Z¢ andd is the space dimension. Later we take the large box limit in order to consider homogeneous
wave turbulence. Let us write complex asax = Ay, WhereA; € R is the amplitude ang; € St is a phase
factor (ST being the unit circle in the complex plane). We say the wavefiglid of the RPA type if all variables
in the set{A, ¥x; k € 29} are statistically independent random variables ¢pd are uniformly distributed on
St. Defined this way RPA refers not only to the phase but also the amplitude statistics and therefore we suggest a
slightly different reading of this acronym: “random phase and amplitude”.

The above properties are sufficient for our WT analysis and yet such fields may be strongly non-Gaussian.
Indeed, RPA allows any shape of the PDF for amplitudgsand, therefore, it will be a good tool for describing
intermittency.
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3. Weakly nonlinear evolution

Consider a weakly nonlinear wavefield dominated by the 4-wave interactions, e.g., the water-surface gravity
waves[1,5,7,14] Langmuir waves in plasmds,3] and the waves described by the nonlinear Schroedinger equa-
tion [9]. In the finite box, we have the following Hamiltonian equations for the Fourier modes of this field,

oH > € >

P _ 2,5 Im = =

=3z H—anlcnl 3 Z WiveiCmepcy,
n=1 m,n,u,v=1

wherec; is the wave action variablée 29, W[g ~ 1 is an interaction coeﬁiciermﬁf‘v =w + Wy — @y — 0y, @

is the frequency of modeande « 1 is a nonlinearity parameter. We will rewrite this equation in the interaction

representation, i.ec; = bre™'?’. Then

iby =€ Wibybb,e @i sl%, 1)
auy
whereb; is the wave action variable in the interaction representation. We are going expamahéhconsider the
long-time behavior of a wave field, but in order to make such an analysis consistent we have to renormalize the
frequency of(1) as

iaq=¢ Z Sagayaye’ #”lél“ — Qqy, 2)

oY

whereq; = bje'i!, 2 = 2¢ Z W,“|A (0)|2 is the nonlinear frequency shift arising from self-interactions and

Ol = ol + Q21+ Qo — 2, — Q0.
For small nonlinearity, the linear time-scale v is a lot less than the nonlinear evolution time which (as will

be evident below, see, e.§12)) is 27/(e%w). Thus, to filter out fast oscillations at the wave period, let us seek for

the solution at an intermediate tinfesuch that 2 /o <« T < 27 /(we?). Now let us use a perturbation expansion

in smalle, a;(T) = al(o) + ea(l) + ezafz) Substituting this in(2) we get in the zeroth order a time independent

result,q, )(T) = ¢;(0). For simplicity, we will writea; (0) = ¢;, understanding that a quantity is taker?at O if
its time argument is not mentioned explicitly. The first iteratiori2)fgives

1 . _ .82
a; N(T) = —i Z Wi%aaauav(Sff‘v Ai‘j‘v +i ?alT, 3)
opy
where
T
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Iterating one more time we get

2 ~1 ~ ~
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with E(x,y)=/A(x—y)e"W dt. (4)
0
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4. Evolution of statistics

We will now develop a statistical description via averaging over the initial fie{d8) which are taken to be of
the RPA type. Of course, to have a nontrivial description valid over the nonlinear evolution time, the fields must
remain of the RPA type over the nonlinear time in the leading order The proof of this statement in the 3-wave
case was presented [B1,22] Similar proof is possible in 4-wave case, g2&] contains an announcement of
the derivation of 4-wave equation for the multi-mode PDF which allows to derive such a proof; the details of the
relevant analysis will be published separately.

In the present Letter, for the first time, we derive the time evolution equation for one-mode PDF. Note that
transition from the multi-mode PDF to one-mode PDF equation requires the amplitude independence (product
factorization of PDF). Proof of this factorization is possible but it is not subject of the present paper. Instead, this
Letter focuses on finding, for the first time, PDF solutions corresponding to intermittency.

Let us introduce a generating functiaiia, r) = (¢*%®%y wherex is a real parameter. Then PDF of the wave
intensitiess = |ax (1)|2 at eachk can be written as an inverse Laplace transfoftts, 1) = (8(Jax(£)|2 — s5)) =
% jlo‘f Z(x, t)e™** dx. For the one-point moments we have

oo
MP =(jae??) = (ja?P )|, _) = Zyalico = / sPP(s,1)ds, (5)
0
wherep € N/ and subscript. means differentiation with respect top times.
Att =T we have
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= (% (14 e (aPa® + cre?(jaP [P + (a +¢9) + — (4 +co)’
Yyl A
_ Ma®2; (D=0
= Z(0) +erle" oW a” +cq) ),
_ A2
+ 62<<(A +242)[aP P+ 2(aPa® + co) + = 5 (a (2502 cc)> > , (6)
vlaA
where cc stands for complex conjugate of the previous termg-arig, and(---)4 denote phase and amplitude

averaging respectively. Note that in RPA fields the phases and the amplitudes are statistically independent so that

these two averaging could be done independently. First let us subaﬁh&nda,ﬁz) from (3) and(4), respectively,
and perform the phase averaging. For the terms proportioraiv®have

1-© :
(a,ﬁ )ali D\ — Z (akaaa#av)wék“ Ak"‘ + l.Ql(|ak|2>T
apny
=—2i ) WLAFAL T +i2ALT, @)
o

where we have used the fact th&t0) = 7 and we have used the RPAs “Wick’s theorem”
(@kaqapay)y = AfAZ (8502 +8552).
We see fron(7) that the choice
.Qk_ZZ Wi A2 (8)

makes the contribution qulgl)c‘z,go)),p terms to be equal to zero.
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We therefore obtain
A
Z(T) - Z(0) = <<x|ak1>| 1+ Hal?) +aa® + aa® ++5 (@7 a")* +cc)> > : ©)
vl A

where as an intermediate result we have
(@%a?), =23 ska|whe|? a2 (A2 A2 — 24242) E(0, &%)
(0773

and
(a 7), = Y- ska|whe Fa2az a2  a(afe) [

opuy
Here terms proportional t&2 drop from(a,ﬁo)a,gz)) and(|a (1)| ) because of the choig@®) of frequency renor-
malization. Furthermore,
((a"a)® by = —2W ART? 2y — ARQPT? - 4Z ke ARALT).

To complete the derivation of the equation for the time evolution of the generating furittionwe have to
take a large box limit, which implies that sums will be replaced with integrals, the Kronecker deltas will be replaced
with Dirac’s deltas$%, — 8% /v, where we introduced short-hand notatiéff, = §(ky + ki — ki — k,). Then
(9) will still hold, but with

(@%af?), =2 [ a123s83| Wi a2 (4343 - 2443 £ (0.5
and
1af ), = [ a1z it asazncl A
We also have
((¢¥a)?), =0, (10)

because this terms will be/ v times smaller than(1|a,§l) |2) and(akak )y terms because it has one less summation
index. Therefore, it vanishes in ti& — oo limit.
Further we take a largg limit, and take into account that

lim E,x)= (né(x) +iP<E>>T,
T—o0 X

i [AGo|* =2T5(x)

and

(see, e.qg[2]).
Finally we perform amplitude averaging, noticing that
0Z

o =),

to obtain

Z(T) = Z(0) + €T - (M Z + (320 — 1) Z;). (11)
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Approximating(Z(T) — Z(0))/T by Z, we have
Z =Z+ (\2n —any)Z;, (12)

where

Ny =4me f|Wk1| 8k18 a)23)n1n2n3d123,

Vi = 8re /|Wkl| 8538 (wi3) [n1(n2 + n3) — nonz]d123

here wavenumbels k1, k2, k3 € R4, 8’'s now mean Dirad-functions,ny 2 3 = n(k1,2,3) andd123= dk1 dk, dks.
Differentiating(12) with respect to. p times we get the evolution equation for the moments:
. -1

which, for p = 1 gives the standard kinetic equati@an,= —yxny + ny. First-order PDE12) can be easily solved
by the method of characteristics. Its steady state solution is

Z=1— )t

which corresponds to the Gaussian values of mom&Hta = p!n,f. However, these solutions are invalid at small

1 and highp’s because large amplitudes= |a|2, for which nonlinearity is not weak, strongly contribute in these
cases. Due to the integral nature of definitionad#P’ andZ with respect to the = |a|?, the ranges of amplitudes
where WT is applicable are mixed with, and contaminated by, the regions where WT fails. Thus, to clearly separate
these regions it is better to work with quantities which are locakn|a|2, in particular, the probability distribution

P (s). Taking the inverse Laplace transform(@2) we have

P+09,F =0, (13)
whereF = —s(y P + nd, P) is a probability flux in thes-space. Consider the steady state soluti¢hs; 0,
—s(y P +nd; P) = F =const (14)
Note that in the steady state'n = n; which follows from kinetic equation. The general solutior(1d)is
P = Phom+ Ppart;
where
Phom = constexp—s/n),
is the general solution to the homogeneous equation (correspondig:10) and Ppart is a particular solution,
Ppart=—(F/n) Ei(s/n) exp(—s/n),

where E(x) is the integral exponential function.

At the tail of the PDFs > ny, the solution can be represented as seriegin Byat= —F /(sy) — nF/(ys)?+

-. Thus, the leading order asymptotic of the finite-flux solution/is Which describes strong intermittency.

Note that if the weakly nonlinearity assumption was valid uniformly te co then we would have to put
F =0 to ensure positivity of? and the convergence of its normalizatighP ds = 1. In this caseP = Phom=
nexp(—s/n) which is a pure Rayleigh distribution corresponding to the Gaussian wave field. However, WT ap-
proach fails for the amplitudes> sy for which the nonlinear time is of the same order or less than the linear wave
period and, therefore, we can expect a cut-ofP@f) ats = sp. An estimate based on the dynamical equa¢ibn
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gives' sn = w/e Wk?. This phenomenological cutoff can be viewed as a wave breaking process which does not
allow wave amplitudes to exceed their critical val®s) = 0 for s > sn. Now the normalization condition can

be satisfied for the finite-flux solutions. However, having a constant negativé flaX0 corresponds to a source

at s = sp which dictates the necessity of a sink for some sp to preserve the normalization @f(s). Note

however that the probability sink does not have to correspond to any physical “removal” of waves with certain
amplitudes. The sink should be present solely because the probability is diluted due to acceptance of new mem-
bers withs = sy into the statistical ensemble. In this case, the sink must be proportional to the probability and,
taking into account the normalization condition, we can write a modified equation for the PDF in the presence of
cutoff,

P —35(sy P +snds P) = —F, (15)

with F, = —P(sn)y/sni. The general solution to this equation #s= [C — F, Ei(s/n — logs)/n]exp(—s/n),
there constan€ is fixed by the normalization condition. This solution is close to the Rayleigh distribution in the
PDF cores ~n, and it has a As tail atn < s < sy.

5. Discussion

We found that the WT intermittency shows as an anomalously high/§) probability of the large-amplitude
waves whereas at lower amplitudes distribution appears to be close to Rayleigt/{) which corresponds to
Gaussian wave fields. We showed that wave breaking is essential for WT intermittency to be present in the system,
yet the details of wave breaking are not important. The role of wave breaking is just to ensure that no wave can
have amplitude greater than critical vakgg This simple condition leads to huge mathematical consequences as it
generates the flux solutions in the amplitude space and therefore creat¢s thierinittency. On the other hand,
the amplitude of the As tail is not prescribed by WT and will depend on a particular wave breaking mechanisms
in a particular system. However, some conclusions about the dependence of the tail amplitude on the physical
parameters can be reached using a dimensional arguments.

Consider the classical example of the gravity waves on the surface of deep water. The linear dispersion relation
is given byw;, = /gk, and the coefficient of nonlinear interactiwj;‘;‘ is given in[1]. This system has two power-
law steady state solutions. First one is the spectrum corresponding to the direct cascade of energy toward high-wave
numbersp, o k=% [1,4]. Second one is the spectrum corresponding to the inverse cascade of wave action toward
the smallk values; o« k—2%8. In addition to the gravity constagt the only quantity which determines the state
of the system in the direct cascade range is the energyHlwhereas in the inverse cascade range—the particle
flux Q. The PDF tail strength can be characterized by its area which is a dimensionless number and, therefore,
has to depend on the relevant dimensionless combinations in the direct and the inverse cascade’(@htjésg
and Qk/g, respectively. Thus, the PDF tail thickness grows withut its length decreases until it completely
disappears dt ~ kny (equal tog3/P? andg/Q, respectively).

This effect is illustrated ifrig. 1which shows PDFs obtained by numerical simulations of the dynamical equa-
tion for surface gravity waves on deep water forced atAtsnand dissipated at higtis. Pseudospectral numerical
method on a 256 256 grid was used similar to that pf,25-27]

At moderate wavenumbek & 15min) one can see a PDF tail in the range, 4< s < 10n; characterized
by an order of magnitude enhanced probabilities with respect to the Rayleigh distribution. This is an important
numerical result which shows that, consistent with our theory and contrary to common belief, wave turbulence is

1 This estimate assumes that if the wave amplitude at Soh@pened to be of the critical valsg then it will also be of similar value for
a range ok’s of width k. In other words, strong nonlinearity widens theapace correlation from zero (RPA value}t@value for the coherent
structures involved in the wave breaking).
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Fig. 1. PDF 0f|ak\2 for k = 15kmin (thick curve) andk = 35min (thin curve) and their comparison with Rayleigh distribution (dotted line).
Amplitude s is normalized so that the two curves have the same slope @t

not completely Gaussian and its PDFs have strong tails. They correspond to strong intermittency, i.e., anomalously
large probability of large amplitudes for small wavenumbers.

Unfortunately the range of where PDF converged to a stable value in this experiment was not large enough
to reachs > n values and, therefore, for an asymptotic scaling to develop. To increase this range a much longer
computing to gain good statistics of very rare events at the PDF tail is necessary, which we cannot perform with
our resources.

At a higher wavenumbelk(= 35kmin) one can see that the large amplitude waves are less probable than the
ones predicted by the Rayleigh distribution. This is because the wave breaking happens now closer to the PDF core
causing the PDF cut-off seen at the figure.

In this Letter we considered WT which is weak on average so that the wave breaking occurs only in the PDF
tail, i.e.,sn > n. It does not apply to the cases when, at some lardhe wave breaking may become so strong
that it occurs for most of the waves in the PDF core. These cases where predicted and disdd€3ebluntheir
statistics would be hard to describe analytically because of the strong nonlinearity.
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