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Abstract

Let S be a smooth n-dimensional cubic variety over a field K and suppose

that K is finitely generated over its prime subfield. It is a well-known fact

that whenever we have a set of K-points on S, we may obtain new ones, using

secant and tangent constructions. A Mordell-Weil generating set B ⊆ S(K)

is a subset of minimal cardinality that generates S(K) via these operations;

we define the Mordell-Weil rank as r(S,K) = #B. The Mordell-Weil theorem

asserts that in the case of an elliptic curve E defined over a number field K,

we have that r(E,K) < ∞. Manin [11] asked whether this is true or not for

surfaces. Our goal is to settle this question for higher dimensions, and for

as many fields as possible. We prove that when the dimension of the cubic

hypersurface is big enough, if a point can generate another point, then it can

generate all the points in the hypersurface that lie in its tangent plane. This

gives us a powerful tool, yet a simple one, for generating sets of points starting

with a single one. Furthermore, we use this result to prove that if K is a finite

field and the dimension of the hypersurface is at least 5, then r(S,K) = 1.

On the other hand, it is natural to ask whether r(S,K) can be bounded

by a constant, depending only on the dimension of S. It is conjectured that

such a constant does not exist for the elliptic curves (the unboundedness of

ranks conjecture for elliptic curves). In the case of cubic surfaces, Siksek [16]

has proven that such a constant does not exist when K = Q. Our goal is

to generalise this for cubic threefolds. This is achieved via an abelian group

vi



HS(K), which holds enough information about the Mordell-Weil rank r(S,K)

in the following manner; if HS(K) becomes large, so does r(S,K). Then, by

using a family of cubic surfaces that is known to have an unbounded number

of Mordell-Weil generators over Q, we prove that the number of Mordell-Weil

generators is unbounded in the case of threefolds too.
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Chapter 1

Introduction

1.1 Background and Motivation

Looking back in history, trying to trace back this ever-increasing ab-

straction that we may call mathematics, we can clearly see that there are two

fundamental concepts; shapes and numbers. Number theory, and especially

the study of Diophantine equations, can be considered a core mathematical

study. We recall that a Diophantine equation is a system of polynomial equa-

tions over a field K, and therefore it can be thought of as a subset of the affine

space Kn. This simple idea gave number theorists a whole new arsenal of

techniques to tackle old problems. It also paved the path to new connections

in mathematics. Probably, the best example is Fermat’s Last Theorem, which

remained open for more than three centuries until Wiles gave his famous proof

in 1995.

This interplay between number theory and algebraic geometry can be

used to find a natural, though unexpected, way to categorise Diophantine equa-

tions; the dimension of the zero locus. For example, we can restrict ourselves
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to one-dimensional varieties, or curves. Examples of curves are:

x+ y + z = 0

in P2 and

y2 − xz = yw − z2 = xw − yz = 0

in P3. These two serve as a fine example of a connection that would not have

been possible without the use of Algebraic Geometry in Number Theory.

A finer categorisation for curves is the genus. Curves are far more

studied and understood than higher dimensional varieties, but even in this

case, the only genera that we have a good understanding of are 0 and 1. If

the genus of the curve over a number field K is higher than 1, we still have

some deep results, such as Faltings’ Theorem that asserts that the curve has

only finitely many points. Elliptic curves (smooth curves of genus 1 that have

a K rational point) have formed a paradigm on the way to look for results in

Diophantine equations. For a number field K, the set of K-rational points on

an elliptic curve E defined over K forms a finitely generated abelian group; this

is the famous Mordell–Weil Theorem. This thesis is concerned with analogues

of the Mordell–Weil theorem in higher dimensions, building on recent advances

in the two-dimensional case, due to Siksek [16] and Cooley [2], [3].

1.2 Thesis Layout

The rest of this chapter is a reminder of the tools that will be needed

throughout this thesis. The following chapter will contain the preliminary

theorems and constructions, while the main results are presented and proven

2



in Chapters 3, 4, and 5.

Specifically, in Chapter 3 we shall prove, conditionally on a conjecture

of Colliot-Thélène, that the Mordell-Weil rank of a smooth cubic threefold

is unbounded. In Chapter 4 we shall give conditions on the finiteness of the

Mordell–Weil rank of a smooth cubic hypersurface over an arbitrary field, given

that its dimension is big enough. Finally, in chapter 5 we prove some results

for the Mordell–Weil rank over Fq.

1.3 Varieties

In this section we suppose that K is an algebraically closed field. The

definitions and notation given in this section follow [12]. Throughout this

thesis, every ring will be considered to be a commutative ring with identity.

Another convention that we shall use is for any points P,Q,R in general po-

sition, we write `P,Q for the line passing through P and Q, and ΠP,Q,R for the

unique plane that passes through P , Q, and R.

1.3.1 Affine Varieties

Let K be a field and A = K[x1, . . . , xn]. We shall write An
K = Kn for

an n-dimensional affine space over K. We remark that there is a distinction

on how we perceive An
K and Kn, as the latter is treated as just the point-set

K ×K × . . .×K.
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Consider the following correspondence:

V : {I | I E A} → {X | X ⊆ An
K}

I 7→ {P ∈ An
K | for all f ∈ I : f(P ) = 0} .

An algebraic set is a subset in the image of this correspondence. Moreover,

if X = V (I), for a prime ideal I, then X is called an affine variety.

In order to simplify the notation, for a principal ideal I = (f), we shall

write V (f) for V (I). The dimension of a variety V (I) is defined as the Krull

dimension of K[x1, . . . , xn]/I. The algebraic sets form the closed sets of a

topology on An
K , which is called the Zariski topology.

Let V = V (I) be an affine variety. We define the tangent space on V

at a point P = (p1, . . . , pn) ∈ V to be

TPV =
⋂
f∈I

V

(
n∑
i=1

∂f

∂xi
(P ) · (xi − pi)

)
.

A point P ∈ V = V (I) is called singular if dimV < dimTPV .

In many a case throughout this thesis I will be a principal ideal, gen-

erated by a function that has zero in its zero locus, so we will give a formula

for the tangent space at this special case.

Observation 1.3.1. Suppose that V = V (I) is the algebraic set corresponding

to a principal ideal I = (f), and that f(0) = 0. Let l be the sum of the first

degree monomials in f . Then,

T0V = {x ∈ An
K | l(x) = 0}.
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Proof. We may assume that f = c + l + h, where c is a constant, and h is

the sum of higher order terms. As f(0) = 0, it follows that c = 0. From the

definition of the tangent space we have that

T0V = V

(
n∑
i=1

∂f

∂xi
(0) · (xi)

)
= V

(
n∑
i=1

∂l

∂xi
(0) · (xi) +

n∑
i=1

∂h

∂xi
(0) · (xi)

)
.

The polynomial h is the sum of monomials of degree at least 2. Therefore the

derivative of each of these monomials vanishes when it is evaluated at zero.

Hence,

T0V = V

(
n∑
i=1

∂l

∂xi
(0) · (xi)

)
= V (l) = {x ∈ An

K | l(x) = 0}.

1.3.2 Projective Varieties

A polynomial f ∈ K[x0, . . . , xn] is homogeneous of degree d if

f =
∑

ai0...inx
i0
0 . . . x

in
n ,

with ai0...in 6= 0 only when i0 + · · ·+ in = d. Any polynomial f ∈ K[x0, . . . , xn]

has a unique expression f = f0 + · · ·+ fN , for some N ≥ 0, such that, for all

i = 1 . . . , N , the polynomial fi is homogeneous of degree i. The aforementioned

expression is called the homogeneous decomposition of the polynomial f ,

and the polynomials fi are the homogeneous components of f .

An ideal I ⊂ K[x0, . . . , xn] is a homogeneous ideal or simply homo-

geneous if for all polynomials f ∈ I, when f = f0+· · ·+fN is the homogeneous
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decomposition of f then for all i = 1, . . . , N , we have that fi ∈ I. In other

words, I is homogeneous if the homogeneous components of any polynomial

f ∈ I are contained in I. Equivalently, the ideal I is homogeneous if it is

generated by finitely many homogeneous polynomials.

Now, let us consider the following relation, for −→x , −→y ∈ Kn+1:

−→x ∼ −→y if and only if there exists λ ∈ K∗ such that −→x = λ−→y .

This is an equivalence relation in Kn+1 and the space Kn+1/ ∼ is the n-

dimensional projective space, which we shall denote by PnK . In this setting,

analogously to the correspondence V in affine varieties, we define:

V :

I
∣∣∣∣∣∣∣
I E K[x0, . . . , xn],

I homogeneous

→ {X | X ⊆ PnK}

I 7→

P ∈ PnK

∣∣∣∣∣∣∣
for all homogeneous f ∈ I

such that f(P ) = 0


If X = V(I) for a homogeneous prime ideal I ⊂ K[x0 . . . , xn], then X is called

a projective variety. In other words, a projective variety V is the zero locus

in PnK of a finite family of homogeneous polynomials that generate a prime

ideal. The dimension and the tangent space of a projective variety are defined

analogously to the case of the affine variety. If all the polynomials in the family

are of the same degree, then the variety shall be named according to the degree

(e.g. quadratic, cubic, quartic, etc.). In this thesis, unless otherwise stated,

when we consider a variety it will be assumed to be a projective variety.
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It is easy to see that:

PnK =
n⋃
i=0

Ui,

where Ui is the Zariski open set PnK r V(xi). A point [p0 : p1 : · · · : pn] ∈ Ui

corresponds to the point (p0
pi
, . . . , pi−1

pi
, pi+1

pi
, . . . , pn

pi
) ∈ An.

Definition 1.3.2. Let V ⊆ Pn be an affine variety, and suppose for simplicity

that V 6⊂ V(xi) for any i. We have seen that Pn is covered by (n + 1) affine

pieces An
(i), with affine coordinates x

(i)
0 , . . . , x

(i)
i−1, x

(i)
i+1, . . . , x

(i)
n , where:

x
(i)
j = xj/xi for j 6= i.

Write V(i) = V ∩An
(i). Then V(i) ⊆ An

(i) is clearly an affine algebraic set, because:

V(i) 3 P = (p
(i)
0 , . . . , p

(i)
i−1, 1, p

(i)
i+1, . . . , p

(i)
n )

⇐⇒ f(p
(i)
0 , . . . , p

(i)
i−1, 1, p

(i)
i+1, . . . , p

(0)
n ) = 0 ∀ homogeneous f ∈ I(V ),

which is a set of polynomial relations in the coordinates (x
(0)
1 , . . . , x

(0)
n ) of P .

The V(i) are called standard affine pieces of V .

Theorem 1.3.3 (Harnack’s Theorem). Let C be a curve of degree m in the

real projective plane. Then the number c of its components is bounded by:

1− (−1)m

2
6 c 6 1 +

(m− 1)(m− 2)

2

Proof. For proof see [5].

A hypersurface is a special case of a variety V(I), where I is a principal

ideal. A generalisation of hypersurfaces is complete intersections. We recall
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that a complete intersection is a variety V(I), such that the minimum number

of polynomials required to generate I is equal to its co-dimension.

1.4 Elliptic curves

One of the most interesting types of varieties in Number Theory are

elliptic curves. An elliptic curve is a pair (E,O), where E is a non-singular

curve of genus one and O ∈ E. We generally denote the elliptic curve simply

by E, the point O being understood. The elliptic curve E is defined over K,

written E/K, if E is defined over K as a curve and O ∈ E(K). We remark

that E can be written as the locus in P2 of a cubic equation with only one

point, the base point O, on the line at ∞. Then, after X and Y are scaled

appropriately, E has an equation of the form:

Y 2Z + α1XY Z + α3Y Z
2 = X3 + α2X

2Z + α4XZ
2 + α6Z

3,

where O = [0 : 1 : 0] is considered to be the base point and α1, . . . , α6 ∈ K.

An equation of this form is called a Weierstrass equation .

The Weierstrass equation for an elliptic curve is usually written using

non-homogeneous coordinates x = X/Z and y = Y/Z as follows:

E : y2 + α1xy + α3y = x3 + α2x
2 + α4x+ α6,

having in mind that there is an extra point O at infinity. If α1, . . . , α6 ∈ K,

then we say that E is defined over K.

A point P ∈ E is a point of inflexion, or simply a flex, if the tangent

line TPE to E at P meets E with multiplicity 3.
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We continue by assuming that the field has char(()K) 6= 2, 3, as we

are mainly interested in these cases. Let P = (x0, y0) be a point satisfying a

Weierstrass equation:

f(x, y) = y2 + α1xy + α3y − x3 − α2x
2 − α4x− α6 = 0,

and assume that P is a singular point on the curve f(x, y) = 0. It follows that

there are α, β ∈ K such that the Taylor series expansion of f(x, y) at P has

the form:

f(x, y)− f(x0, y0) = ((y − y0)− α(x− x0))((y − y0)− β(x− x0))− (x− x0)3.

The singular point P is a node if α 6= β. In this case the lines

y − y0 = α(x− x0) and y − y0 = β(x− x0)

are the tangent lines at P . Conversely, if α = β, then we say that P is a cusp

and in this case the tangent line at P is given by:

y − y0 = α(x− x0).

1.4.1 The composition law

Let E be an elliptic curve given by a Weierstrass equation (we assume

that O = [0 : 1 : 0] is the point at infinity). Any line in P2, by Bezout’s

Theorem, meets E in exactly three points, counting multiplicity. We define a

composition law ⊕ on E as follows. Let P,Q ∈ E and ` the line that passes

9



from P,Q (if P = Q then ` is the tangent line to E at P ). Also, let R′

be the third point in the intersection of ` with E, and `′ to be the line that

joins R′ to the point at infinity, O. Then, `′ intersects E at O, R′ and a

third point R. That third point, R, is denoted by P ⊕ Q. We remark that

this process of obtaining the point R from the points P and Q is called the

chord-and-tangent process.

Proposition 1.4.1 (Properties of the composition law). The composition law

satisfies the following:

1. For any P,Q,R ∈ E, we have that

(P ⊕Q)⊕R = P ⊕ (Q⊕R)

2. If a line intersects E at the points P,Q,R (not necessarily distinct), then

P ⊕Q⊕R = O.

3. For all P ∈ E, we have that P ⊕O = P .

4. For all P,Q ∈ E, we have that P ⊕Q = Q⊕ P .

5. For any P ∈ E there is a point in E, denoted by 	P , such that

P ⊕ (	P ) = O

It follows that the composition law makes E into an abelian group with

identity element the point at infinity, O.

Proof. We refer the reader to [17]
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1.4.2 Picard group

We follow the description in [17, Chapter 2]. Let K be a field, and

C a curve defined over K. The divisor group of a curve C, denoted by

Div(C/K), is the free abelian group generated by the K-points of C. Thus a

divisor D ∈ Div(C/K) is a formal sum

D =
∑

P∈C(K)

nP (P ),

where nP ∈ Z and nP = 0 for all but finitely many P ∈ C(K). The degree

of D is defined by

degD =
∑

P∈C(K)

nP .

The divisors of degree 0 form a subgroup of Div(C/K), which we denote by

Div0(C/K) = {D ∈ Div(C/K) | deg D = 0}.

A divisor D ∈ Div(C/K) is principal if it has the form D = div(f) for some

f ∈ K(C)∗. Two divisors are linearly equivalent, written D1 ∼ D2 if D1−D2 is

principal. The principal divisors form a subgroup of Div0(C/K). The divisor

class group or Picard group of C, denoted by Pic(C/K), is the quotient of

Div(C/K) by its subgroup of principal divisors, and we define Pic0(C/K) to be

the quotient of Div0(C/K) by the subgroup of principal divisors. The Galois

group Gal(K/K) acts on Pic(C/K) and Pic0(C/K) via its natural action on

Div(C/K) and Div0(C/K), and we let

Pic(C) = Pic(C/K)Gal(K/K), Pic0(C) = Pic0(C/K)Gal(K/K),
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that is the subgroups of elements invariant under Gal(K/K).

1.5 Cubic hypersurfaces

Let S be a smooth n-dimensional cubic hypersurface over a field K,

such that S(K) 6= ∅. Consider a K-line ` that is not contained in S. Then `

meets the hypersurface in exactly three points counting multiplicity over K,

and if two of them are K-rational so is the third.

These observations allow us, when we have some K-rational points of

S(K), to use secant and tangent constructions to obtain new ones. An interest-

ing question is how big is the smallest set of K-rational points that generates

all other points through this process. In the case that S is a curve defined

over a number field, the Mordell–Weil Theorem asserts that this set is finite,

but it is still unknown if it can be arbitrarily large. There is a fundamen-

tal difference between curves and varieties of higher dimension, concerning a

possible generalisation of the composition law; the latter can contain lines as

subvarieties.

Let S ⊆ Pn+1 be a smooth n-dimensional cubic variety over a field K,

such that S(K) 6= ∅, and n > 2. Three points P,Q,R ∈ S(K) (not necessarily

distinct) are called collinear if:

1. P , Q, R lie on a K-line belonging to S, or

2. P +Q+R is the intersection cycle of S with a K-line ` in Pn+1.

By the latter we mean that the intersection of S and ` is exactly P , Q and

R counting multiplicities. If P , Q, R are collinear, we write R = P ◦ Q (we

remark that the order of P , Q and R does not matter). This composition law
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has an obvious problem. Suppose that n > 3, and the field K is not F2. As

K 6= F2, any K-line contains more than 3 points. Now, suppose there exists

a K-line `, such that ` ⊆ S, and choose two points P and Q on that line. For

any other point A ∈ ` we have that P ◦ Q = A. Thus, ◦ is a (multivalued)

composition law on S(K), which is a great difference from the elliptic curve

case, as we cannot hope for an analogue of the Mordell–Weil group.

1.5.1 Lines on Cubic Hypersurfaces

The arrangement of lines on a cubic surface was well-understood in

the 19th century. In general, the theory of lines on a cubic surface was first

studied in correspondence between Cayley and Salmon. Specifically, Cayley

was the first to notice that a definite number of lines lie on the surface and

then Salmon showed that that number was indeed 27. Their results were

first published independently in 1849. Their combined result is known as the

Cayley–Salmon Theorem.

Theorem 1.5.1 (Cayley–Salmon). Let S ⊂ P3 be a smooth cubic surface over

a field K. Then S contains precisely 27 lines defined over K.

Proof. We refer the reader to [6, Chapter V.4].

Example 1.5.2. Consider the following cubic surface

S : x3
0 + x3

1 + x3
2 + x3

3 = 0

in P3 over Q. Let ζ be a primitive cube root of unity. Observe that

x0 = −ζ ix1, x2 = −ζjx3
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defines a line that lies on S, for 0 ≤ i, j ≤ 2. This gives 9 lines. Another 9

lines are given by

x0 = −ζ ix2, x1 = −ζjx3,

and yet another 9 are given by

x0 = −ζ ix3, x1 = −ζjx2.

The Cayley–Salmon Theorem says that these are all the lines on S.

By contrast a smooth cubic hypersurface of dimension n > 3 contains

infinitely many lines. Indeed, let S ⊂ Pn+1 be a smooth cubic hypersurface

of dimension n > 2. The lines on S are parametrized by the points of the

Fano variety F (S). If n = 2 (i.e. S is a cubic surface) then F (S) consists

of 27 points. However if n > 3 then F (S) is a smooth projective variety of

dimension 2n− 4. For this we refer to [4].

Example 1.5.3. Let K be a field, and let S ⊂ P4 be the cubic threefold

S : x3
0 + x3

1 + x3
2 + x3

3 + x3
4 = 0 .

We assume that the characteristic of K is not 3. In this case S is smooth. The

Fano variety F (S) has dimension 2 and so S has infinitely many lines defined

over K. However, we can easily deduce this fact using the Cayley–Salmon

Theorem. Let λ ∈ K, λ3 6= −1. Let Πλ be the hyperplane

Πλ : x4 = λx3.
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Then S ∩ Πλ is a cubic surface with equations

x4 = λx3, x3
0 + x3

1 + x3
2 + (1 + λ3)x3

3 = 0 .

The condition λ3 6= −1 ensures that this is smooth. Hence S ∩Πλ has 27 lines

over K. Let us denote the set of these 27 lines on S ∩ Πλ by Aλ. Suppose

λ 6= µ. Then any line in Aλ∩Aµ is contained in S∩Πλ∩Πµ. This is the cubic

curve

x3 = x4 = 0, x3
0 + x3

1 + x3
2 = 0.

This curve is irreducible and does not contain lines, so Aλ ∩ Aµ = ∅. As K is

infinite, we see that ⋃
λ∈K,λ3 6=1

Aλ

is an infinite set of lines on S.

1.5.2 Eckardt Points

In this section S denotes a smooth cubic surface ⊂ P3 defined over K.

Definition 1.5.4. Let P ∈ S(K). Let TPS be the tangent plane to S at P .

We say that P is an Eckardt point if TPS ∩ S is the union of three K-lines

passing through P .

We shall need the following well-known result. For a proof, see [16,

Lemma 2.2].

Lemma 1.5.5. Let ` be an K-line contained in S. If char(()K) 6= 2, then `

contains at most 2 Eckardt points. If char(K) = 2, then ` contains at most 5

Eckardt points.
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1.6 Polynomial Equations

We recall a theorem that settles a conjecture made by Artin in 1935,

namely whether finite fields are quasi-algebraically closed. Specifically, the

theorem discusses the number of solutions of a specific system of polynomial

equations over a finite field. This was proven by Chevalley in 1936, and a

refined version was proven by Warning in the same year.

Theorem 1.6.1 (Chevalley–Warning Theorem). Let F be a finite field of char-

acteristic p and let {fi}ri=1 ⊆ F[x1, . . . , xn] be polynomials of degree di < n such

that the number of variables satisfies

n >
r∑
i=1

di .

Consider the system of polynomial equations:

fi(x1, . . . , xn) = 0, i = 1, . . . , r. (1.1)

The number of common solutions of these equations is divisible by p.

Proof. Let q = pn = #F. It is a well-known fact that if i < q − 1, then

∑
α∈F

αi = 0.

Therefore, the sum over all β ∈ Fn of any polynomial of degree less that

n(q − 1) also vanishes. So, this leads to:

∑
β∈Fn

(1− f q−1
1 (β)) · . . . · (1− f q−1

r (β)) ≡ 0 (mod p). (1.2)
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On the other hand, as #U(F) = q − 1, we have that for an α ∈ F:

f q−1(α) =


0 if f(α) = 0

1 otherwise

Thus, the left hand side of Equivelance (1.2) is exactly the number of

solutions of (1.1).

1.7 Number Fields

An algebraic number field, or simply number field, is a field of finite

degree over the field Q of rational numbers. In other words, a number field

K is a finite extension Q(α) of Q, for some α ∈ K. Hence, K is a field that

contains Q and a finite dimensional vector space over Q. The dimension of K

as a vector space over Q is simply called the degree of K. A valuation | · |

on K is a function from K to the non-negative real numbers such that, for all

α, β ∈ K:

1. |α| = 0 if and only if α = 0,

2. |αβ| = |α||β|,

3. there is a constant C > 0 such that |α + 1| 6 C whenever |α| = 1.

The trivial valuation on K is that for which |α| = 1 for all α 6= 0. A valuation

| · | on K is non-archimedean if condition (3) holds for C = 1. In other

words if for all α, β ∈ K we have

|α + β| 6 max{|α|, |β|}.
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Two valuations | · |1, | · |2 on the same field are equivalent if there is c > 0 so

that, for all α ∈ K:

|α|1 = |α|c2.

Trivially, every valuation is equivalent to one with C = 2. For such a valuation

it can be shown that

|α + β| 6 |α|+ |β|.

A place on a number field is an equivalence class of its valuations.

1.7.1 Weak Approximation

Lemma 1.7.1. Let | · |1, | · |2, . . . , | · |n be non trivial inequivalent valuations of

a field K, then there is an element α ∈ K such that

 |α|1 > 1

|α|i < 1, i 6= 1.

Proof. First let n = 2. Because | · |1 and | · |2 are inequivalent, there are

elements b and c such that  |b|1 < 1, |b|2 > 1

|c|1 > 1, |c|2 < 1.

Now a = c
b

has the required properties.

We proceed by induction assuming that the lemma is true for n − 1
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valuations. There exist elements b, c such that

 |b|1 > 1, |b|i < 1, i = 2, 3, . . . , n− 1

|c|1 < 1, |c|n > 1.

If |b|n 6 1, then a = cbr works for sufficiently large r. If |b|n > 1, then

ar = cbr

1+br
works for sufficiently large r, because br

1+br
converges to 0 or 1

according as |b| < 1 or |b| > 1.

Lemma 1.7.2. In the situation of the last lemma, there exists an element of

K that is close to 0 for | · |i, i = 2, . . . , n.

Proof. Choose a as in Lemma 1.7.1, and consider ar = ar

1+ar
. Then

|ar − 1|1 =
1

|1 + ar|1
6

1

|a|r1 − 1
→ 0

as r →∞. For i > 2,

|ar|i =
|a|ri
|1 + a|ri

6
|a|ri

1− |a|ri
→ 0

as r → 0.

Theorem 1.7.3. Let | · |1, | · |2, . . . , | · |n be non trivial inequivalent valuations

of a field K, and let a1, . . . , an be elements of K. For any ε > 0, there is an

element a ∈ K such that |a− ai|i < ε for all i.

Proof. Choose bi, i = 1, . . . , n, close to 1 for | · |i and close to 0 for | · |j, j 6= i.

Then

a = a1b1 + · · ·+ anbn

works.

19



1.7.2 Adèles

Let K be a global field. For each normalised valuation | · |v of K, let

Kv be the completion of K. If | · |v is non archimedean we denote by Ov the

ring of integers of Kv. The adèle ring AK of K is the topological ring whose

underlying topological space is the restricted product of the Kv with respect

to the Ov and where addition and multiplication are defined component wise:

(αβ)v = αvβv (α + β)v = αv + βv α, β ∈ AK . (1.3)

It is readily verified that:

1. this definition makes sense, i.e. if α, β ∈ AK , then αβ, α + β whose

components are given by Equation (1.3) are also in AK and,

2. addition and multiplication are continuous in the AK-topology, so AK is

a topological ring as asserted.

AK is locally compact because the Kv are locally compact and the Ov are

compact.

There is a natural mapping of K into AK which maps α ∈ K into the

adele everyone of which components is α: this is an adele because α ∈ Ov

for almost all v. The map is an injection because the map of K into Kv is

an injection. The image of K under this injection is the ring of principal

adeles. It will cause no trouble to identify K with the principal adeles, so we

shall speak of K as a subring of AK .

Let Ẑ be the profinite completion of the integers, i.e. the inverse limit:

Ẑ = lim←−Z/nZ.
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We remark that, by the Chinese remainder theorem, Ẑ is isomorphic to the

product of all the rings of p-adic integers. The ring of integral adèles AZ is

the product AZ = R× Ẑ. Let K be a number field. The ring of adeles AK of

K is the tensor product:

AK = K ⊗Z AZ.

1.7.3 The Brauer Group of Field

In this Section we follow Serre’s article [15] to define the Brauer group of

a field and study it for local fields. Let K be a field. The easiest way to define

the Brauer group Br(K) may be to define it in terms of Galois cohomology

Br(K) = H2(Gal(K/K), K
∗
),

where K is the separable closure of K.

Now let K be a non-archimedean local field (by which we mean a finite

extension of Qp for some prime p). We follow Serre [15] in defining the invariant

map invK : Br(K) → Q/Z. Write Knr ⊂ K for the maximal unramified

extension of K. As Gal(Knr/K) is a quotient of Gal(K/K), we have a natural

map

H2(Gal(Knr/K), K∗nr)→ Br(K)

obtained by inflation. This inflation map turns out to be an isomorphism

[15, Theorem 1], and we shall henceforth identify Br(K) with the cohomology

group on the left. The Galois group Gal(Knr/K) is isomorphic topologically
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to Ẑ. Then, the valuation map v : K∗nr → Z defines a map

Br(K) ∼= H2(Gal(Knr/K), K∗nr)→ H2(Ẑ,Z),

which will also be denoted by v. This v is an isomorphism [15, Theorem 2].

Let us consider the exact sequence

0→ Z→ Q→ Q/Z→ 0

of Ẑ-modules with trivial action. The module Q has trivial cohomology, since

it is uniquely divisible, and so the coboundary

δ : H1(Ẑ,Q/Z)→ H2(Ẑ,Z)

is an isomorphism. On the other hand,

H1(Ẑ,Q/Z) = Hom(Ẑ,Q/Z).

as Ẑ is acting trivially. Hence, we have the isomorphism,

δ−1 : H2(Ẑ,Z)→ Hom(Ẑ,Q/Z) .

Finally, define

γ : Hom(Ẑ,Q/Z)→ Q/Z, ϕ 7→ ϕ(1) .

We define local invariant map invK : Br(K) → Q/Z as the composition

γ ◦ δ−1 ◦ v .
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For K = C, the Brauer group Br(C) is clearly trivial and we define

invC = 0. For K = R a similar construction gives an invariant map

invR : Br(R)→ 1

2
Z/Z ⊂ Q/Z.

Finally, let K be a number field, and Ω the set of places of K. For a

place v ∈ Ω we shall write invv for invKv . The Hasse reciprocity law states

that the following sequence of abelian groups is exact:

0→ Br(K)→
∑
υ∈Ω

Br(Kυ)→ Q/Z→ 0.

Here the third map is the sum of local invariants invυ : Br(Kυ)→ Q/Z.

1.7.4 Brauer-Manin Obstruction

In this section we recall some facts about the Brauer–Manin obstruction;

for further details on the Brauer–Manin obstruction see [18, Section 5.2].

Let X be a smooth, projective variety over a number field K. Let Br(X)

be the Brauer group of X and denote by Br0(X) the image of Br(K) in Br(X).

Consider the pairing:

〈 , 〉 : Br(X)×X(AK)→ Q/Z, 〈A, (Pυ)〉 =
∑
υ∈Ω

invυ(A(Pυ)).

This is the adelic Brauer-Manin pairing and satisfies the following prop-

erties:

(i) If A ∈ Br0(X) ⊂ Br(X) and (Pυ) ∈ X(AK) then 〈A, (Pυ)〉 = 0.

(ii) If P ∈ X(K) then 〈A,P 〉 = 0 for every A ∈ Br(X).
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(iii) For any A ∈ Br(X), the map

X(AK)→ Q/Z, (Pυ) 7→ 〈A, (Pυ)〉

is continuous where Q/Z is given the discrete topology.

We define:

X(AK)Br(X) = {(Pυ) ∈ X(AK) : 〈A, (Pυ)〉 = 0 for all A ∈ Br(X)/Br0(X)}.

By the above we know that:

X(K) ⊆ X(AK)Br(X),

where X(K) is the closure of X(K) in X(AK). We say that the Brauer-

Manin obstruction is the only obstruction to weak approximation if

X(K) = X(AK)Br(X).

We shall give an example of a cubic surface that fails the weak approx-

imation.

Example 1.7.4. Let

S : x3 + y3 + z3 − 2w3 = 0.

Let (x : y : z : w) ∈ S(Q) be a point; without loss of generality x, y, z, w

are integers with greatest common divisor 1. Then we have that one of x,

y and z is divisible by 6; for a proof, see [7]. This means that this surface

fails weak approximation as it cannot have a rational point close to both

(1 : 0 : 1 : 1) ∈ S(Q2) and and (0 : 1 : 1 : 1) ∈ S(Q3).
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Ideally, we would like to know if all the restrictions are the ones im-

posed by the Brauer-Manin obstruction. Although that is the case in the

aforementioned example, it is not known whether this holds for all smooth

cubic surfaces.

In this thesis, we shall use the following conjecture of Colliot-Thélène;

see [16].

Conjecture 1.7.5 (Colliot-Thélène). Let X be a smooth, projective, geomet-

rically rational surface over a number field K. Then the Brauer-Manin ob-

struction is the only one to weak approximation on X.

The term geometrically rational means that X is birational to P2

over K. It is known that smooth cubic surfaces are geometrically rational [8,

Section 5.3].

1.8 Bertini’s Theorem

The dual space of Pn parametrizes hyperplanes in Pn and is denoted

by Pn∗. It is canonically isomorphic to Pn by identifying [a0 : a1 : · · · : an]

with the hyperplane

a0x0 + a1x1 + · · ·+ anxn = 0.

By a linear system of hyperplanes in Pn we mean a linear subvariety of

Pn∗.

Example 1.8.1. Let P = [p0 : p1 : · · · : pn] ∈ Pn. The set of hyperplanes
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passing through P is a linear system:

LP = {[a0 : a1 : · · · : an] ∈ Pn∗ : p0a0 + · · ·+ pnan = 0}.

Note that as a subvariety of Pn, the linear system LP has dimension n−1 and

is in fact isomorphic to Pn−1. This is easier to see if we move the point P to

[1 : 0 : 0 : · · · : 0] and so

LP = {[0 : a1 : · · · : an] : [a1 : · · · : an] ∈ Pn−1}.

By this we mean that the hyperplanes through P are the ones of the form

a1x1 + · · ·+ anxn = 0

where [a1 : · · · : an] ∈ Pn−1.

Likewise if P , Q are distinct points, we can define the linear system

LP,Q = LP∩LQ of hyperplanes passing through P , Q. This has dimension n−2

and is isomorphic to Pn−2. It is easy to see this by moving P to [1 : 0 : · · · : 0]

and Q to [0 : 1 : 0 : · · · : 0], and then

LP,Q = {[0 : 0 : a2 : · · · : an] : [a2 : · · · : an] ∈ Pn−2}.

If P , Q, R are distinct points then LP,Q,R is isomorphic to Pn−3 unless

P , Q, R are collinear, in which case it is just LP,Q.

Let V ⊂ Pn be a smooth variety over a field K. Let L ⊂ Pn∗ be a linear

system of hyperplanes defined over K, and let H ∈ L(K). Then V ∩ H is a

hyperplane section of V . Is there such an H ∈ L(K) so that V ∩H is smooth?
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This is a question that can be answered with the help of a version of Bertini’s

Theorem. This version of Bertini’s theorem is not a powerful as other versions

of it, but has the advantage that it applies to fields of arbitrary characteristic;

for a proof see [13].

Theorem 1.8.2 (Bertini’s Theorem). Let K be a field. Let V ⊂ Pn be a

smooth variety over K, and let L ⊂ Pn∗ be a linear system of hyperplanes

defined over K of positive dimension. Then there is a Zariski dense open

subset L′ ⊂ L such that for every H ∈ L′, the hyperplane section H ∩ V is

smooth away from the base locus (∩L) ∩ V .

The base locus is the set of points in V contained in all the hyperplanes

in L.

Example 1.8.3. Let P , Q ∈ V ⊂ Pn and consider the linear system LP,Q of

hyperplanes passing passing through P and Q as above. Then the intersection

of all the hyperplanes in LP,Q is the line `P,Q connecting P , Q. If `P,Q ⊂ V ,

then `P,Q is the base locus. If `P,Q 6⊂ V , then `P,Q ∩ V is the base locus, and

this is a finite set.

Lemma 1.8.4. Let f ∈ K[x0, . . . , xn] be a non-zero polynomial where K is an

infinite field. There are values a0, . . . , an ∈ K such that f(a0, a1, . . . , an) 6= 0.

Proof. We prove this by induction on n > 0. If n = 0 then f is a polynomial

in one variable and has finitely many roots in K. As K is infinite, there exists

a0 ∈ K so that f(a0) 6= 0.

Suppose n > 0 and write

f =
m∑
j=0

gj(x1, . . . , xn)xj0.
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As f is non-zero, at least one of the gj is non-zero, and so by the inductive

hypothesis gj(a1, . . . , an) 6= 0 for some a1, . . . , an ∈ K. Hence, f(x0, a1, . . . , an)

is a non-zero polynomial in K[x0], and therefore there exists a0 ∈ K such that

f(a0, a1, . . . , an) 6= 0.

If K is a finite field, then the above lemma does not have to hold. For

example in K = Fp where p is a prime, f = xp0 − x0 takes only the value 0.

Lemma 1.8.5. Let K be an infinite field. Let A be a dense Zariski open subset

of Pm (m > 0) defined over K. Then A(K) 6= ∅.

Proof. We can write A = Pm − Z where Z is a Zariski closed subset defined

over K. The set Z is given by

Z : f1 = f2 = · · · = fr = 0,

where fj are homogeneous non-zero polynomials (otherwise Z = Pn contra-

dicting the fact that A is Zariski dense). Hence by Lemma 1.8.4 we can find

P = [a0 : a1 : · · · : an] ∈ Pm(K) such that f1(P ) 6= 0. Thus P ∈ A(K).

Corollary 1.8.6. Let K be an infinite field, and let V ⊂ Pn be a smooth

variety over K, where n > 3. Let P , Q ∈ V (K) and denote the line joining

P , Q by lP,Q. Suppose lP,Q 6⊂ V . Then there is a hyperplane H defined over

K such that P , Q ∈ H and H ∩ V is smooth.

Proof. We apply Bertini’s Theorem to the linear system LP,Q which is isomor-

phic to Pn−2. Then there is a Zariski dense open subset L′ ⊂ L such that if

H ∈ L′ then H ∩ V is smooth away from the base points. Since lP,Q 6⊂ V ,

we know the set of base points is finite, given by lP,Q ∩ V = {P1, P2, . . . , Pr}
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where P1 = P and P2 = Q. A hyperplane H has intersection H ∩ V singular

at Pj if and only if H is the tangent hyperplane TV,Pj
to V at Pj. Let

L′′ = L′ − {TV,P1 , . . . , TV,Pr}.

This is also a Zarski dense open subset of LP,Q as we removed finitely many

points from L′. Using Lemma 1.8.5 we have L′′(K) 6= ∅. Let H ∈ L′′(K).

Then H ∩ V is smooth and H contains P , Q.

Corollary 1.8.7. Let K be an infinite field, and let V ⊂ Pn be a smooth

variety over K, where n > 4. Let l be a K-line contained in V . Then there is

a hyperplane H defined over K such that l ⊂ H and H ∩ V is smooth.

Proof. This proof is a modification of the previous proof. Let P , Q be any

two K-points on l and consider the linear system LP,Q which is isomorphic to

Pn−2. Clearly every H ∈ LP,Q contains l. Again there is a Zariski dense open

subset L′ ⊂ L such that if H ∈ L′ then H ∩ V is smooth away from the base

locus, which is now l. The hyperplane H is singular at P ∈ l if and only if

H = TV,P . Let W be the image in L of the map

l→ L, P 7→ TV,P .

As l has dimension 1, the image W has dimension at most 1. But L′ has

dimension n− 2 > 2 (as we assumed that n > 4 in this corollary). Let

L′′ = L′\W.

This must be Zariski dense open in L, and every H ∈ L satisfies H ∩ V is
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smooth. We can complete the proof as before.
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Chapter 2

Properties of HS(K)

2.1 Background

Let S ⊂ Pn+1 be a smooth cubic hypersurface over a field K of dimen-

sion n > 1. The tangent and secant operations give us new points from old

ones. We would like to understand the Mordell–Weil problem for S(K),

which asks whether S(K) can be generated by repeated tangent and secant

operations starting from a finite set. This problem was posed by Segre [14] for

cubic surfaces over Q, and by Manin [10] for general cubic hypersurfaces over

fields K that are finitely generated over their prime subfields (e.g. number

fields, Fp(t)).

Let us give a formal statement of the problem. Let B be a subset of

S(K). Define the following sequence:

B0 ⊆ B1 ⊆ B2 ⊆ B3 ⊆ · · · ⊆ S(K),

where B0 = B, and for every i > 0, we let Bi+1 be the set of points R ∈ S(K)
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such that:

• either R ∈ Bi, or

• there exists a K-line ` 6⊂ S and points P , Q ∈ Bi, such that ` · S =

P +Q+R.

We define the Mordell–Weil span of B, to be

〈B〉MW =
∞⋃
i=0

Bn.

We say that B generates S(K) if 〈B〉MW = S(K).

Remark 2.1.1. Obviously, the Mordell-Weil span of a set B depends on the

chosen field K. However, in an effort to simplify our notation we simply write

〈B〉MW , omitting any reference to the field K.

We say that a subset B of S(K) is a Mordell–Weil generating set

for S(K) if:

1. B generates S(K), and

2. when A generates S(K), then #B 6 #A.

We define the Mordell–Weil rank r(S,K) of the cubic hypersurface

S/K as the cardinality of such a set B. The Mordell–Weil problem for S/K

can now be formally formulated as follows:

Mordell–Weil Problem. Is there a finite Mordell–Weil generating set for

S/K? Or equivalently, is r(S,K) <∞?

If K is a number field and S has dimension 1, then the answer is yes by

the Mordell–Weil Theorem. For arbitrary dimension n and K a finite field the
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answer is obviously yes. There are very few known cases for dimension n > 2,

and K a number field.

Theorem 2.1.2. (Siksek) et S ⊂ P3 be a cubic surface over a field K satisfying

#K > 13. Suppose S contains a skew pair of K-lines. Then r(S,K) = 1.

Proof. We refer to [16, Theorem 1].

Due to the geometric nature of r(S,K), it is very hard to compute it

directly. In order to study r(S,K) for cubic surfaces S, Siksek [16] introduced

a group HS(K), which can yield a lower bound for r(S,K). Here we generalize

Siksek’s construction to arbitrary dimension n > 1.

We define GS(K) to be the free abelian group generated by the K-

rational points of S:

GS(K) =
⊕

P∈S(K)

Z · P,

Let G′S(K) be the subgroup of GS(K) generated by the formal sums P+Q+R

with P,Q,R ∈ S(K) collinear, i.e.:

(i) there is a K-line ` * S, such that ` · S = P +Q+R, or

(ii) there is a K-line ` ⊆ S, such that P,Q,R ∈ `.

The degree map

deg : GS(K)→ Z

is defined by

deg(
n∑
i=0

aiPi) =
n∑
i=0

ai.

Moreover, let

G′′S(K) = {D ∈ G′S(K) | deg(D) = 0}
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and

HS(K) = GS(K)/G′′S(K).

If D ∈ GS(K), then we denote the image of D in HS(K) by [D]. It is evident

that the degree map is well-defined on HS(K), so we can define the group:

H0
S(K) = {[D] ∈ HS(K) | deg([D]) = 0}.

Here, for an abelian group G, we denote the subgroup of points of order

dividing m by G[m].

Remark 2.1.3. Clearly, for any positive integer n, we have that

HS(K)[n] ⊆ H0
S(K).

We are interested in the case that S(K) 6= ∅, therefore the degree map

is a well define epimorphism onto Z and H0
S(K) is its kernel, hence we have

that

HS(K)/H0
S(K) ∼= Z. (2.1)

It is unknown if for smooth cubic curve S over Q whether r(S,Q) can

be arbitrarily large. This is the famous question of whether ranks of elliptic

curves can be arbitrarily large (Conjecture VIII.10.1 in Silverman’s book [17]).

For cubic surfaces over Q the same question has an affirmative answer.

Theorem 2.1.4. (Siksek) Let p1, p2, . . . , ps be distinct primes such that

(a) pi ≡ 1 (mod 3),

(b) 2 is a cube modulo pi.
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Let M =
∏
pi and let S = SM be the cubic surface in P3 given by

S : x3 + y3 + z(z2 +Mw2) = 0.

Then

r(S,Q) > dimF2 HS(Q)[2] > 2s.

Proof. See [16], Theorem 2.

Theorem 2.1.5. (Siksek) Let p1, p2, . . . , ps be distinct primes such that pi ≡ 1

(mod 3). Let M = 3
∏
pi and let S = SM be the cubic surface in P3 given by

S : x3 + y3 + z3 +Mw3 = 0.

Assume that the Brauer–Manin obstruction is the only one to weak approxi-

mation for S. Then

r(S,Q) > dimF3

H0
S(Q)

3H0
S(Q)

> 2s.

Proof. See [16], Theorem 3.

2.2 First Results

In this section, S ⊂ Pn (n > 3) denotes a smooth cubic hypersurface

over a field K; we generalize several results of Siksek [16] for the case n = 2.

Lemma 2.2.1. Let ` ⊂ S be a K-line. Let P , Q ∈ `(K). Then P − Q ∈

G′S(K). In particular, [P ] = [Q] in HS(K).
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Proof. From the definition of G′S(K), we see that it contains 3P and 2P +Q.

Thus P − Q = 3P − (2P + Q) is contained in the group G′S(K). Moreover,

P − Q has degree 0, so P − Q ∈ G′′S(K). This shows that [P − Q] = 0 in

HS(K).

Lemma 2.2.2. Let P ∈ S(K). If Q ∈ (TP ∩ S)(K) is distinct from P , then

the line joining P , Q is tangent to S at P , so that 2P +Q ∈ G′S(K).

Proof. We may choose an affine chart that contains P , Q. Without loss of

generality we may also assume that P = (0, 0, . . . , 0), the tangent space is

xn = 0 and Q = (1, 0, 0, . . . , 0). Thus S is defined by the equation:

0 = f(x1, x2, . . . , xn) = xn + q(x1, x2, . . . , xn) + c(x1, x2, . . . , xn),

for a homogeneous quadratic polynomial q and a homogeneous cubic polyno-

mial c. Let ` be the line that joins P and Q. Therefore, ` has the parametriza-

tion (t, 0, 0, . . . , 0). It is clear that this is contained in the plane xn = 0. If

` ⊂ S then the lemma follows from Lemma 2.2.1. So suppose ` 6⊂ S. The

points of intersection of ` with S correspond to the solutions to the equation

0 = f(t, 0, . . . , 0) = t2q(1, 0, . . . , 0) + t3c(1, 0, . . . , 0).

As this has a double root at t = 0 (which corresponds to the point P on `)

we see that ` meets S with multiplicity > 2 at P . But ` meets S at Q also.

Since ` meets S in exactly three points counting multiplicity, we have that

` · S = 2P +Q. Thus 2P +Q ∈ G′S(K).

The following theorem is a crucial part of our study of the group HS(K).
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Theorem 2.2.3. Suppose that S(K) contains a K-line `, and let Q0 ∈ `(K).

Then, for all P ∈ S(K) we have that 2P +Q0 ∈ G′S(K).

Proof. Let P ∈ S(K). By the definition of G′S(K), if P ∈ `(K) there is

nothing to prove. Hence, we may assume that P /∈ `(K). Let TPS be the

tangent space of S at P . If ` ⊂ TPS, then Q0 ∈ TPS and we complete the

proof using Lemma 2.2.2. Thus suppose ` 6⊂ TPS. Then ` and TPS intersect

in a unique K-point Q, and this is contained in S as ` ⊂ S. By Lemma 2.2.2

we have 2P +Q ∈ G′S(K), and by Lemma 2.2.1 we have Q0−Q ∈ G′S(K). As

G′S(K) is a group, it contains 2P +Q0 = (2P +Q) + (Q0 −Q).

Corollary 2.2.4. If S(K) contains a K-line, then H0
S(K) = HS(K)[2].

Proof. From Remark 2.1.3, we only need to show that H0
S(K) ⊆ HS(K)[2].

Let [D] ∈ H0
S(K), for some D =

n∑
i=0

aiPi ∈ GS(K) with
n∑
i=0

ai = 0. Since S(K)

contains a K-line, from Theorem 2.2.3 we have that, for all i, 2Pi+Q0 ∈ G′S(K)

for some Q0 on the K-line. Therefore,

n∑
i=0

2aiPi +
n∑
i=0

aiQ0 ∈ G′S(K)⇒

2
n∑
i=0

aiPi = 2D ∈ G′S(K),

and so [D] ∈ HS(K)[2].

Corollary 2.2.5. Let `1 and `2 be K-lines contained in S. Suppose Q1 ∈

`1(K) and Q2 ∈ `2(K). Then Q1 −Q2 ∈ G′S(K).

Proof. From Theorem 2.2.3 we have that

2Q1 +Q2, 2Q2 +Q1 ∈ G′S(K).

37



Therefore,

Q1 −Q2 = 2Q1 +Q2 − (Q1 + 2Q2) ∈ G′S(K).

Theorem 2.2.6. If K is algebraically closed, then for all P ∈ S(K) we have

that 3P ∈ G′S(K).

Proof. Using the same technique as in the proof of the previous theorem, we

may take an affine chart and suppose that P = (0, 0, . . . , 0) and that TPS is

given by xn = 0. Any non-zero a ∈ Kn−1×{0} defines a line ` passing through

P and contained in TPS, with parametrization ta = t(a1, a2, . . . , an−1, 0). The

points of intersection of this line with S correspond to the roots of a polynomial

t2q(a1, . . . , an−1) + t3c(a1, . . . , an−1) , (2.2)

where q and c are respectively homogeneous quadratic and cubic. Since

K is algebraically closed there are a1, . . . , an−1 ∈ K, not all zero, so that

q(a1, . . . , an−1) = 0. Now either c(a1, . . . , an−1) = 0 in which case ` is con-

tained in S, or c(a1, . . . , an−1) 6= 0, so 0 is a triple root of (2.2). In either case

we conclude that 3P ∈ G′S(K).

The following are immediate from the theorem.

Corollary 2.2.7. If K is algebraically closed, then H0
S(K) is trivial.

Proof. Since K is algebraically closed, S(K) contains a K-line ` (see Subsec-

tion 1.5.1). From Corollary 2.2.4 we have that

H0
S(K) = HS(K)[2]. (2.3)
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On the other hand, from Theorem 2.2.3 we have that

H0
S(K) = HS(K)[3]. (2.4)

The result follows from Equations (2.3) and (2.4).

Corollary 2.2.8. If K is algebraically closed, then HS(K) ∼= Z.

Proof. Immediate from Equation (2.1) and Corollary 2.2.7.

2.2.1 Relation between H0
S(K) and r(S,K)

We say that P0 ∈ S(K) is K-ternary if there is a K-line ` 6⊂ S such

that ` · S = 3P0. The following is Theorem 5 of [16].

Lemma 2.2.9. Let P0 be K-ternary. Let B be a generating set for S(K).

Then {[P − P0] : P ∈ B} generates H0
S(K). In particular, if p is a prime

r(S,K) > dimFp

H0
S(K)

pH0
S(K)

.

Proof. We follow the proof of Theorem 5 of [16] which is stated for cubic

surfaces but the same argument applies in higher dimension. First note that

by definition, 3P0 ∈ G′S(K). Suppose now that P , Q, R ∈ S(K) are collinear.

Then P +Q+R ∈ G′S(K) and so [P − P0] + [Q− P0] + [R− P0] = 0.

Let B0 = B and let Bi be as defined in Section 2.1, so that S(K) =

〈B〉MW = ∪∞i=0Bi. Suppose R ∈ B1. We will show that [R − P0] is in the

subgroup generated by {[P − P0] : P ∈ B}. But by definition of B1, either

R ∈ B0 = B or there are P , Q ∈ B such that P , Q, R are collinear. In

either case we see that [R − P0] is contained in the subgroup generated by

{[P − P0] : P ∈ B}.
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Let us write B∗ for the subgroup of H0
S(K) generated by {[P − P0] :

P ∈ B}. It follows from the above that B∗1 ⊆ B∗0 . But as B0 ⊆ B1 we have

B∗1 = B∗0 . Similarly B∗2 = B∗1 and so on. Hence S(K)∗ = B∗0 = B∗. However,

S(K)∗ = H0
S(K). This shows that {[P − P0] : P ∈ B} generates H0

S(K).

2.3 HS(K) and Hyperplane Sections

Let S ⊂ Pn+1 be a smooth cubic hypersurface of dimension n, over

a field K. Let H be a hyperplane in Pn+1 defined over K. Suppose that

S ′ := S ∩H is smooth. As H is isomorphic to Pn, we can view S ′ as smooth

cubic hypersurface of dimension n− 1 defined over K and lying in Pn.

Proposition 2.3.1. The map HS′(K)→ HS(K) given by sending the class [P ]

in HS′(K) to the class [P ] in HS(K) for P ∈ S ′(K) ⊆ S(K) is a well-defined

group homomorphism.

Proof. It is clear from the definitions in the previous section that

GS′(K) ⊆ GS(K), G′S′(K) ⊆ G′S(K), G′′S′(K) ⊆ G′′S(K).

Since

HS(K) :=
GS(K)

G′′S(K)
, H ′S(K) :=

GS′(K)

G′′S′(K)
,

the proposition follows.

2.4 Universal Equivalence

To study HS(K) for local fields K, we need to quote and explain some

results of Manin [10, Chapter II] on universal equivalence. Let S be a smooth
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cubic variety over a field K (not assumed to be local for now). Let ∼ be an

equivalence relation on S(K). We say that ∼ is admissible if it is compatible

with collinearity in the following sense: if both triples P1, P2, P3 and P ′1, P ′2,

P ′3 are collinear, and if P1 ∼ P ′1 and P2 ∼ P ′2 then P3 ∼ P ′3.

Now let U1, U2 be two admissible relations on S(K). We say that U1 is

finer than U2 (and so U2 is coarser than U1) if whenever PU1Q then PU2Q.

It is clear that every equivalence class of U2 is a union of equivalence classes

for U1 and so U2 has fewer or the same number of equivalence classes as U1.

Proposition 2.4.1 (Manin). Among all admissible relations on S(K) there

is a unique finest admissible relation.

Proof. This is Proposition 11.3 of Chapter II of [10].

The finest admissible relation on S(K) is called universal equiva-

lence, and denoted by U . We denote the set of equivalence classes by S(K)/U .

Theorem 2.4.2 (Manin). Let K be a local field. Let S be a smooth cubic

hypersurface of dimension n > 2 over K. Then universal equivalence partitions

S(K) into finitely many equivalence classes. Moreover each equivalence class

is open and closed in the topology induced by K.

Proof. This is Theorem 16.1 and Corollary 16.1.1 and Corollary 16.1.3, Chap-

ter II of [10].

We use Manin’s Theorem 2.4.2 to make deductions regarding HS(K)

for K a local field.

Lemma 2.4.3. Let K be local field and let S be a smooth cubic hypersurface

of dimension n > 2 over K. Then the map that sends a point P ∈ S(K) to its
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class [P ] ∈ HS(K) is locally constant, where S(K) has the topology induced by

K, and its image is finite.

Proof. We define the relation P ∼ P ′ on S(K) to mean [P ] = [P ′] in HS(K).

It is clear that this is an equivalence relation, and it follows immediately from

the definitions that it is an admissible relation. Hence every equivalence class

under ∼ is a union of equivalence classes under universal equivalence U . By

Theorem 2.4.2 the equivalence classes under U are both open and closed in

the topology induced by K, and there are only finitely many. Thus the same

is true for the equivalence classes under ∼. This shows that the map P 7→ [P ]

is locally constant and its image is finite.

Note that H0
S(K) is generated by differences [P −Q] = [P ]− [Q]. The

above lemma shows that H0
S(K) is finitely generated for K a local field, since

there are finitely many possibilities for the classes [P ], [Q]. We would like to

show that H0
S(K) is finite. For this it is enough to show that [P −Q] has finite

order for all P , Q ∈ S(K).

Lemma 2.4.4 (Siksek). If K is a local field and S ⊂ P3 is a smooth cubic

surface then H0
S(K) is finite.

Proof. This is Theorem 8 of [16].

We are now ready to prove that H0
S(K) is finite for any smooth cubic

hypersurface S of dimension n > 2 over a local field K.

Theorem 2.4.5. Let S be a smooth cubic hypersurface ⊂ Pn where n > 3,

defined over a local field K. Then H0
S(K) is finite.

Proof. We shall prove the theorem by induction on n > 3. For n = 3 this

is Lemma 2.4.4. Suppose n > 3. We know from the above that we must
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prove that [P − Q] has finite order in H0(K) for any P , Q ∈ S(K). Let `P,Q

be the line joining P , Q. If `P,Q ⊂ S then we already know that [P ] = [Q]

by Lemma 2.2.1. Thus suppose that `P,Q 6⊂ S. By Corollary 1.8.6 there is

a hyperplane H defined over K such that S ′ := S ∩ H is smooth, and P ,

Q ∈ H. Thus P , Q ∈ S ′(K). Now S ′ has dimension n − 1. By the inductive

hypothesis, [P−Q] has finite order in H0
S′(K). It follows from Proposition 2.3.1

that [P −Q] has finite order in H0
S(K). This completes the proof.

2.5 Weak Approximation and HS(K)

Theorem 2.5.1. Let K be a number field and Ω its places. Let Σ be a finite

subset of Ω and write AΣ
K for the adèles of K with Σ removed. Let S ⊂ Pn be

a smooth cubic hypersurface defined over K. Further, suppose that the image

of S(K) is dense in S(AΣ
K). For any finite subset, ∆, of Ω r Σ the diagonal

map:

δ : H0
S(K)→

∏
u∈∆

H0
S(Ku)

is a surjective homomorphism.

Proof. We know that δ is a homomorphism and that
∏
u∈∆

H0
S(Ku) is generated

by elements of the form ([Pu − Qu])u∈∆. Therefore, it suffices to show that

all the elements of this form are contained in the image of δ. We have that

the image of S(K) is dense in
∏
u∈∆

S(Ku) and that the map that sends a

point of S(K) to its equivalence class in HS(K) is locally constant. As ∆ is

finite, we can find P and Q ∈ S(K) that sufficiently approximate (Pu)u∈∆ and

(Qu)u∈∆. Then, these points define a class [P − Q] ∈ H0
S(K) that has the

desired image.
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2.6 HS(R)

We will now consider the group HS(K), where K is a local field of

characteristic zero. As we have already considered the case where K is an

algebraically closed field, the cases that we should also consider are K = R

and K = Qp. We shall start with the case that K = R.

Lemma 2.6.1. Let S ⊂ Pn be a smooth cubic hypersurface over R (where n >

2). Then S(R) has either one or two connected components, in the topology

induced by R.

Proof. We make use of Harnack’s curve theorem (Theorem 1.3.3) which asserts

that a plane cubic curve has at most 2 connected components.

Suppose that there exists a smooth cubic hypersurface S ⊂ Pn that has

at least 3 connected components, where by Harnack’s theorem we may suppose

n > 3. Let P , Q, R ∈ S, such that P , Q and R are all in different connected

components of the hypersurface. Let Π ⊂ Pn be the 2-dimensional linear

subvariety that passes through these points if these points are not collinear, or,

otherwise, any such 2-dimensional linear subvariety that contains the unique

line they lie on. Then Π∩S(R) is a plane cubic curve with at least 3 connected

components, which contradicts Harnack’s curve theorem.

Now, we shall give examples to show that there are real cubic n-folds,

with precisely one and precisely two connected components, for all dimensions

n > 2.

Lemma 2.6.2. Let Sn be the smooth cubic n-fold given by
n+1∑
i=0

x3
i = 0, P =

[a0 : a1 : . . . : an+1] a point in Sn(R) and 0 6 i, j 6 n+ 1 with i 6= j. Then the

point Q = [b0 : b1 : . . . : bn+1], where bi = 0, bj = (a3
i + a3

j)
1
3 and for all other
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k, bk = ak, is a point in Sn(R) and there is a path in the n-fold connecting P

and Q.

Proof. If ai = 0, there is nothing to prove. Suppose that ai 6= 0. For t ∈ [0, 1]

let P (t) = [x0(t) : x1(t) : . . . : xn+1(t)], where xi = (a3
i − (ait)

3)
1
3 , xj =

(a3
j + (ait)

3)
1
3 and for all other k, xk(t) = ak. Then P (t) is a path in Sn(R)

form P to Q.

Corollary 2.6.3. Let Sn be the n-fold defined in Lemma 2.6.2. Sn(R) has

exactly one connected component.

Proof. For every point P in the n-fold there is a path that connects it with

the point [0 : 0 : . . . : 0 : 1 : −1].

Lemma 2.6.4. Let S ′n be the algebraic set given by the cubic polynomial

F (x) = 6x3
0 − 11xn+1x

2
0 + 6x2

n+1x0 − x3
n+1 +

n∑
i=1

x0x
2
i = 0.

Then S ′n(R) has 2 connected components.

Proof. Using lemma 2.6.1, it suffices to show that S ′n(R) is not connected. If

we dehomogenise F by letting x0 = 1 we get

f = (1− xn+1)(2− xn+1)(3− xn+1) +
n∑
i=1

x2
i = 0.

The hyperplane xn+1 = 2.5 doesn’t meet S, as if it did we would have 0.375 +
n∑
i=1

x2
i = 0, which is absurd. On the other hand, the hyperplanes xn+1 = 2

and xn+1 = 3 meet the n-fold at exactly [0 : . . . : 0 : 2] and [0 : . . . : 0 : 3]

respectively. This forces the number of connected components to be at least

2.
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2.7 HS(Qp)

Now we shall proceed to the case that K = Qp, for a prime p. This case

needs a lot of preliminaries, so we begin with an observation.

Suppose that we have a Qp-line ` in Pn, and P , Q two distinct Qp-

rational points of it. Then there is an obvious parametrisation of the Qp-

rational points of `, namely `(Qp) = {sP + tQ | [s : t] ∈ P1(Qp)}. If P and Q

are two Qp-points in ` chosen at random, it is possible that P = Q, thus the

aforementioned parametrisation of ` does not reduce to a parametrisation of

`. However, it is always possible to chose two points in the line such that this

doesn’t happen.

Lemma 2.7.1. Let ` in Pn be a Qp-line. There exist P , Q two distinct Qp-

rational points of it, such that P 6= Q. In that case, we shall call {sP + tQ |

[s : t] ∈ P1(Qp)} a good parametrisation of `(Qp).

Proof. We follow [16, Section 12]. Recall that we may identify lines in Pn

with planes in the affine (n + 1)-dimensional space that pass through the

origin. Let V` be the 2-dimensional subspace of Qn+1
p , that contains the points

of `(Qp), and W` = V` ∩ Zn+1. This is a free Zp-module of rank 2, so it

has a basis consisting of 2 elements; let u and v be those elements. Then

`(Qp) = {su+ tv | (s : t) ∈ P1(Qp)}, and obviously u 6= v.

From this point, we will consider the 3-fold:

SM : F (x, y, z, t, w) = x3 + y3 + z3 +M(t3 + w3 + t2w) = 0, (2.5)

where M is an odd square-free integer, whose prime divisors p have the fol-
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lowing two properties

p ≡ 1 (mod 3), and x3 + x+ 1 = 0 has no solutions in Fp. (2.6)

We would like to study the reduction of the 3-fold modulo p. Let

`1 : x = y = z = 0, (2.7)

and

Π : t = w = 0. (2.8)

Here `1 is a line and Π is a plane (2-dimensional linear variety). By Hensel’s

Lemma, we can easily see that if R ∈ SM(Fp) and R /∈ `1(Fp), then there

exists P ∈ SM(Qp), such that P = R. We define

Sbd = {P ∈ SM(Qp) | P ∈ `1(Fp)}

and

Sgd = {P ∈ SM(Qp) | P /∈ Sbd}.

Furthermore, if P = [x : y : z : t : w] ∈ SM(Qp) such that P ∈ Π(Fp) then

x3 + y3 + z3 = 0.

Therefore, it seems reasonable to consider the plane cubic curve

C : x3 + y3 + z3 = 0.
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We also need to consider the variety that has the same coefficients as C does,

but over another field K. We shall denote that variety by C × K. In this

curve we should fix a flex of it, for instance the flex O = [1 : −1 : 0]. Now

for P , Q, R ∈ C(K), where K is a field of characteristic different than 3,

P + Q + R ∼ 3O in Pic0(C × K) if and only if there is a K-line `, such that

` · C = P +Q+R.

We need a lemma for the Picard group of the curve Cp = C × Fp. This

is in fact Lemma 11.1 of [16].

Lemma 2.7.2. Let p ≡ 1 (mod 3) be a prime and write Cp for C ×Fp. Then

dimF3

Pic0(Cp)

3Pic0(Cp)
= 2.

Moreover, each of the nine elements of Pic0(Cp)

2Pic0(Cp)
can be represented by the class

of P −O for some P ∈ C(Fp).

Lemma 2.7.3. Let p be a prime divisor of M . Then, SbdM(Qp) = ∅.

Proof. Let [x : y : z : t : w] ∈ SbdM(Qp), such that x, y, z, t, w ∈ Zp and

min(vp(x), . . . , vp(w)) = 0. We have that x ≡ y ≡ z ≡ 0 (mod p), so x3 + y3 +

z3 ≡ 0 (mod p3) and thus t3 + t2w + w3 ≡ 0 (mod p). By the assumptions

on p in (2.6) we have t ≡ w ≡ 0 (mod p). This contradicts the fact that

min(vp(x), vp(y), vp(z), vp(t), vp(w)) = 0.

This lemma allows us to define the function φ : SM(Qp)→ C(Fp), as

φ(P ) = [x : y : z].

We want to study this map, in order to get information about HSM
(Qp),
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which completes the study of HS(K) for K a local field. We are interested

in the relation of the images of collinear points. Suppose that P1, P2, P3 are

three collinear points in SM and ` is the line that passes though them. We

will consider two cases, based on the whether ` is contained in SM or not.

First, we will consider the case that ` 6⊆ SM .

Lemma 2.7.4. Let p | M and ` be a Qp-line, not contained in SM , and such

that ` is not contained in SM . Suppose that ` · S = P1 + P2 + P3. Then

φ(P1) + φ(P3) + φ(P3) ∼ 3O.

Proof. Let su+ tv be a good parametrisation of `. Then we can find co-prime

pairs λi, µi ∈ Zp, such that Pi = λiu+µiv. Since ` ·S = P1 +P2 +P3, we have

that:

F (su+ tv) = a ·
3∏
i=1

(λit− µis)

for some a ∈ Zp. We remark that a 6≡ 0 (mod p) as ` * SM .

Write u = [u1 : u2 : u3 : u4 : u5], v = [v1 : v2 : v3 : v4 : v5], and set

u′ = (u1, u2, u3), v′ = (v1, v2, v3). We proceed by distinguishing the following

cases:

Case 1. Suppose that u′ and v′ are linearly independent. Then we can con-

sider the line `′: su′ + tv′. Reducing F modulo p, we get that `′ · Cp =

φ(P1) + φ(P2) + φ(P3), which completes the proof in this case.

Case 2. Suppose that u′ and v′ are linearly dependent. Then, there are α,

β ∈ Fp, not both zero, such that αu′ + βv′ = 0. Let

R = [0 : 0 : 0 : αu4 + βv4 : αu5 + βv5] ∈ `(Fp) ∩ SM(Fp).
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We observe R = [0 : 0 : 0 : x : y], for some x, y ∈ Fp, not both zero,

as we have a good parametrisation of `. This means that for i = 1, 2, 3,

we have R 6= P i, because if P i = R then Pi ∈ SbdM(Qp) which is empty

by the previous lemma. Hence, ` and SM meet at, at least, four points

counting multiplicity, thus ` ⊆ SM . This forces a ≡ 0 (mod p), which is

a contradiction.

Now we will consider the case that ` ⊆ SM . It is worth mentioning that

the following lemma does not need to distinguish between the case that ` is

contained on SM or not.

Lemma 2.7.5. Let p be a prime divisor of M and P1, P2, P3 be three points

in SM(Qp) such that P1, P2, P3 ∈ `(Qp) and ` ⊆ SM . Then φ(P1) = φ(P3) =

φ(P3).

Proof. Consider su + tv, a good parametrisation of `. Thus we can write

Pi = λiu+µiv where λi, µi ∈ Zp are coprime. Write u = [u1 : u2 : u3 : u4 : u5],

v = [v1 : v2 : v3 : v4 : v5], u′ = [u1 : u2 : u3] and v′ = [v1 : v2 : v3]. As ` ⊆ SM

we have that F (su+ tv) ≡ 0.

On the other hand, we have that F (x, y, z, t, w) = x3+y3+z3, therefore,

if u′, v′ are linearly independent, we would have the line su′ + tv′ contained

in the irreducible curve C, which is a contradiction. Thus, u′, v′ are linearly

dependent, so φ(P1) = φ(P3) = φ(P3).

50



Chapter 3

The Mordell-Weil rank of cubic

threefolds

3.1 Main Theorem

In this chapter we shall prove that there exists, conditionally on Colliot-

Thélène’s conjecture (Conjecture 1.7.5 in this thesis, see also [16]), a family of

cubic threefolds SM , whose Mordell-Weil rank has no upper bound. The idea

is finding a family of the form:

F = C(x, y, z) +M · f(x, y, z, t, w) = 0 (3.1)

The idea comes from Siksek’s paper [16]. We need

C ≡ 0 (mod p) (3.2)

to be an elliptic curve such that p is a prime of bad reduction of F , i.e. a

prime divisor of M , such that dimF3 Pic0(C)/3Pic0(C) = 2. Furthermore we
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need

f ≡ 0 (mod p) (3.3)

to have no non-trivial solutions. We will give an example where, as the number

of prime divisors of M grows, the minimum number of Mordell-Weil generators

will grow as well, proving the unboundedness. Therefore, we see that we need

a positive density of primes such that (3.2) and (3.3) are both satisfied at the

same time.

Proposition 3.1.1. Let ψ : SM(Qp)→ Pic0(Cp) be given by ψ(P ) = φ(P )−O.

Then ψ induces a well-defined surjective homomorphism ψ.

ψ : HSM
(Qp)→

Pic0(Cp)

3Pic0(Cp)
, ψ([P ]) = ψ(P ) (mod 3Pic0(Cp)).

Proof. Recall that by Lemma 2.7.3 we have that SM(Qp) = SgdM . Therefore

if we consider the map φ : SM(Qp) → C(Fp), then φ |Sgd
M

= φ. By Hensel’s

lemma, we have that the map φ : SgdM → C(Fp) is surjective, thus if ψ is well-

defined, then it is a surjective homomorphism. Therefore, it suffices to show

that if P,Q,R ∈ SM(Qp) are collinear, then ψ(P ) +ψ(Q) +ψ(R) ∈ 3Pic0(Cp).

If P,Q and R are collinear, we have by lemmas 2.7.4 and 2.7.5 that

either φ(P ) + φ(Q) + φ(R) ∼ 3O or φ(P ) = φ(Q) = φ(R). Therefore in any

case ψ(P ) + ψ(Q) + ψ(R) ∈ 3Pic0(Cp), which concludes the proof.

We are now ready to prove the unboundedness of the Mordell–Weil rank

for the family {SM}. The proof is conditional on Conjecture 1.7.5, which is

concerned with weak approximation on surfaces. We could replace it with a

stronger conjecture about threefolds, but there is no need to; we will simply

reduce the problem to the case of surfaces.
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We recall from [16] the following proposition and its proof:

Proposition 3.1.2 (Siksek). Let p1, . . . , ps (s > 1) be distinct primes ≡ 1

(mod 3), M =
∏
pi, and Σ = {3}. Let S = S ′M/Q be the cubic surface

described by

S ′M : x3 + y3 + z3 +Mw3 = 0. (3.4)

Suppose that the Brauer-Manin obstruction is the only obstruction to weak

approximation on S. Then S satisfies weak approximation away from {3}. In

particular, the homomorphism

H0
S(Q)→

p=ps∏
p=p1

H0
S(Qp)

is surjective.

Proof. We follow the proof given in [16]. All the results we need for this

proof are due to Colliot-Thélène, Kanevsky and Sansuc [1], though Jahnel’s

Habilitation summarizes these results in one convenient theorem [9, Chapter

III, Theorem 6.4]. Indeed, we know that: 1

(i) Br(S)/Br0(S) ∼= Z/3Z. Fix A ∈ Br(S) that represents a non-trivial

coset of Br(S)/Br0(S).

(ii) The image of

〈 , 〉 : Br(S)× S(AQ)→ Q/Z
1The computation of Br(S)/Br0(S) in our situation is rather simple if we consider S as

defined over Q(ζ) where ζ is the primitive cube root of unity. For now let S be a smooth
cubic surface over a number field K and let L be the field of definition of the 27 lines on S.
Then L/K is a Galois extension. By [19, Lemma 5], the quotient Br(S)/Br0(S) ∼= (Z/3Z)2

if and only if Gal(L/K) is cyclic of order 3. Now let S be the diagonal cubic surface
x3 + y3 + z3 + Mw3 = 0 where M ∈ K\{0}. Then L = K(ζ, 3

√
M). The Galois group

Gal(L/K) is cyclic of order 3 if and only if M is a non-cube in K and ζ ∈ K.
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is 1
3
Z/Z.

(iii) The map

S(Qp)→
1

3
Z/Z, P 7→ invp(A,P )

is surjective for all p |M .

Now the strategy is clear. Suppose that P = (Pυ) ∈ S(AΣ
Q). Choose P3 ∈

S(Q3) such that

inv3(A,P3) = −
∑
υ 6=3

invυ(A,Pυ).

Let P ′ ∈ S(AQ) be the point obtained from P by taking P3 to be the com-

ponent at 3. Then 〈A,P ′〉 = 0. Since A generates Br(S)/Br0(S) we know

that P ′ ∈ S(AQ)Br(S). By our assumption that the Brauer-Manin obstruction

is the only one to weak approximation we have that P ′ is in the closure of the

rational points in S(AQ). The proposition follows.

Theorem 3.1.3. Let p1, p2, . . . , ps be s distinct primes all satisfying (2.6) and

let M =
s∏
i=1

pi. Then the cubic threefold:

SM : x3 + y3 + z3 +M(t3 + w3 + t2w) = 0

has rank at least 2s.

Proof. Consider the cubic surface:

S ′M : x3 + y3 + z3 +Mt3 = 0.

and the map χ : S
′
M ↪→ SM , with χ([a : b : c : d]) = [a : b : c : d : 0]. By

Proposition 2.3.1, this map induces a group homomorphism i, which makes
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the following diagram commutative:

H0
S′M

(Q) i //

λ′

��

H0
SM

(Q)

λ

��
s∏
j=1

H0
S′M

(Qpj)
i //

ψ′

  A
AA

AA
AA

AA
AA

AA
AA

A

s∏
j=1

H0
SM

(Qpj)

ψ

~~}}
}}
}}
}}
}}
}}
}}
}}

∏ Pic0(Cpi )

3Pic0(Cpi )

Here ψ is as in Proposition 3.1.1. The homomorphism ψ′ is surjective (this is

Proposition 15.1 of [16], and the proof is very similar to the proof of Propo-

sition 3.1.1 above). By Proposition 3.1.2, the homomorphism λ′ is surjective.

Hence ψ′ ◦ λ′ is surjective. Since ψ ◦ λ ◦ i = ψ′ ◦ λ′, it follows that ψ ◦ λ is also

surjective. It is also easy to see that 3H0
SM

(Q) ⊆ Ker(ψ). Thus,

H0
SM

(Q)→
H0
SM

(Q)

3H0
SM

(Q)
→

s∏
i=1

Pic0(Cpi
)

3Pic0(Cpi
)

are two homomorphisms, whose composition is a surjective homomorphism,

and thus

r(SM ,Q) > dimF3

H0
SM

(Q)

3H0
SM

(Q)
> dimF3

s∏
i=1

Pic0(Cpi
)

3Pic0(Cpi
)

= 2s.

Here we have used Lemma 2.2.9 and Lemma 2.7.2. There is one final detail,

which is that to apply Lemma 2.2.9 we need to show that SM has a Q-ternary

point. Let P0 = (1 : −1 : 0 : 0 : 0), and let ` be the line given by x+ y = w =
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t = 0. Then ` · S = 3P0 showing that P0 is Q-ternary.

It is worth noting that fourfolds are the highest dimensional varieties

that Siksek’s trick can work directly. Consider a family of varieties of the

form (3.1). In that family, f cannot have more than 3 variables, as we need

the equation (3.3) to have no non-zero solutions; if it had more than 3, by

Chevalley-Waring’s Theorem (Theorem 1.6.1) it would have a non-trivial so-

lution. Even if these variables are not different than the variables in C, F will

have at most 6 variables, therefore its dimension cannot be greater than 4.

Question 1. Can we find a family of fourfolds of the form

F = c(x, y, z) +M · f(t, w, v) = 0

such that Siksek’s trick will work?

56



Chapter 4

The Mordell-Weil rank in

higher dimensions

4.1 Setup

Suppose that S is a cubic hypersurface and A is a point in it. Recall

that 〈A〉MW is the set of points we can obtain from A via secant and tangent

operations. In order to find 〈A〉MW the first thing we have to check is the set

B, which contains the points B such that there exists a K-line ` 6⊆ S such that

` · S = A + A + B. This line ` is tangent to S at A, and so it is contained in

the tangent plane TAS. This means that all such B live inside TAS, and more

specifically

{A} ⊆ B ⊆ (TAS ∩ S)(K).

One may see that the case of B = {P} is inherently different to the others, as

it leads to 〈A〉MW = {A}. This observation is the idea behind the definition

of lonely points.
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4.2 Lonely Points

Definition 4.2.1. Let S be a cubic hypersurface. A point A ∈ S(K) is called

a lonely point if for all points B ∈ (TAS ∩ S)(K) we have that `A,B ⊆ S,

where `A,B is the line joining A and B.

The following two lemmas show that lonely points are a genuine gener-

alisation of the Eckardt points of cubic surfaces.

Lemma 4.2.2. Let S be a smooth cubic surface, and P ∈ S. Then P is an

Eckardt point if and only if it is lonely.

Proof. If dimS = 2 then S ∩ TPS is a plane cubic curve that might be degen-

erate, i.e. a union of a line and a conic, or a union of three lines. If P is an

Eckardt point then S ∩TPS is the union of three lines passing through P , and

so P is clearly lonely.

Conversely suppose P is lonely. Let C be an irreducible component of

S ∩ TPS. Choose Q ∈ C(K) that does not belong to any other component.

Then `P,Q ⊂ S ∩ TPS, and so `P,Q = C. Therefore, all the components of

S ∩ TPS are lines passing through P . As S ∩ TPS is a plane cubic curve there

must be exactly three of them, and so P is Eckardt.

Lemma 4.2.3. Suppose that S ⊆ Pn is a cubic hypersurface, with n > 3

and A ∈ S, a lonely point. Let Π be a 2-dimensional linear subvariety of TAS

containing A, and suppose Π 6⊂ S. Then Π∩S is a union of three lines passing

through A.

Proof. As Π 6⊂ S, and Π is 2-dimensional, we see that S ∩ Π is a plane cubic

curve. Again let C be an irreducible component of S∩Π, and let B ∈ C(K) not

contained in any other component. As Π ⊂ TAS we have B ∈ (S ∩ TAS)(K).
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Since A is lonely, we have `A,B ⊂ S and so `A,B ⊂ S ∩Π. In other words, `A,B

is an irreducible component of S∩Π which intersects C in B. This shows that

C = `A,B is a line passing through A. As S ∩ Π is cubic, it consists of three

lines passing through A.

The main problem with the definition of lonely points is that it is purely

geometric, and sometimes we would need to treat them as solutions to poly-

nomial equations. In order to find such a characterisation of lonely points it

would be easier to choose a standardised set of coordinates for the point in

question. The following definition will serve as such.

Definition 4.2.4. Let f be a homogeneous cubic polynomial with coefficients

in K and let S : f = 0. Let Sns(K) be the set of all non-singular K-points in

S. Suppose that A ∈ Sns(K). We can apply a linear transformation, so that

A 7→ [1 :
−→
0 ] and TAS 7→ {xn = 0}. After that transformation we have that S

is isomorphic to

SA : fA = 0,

where

fA = x2
0xn + x0xnlA(x1, . . . , xn) + x0qA(x1, . . . , xn−1) + cA(x1, . . . , xn). (4.1)

We call fA an A-normal form of f .

It is worth noting that the A-normal form of a cubic polynomial is

unique up to a non-singular change of variables x1, . . . , xn−1. Another ob-

servation about the A-normal form is that it needs TAS to be a hyperplane,

therefore it has no meaning for singular points. Its main purpose is to facilitate

the following algebraic characterisation of lonely points.
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Proposition 4.2.5. A point P ∈ S(K) is a lonely point if and only if there

is any (and thus all) P -normal form of f with qP ≡ 0.

Proof. Let P ∈ S(K), and let Q ∈ (S ∩ TPS)(K). We shall use the identity

(Taylor’s expansion):

fP (sP + tQ) = s3fP (P ) + s2tQ · ∇fP (P ) + st2 P · ∇fP (Q) + t3fP (Q).

Then `P,Q ⊂ S is equivalent to fP (sP+tQ) ≡ 0, and consecutively is equivalent

to

fP (P ) = Q · ∇fP (P ) = P · ∇fP (Q) = fP (Q) = 0.

As P , Q are points on S, we have fP (P ) = fP (Q) = 0. Moreover, Q·∇fP (P ) =

0 as Q ∈ TPS. In our new coordinates:

P = [1 :
−→
0 ], Q = [α0 : α1 : · · · : αn−1 : 0].

Thus,

P · (∇fP (Q)) =
∂fP
∂x0

(Q) = qP (α1 . . . , αn−1).

Therefore, P is lonely if and only if for allQ = [α0 : · · · : αn−1 : 0] ∈ S(K)∩TPS

we have qP (α1, . . . , αn−1) = 0. It follows that if qP ≡ 0 then P is lonely.

Suppose that qP 6≡ 0. Then there are α1, . . . , αn−1 ∈ K such that

qP (α1, . . . , αn−1) 6= 0. Let

α0 =
−cP (α1, . . . , αn−1, 0)

qP (α1, α2, . . . , αn−1)
, (4.2)

and Q = [α0 : · · · : αn−1 : 0]. Clearly Q ∈ (S ∩ TPS)(K), and so P is not

lonely.
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Let A ∈ S, and consider the set

WA = {B ∈ TAS ∩ S | lA,B 6⊆ S}.

Then A is non lonely if and only if WA(K) 6= ∅. An interesting question

that arises is whether it suffices to look for a point in WA(K) in order to

prove that A is non lonely. A first application of the previous proposition is

Lemma 4.2.7 below, which gives an affirmative answer to the question. We

shall first need a version of Lemma 1.8.4 that is valid over finite fields, but

with a more restrictive hypothesis.

Lemma 4.2.6. Let K be any field. Let q(x1, . . . , xn) ∈ K[x1, . . . , xn] be a

non-zero homogeneous quadratic polynomial. Then there are a1, . . . , an ∈ K

such that q(a1, . . . , an) 6= 0.

Proof. We prove this by induction on n. If n = 1 then q = αx2
1 where α 6= 0.

Then q(1) 6= 0.

Suppose n > 1. We can write

q = g(x1, . . . , xn−1) + h(x1, . . . , xn−1)xn + αx2
n,

where g is homogeneous quadratic, and h is homogeneous linear. If g 6≡

0, then by the inductive hypothesis there are a1, . . . , an−1 ∈ K such that

g(a1, . . . , an−1) 6= 0. We complete the proof in this case by taking an = 0. So

we may suppose g ≡ 0. If α 6= 0, then we can take a1 = · · · = an−1 = 0 and

an = 1, so we may suppose α = 0. Since q 6≡ 0, we now have h 6≡ 0. By linear
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algebra, the set

{(a1, . . . , an−1) ∈ Kn−1 : h(a1, . . . , an−1) = 0}

is a subspace of Kn−1 of codimension 1, and there are vectors (a1, . . . , an−1) ∈

Kn−1 outside this subspace. Now for such a vector, let an = 0 and we get

q(a1, . . . , an) 6= 0.

The above lemma is not true for K = F2 if q is allowed to be inhomo-

geneous. For example, take q = x2
1 − x1.

Lemma 4.2.7. Let S be a cubic hypersurface defined over K, and P ∈ S(K)

a non-lonely point. Then, there exists a point Q ∈ (TPS ∩ S)(K) with Q 6= P

such that `P,Q 6⊆ S.

Proof. Suppose P ∈ S(K) is non-lonely. By Proposition 4.2.5 we have qP 6≡

0. We follow the proof of Proposition 4.2.5 for the case when qP 6≡ 0, by

slightly modifying the last part of the proof. By Lemma 4.2.6 we can choose

α1, . . . , αn−1 ∈ K so that qP (α1, . . . , αn−1) 6= 0 and let α0 ∈ K be given by

(4.2). Then Q = [α0 : · · · : αn−1 : 0] ∈ (S ∩ TPS)(K) and from the first part

of the proof of Proposition 4.2.5 we have `P,Q 6⊆ S.

An interesting fact about Eckardt points is that any line in a cubic

surface can contain up to 5 of them if the characteristic of the field is 2,

otherwise this number drops to 2. We would like to generalise this observation.

There are two ways to prove such a lemma; first, using Bertini’s Theorem

(Theorem 1.8.2), or using the characterisation of lonely points and doing the

calculations.

62



We will first need a lemma that finds the upper bound for the number

of points in a line that have the same tangent space.

Lemma 4.2.8. Let S ⊆ Pn be a smooth hypersurface, with n > 3, defined

over a field K (of any characteristic). Let ` ⊆ S be a line. Then at most two

K-points in ` have the same tangent space.

Proof. Let A,B ∈ `(K) with the same tangent space. By a suitable linear

change of variables (defined over K), we can suppose that

A = [1 : 0 : · · · : 0], B = [0 : 1 : 0 : · · · : 0],

and the common tangent hyperplane is

TAS = TBS : xn = 0.

Then ` is given by

` : x2 = x3 = · · · = xn = 0.

We conclude that f (the defining polynomial for S) takes the form:

f(x0, . . . , xn) = (x2
0 + δx2

1)xn + x0x1(αxn + h(x2, . . . , xn))

+x0q0(x2, . . . , xn) + x1q1(x2, . . . , xn) + c(x2, . . . , xn).

where h is homogeneous linear, q0 and q1 are homogeneous quadratic, and c

homogeneous cubic. Now we carry out a further linear change of variable in the

variables x2, . . . , xn−1 that does not affect x0, x1, xn but replaces h(x2, . . . , xn)
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by βxn−1 where β = 0 if h ≡ 0 and β = 1 otherwise. Thus

f(x0, . . . , xn) = (x2
0 + δx2

1)xn + x0x1(αxn + βxn−1) + x0q0(x2, . . . , xn)

+x1q1(x2, . . . , xn) + c(x2, . . . , xn).

Now suppose C ∈ `(K), and so C = [x : y : 0 : · · · : 0] for appropriate x,

y ∈ K. So then,

(∇f)(C) = (0, 0, . . . , 0, βxy, x2 + δy2 + αxy).

First we show that β 6= 0. Suppose β = 0. Choose x, y ∈ K, neither of which

are zero, so that x2 + δy2 +αxy = 0. Then (∇f)(C) = 0 which shows C to be

singular on the smooth surface S, giving a contradiction. Hence β 6= 0. Now

the tangent hyperplane at C is

TCS : βxyxn−1 + (x2 + δy2 + αxy)xn = 0.

Suppose now that TCS = TAS which is given by xn = 0. It follows that

βxy = 0 and so C = A or B.

We have now built the tools needed to find the maximum number of

lonely points in a line.

Proposition 4.2.9. Let S ⊂ Pn be a cubic hypersurface defined over K, with

n > 3. Let ` be a line contained in S. If char(K) = 2, there are at most 5

lonely points in `, otherwise there are at most 2.

Proof. We shall proof this by induction on n > 3. If n = 3, then the lonely

points are Eckardt points, and so the lemma follows from Lemma 4.2.2.
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Suppose n > 4. By Corollary 1.8.7, there is some hyperplane H (defined

over the infinite field K) containing ` such that S ′ = H ∩ S is smooth. Any

point on ` that is lonely for S is also lonely for S ′. The lemma follows by

induction.

The following proposition shows that lonely points can exist in cubic

hypersurfaces of any dimension.

Proposition 4.2.10. Let K be a field with char(K) 6= 3. For all n > 2 there

exists a non singular cubic hypersurface in Pn that has at least one lonely point.

Proof. Consider the hypersurface given by

f(x0, x1, . . . , xn) = x2
0xn + x0xn

n−1∑
i=1

xi +
n∑
i=1

x3
i .

It is easy, but tedious, to check that

f =
∂f

∂x0

= · · · = ∂f

∂xn
= 0

have a common solution if and only if char(K) = 3. Then, by proposition

4.2.5, we conclude that the point A = [1 : 0 : · · · : 0] is lonely.

4.3 Some Geometry

Lemma 4.3.1. Let S be a cubic hypersurface. Let A be a smooth point in S

and let Π ⊂ S be a linear subvariety containing A. Then Π ⊂ TAS.

Proof. We work in affine coordinates. We can suppose that A = (0, 0, . . . , 0) ∈
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An, and TAS is given xn = 0. Then S has the equation

xn + q(x1, . . . , xn) + c(x1, . . . , xn) = 0 (4.3)

where q and c are homogeneous, respectively linear and quadratic. Now Π, as

it is a linear subvariety containing A, is a subspace of An. Let B ∈ Π with

B 6= A. Then the line joining A and B is given parametrically by tB. This is

contained in Π which is contained in S. Thus the polynomial

xn(B)t+ q(B)t2 + c(B)t3

vanishes identically. In particular, xn(B) = 0, so B ∈ TAS. This proves that

Π ⊂ TAS.

Lemma 4.3.2. Let S be a cubic hypersurface. Let A be a smooth point in S

and let Π be a linear variety containing A such that Π 6⊂ S. Then S ∩ Π is

singular at A if and only if Π ⊂ TAS.

Proof. We start as in the proof of Lemma 4.3.1, so we can suppose that A =

(0, . . . , 0), that TA is given by xn = 0 and that S is given by (4.3). Suppose

that Π ⊂ TAS. Now Π is a vector subspace of An, that is contained in xn = 0.

We can suppose by carrying a further linear transformation that Π is given by

Π : xr = xr+1 = · · · = xn = 0.
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Then

S ∩ Π :



xr = 0,

xr+1 = 0

...

xn = 0,

q(x1, x2, . . . , xr−1, 0, . . . , 0) + c(x1, x2, . . . , xr−1, 0, . . . , 0) = 0.

As the final equation does not contain linear terms, we see that S∩Π is singular

at A = (0, . . . , 0).

Conversely, suppose that Π 6⊂ TAS. Then there is a linear change of

coordinates that does not affect the plane TAS : xn = 0 that takes Π to

Π : x1 = x2 = · · · = xs = 0

for some s < n. Hence

S ∩ Π :



x1 = 0,

x2 = 0

...

xs = 0,

xn + q(0, . . . , 0, xs+1, . . . , xn) + c(0, . . . , 0, xs+1, . . . , xn) = 0.

As the final equation does contain a non-zero linear term, we see that S ∩ Π

is nonsingular at A = (0, . . . , 0).

The following lemma can be generalised for some non finite fields like

Qp and Q, just by changing the lower bound of the dimension. We shall give
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only the finite field case, as this is the only case we will use.

Lemma 4.3.3. Let S ⊆ Pn be a non singular cubic hypersurface over a finite

field K, with n > 6. Let A ∈ S(K) be a non lonely point and B ∈ (TAS∩S)(K)

be a lonely point. Then the set

(TAS ∩ TBS ∩ S)(K)

contains at least two points.

Proof. If A ∈ TBS there is nothing to prove. Therefore we may assume that

A /∈ TBS. Without loss of generality we may assume that A = [1 : 0 : · · · : 0],

TAS = {[x0 : x1 : · · · : xn] | xn = 0}, B = [0 : 0 : · · · : 0 : 1] and TBS = {[x0 :

x1 : · · · : xn] | xn−1 = 0}. Therefore, S is given by the zero locus of a function

of the form

f =x2
0xn + x0xn`1(x1, x2, . . . , xn−2) + x0q(x1, x2, . . . , xn−2) + x2

nxn−1

+ xnxn−1`2(x1, x2, . . . , xn−2) + c(x1, x2, . . . , xn−2)

A point P = [0 : x1 : · · · : xn−2 : 0 : 0] lives in (TAS ∩ TBS ∩S)(K) if and only

if c(x1, x2, . . . , xn−2) = 0. By the Chevalley-Warning theorem (Theorem 1.6.1)

we have that as n− 2 > 3, then c cannot have only the trivial solution.

4.4 Point Generation

We are now ready to work towards a criterion for the minimum number

of points needed to generate all the points of a smooth cubic hypersurface.
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Lemma 4.4.1. Let S be a smooth cubic hypersurface over a field K. Let

A ∈ S(K), and B ∈ (TAS ∩ S)(K), with B 6= A. Let `A,B be the line joining

A and B. Suppose `A,B 6⊂ S. Then B ∈ 〈A〉MW .

Proof. Clearly `A,B ⊂ TAS, and so is tangent to S at A. Thus `A,B · S =

A+ A+B. It follows that B ∈ 〈A〉MW .

We will need a version of Lemma 4.2.6 with a slightly stronger conclu-

sion, but also slightly stronger hypothesis.

Lemma 4.4.2. Suppose #K > 3. Let q(x1, . . . , xn) ∈ K[x1, . . . , xn] be a non-

zero homogeneous quadratic polynomial. Then there are a1, . . . , an ∈ K with

an 6= 0 and q(a1, . . . , an) 6= 0.

Proof. If K = F3, we shall show that the polynomial f(x1, x2, . . . , xn−1, 1) is

not identically zero. For n > 5, this is an immediate consequence of Theo-

rem 1.6.1. There are 310 − 1 non-zero homogeneous quadratic polynomials, in

less than 4 variables. We can easily check all of them using a computer algebra

program. Therefore, we may assume that #K > 4. In this case we will do it

by induction on n. If n = 1 then q = αx2
1 where α 6= 0, and so q(1) 6= 0.

Suppose n > 1. We can write

q = g(x1, . . . , xn−1) + h(x1, . . . , xn−1)xn + αx2
n

where g is a homogeneous quadratic polynomial or the zero polynomial, and

h is a homogeneous linear polynomial or the zero polynomial.

First suppose that g is not the zero polynomial. Then, by the inductive

hypothesis we can choose a1, . . . , an−1 ∈ K such that g(a1, . . . , an−1) 6= 0.
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Then the equation

g(a1, . . . , an−1) + h(a1, . . . , an−1)xn + αx2
n = 0

has at most two solutions in K. As #K > 4, we can choose an ∈ K to be

different from 0 and the two solutions.

Now assume that g is the zero polynomial. Then h can be assumed that

is not the zero polynomial as is we would the case of n = 1. In that case we

can choose xn = 1 and a1, . . . , an−1 ∈ K such that h(a1, . . . , an−1) 6= α, which

concludes the proof.

Next we will prove a lemma that will do all the heavy lifting in terms

of algebraic calculations. This will allow us to concentrate on the geometry of

the problem afterwards.

Lemma 4.4.3. Let #K > 3. Let S be a smooth cubic hypersurface in Pn

where n > 3. Let ` ⊂ S be a K-line. Let A ∈ `(K) be a non-lonely point.

Suppose B ∈ `(K) r {A} satisfies TBS 6= TAS. There exists C ∈ S(K) such

that

(i) C 6= A, B,

(ii) C /∈ `,

(iii) C ∈ TAS,

(iv) C /∈ TBS

(v) `A,C 6⊂ S, where `A,C is the unique line jointing A and C,

(vi) ΠA,B,C ∩ S = ` ∪ Q, where ΠA,B,C is the unique 2-dimensional linear

subvariety containing A, B, C. Here
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(a) either Q is a conic defined over K and irreducible over K, and

B /∈ ` ∩Q,

(b) or there are K-lines `1, `2, so that Q = `1 ∪ `2, the lines `, `1, `2

are pairwise distinct, ` ∩ `1 = A, A /∈ `2, and B /∈ `1 ∪ `2.

Proof. By Lemma 4.3.1, we have that ` ⊂ TAS and ` ⊂ TBS. In particular

TAS and TBS are distinct hyperplanes, both containing A. Applying a linear

transformation, we may suppose that

A = [1 : 0 : · · · : 0], TAS : xn = 0, TBS : xn−1 = 0.

The equation for S is now given in A-normal form by

fA = x2
0xn + x0xnlA(x1, . . . , xn) + x0qA(x1, . . . , xn−1) + cA(x1, . . . , xn). (4.4)

Here as before lA, qA and cA are homogeneous of degree 1, 2, 3 respectively.

By hypothesis, A is not lonely. Proposition 4.2.5 tells us that qA 6≡ 0. By

Lemma 4.4.2, as #K > 3, we have that there are γ1, . . . , γn−1 ∈ K with

γn−1 6= 0 and qA(γ1, . . . , γn−1) 6= 0. Let

γn = 0, γ0 =
−cA(γ1, . . . , γn)

qA(γ1, . . . , γn−1)
.

and C = (γ0 : · · · : γn). It is straightforward to check from equation (4.4) that

C ∈ S(K). Moreover, since TAS is given by xn = 0 and γn = 0 we have that

C ∈ TAS. This proves (iii). Also TBS is given by xn−1 = 0 and γn−1 6= 0 so

C /∈ TBS. This proves (iv). It is clear that C 6= A. Moreover, as C /∈ TBS we

have C 6= B. This proves (i).
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By Lemma 4.3.1, we have ` ⊂ TBS. As C /∈ TBS, we have C /∈ `. This

proves (ii).

Let `A,C be the line joining A and C. The parametric form for `A,C is

given by

`A,C : (s+ tγ0 : tγ1 : tγ2 : · · · : tγn−1 : 0).

Here we made use of the fact that γn = 0. Substituting this into the polynomial

fA we obtain

(s+ tγ0)t2qA(γ1, . . . , γn) + t3cA(γ1, . . . , γn−1, 0).

This expression is not identically zero as qA(γ1, . . . , γn) 6= 0, so `A,C 6⊂ S,

proving (v).

We now prove (vi). Let ΠA,B,C be the 2-dimensional linear subvariety

containing A, B, C. This must be unique as A, B, C do not lie on one line.

First we show that ΠA,B,C 6⊂ S. Suppose otherwise. Then by Lemma 4.3.1

we have ΠA,B,C ⊂ TBS. Thus C ∈ TBS giving a contradiction. This proves

ΠA,B,C 6⊂ S. It follows, by Lemma 4.3.2, that S∩ΠA,B,C is a plane cubic curve

that is singular at A, and this contains ` as a component. Thus S ∩ΠA,B,C =

` ∪Q where Q is possibly reducible conic.

Suppose first that Q is irreducible over K. To complete the proof in

this case (vi)(a) we want to show that B /∈ `∩Q. Suppose otherwise. Then B

is a singular point of S ∩ΠA,B,C . Thus, by Lemma 4.3.2, ΠA,B,C ⊂ TBS. This

shows that C ∈ TBS, giving a contradiction. Hence B /∈ ` ∩Q as required by

(vi)(a).

Suppose Q = `1 ∪ `2 where `i are lines. These are either K-lines, or
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they defined over a quadratic extension and are conjugate. Since S∩ΠA,B,C =

` ∪ `1 ∪ `2 is singular at A, the point A must belong to `1 or `2. Without loss

of generality A belongs to `1.

Suppose that ` = `1 so that ` is a multiple component of S ∩ΠA,B,C . In

this case the line `B,C joining B and C meets S at B with multiplicity at least

2, meaning that C ∈ TBS giving a contradiction. Hence ` 6= `1 and similarly

` 6= `2. Suppose `1 = `2. Recall that A ∈ `1, and C ∈ `1∩`2. So `A,C = `1 ⊂ S

giving a contradiction. Hence `1 6= `2.

Thus we have that `, `1, `2 are pairwise distinct. Recall that A ∈ `1,

and A ∈ `. Thus ` ∩ `1 = A. If `1 and `2 are Galois conjugates then A ∈ `2.

As C belongs to one of `1, `2 we have `A,C = `1 or `2 ⊂ S, again giving a

contradiction. Therefore `1, `2 are K-lines. Moreover the argument shows

that A /∈ `2 Finally B ∈ `. We want to show that B /∈ `1 ∪ `2. Since

` ∩ `1 = A 6= B, we know that B /∈ `1. If B ∈ `2, then B is a singular point

of ΠA,B,C ∩ S = ` ∪ `1 ∪ `2, and so ΠA,B,C ∩ TBS again giving a contradiction.

Thus B /∈ `2. This completes the proof.

A first step is to find out how many points we need in order to generate

all the points of a line that is contained in the cubic hypersurface. We will

start by proving that if we have all of them but one, we are able to generate

that last point from the previous ones.

Lemma 4.4.4. Let #K > 5. Let S be a smooth cubic hypersurface in Pn,

where n > 3. Let ` ⊂ S be a K-line. Let B ∈ `(K), and write L = `(K)r{B}.

Then `(K) ⊆ 〈L〉MW .

Proof. We have #L = #`(K)−1 = #K > 5. Recall by Proposition 4.2.5 that

` contains at most 2 lonely points if char(K) 6= 2 and at most 5 lonely point
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if char(K) = 2 (in which case #K > 8). Moreover, by Lemma 4.2.8 there is

at most one other point in ` that shares the same tangent hyperplane as B.

Thus there is some A ∈ L that is non-lonely, and satisfies TAS 6= TBS.

We apply Lemma 4.4.3 and distinguish three cases:

1. The first case we consider is (vi)(b). This is illustrated in Figure 4.1.

Here the lines `, `1, `2 are K-lines and thus so their intersections are

Figure 4.1:

K-points. If D ∈ `2(K) r {C ′,W} then the K-line joining A and D is

tangent to S at A, and so we have

`2(K) r {C ′,W} ⊆ 〈A〉MW .

Similarly

`1(K) r {A,C ′} ⊆ 〈W 〉MW .

Take a point D ∈ `2(K) r {C ′,W}. The line joining D and B meets

`1(K) in some point D′ ∈ `1(K)r{A,C ′}. Thus B ∈ 〈A,W 〉MW . As A,

W ∈ L, we have B ∈ 〈L〉MW as required.
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2. Q is irreducible and |Q ∩ S| = 2 as illustrated in Figure 4.2. Note that

Figure 4.2:

W is a K-point as A is a K-point and Q ∩ ` = {A,W}. Now by the

same argument as above,

Q(K) r {A} ⊆ 〈A〉MW .

Now the K-line joining B with C meets Q in some other K-point C ′

that is neither A nor W . Thus B ∈ 〈A,W 〉MW ⊆ 〈L〉MW as required.

3. Q is irreducible and |Q ∩ S| = 1 as illustrated in Figure 4.3. Then

〈A〉MW ⊆ Q(K). Consider the K-line joining B and C. This meets Q in

another K-point C ′. In particular C, C ′ ∈ 〈A〉MW . Thus B ∈ 〈A〉MW ⊆

〈L〉MW as required.
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Figure 4.3:

Now we will continue relaxing the number of points that are needed by

proving that we if we have generated all points in the line apart from two,

then we can generate the remaining ones.

Lemma 4.4.5. Let #K > 5. Let S be a smooth cubic hypersurface in Pn

where n > 3. Let ` ⊂ S be a K-line. Let L ⊆ `(K), such that |`(K) r L| = 2.

Then `(K) ⊆ 〈L〉MW .

Proof. Let `(K) r L = {B1, B2}. As in the proof of Lemma 4.4.4 we can

find A ∈ L which is non-lonely with TAS 6= TB1S, and A 6= B2. By Lemma

4.4.3 there exists C ∈ S(K) r `(K) such that C ∈ TAS , C /∈ TB1S and

ΠA,B,C ∩ S = ` ∪ Q, where Q is either an irreducible conic or the union of

two K-lines. If B′ /∈ Q, then following exactly the proof of Lemma 4.4.4 we

conclude that 〈A〉MW ⊇ `(K). If B′ ∈ Q, then B′ = W where W is as in

Figure 4.1 or Figure 4.2. we distinguish two cases.

1. The situation in Figure 4.2. As in the proof of Lemma 4.4.4, we have
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B ∈ 〈A〉MW . Thus L ∪ {B} ⊂ 〈L〉MW . But |`(K) \ (L ∪ {B})| = 1.

Applying Lemma 4.4.4, we have that `(K) ⊂ 〈L ∪ {B}〉MW ⊆ 〈L〉MW .

2. The situation in Figure 4.1. As in the proof of Lemma 4.4.4, we have

〈L〉MW ⊃ 〈A〉MW ⊃ `2(K) r {C ′,W}.

Let D ∈ `(K) such that D 6= A, B, W . In particular D ∈ L. Let

D′ ∈ `2(K) such that D′ 6= A, C ′. In particular, D′ ∈ 〈A〉MW ⊆ 〈L〉MW .

The K-line joining D and D′ meets `1 in a K-point D′′ 6= A, C ′. Thus

D′′ ∈ 〈L〉MW . Now the line joining B and D′′ meets `2 in a K-point

that belongs to `2(K) r {C ′,W}. Thus B ∈ 〈L〉MW . Hence 〈L〉MW =

〈L ∪ {B}〉MW . Now we apply Lemma 4.4.4 to deduce `(K) ⊂ 〈L〉MW .

We can now prove that any non-lonely point suffices to generate all the

other points of a line that it belongs to. The non-loneliness is necessary, as a

lonely point cannot generate anything by itself.

Proposition 4.4.6. Let #K > 5. Let S be a smooth cubic hypersurface in

Pn, where n > 3. Let ` ⊂ S be a K-line. Let A ∈ `(K) be a non-lonely point.

Then `(K) ⊆ 〈A〉MW .

Proof. Let B ∈ `(K) r {A} with TBS 6= TAS. We apply Lemma 4.4.3 and

distinguish three cases:

1. The situation in Figure 4.1. As in the proof of Lemma 4.4.4, we have

〈A〉MW ⊇ `2(K) r {C ′,W}.
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However, by Lemma 4.4.5 we know that

`2(K) ⊆ 〈`2(K) r {C ′,W}〉MW ,

and in particular, 〈A〉MW ⊇ `2(K). Thus

〈A〉MW ⊇ 〈W 〉MW ⊇ `1(K) r {C ′, A}.

Now if D ∈ `(K) and D 6= A, W , then joining D to some D′ ∈ `1(K) r

{C ′, A} by a K-line, we obtain as a third point of intersection some

D′′ ∈ `2(K) r {C ′,W}. This shows that `(K) r {W} ⊆ 〈A〉MW . Now

Lemma 4.4.4 shows that `(K) ⊆ 〈A〉MW .

2. The situation in Figure 4.2. As in the proof of Lemma 4.4.4 we have

Q(K) r {W} ⊆ 〈A〉MW .

Let D ∈ `(K), D 6= A, W . Fix C ∈ Q(K) r {A,W}. Then the K-line

joining C with D meets S in a third K-point C ′ ∈ Q(K) r {A,W}. It

follows that D ∈ 〈A〉MW . Hence `(K) r {W} ⊆ 〈A〉MW , we complete

the proof by applying Lemma 4.4.4.

3. The situation in Figure 4.3. This is similar to the previous case but

easier.

Proposition 4.4.7. Let #K > 5. Let S be a smooth cubic hypersurface in

Pn where n > 3. Let A ∈ S(K) be a non-lonely point. Then (TAS ∩ S)(K) ⊆

〈A〉MW .
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Proof. This follows from combining Lemma 4.4.1 and Proposition 4.4.6.

The natural question that arises is whether we can have any kind of

result in the case we have a lonely point.

Lemma 4.4.8. Let #K > 5. Suppose char(K) 6= 2. Let S be a smooth cubic

hypersurface in Pn where n > 3. Let B ∈ S(K) be a lonely point and A ∈ S(K)

non-lonely. Suppose B /∈ TAS. Then 〈A,B〉MW ⊇ (TBS ∩ S)(K).

Proof. If TAS = TBS, then (TBS ∩ S)(K) = (TAS ∩ S)(K) ⊆ 〈A〉MW , by

Proposition 4.4.7. Thus we may suppose TAS 6= TBS.

Let C ∈ (TBS∩S)(K)\{B}. We would like to show that C ∈ 〈A,B〉MW .

If C ∈ TAS then this follows from Proposition 4.4.7, so suppose C /∈ TAS.

Let ` be the K-line that joins B and C. We have that ` 6⊆ TAS. As B

is lonely, we know (by definition) that ` ⊂ S. Since B ∈ TAS, we have that

B ∈ 〈A〉MW .

Now let D ∈ S(K) satisfy TAS ∩ ` = {D}. Thus D ∈ 〈A〉MW . If D

is non-lonely, then `(K) ⊆ 〈D〉MW ⊆ 〈A〉MW completing the proof. Thus we

may suppose that D is lonely.

Let Π be the unique two dimensional linear variety that contains the

point A and the line `. If Π ⊂ S, then Π ⊂ TAS by Lemma 4.3.1 and so

C ∈ TAS, giving a contradiction. Hence we may suppose that Π 6⊂ S. Next

we consider Π∩S. This is a plane cubic curve that contains ` as a component.

First suppose ` is a multiple component of Π ∩ S. Now the line `A,B

meets ` with multiplicity > 2 at B and so belongs to the tangent plane TBS.

As B is a lonely point, we have `A,B ⊂ S. Similarly `A,D ⊂ S. Now Π∩ S has

at least four components counting multiplicity, which is a contradiction.
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Hence ` is a component of Π ∩ S of multiplicity 1. Suppose now that

Π ∩ S has another multiple component, which must be a line `1 say. Then

A ∈ `1, and the line `A,C meets S with multiplicity > 2 at A. Thus C ∈ 〈A〉MW

as required.

From now on, we may suppose that Π∩ S does not have multiple com-

ponents. We distinguish two cases:

(1) Π ∩ S = Q ∪ `, where Q is a plane conic that is irreducible over K. Here

A ∈ Q(K) \ `(K). If B ∈ Q ∩ `, then B is a singular point of Π ∩ S, and

the line connecting B and A would be a tangent at B, and as B is lonely,

would be a component of Π ∩ S giving a contradiction. Thus B /∈ Q ∩ `.

Similarly D /∈ Q ∩ `. Recall that D ∈ 〈A,B〉MW . Consider the lines

`A,B and `A,D. These meet Q in K-points B′, D′ such that A, B′, D′ are

pairwise distinct. Clearly D, D′ ∈ 〈A,B〉MW . Now the line joining B′, D′

meets ` in a K-point R 6= B, D. Then R ∈ 〈A,B〉MW . As char(K) 6= 2,

the line ` contains at most 2 lonely points, and the points B and D are

lonely. Thus R is a non-lonely point. Hence by Lemma 4.4.6, we have

C ∈ `(K) ⊆ 〈R〉MW as required.

(2) Π ∩ S = ` ∪ `1 ∪ `2. Here A ∈ `1, and `1, `2 are either K-lines or Galois

conjugate. In the second case A ∈ `2 also, and so Π ∩ S is singular at A,

implying that Π ⊂ TAS, and so C ∈ TAS giving a contradiction. Hence

we may suppose that `1, `2 are K-lines, and that moreover A /∈ `2. As A

is non-lonely, `1(K) ⊆ 〈A〉MW . Let E, F , G be the K-points satisfying

`1 ∩ `2 = {E}, ` ∩ `1 = {F}, ` ∩ `2 = {G}.
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Then the E ∈ 〈A〉MW . The lines joining E to K-points in ` are tangent

to S at E,

`(K) \ {F,G} ⊆ 〈A〉MW .

The set `(K) \ {F,G} must contain a non-lonely point, H. So `(K) ⊆

〈H〉MW ⊆ 〈A〉MW .

We will change the requirements, so that B ∈ TAS, and therefore we will

have the same result regardless of the position of B. The following lemma relies

on Lemma 4.3.3, and therefore it inherits the same dimension requirements.

Proposition 4.4.9. Let K be a finite field, with #K > 5. Suppose char(K) 6=

2. Let S be a smooth cubic hypersurface in Pn where n > 5. Let B ∈ S(K) be a

lonely point and A ∈ S(K) non-lonely. Suppose B ∈ TAS. Then 〈A,B〉MW ⊇

(TBS ∩ S)(K).

Proof. We remark that since B ∈ TAS, it follows that B ∈ 〈A〉MW . If TAS =

TBS, then (TBS ∩ S)(K) = (TAS ∩ S)(K) ⊆ 〈A〉MW , by Proposition 4.4.7.

Thus we may suppose TAS 6= TBS. Let C ∈ (TBS∩S)(K)\{B}, we will show

that C ∈ 〈A,B〉MW . If C ∈ TAS then this follows from Proposition 4.4.7, so

suppose C /∈ TAS.

Let ` be the K-line that joins B and C, so then ` 6⊆ TAS. As B is

lonely, we know (by definition) that ` ⊂ S. By lemma 4.3.3 there exists a

point D ∈ (TAS∩TBS∩S)(K)\{B}. As ` contains more than two points and

char(K) 6= 2, without loss of generality we may assume that D is non-lonely

and TBS 6= TDS. As D ∈ TBS, we have that `B,D ⊆ S, and as B,D ∈ TAS,

we have that `B,D ⊆ TAS ⊆ 〈A〉MW .
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Let Π be the unique two dimensional linear variety that contains ` and

`B,D. Then, as B is lonely we have that either Π∩S = Π or Π∩S = `∪`B,D∪`1,

for a line `1 in S that contains B. If Π ∩ S = Π then the result follows as

C ∈ Π ⊆ TDS ⊆ 〈D〉MW ⊆ 〈A〉MW ⊆ 〈A,B〉MW .

In the second case, it suffices to show that there is a non-lonely point E ∈

〈A〉MW such that B /∈ TES. To see that, let us assume for the moment that

such a point does exist, then `1 meets TES in a point F 6= B and

F ∈ TES ⊆ 〈E〉MW ⊆ 〈A〉MW .

On the other hand there is G ∈ `B,D so that

`C,F · S = C + F +G,

hence C ∈ 〈A,B〉MW . Therefore, it remains to prove that such a point E

exists.

By Lemma 4.4.3, there exists a point F in (TDS ∩ S)(K) such that

F /∈ TBS. Let Π′ = ΠB,D,F and Π′ ∩ S = `B,D ∪Q for a conic Q.

(1) Suppose that Q is an irreducible conic. As #K > 9, then the number of

points in Q(K)r `B,D(K) is at least 7. There are exactly two points in Q

that have B in their tangent plane. Furthermore, at most 2 points in Q

are lonely. Therefore, we can choose a non lonely point E ∈ Q such that

E ∈ TDS ⊆ 〈A〉MW and B /∈ TES.

(2) Suppose that Q = `2∪ `3, with D ∈ `3. Any point in `3 r{D, `2∩ `3} does
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not contain B in its tangent plane, and as char(K) 6= 2, we have that `3

contains at most 2 lonely points. Hence, we can find a non lonely point

E ∈ `3, as required.

Proposition 4.4.10. Let A be a non-lonely point and B ∈ 〈A〉MW . Then

TBS ⊆ 〈A〉MW .

Proof. As B ∈ 〈A〉MW we have that 〈B〉MW ⊆ 〈A〉MW . If B is non-lonely,

then clearly TBS ∩ S(K) ⊆ 〈B〉MW . In the case that B is lonely, from Propo-

sition 4.4.9 we get that TBS ∩ S(K) ⊆ 〈A,B〉MW , and the result follows since

B ∈ 〈A〉MW .

Theorem 4.4.11. Let K be a finite field, with #K > 5. Let A be a point

in a smooth cubic hypersurface S ⊆ Pn, where n > 5. If A is lonely, then

〈A〉MW = {A}, else 〈A〉MW ⊇ TAS ∩ S(K).

Proof. Suppose that A is lonely, and that 〈A〉MW 6= {A}. Therefore, there

exists a point B ∈ 〈A〉MW\{A}, and a line ` 6⊆ S, such that S · ` = A+A+B.

Thus, by the definition of the tangent space, ` ⊆ TAS. As A is lonely, ` ⊆ S,

which is a contradiction. On the other hand, if A is non-lonely then the result

follows from Proposition 4.4.10.
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Chapter 5

The Mordell-Weil rank over

finite fields

In this chapter, we shall investigate the Mordell-Weil rank over finite

fields.

5.1 The Mordell-Weil rank over Fq

We shall consider cubic hypersurfaces over a finite field K, such that

char(K) 6= 2. We have all the tools at hand to consider high dimensional

hypersurfaces, therefore we will start with the following theorem.

Theorem 5.1.1. Let S ⊆ Pn be a non-singular cubic hypersurface over a finite

field K, such that #K > 5 and char(K) 6= 2. Suppose that n > 6. Then, for

any non-lonely point A ∈ S, we have that 〈A〉MW = S(K).

Proof. Let A be a non-lonely point in S. We make an appropriate transfor-

mation so that A = [1 : 0 : · · · : 0] and TAS = {[x0 : x1 : · · · : xn] | xn = 0}.

Let B ∈ S, such that B 6∈ TAS, and make another transformation so that
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B = [0 : · : 0 : 1]. Then, an A-normal form for the equation describing S is

the following:

f(x0, x1, . . . , xn) = x2
0xn + αx0x

2
n + x0xn`1(x1, x2, . . . , xn−1)

+x0q1(x1, x2, . . . , xn−1) + x2
n`2(x1, x2, . . . , xn−1)

+xnq2(x1, x2, . . . , xn−1) + c2(x1, x2, . . . , xn−1)

As A is non-lonely, TAS∩S(K) ⊆ 〈A〉MW . Using Propositions 4.4.9 and 4.4.10,

it suffices to show that there exists C ∈ TAS ∩ S(K) such that B ∈ TCS. In

other words, that there exists C = [x0 : x1 : . . . : xn−1 : 0] such that:

B · (∇f)(C) = 0

f(C) = 0

 (5.1)

Equivalently, if the following system has a non-zero solution:

x0q1(x1, x2, . . . , xn−1) + c2(x1, x2, . . . , xn−1) = 0

x2
0 + x0`1(x1, x2, . . . , xn−1) + q2(x1, x2, . . . , xn−1) = 0

 (5.2)

The system (5.2) always has a non trivial solution. As n > 6, using the

Chevalley-Warning Theorem (1.6.1), the system also has a non- trivial solution,

which leads to the existence of such a point C.

Corollary 5.1.2. If Fq does not have characteristic 2 and q 6= 3, then any

smooth cubic hypersurface in Pn, n > 6 has Mordell-Weil rank 1 over Fq.

Proof. Using theorem 5.1.1, we have that any non-lonely point can generate
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the whole hypersurface. It is evident that for two lonely points A and B,

A ∈ TBS, if and only if B ∈ TAS.

Therefore, `A,B contains at least one more point, C, which we can by 4.2.9

must be non lonely. Hence, 〈C〉MW = S(K).
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