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Abstract

The work of Cohn [Coh93] and Bugeaud, Mignotte and Siksek [BMS06] solves

the Lebesgue-Naguel equation

x2 + D = yn, x, y integers , n ≥ 3

for D a integer in the range 1 ≤ D ≤ 100. We propose to do the same for D

in the range −100 ≤ D ≤ −1. For that we will use techniques that go from the

most classical ones, ideal factorization over number fields and Thue equations, to

the most modern approach to Diophantine equations, Frey curves and the Modular

approach, passing by linear forms in logarithms.
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Chapter 1

Introduction

The main purpose of this thesis is explicitly solving Diophantine equations, in

particular the Lebesgue–Nagell equations,

x2 + D = yn, (LN)

where D is a non-zero integer, x, y integer unknowns and n also an integer un-

known, greater than or equal to 2. We will be especially interested in solving these

equations via the modular method, but we will also use other methods, whenever

the modular method seems to fail, or when there are better methods to determine

all the solutions for our equations, usually given a value for n.

1.1 A brief account of the history of the Lebesgue-Nagell

equations

The history of the Lebesgue-Nagell equation (LN) is very rich: there are literally

hundreds of papers devoted to special cases of this equation. Most of this literature

is concerned with the case D > 0, and either for special values of n or of y, usually

given a specific value for D. For example, for D = 2 and n = 3, Fermat asserted

1



that he had shown that the only solutions are given by x = 5, y = 3; a proof was

given by Euler [Eul70].

The equation (LN) with n = 3 is the intensively studied Mordell equation

(see [Mor69] or [GPZ98] for a modern approach). There are also some results

known for the special cases n = 5 (see [Bla76], [Wre73], [Sto06]) and n = 7

(see [BS78]). For a general D and general n, the work of Cohn [Coh93] and

of Bugeaud, Mignote, Siksek [BMS06] provides us solutions for D in the range

1 ≤ D ≤ 1000. Stoll has also studied this equation but on an arithmetic point of

view, see [Sto98] and [Sto02].

Another notable particular case is the generalized Ramanujan-Nagell equa-

tion:

x2 + D = kn, (GRN)

where D and k are given integers. This is an extension of the Ramanujan-Nagell

equation x2 + 7 = 2n, proposed by Ramanujan in 1913, [Ram13], and first solved

by Nagell in 1948, [Nag48] (see also the collected papers of Nagell [Nag02]). This

equation has exactly five solutions with x ≥ 1 (see [Mig84] for a very simple

proof) and is in this respect singular: indeed, Bugeaud and Shorey established

that equation (GRN) with positive D and k a prime number not dividing D has

at most two solutions in positive integers x, n, except for (D, k) = (7, 2). They

also listed all the pairs (D, k) as above for which equation (GRN) has exactly

two solutions. Much earlier, Apéry,( see [Apé60a] and [Apé60b]), proved by p-

adic arguments that the equation (GRN), with k prime, has at most two positive

integer solutions except if (D, k) = (7, 2).

The first result for general y, n, regarding the equation (LN), seems to

be the proof in 1850, by Lebesgue [Leb50] that there are no non-trivial solutions

for D = 1; by non-trivial we mean xy $= 0, for we always have the solution

2



(x, y) = (0, 1) when n is odd and (x, y) = (0,±1) when n is even. The next cases

to be solved were D = 3, 5 by Nagell [Nag48] in 1923. It is for this reason that

equation (LN) is called Lebesgue-Nagell equation in [BMS06]. Nagell also had

provided a non-complete proof for the case D = 2. This case was finally solved

by Ljunggren [Lju43], generalizing the result of Fermat and proving that there is

no solution other than x = 5. This was also rediscovered by Nagell in 1954 (see

[Nag54]). The case with D = −1 is particularly noteworthy: a solution was sought

for many years as a special case of the Catalan conjecture. This case was finally

settled by Chao Ko [Ko64] in 1965.

Cohn [Coh93] solved equation (LN) for 77 values of 1 ≤ D ≤ 100. For

D = 74, 86 the equation was solved by Mignotte and de Weger [MdW96] using

linear forms in logarithms and Bennett and Skiner [BS04] solved it for D = 55, 95.

One of the remaining 19 values of 1 ≤ D ≤ 100, was D = 7, a generalization of

the Ramanujan-Nagell equation. In [Coh93] Cohn, proposed that the only solutions

to

x2 + 7 = yn, (RN)

where the solutions of the Ramanujan-Nagell equation and some "rearrangements"

of these solutions. In the same paper Cohn showed that there could be no solutions

with y odd, nor with n even nor with 3 | n. In [Les98] Lesage proves various partial

results concerning this equation, in particular if (x, y, n) is a solution of(RN) then

n ≤ 6.6 × 1015, using linear forms in logarithms. In 2003 Siksek and Cremona

[CS03], gave a partial solution to this problem, showing through modular methods,

that there is no solution to (RN) with n a prime number and 11 ≤ n ≤ 108. In

2006 Bugeaud, Mignotte and Siksek [BMS06] finally solve this equation as well

asthe remaining 18 values of 1 ≤ D ≤ 100 for the equation (LN).

It is possible to generalize this equation a bit more. Let D1, D2, D3 be

3



integers, with D1 positive and square-free, D3 also a positive integer, then by the

generalized Lebesgue-Ramanujan-Nagell equation we mean the following equation:

D1x
2 + D2 = D3y

n (GLRN)

where x and y are integers and n an integer greater that or equal to 2.

When D1 = D3 = 1, D2 = D and y = k are fixed in (GLRN), the

resulting equation is the so called Ramanujan-Nagell type equation. While when

we fix D1 = D3 = 1, D2 = D, we have the Lebesgue-Nagell equation type. For an

account on the results known about this generalized equation see [SS08], [BS01],

[Sho06].

1.2 Why study this equation?

Reading carefully the history of the Lebesgue-Nagell equation, one thing that

strikes the eye is that the majority of the cases so far solved have in common the

fact of D being positive. Apart from D = −1 and some cases when D = −d2,

with d an integer, much less is known. In [Coh93], Cohn states that most of the

methods used in that paper can be applied also to the case when D is negative,

but refrains himself from doing so mainly due to the existence of fundamental units

in real quadratic number fields.

Suppose −D is not a square, if we consider the left-hand side of (LN), we

can factorize it in the following way

x2 + D = (x +
√
−D)(x−

√
−D).

This factorization is possible over the number field Q(
√
−D). Therefore when D is

negative we obtain a real quadratic number field, which always has a fundamental

unit. While on the other hand, when D is positive we obtain an imaginary quadratic

4



number field, which has always finitely many units. In fact at most we will have 6

units to deal with.

Now to answer the question in the title of this section, I state that the main

purpose of this thesis is to overcome this gap in the literature. I will show how

to apply the already mentioned methods in the literature, with the appropriate

changes and when needed, with new tricks, to try to find all the solutions, when

possible, for the equation (LN) in the range

− 100 ≤ D ≤ −1. (R)

1.3 Thesis outline and main result

The main result of this thesis is the following

Theorem 1.1. All solutions to equation (LN) with D in the range (R) are given

in the Tables A.1 and A.2, pages 206-209 , with the following exceptions:

(1) For the values of D in Table 1.1, when n is divisible by a prime number p,

such that 108 < p ≤ pmax, where pmax is given in Table 1.1, we do not know

if there are any solutions or not to equation (LN). If n is divisible by a prime

p < 108 or p > pmax, then the solutions are given in the Table A.2.

(2) For the values of D in table 1.2, when n is divisible by a prime number p,

such that 13 < p ≤ pmax, where and pmax is given in Table 1.1, we do not

know if there are more solutions or not to equation (LN), apart from the

one that ones already given in Table 1.2 and Table A.2. As before, if n is

divisible by a prime p ≤ 13 or p > pmax, then the solutions are given in the

Table A.2.
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Table 1.1: First exceptional
values of D

D pmax

-33 157 752 030 294
-41 359 940 708 129
-57 429 407 772 757
-68 16 382 452 021
-73 808 303 621 445
-90 29 188 841 666
-97 2 552 797 449 913
-98 8 383 577 486

Table 1.2: Second exceptional
values of D

D pmax (|x|, y, na)
-2 4 111 (1,−1, p)
-3 7 793 (2, 1, p)
-5 1 759 (2,−1, p)
-8 4 111 (3, 1, p)
-10 13 291 (3,−1, p)
-15 16 433 (4, 1, p)
-17 40 902 094 178 (4,−1, p)
-24 19 687 (5, 1, p)
-26 19 979 (5,−1, p)
-35 22 483 (6, 1, p)
-37 22 709 (6,−1, p)
-48 7 703 (7, 1, p)
-50 4 111 (7,−1, p)
-63 69 516 630 329 (8, 1, p)
-65 49 434 815 608 (8,−1, p)
-80 1 759 (9, 1, p)
-82 29 423 (9,−1, p)
-99 31 223 (10, 1, p)

awhere n is divided by primes be-
tween 13 and pmax

In Chapter 2 we will use mainly methods coming from algebraic number

theory, especially the unique factorization of ideals in number fields to solve our

equations. We will show how to get from a possible solution of the equation (LN)

to a Thue equation. The main improvement in these areas comes from using

Selmer groups to construct the Thue equations and the development of local and

global methods to help us solve these new equations. These methods will be used

to solve equation (LN) for a given n ≥ 3. For n = 2 or a multiple of 2 we will also

expose how to obtain solutions for equation (LN) using more simple techniques.

We will also use some methods already known from the study of elliptic curves,
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especially methods to find all the integral points on a elliptic curve. The methods

coming from elliptic curves will be used to find all the solutions for (LN) when

n = 3 or a multiple of 3.

Chapter 3 is dedicated to the modular approach. We will give a brief

introduction to the modular approach and see how these new techniques will help

us to solve our equations, assuming that n is a prime greater than or equal to 7.

For this we will be following the work of Ivorra and Kraus [IK06], on the study of

certain Frey curves, and expand some of the work already presented in [BMS06].

When it is not possible to find all the solutions to (LN) for a given value of

D within our range (R) we will need to use other methods. So in Chapter 4 we will

just make a brief introduction to linear forms in two and three logarithms. We will

follow mainly the results and techniques of Matveev (see [Mat00]) for the general

case, and those of Laurent, Mignotte and Nesterenko (see [LMN95]) for the two

logarithms case and Mignotte (see [Mig08]) for the three logarithms case. With

this method we will try to solve the cases left unsolved by the modular approach.

In Chapter 5 we will introduce a new Frey curve associated to a particular

ternary Diophantine equation, and see how it can help solving the equation (LN).

The last part of this thesis contains tables with the solutions for the cases

already solved and the algorithms that were used to solve our equations.

1.4 Notation

Though most notation is quite standard and will not be mentioned here, we would

like to mention the following.

Given n ∈ Z \ {0} we denote by Rad(n) the product of primes dividing n.

For S a finite set of primes of Z, then RadS(n) denotes the products of the primes
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dividing n that are not in S. If S = {p}, for a prime p then instead of writing

RadS(n) we write Radp(n). Given a prime p and r a non-zero rational number

we will denote by vp(r) the p-valuation of r.

Let K be a number field and a an ideal of K. By N (a) we understand

the norm of the ideal a. By S(a) we denote the set of all prime ideals p that

divide a. If b is another ideal we denote by S(a \ b) the set S(a) \ S(b). If

α, β ∈ K then we denote by S(α) and S(α \ β) respectively, the sets S(〈α〉) and

S(〈α〉 \ 〈β〉). We will denote by OK, UK, µK, ClK the ring of integers, the unit

group, the torsion subgroup, and the class group of K, respectively. For an elliptic

curve E defined over Q, denoted by E/Q, the conductor will be denoted by NE,

the minimal discriminant by ∆min(E) and the j-invariant by jE. If E is given by

a specific Weierstrass equation, then the discriminant of this Weierstrass equation

is denoted by ∆E. If no confusion should arise, sometimes we will simply just use

N, ∆min, j and ∆. Given a prime p, the set of points on the reduction of E modulo

p is denoted by E(Fp) and we define ap(E) := p + 1−#E(Fp).

Let K be a field, we fix an algebraic closure K of K and we assume implicitly

that all algebraic extensions and all elements are chosen in this algebraic closure.

Since C is an algebraically closed field, we consider Q to be the algebraic closure

of Q in C.

Finally, GQ will denote the absolute Galois group Gal(Q/Q).
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Chapter 2

Classical methods to solve

Diophantine equations

Though most of the work here can be done for a general integer n ≥ 2,

in some cases we will consider n to be a prime. So for this reason we will be

considering instead the equation:

x2 + D = yp, (2.1)

where p is a prime number, and x, y and D are as before. Still we will try to

be as general as possible. In fact we still start looking at the most general case,

the generalized Lebesgue-Ramanujan-Nagell equation (GLRN) and go from there.

But when needed, or when the general case becomes too difficult to overcome, we

will go back to our starting point (LN) or (2.1).

2.1 A few facts concerning algebraic number theory

Most of the facts, definitions and results we might use from algebraic number

theory are well known and can be found in [Coh07a], [IR82] and [ST87].
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We will just provide a brief exposition concerning Hensel’s lemma.

2.1.1 Hensel’s lemmas

Let K be a number field, OK its ring of integers. Let p be a finite place of K and

Kp the associated p-adic field, with ring of integers Zp. It is possible to develop a

theory of analytic functions in p-adic fields, but we will be more interested in one

of the most crucial tools that allows us to work in p-adic fields, called Hensel’s

lemma, which is a simple result, in fact is nothing else than a non-Archimedean

version of Newton’s root-finding method. We begin with the following result,

where for any object x, we denote by x the reduction of x modulo p. We will

identify Zp/pZp with OK/p.

Proposition 2.1.1 (Hensel’s lemma version I). Let f ∈ Zp[X], and assume that

f(x) = φ1(X)φ2(X) with φi ∈ (OK/p)[X] coprime. There exist polynomials

f1, f2 ∈ Zp[X] such that f(X) = f1(X)f2(X), f i(X) = φi(X), and deg(f1) =

deg(φ1).

Another version of Hensel’s lemma which is very useful to show the existence

of roots in p-adic fields, is the following one.

Proposition 2.1.2 (Hensel’s lemma version II). Let f ∈ Zp[X] be a monic

polynomial and let α ∈ Zp be such that |f(α)|p < |f ′(α)|2p, where f ′(X) is the

formal derivative of f(X). There exists a unique root α̃ of f(X) = 0 in Zp such

that

|α̃− α|p ≤
|f(α)|p
|f ′(α)|p

< |f ′(α)|p.

When f(α) ∈ pZp and f ′(α) is a p-adic unit, that is, |f ′(α)|p = 1, the

condition of the proposition is satisfied. Below is an important consequence. First

some definitions.
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Definition 2.1.1. Let P (X1, . . . , Xn) = 0 be a homogenous polynomial equation.

We say that a nontrivial solution (x1, . . . , xn) of the homogenous equation is

nonsingular if ∂P
∂Xj

(x1, . . . , xn) $= 0 for at least one index j. We say that the

equation itself is nonsingular if it has no nontrivial singular solutions.

Proposition 2.1.3 (Hensel’s lemma version III). Let P (X) ∈ Zp[X1, . . . , Xn] be

a homogenous polynomial in n variables, and let (x1, . . . , xn) ∈ (OK/p)n be a

nontrivial nonsingular solution of P (X) = 0, then there exists (α1, . . . ,αn) ∈ Zn
p

satisfying P (α1, . . . ,αn) = 0 such that αi = xi for all i ∈ {1, . . . n}.

For a proof of the three lemmas we refer the reader to section 4.1.7 in

[Coh07a].

2.2 Thue equations

We now go back to our equation (LN). We will use algebraic methods to find all

solutions for a given D in the range (R) and n ≥ 2.

We will now explain how to reduce the equation (LN) to Thue equations.

We consider the general case (GLRN),

D1x
2 + D2 = D3y

n,

where D1, D2, D3 are nonzero integers. Suppose that (x, y) is a solution of

(GLRN) for a given n ≥ 2, then (D1x, y) is a solution of the following equa-

tion,

x2 + D1D2 = D1D3y
n,

so instead of (GLRN) we will be considering the equation

x2 + D = Cyn. (2.2)
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As before we might have to consider n to be a prime number, so when this is the

case we will be considering the following equation:

x2 + D = Cyp, (2.3)

with p a prime number.

So let D and C be nonzero integers. Then there are d, q, nonzero integers,

with d a square free integer, q ≥ 1, such that D = dq2. With this in mind, we

have that

x2 + D = (x + q
√
−d)(x− q

√
−d). (2.4)

Let KD = Q(
√
−d) and OD denote its ring of integers. The main result

of this section is the following:

Theorem 2.1. Let D1, D2, D3 and n be as above, let D = D1D2 and C = D1D3

and let (x, y) be an integral solution of (2.2). Let KD, d and q be also as above

and let {1, ω} be an integral basis of OD, with ω the conjugate of ω over KD. If

y $= 0 then there exists a finite set Γ of pairs {γ+, γ−}, with γ± ∈ KD such that:

x =
1

2
(γ+(A + Bω)n + γ−(A + Bω)n), (2.5)

where (A, B) is a solution of the Thue equation

2q =
1√
−d

(γ+(A + Bω)n − γ−(A + Bω)n). (2.6)

Let us now prove this theorem.

We begin by noticing that though not every OD is a UFD, they all have

unique factorization for ideals. So instead of considering the equation (2.2) in

terms of integers, let us consider in term of ideals:

〈x2 + D〉 = 〈Cyn〉. (2.7)
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Both ideals are principal ideals and according to what we have seen in (2.4),

we can factorize in the following way

〈x + q
√
−d)〉〈x− q

√
−d〉 = 〈Cyn〉. (2.8)

Denote by d± = 〈x ± q
√
−d〉. Using the unique factorization for ideals, we have

that

d± = a±bn
±, (2.9)

where a±, b± are ideals of OD and a± is nth power free.

Let us see which properties they satisfy. First, set σd to be the automorphim

of the field KD, such that

σd(
√
−d) = −

√
−d.

Clearly σd ∈ G(KD/Q) and σd(a±) = a∓, σd(b±) = b∓ since σd(d±) = d∓.

For a an ideal of OD, let a = σd(a); we say that a and a are conjugate.

Suppose now that p is a prime ideal of our ring of integers OD such that p

divides both ideals d±, so

(i) we first see that p | 〈2q
√
−d〉 and p | 〈2x〉.

(ii) secondly we see that gcd(d+, d−) | 〈2q
√
−d〉.

Therefore given a prime ideal p of OD dividing d+ we have that or

(iii) p | 〈2q
√
−d〉, or

(iv) p | 〈C〉, or

(v) vp(d+) ≡ 0 (mod n).
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So a+ must be of the following form:

a+ =
∏

p∈S(2DC)

pκp ,

where 0 ≤ κp < n

Taking into account the observations made in the items (i) - (v) we are

just looking for (κp)p∈S(2DC) such that:

(1) 0 ≤ κp ≤ vp(2qC
√
−d), for all p ∈ S(2DC);

(2) min{κp, κp} ≤ vp(2q
√
−d);

(3) κp + κp ≡ vp(c) (mod n).

Item (3) means that N (a+) ≡ C modul0 nth powers, that is N (a+)/C ∈

(Q∗)n.

With this choice of a±, we have that our b± are such that gcd(b+, b−) =

OD. Denote by L the set of pair of ideals (a, a) that satisfy the five conditions

above.

Let h be the order of the class group of OD and g1, g2, . . . , gh be integral

ideals, forming a complete set of representatives for its ideal class group. Thus, we

know that gib+ is a principal ideal for some i ∈ {1, 2, . . . , h}, therefore (gib+)n is

also a principal ideal. Since d+ is a principal ideal and

d+ = a+bn
+

= a+(gig
−1
i )nbn

+

= a+g−n
i (gib+)n

we necessarily must have that a+g−n
i is a principal ideal. Notice that a+g−n

i is a

fractional ideal, not necessarily an integral ideal. Let γ be one of its generators,
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and let A, B ∈ Z such that β = A + Bω is a generator of gib+, with {1, ω} an

integral basis of OD. So we must have

x + q
√
−d = γuβn, (2.10)

where u comes from a set of representatives of the units modulo nth powers,

UKD/Un
KD

. Let γu = γu. By item (1), we have that

x− q
√
−d = γu(β)n. (2.11)

So adding and subtracting the two equalities (2.10) and (2.11) we have the fol-

lowing “new” equations:

2x = γuβ
n + γu(β)n, (2.12)

2q
√
−d = γuβ

n − γu(β)n. (2.13)

Now, we can rewrite γuβn and γu(β)n in the following form

γuβ
n = P1(A, B) + P2(A, B)ω,

γu(β)n = P3(A, B) + P4(A, B)ω,

where P1, . . . , P4, are homogenous polynomials of degree n in 2 variables over Q.

Due to the fact that γuβn and γu(β)n are conjugate to each other we have that

Pi = (−1)i+1Pi+2 for i = 1, 2.

Therefore we can rewrite the right-hand side of the equations (2.12) and

(2.13) as:

γuβ
n + γu(β)n = Q1(A, B), (2.14)

γuβ
n − γu(β)n = Q2(A, B)

√
−d, (2.15)

where Qi are polynomials in two variables over Q.
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So using the information from the equations (2.12), (2.13), the equalities

(2.14), (2.15) and the fact that {1, ω} is an integral basis of KD, we have the

following equations:

Q1(A, B) = 2x,

Q2(A, B) = 2q

The question that arises now is how do we obtain γu and β? We have that

b± is unknown to us, at least from the factorization that we did above, on the

other hand, from what we have seen, we can calculate the possibilities for a± quite

easily. Given an integral ideal g of the list of representatives of the class group, we

can easily check when a±g−n is principal or not. As consequence we can compute

γu and γu.

Define Γ′ be a set containing a pair of generators {γ, γ} for every pair of

principal ideals of the form ag−n
i and a(gi)

−n, for each set of pairs (a, a) ∈ L.

Define Λn to be a set of representatives of UK/Un
K. And finally define

Γ := {{γu, γu} : {γ, γ} ∈ Γ′, u ∈ Λn} . (2.16)

Therefore we have proved our theorem.

So our problem of determining the solutions of equation (2.2) turns into

a problem of finding solutions of some Thue equations. We will not go through

the theory of Thue equations, (for an account of that see [Coh07b, Chapter 12])

since we can use MAGMA ([BH96]), or even pari/gp (see [Han00]), to compute

the solutions. We found MAGMA more suitable than pari/gp to solve the Thue

equations that we will be looking at. Therefore using the result above and the

facilities that MAGMA allows us to work with Algebraic number theory packages and

solving Thue equations, a program was made to search for the solutions of (LN)
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with D in our range (R). For 1 ≤ D ≤ 100 , the solutions of (LN) are given in

the article [BMS06].

Now we will give a brief explanation why we consider the equation (2.2)

instead of the equation (GLRN). While for the first one, we can factorize the left-

hand side over the number field Q(
√
−D), to factorize the second one we have to

consider the number field Q(
√
−D2,

√
D1), which can have at most degree 4 over

Q, implying at worst that it will have 3 fundamental units. As we will see having

one fundamental unit will give us enough problems, now imagine what three could

possibly do. Also in the latter case, instead of having Thue equations, we would

have a curve defined by three homogenous polynomials of degree n, each one of 4

variables. So instead of solving an equation with two variables we would be finding

points on a curve with four variables.

Now we will make some comments and observations about how to get the

Thue equations and which ones we have to consider, after all.

2.2.1 Class Number

If OD has class number equal to 1, then we are working with a Principal Ideal

Domain, so the construction of Γ is straightforward since we don’t need to worry

about inverses in the Class Group of our ideals a±. On the other hand, if OD has

class number greater than 1, we have to find our set Γ that has been defined above.

Given {γ, γ} ∈ Γ, we might not always have γ to be an algebraic integer. So the

right hand sides of (2.5) and (2.6) might not be a polynomial in variables A and

B with rational integers coefficients, but rational coefficients. As is known, given

an algebraic number α, there exists n ∈ N such that nα is an algebraic integer. So

given {γ, γ} ∈ Γ, there exists nγ, such that nγγ is an algebraic integer, therefore

seeing A, B as variables , we have that nγγ(A+Bw)m is a polynomial in variables
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with rational integers coefficients as well its ‘conjugate’, nγγ(A + Bω)n , and

their sum too. Now instead of looking at the solutions of (2.6) we will look at the

solutions of

2nγq =
1√
d

(
nγγ(A + Bω)n − nγγ(A + Bω)n

)
.

A way to simplify the calculations is to find the ‘minimal’ γ, in terms of the

norm, that we use to define the set Γ′ as we did above. Let MD be the Minkowski

bound for the ring of integers OD and let P(MD) be the set of ideals b which

norm is less or equal than the Minkowski bound MD. Let (a, a) ∈ L. Given ci

a representative of the class group of OD, such that aci
−m is a principal ideal,

consider the set Ici(a) = {b : b ∈ P(MD), bci
−1 is principal}. Basically what

we have done was to choose a representative at the same class of ci in the Class

group, with norm less or equal to the Minkowski bound. Define G(a) to be the set

containing one generator γ̃ of the principal ideals ab−m, where b ∈ Ici(a), which

is a finite set since Ici is a finite set. So we can choose γ to be the element of

G(a) which has the smallest norm.

While computing the Thue equations and their solutions, for the equation

LN, we found that in most of cases, the only ideal a ∈ L we were getting was the

trivial ideal OD so the corresponding class group member was itself and our γ was

nothing more than 1. This can be explained, heuristically, by the fact that if there

was an ideal a ∈ L different from the whole ring and a class group element ci

such that aci
−m was a principal ideal, a fractional one, but non-integral ideal, its

generator would be an algebraic non-integer number lying inside ci
−m so we might

end up with a huge denominator that would make the respective Thue equation

almost impossible to solve.
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2.2.2 −D is a square

Suppose now −D is a square, i.e., −D = q2, so our field KD is nothing more

than Q and our ring of integers is then Z. Instead of using the theory of ideals to

compute the Thue equations we can use the unique factorization properties of the

rational integers. Therefore we can rewrite our Theorem 2.1 in the following way,

Theorem 2.2. Let D, q and n be as above and R = Rad(2q)n. If (x, y), with

y $= 0, is a solution to (2.2) then there exists natural numbers a, b, c1 and c2, such

that:

1. a | R and b | R,

2. if p is a prime then p | a ⇔ p | b,

3. ab is a perfect nth power

4. c1c2 = C.

5. x = 1
2(bc2Un + ac1V n), where U, V are solutions of the following Thue

equation:

2q = (bc2U
n − ac1V

n).

Proof. Since D = −q2, then we can rewrite (2.2) in the following way:

(x− q)(x + q) = Cyn.

Since y $= 0 we can use the unique factorization properties of Z to see that there

exist numbers a, b, c1, c2, y1, y2 ∈ Z, all different from 0, such that:

x− q = ac1y
n
1 , x + q = bc2y

n
2 and c1c2 = C.

We can always choose, without loss of generality, a, b to be natural numbers and

for each prime p such that p | a (resp. p | b) we can have that pn ! a (resp. pn ! b).
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Since x2 − q2 = Cym, and c1c2 = C so we must have that abc1c2(y1y2)n = Cyn,

therefore ab must be a perfect n-th power. By this fact and the fact that no n-th

power of a prime divides both a and b, we must have that the primes that divides

a are the same that divides b. So let us now consider p a prime such that p|a, we

also have that p|b, so p divides both x+ q and x− q, therefore p divides 2q. Thus

we have that both a and b divides (Rad(2q))n. So we have a and b as in conditions

(1)-(3) of the theorem. Of course (4) is already checked. To see condition (5), it

is only necessary to see that (x+q)−(x−q) = 2q, on one side, while on the other

side we get that (x+ q)− (x− q) = bc2y2
n− ac1yn

1 . So y1, y2 are solutions of the

Thue equation 2q = (bc2Un − ac1V n). So we have that x = 1
2(bc2Un + ac1V n)

and this concludes our proof. QED

Notice that we have imposed the condition y $= 0 in the above theorem as

in the others, but when D = −q2, we also have the solution (x, y) = (±q, 0), but

this one might not arise from any of the Thue equations that we get using the

above results. So in this particular case we have to consider this solution too.

2.2.3 Real and imaginary quadratic number fields

When D < 0, and −D is not a square, KD is a real quadratic number field. Its

signature is (r, s) = (2, 0) so the unit group UKD has rank 1, therefore there exists

u a fundamental unit. Therefore we have that our set Λn is the following

Λn =
{
± 1,±u, . . . ,±un−1

}
.

If n is odd then we can remove the ±.

On the other hand when D > 0, we have that KD is an imaginary quadratic

number field. The signature is (r, s) = (0, 1) and we know the unit group has
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rank 0. Therefore UKD is equal to µ(KD). For this case we have that our set Λn

is the following

Λn =






{±1} if d > 4 or d = 2,

{±1,±i} if d = 1,

{±1,±ρ,±ρ} if d = 3,

where ρ is a primitive cube root of unity.

As before, if n is odd, then we can remove the “±”.

2.2.4 Difference of squares

Consider now the particular case of n = 2 or an even number 2m, for m ∈ N. For

this particular case we can consider the following equation

x2 − Cy2 = −D

instead of (2.2) and where the new y is equal to the old y to the power of m.

First of all these are the so called Pell-Fermat equations. If we consider the

factorization of x2−Cy2 over KC = Q(
√

C), and C is not a square we have that

(x − y
√

C)(x + y
√

C) = −D, so N (x − y
√

C) = −D, we are looking at norm

equations.

As we have done before, we consider these factorizations (whether C is a

square or not) as equations over ideals. Therefore we have that

〈x− y
√

C〉〈x + y
√

C〉 = 〈−D〉.

So we need to look for ideals a such that aa = 〈−D〉 and a and a are

principal. Then there is γ ∈ OC the ring of integers of KC such that a = 〈γ〉 and

a = 〈γ〉. So x = 1
2(γu + γu) and y = 1

2
√

C
(γu − γu), where u is a unit of OC and

γu = γu
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So if C < 0 or a square we have that UKC is finite, so we will have finitely

many solutions. The only problem arises when KC is a real quadratic field, where

there is a fundamental unit u0 and so u = ±uk
0, where k ∈ Z.

About the case when C is a square, let us say C = c2, then the method to

find the solutions becomes much easier. So x + cy = d1 and x − cy = d2, with

d1, d2 integers such that d1d2 = −D. And since we can choose x, y to be positive,

we also have that d1 > 0. And we see that x = 1
2(d1 + d2) and y = 1

2c(d1 − d2).

So we have that d1 ≡ d2 (mod 2) and d1 ≡ d2 (mod c).

So we need to find all positive divisors d of −D such that d−D/d is even

and c | −D/d− d.

2.3 Selmer groups and Γ sets

Though in the previous section we had mention how to obtain the Γ sets, we will

now present another way of getting those sets. This method turns out to be more

efficient in terms of computation, especially when we are computing also other

information than factorizing ideals and/or finding their generators, as will happen

in section 3.3.3. We will also show how we can shorten our set Γ, by eliminating

some pairs {γ, γ} using local methods.

First some definitions and notation are needed before we carry on.

2.3.1 Selmer groups

We start presenting some definitions and stating some results concerning the so-

called Selmer groups Seln(K, S), for a given integer n and a set S of finitely many

primes ideals of the number field K.
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Definitions and main results

Definition 2.3.1. Let K be a number field and OK its ring of integers. Let

Plf (K) the set of all the set of finite places of K. Let S be a finite subset of

Plf (K), possibly empty, a a fractional ideal of O and n a natural number greater

than or equal to 2.

(1) The ring of S-integers OK(S) is defined as

OK(S) = {x ∈ K|vp(x) ≥ 0 ∀p /∈ S}

(2) We say that a is coprime with S if vp(a) = 0, for all ideals p ∈ S.

(3) We say that a is an S-ideal if it belongs to the group of (fractional) ideals

generated by ideals in S, that is, vp(a) = 0 for all ideals p ∈ Plf (K) \ S.

The set of all S-ideals will be denoted by IK(S).

(4) We say that an element u ∈ K∗ is an S-unit if vp(u) = 0 for every prime

ideal p ∈ Plf (K) \ S. The group of S-units is denoted by UK(S).

(5) We define the S-class group ClK(S) as the quotient group of the ordinary

class group ClK by the subgroup generated by the classes of the elements of

S.

(6) We say that an element u ∈ K∗ is an S-virtual n-th power if vp(u) ≡ 0

(mod n) for every prime ideal p ∈ Plf (K) \ S.

(7) We define the n-Selmer group of K with respect to S, Seln(K, S) as the set

of classes of S-virtual n-th powers modulo K∗n.

Given S as in the definition and an ideal a of O, integral or not, we know,

by the fundamental theorem of ideals, that a =
∏

p∈Plf (K) pmp , where mp is an
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integer equal to zero, except for finitely many prime ideals p. We denoted by

aS =
∏

p∈S pmp and by aS =
∏

p∈Plf (K)\S pmp . Therefore we have that a = aSaS,

where aS is an S-ideal and aS is an ideal coprime with S.

Now we give two results that will help us work with the n-Selmer group of

our number field KD for a given finite set of prime ideals S.

Proposition 2.3.1. Let S and n be as in the definition above. The following two

properties are equivalent.

(1) u is an S-virtual n-th power.

(2) There exist (fractional) ideals a, b of O such that:

〈u〉 = abn,

where b is coprime to S and a is an S-ideal.

Proof. That (2) implies (1) is trivial. About (1) implying (2), consider the ideal

u = 〈u〉, by the definition of S-virtual n-th power and vp(u) = 0 for all ideals

p ∈ Plf (K) \ S, so vp(〈u〉) = vp(u) = 0 for all ideals p ∈ Plf (K) \ S. By the

observation made above, we have that u = uSuS, where uS is a n-th power,by

hypothesis, so uS = bn. Therefore we have 〈u〉 = uSbn where b is coprime to S,

since bn = uS, that is coprime to S. QED

The following result can be found in [CL07]. Even so we do not refrain

from presenting a proof.

Proposition 2.3.2. Let S be as in the previous proposition and m and n coprime

natural numbers. Then Selmn(K, S) - Selm(K, S)× Seln(K, S).

Proof. First of all, since m and n are coprime there are k1, k2 ∈ Z such that mk1+

nk2 = 1. Now we define two monomorphisms φ1, φ2; the first from Selmn(K, S)
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to Selm(K, S)× Seln(K, S) and the second one in the opposite direction. Given

[a] ∈ Selmn(K, S) we set φ1([a]) = ([a], [a]) and given ([a], [b]) ∈ Selm(K, S) ×

Seln(K, S), we set φ2(([a], [b])) = [ank2bmk1 ]. First of all it is easy to see that φ1 is

well defined, since if [a] = [b] ∈ Selmn(K, S) it is equivalent to say that a = bαmn,

with both a and b S-virtual mn-powers, and α ∈ K∗, which is equivalent to

[a] = [b] in both Selm(K, S) and Seln(K, S). It is easy to see that φ2 is well

defined.

Let ([a], [b]) ∈ Selm(K, S) × Seln(K, S). We have that φ2([a], [b]) =

[ank2bmk1 ]. Now

ank2bmk1 = a1−mk1bmk1 = a(a−1b)mk1 .

So [a1−mk1b1−nk2 ] = [a] in Selm(K, S). The same is also true for [a1−mk1b1−nk2 ] =

[b] in Seln(K, S). So φ1 ◦ φ2 = Idm×n. It is also easy to prove that φ2 ◦ φ1 =

Idmn. QED

Proposition 2.3.3. Let K be a number field of signature (r, s), S as above.

We denote by #S the cardinality of S. Define κ(S) = r + s + #S − 1. Let

µ(K) be the torsion subgroup of UK. Let p be a prime number and l an integer

greater than or equal to 0. Define rl to be the non-negative integer such that

gcd(pl, #µ(K)) = prl .

(1) The group UK(S) is a finitely generated abelian group of rank κ(S), whose

torsion subgroup is independent of S and equal to the (cyclic) group of roots

of unity of K. In particular,
∣∣∣∣

UK(S)

UK(S)pl

∣∣∣∣ = plκ(S)+rl .

(2) We have a natural split exact sequence

1 −→ UK(S)

UK(S)pl −→ Selpl(K, S) −→ ClK(S)[pl] −→ 1, (2.17)
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where as usual for an abelian group G, G[pl] denotes the subgroup of G

killed by pl. In particular, Selpl(K, S) is finite and its cardinality is equal to

pκ(S)+rl+cl , where cl is the integer such that #ClK(S)[pl] = pcl .

Proof. The proof that is largely based on the proof of Proposition 8.3.4 of [Coh07b]

(1). We have a natural sequence

1 −→ UK −→ UK(S) −→ IK(S) −→ ClK −→ ClK(S) −→ 1,

where the map starting from UK(S) sends u to the Ideal 〈u〉, and the map starting

from IK(S) sends an ideal to its ideal class. It is immediately checked that the

sequence is indeed exact. Since ClK and, therefore also, ClK(S) are finite groups,

it follows that UK(S) is finitely generated and its rank is equal to that of UK,

(r1 + r2 − 1) plus that of IK(S), equal to #S, that is, the rank is equal to κ(S).

The statement concerning the torsion subgroup is clear, and the one about the

order of the quotient group UK(S)/UK(S)pl is also clear, taking into account the

order of the torsion subgroup.

(2). Let u ∈ Selpl(K, S), so that 〈u〉 = abpl , for some S-ideal a, from

what we have seen from the proposition above. We send u to the class of b in

ClK(S). Clearly this does not depend on the decomposition abpl , which is unique,

or on the chosen representative u of u ∈ Selpl(K, S). Since bpl
= ua−1 it is clear

that the class of b belongs in fact to ClK(S)[pl]. With this map defined, it is

then easily checked that the given sequence is exact and split. The statements

concerning the cardinality of Selpl(K, S) follow. QED

We have used the basic exact sequence (2.17), called the pl-Kummer se-

quence for K∗ (or for UK(S)). In fact this sequence is more general than presented
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in (2.17): for a given positive integer n we have:

1 −−−→ UK(S)
UK(S)n

ιn−−−→ Seln(K, S)
αn−−−→ ClK(S)[n] −−−→ 1

where ClK(S)[n] is the n-torsion subgroup of ClK(S), and the map αn is given

by x 0→ [b], where 〈x〉 = abn
S
, with a an S-ideal and b a coprime S-ideal

There is an analogy with the n-descent Kummer sequence for elliptic curves,

0 −−−→ E(K)/nE(K) −−−→ Sel (n)(K, E) −−−→ X[m] −−−→ 1.

Let us present two ways of calculating Seln(K, S) for a given positive integer

and S, a finite set of prime ideals.

The first result is presented, once again, in [CL07].

Proposition 2.3.4. Let m, n be positive integers. The Kummer sequences for

m, mn and n fit together to form the following commutative diagram with exact

rows and columns:

1

!!

1

!!

1

!!

1

!!

1 ""µm,n
ιn "" UK(S)

Un
K (S)

m ""

!!

UK(S)
Umn

K (S)

prmn
m ""

!!

UK(S)
Um

K (S)
""

!!

1

!!

1 ""µm,n
ιn ""

!!

Seln(K, S) m ""

!!

Selmn(K, S)
prmn

m ""

!!

Selm(K, S)
αm,n ""

!!

ClK(S)[m]
nClK(S)[mn]

""1

1 ""ClK(S)[n]
ιn ""

!!

CK(S)[mn] n ""

!!

ClK(S)[m] ""

!!

ClK(S)[m]
nClK(S)[mn]

""

!!

1

1 1 1 1

The kernels µm,n = µm(K)/µmn(K)n are finite, and trivial when gcd(m, n) =

1. The cokernels ClK[S][m]/nClK(S)[mn] are also finite, and also trivial when

gcd(m, n) = 1 or when #ClK(S) is coprime to m.
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Proof. We provide a proof for this result. The columns are exact due to the

Kummer sequence for the central columns and due to the trivial maps for the

external columns. About the rows, let us start by the first one. Let u ∈ UK(S),

such that [um] ∈ Umn
K (S), then exists v ∈ UK(S), such that um = vnm, therefore

u = ζvn, where ζ ∈ µm,n. So the sequence is exact at UK(S)/Un
K(S). About

the exactness in UK(S)/Umn
K (S). Let u ∈ UK(S), then u ∈ Um

K (S), if and only if

u = vm, therefore u belongs to the image of m. And it is clear that the image of

prmn
m is the whole group UK(S)/Um

K (S).

For the second row. Let [u] ∈ Seln(K, S) such that [um] is trivial in

Selmn(K, S), then um = vmn, therefore as before we have that u = vnζ, with

ζ ∈ µm,n. If [u] ∈ Selmn(K, S) is trivial in Selm(K, S), then u = vm, and since

u ∈ Selmn(K, S) we have that [v] ∈ Seln(K, S). And it’s clear that the image of

m belongs to the kernel. Now let [u] belong to the kernel of αm,n, then 〈u〉 = aSbm
S

and [bS] = [cn], with [c] ∈ ClK(S). Therefore we can see that 〈u〉 = ãc̃mn, that is

[u] ∈ Selmn(K, S). It is also easy to see that αm,n is surjective. For the last row

we just need to check that ker n = im ιn. Consider [a] ∈ ker n, then [an] = [c],

with c and S-ideal. Then [a] ∈ ClK(S)[n]. The other inclusion is obvious. About

the commutativity of the diagram, this is obvious by the definition of the maps

and taking into account that if u ∈ UK(S), then αm([u]) is always the trivial

element. QED

With this result we can compute Seln(K, S) in the following way. First we

factorize n into a product of prime powers n = pm1
1 . . . pmr

r and then we calculate

separately each Selpmi
i

(K, S). Let p be a prime dividing n, and κp = vp(n)To start

we need to calculate Selp(K, S), which can be done by our MAGMA implementation.

Suppose we have calculated Selpr(K, S), next we calculate Selpr+1(K,S). First we

28



determine the homomorphism αp,pr : Selp(K, S) → ClK(S)[p]/prClK(S)[pr+1]:

for each u ∈ Selp(K, S) we may write 〈u〉 = aSbp
S and set α(u) to be the class of

bS modulo ClK(S)[pr+1]. If [bS] = Ipr

S , for some co-prime S-ideal IS, then writing

vbS = Ipr

S , with v ∈ K∗ we can replace u by uvp, which represents the same class

in Selp(K, S) as u. Thus for each generator of the kernel of αp,pr we can lift to a

representative element u ∈ K∗ such that u modulo (K∗)pr+1 lies in Selpr+1(K, S).

Then Selpr+1(K, S) is generated by these elements together with the vp for v in a

set of generators of Selpr(K, S) modulo ιp(µp,pr). And we proceed like this until

we calculate Selpκp (K, S).

The problem with this method is that it depends on constructing almost

every single Selmer group for each prime power dividing n. We need to calculate

every single Selmer group from p to pκp/. There is a more steady way of calculating

our Selmer group without going through a recursive process.

Theorem 2.3. Let S be a finite set of prime ideals of K, n a positive integer. Let

S ′ be a finite set, possibly empty, of prime ideals of K such that S∩S ′ = ∅ and the

representatives of the elements of S∗ := S ∪ S ′ generates the group ClK/nClK.

Define Kn(S, S ′) := {u ∈ UK(S∗) : vp(u) ≡ 0 (mod n),∀p ∈ S ′}. Then

Kn(S, S ′)/(Kn(S, S ′))n - Seln(K, S).

Proof. The existence of S∗ is due to the fact that ClK is finite and hence so is

ClK/nClK. Using a method similar to the one described in 2.2.1 to find a set of

representatives for each class of ClK, we can build a finite set S ′, possibly empty,

such that S ′ ∩ S = ∅ and S∗ = S ∪ S ′ generates ClK/nClK. Let u ∈ Kn(S, S ′),

we define the map φn
S,S′ , from Kn(S∗)/Kn

n(S, S ′) to Seln(K, S) in the following

way, φn
S,S′([u]) = [u]. Let us see that is well defined. Let u ∈ Kn(S, S ′) so

for all p prime ideals of K outside S∗, we have that vp(u) = 0 and, due to the
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definition of Kn(S, S ′), we have that vp(u) ≡ 0 (mod n), when p ∈ S ′, therefore

[u] ∈ Seln(K, S). Now let v ∈ Kn(S, S ′). First assume that [u] = [v], thus

there exists w ∈ Kn(S, S ′) such that u = vwn, therefore [u] = [v] in Seln(K, S).

Suppose now we have φn
S,S′([u]) = φn

S,S′([v]), then exists b ∈ K∗, such that

u = vbn, therefore for all prime ideals p we have that vp(u) = vp(v) + nvp(b),

and since u, v ∈ Kn(S, S ′), we see that vp(b) = 0 for all prime ideals p not in

S∗, therefore [u] = [v] in Kn(S, S ′)/Kn
n(S, S ′). This proves that φn

S,S′ is injective.

Now let us prove that φn
S,S′ is surjective. Let [u] ∈ Seln(K, S), then we know

that 〈u〉 = abn, with a an S-ideal and b an S-coprime ideal. So we have that

b ∈ ClK(S)[n]. Due to the fact that S∗ generates ClK/nClK, we have that

[b]−1 = [c], with c an S∗-ideal. Therefore bc = 〈cu〉 and we have that

〈u〉 = abn = abncnc−n = cn
uacn.

So consider uc−n
u . This element is in Kn(S, S ′), since vp(uc−n

u ) = vp(ac−n),

a is an S-ideal and c an S∗-ideal and φn
S,S′([uc−n

u ]) = [u]. Now we have to

see that it does not depend on our choice of c. Suppose that there is another

S∗-ideal d, such that 〈u〉 = c̃nad−n, then consider w =
(

cu
c̃

)n. We have that

vp(w) = n(vp(c) − vp(d)), therefore we have that w ∈ Kn
n(S, S ′), and so uc−n

u

and ud−n are in the same class in Kn(S, S ′)/Kn
n(S, S ′). Also suppose that u, v

are such that [u] = [v] ∈ Seln(K, S), then exists cu, cv as before and w ∈ K∗

such that u = vwn. So uc−n
u /vc−n

v = vwnc−n
u /vv−n

v = (wcv/cu)n, and is easy to

see that wcv/cu is in Kn(S, S ′), just consider as before the ideal representation

of uc−n
u and vc−n

v . And for course we have that φn
S,S′([uc−n

u ]) = [uc−n
u ] = [u].

Therefore we have that Kn(S, S ′)/Kn
n(S, S ′) - Seln(K, S). QED

It is possible to implement an algorithm in MAGMA to compute the Seln(K, S),

for a given positive integer n, a number field K and S a finite set of primes ideals
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of K.

Constructing the Γ sets using Selmer groups

Consider {γ, γ} ∈ Γ′. Consider S(2DC) to be set of the prime ideals dividing the

ideal 〈2DC〉. By the definition of γ, we have that if (α, α) ∈ Γ′, then 〈α〉 = abn;

it is possible to choose b and a such that a is an S(2DC)-ideal and b is coprime

to S(2DC). So we have that α is an S(2DC)-virtual n-th power. From now on

set S := S(2DC). Now, let {γ, γ}, {γ′, γ′} ∈ Γ′ and suppose that they define

the same class in n-Selmer group of KD with respect to S. So γ = γ′un, where

u ∈ K∗
D, therefore

〈γ〉 = 〈γ′un〉. (2.18)

By the definition of γ and γ′ we have that there exists a1, a2, c1, c2 such that

〈γ〉 = a1c
n
1 and 〈γ′〉 = a2c

n
2 , (2.19)

with a1 and a2 S-ideals such that 0 ≤ vp(ai) ≤ n−1, for all p ∈ S and i ∈ {1, 2}.

So joining the information of (2.18) and (2.19) we have that:

a1c
p
1 = a2(uc2)

n.

So by the definition of ai, we have that a1 = a2, and therefore c1 = uc2, but since

each ci was chosen as a representative of a class of the class group of KD, and

c2 and uc2 are in the same class we have that c1 = c2, therefore γ = γ′, by the

definition of Γ′.

This means that instead of creating the S ideals a nth power free and going

through the tedious process of seeing if it is principal or not, and then finding a

suitable γ, we can look directly to representatives of the n-Selmer group of KD

with respect to S. Of course there are still more properties that we need to verify.

Recall L as defined above, (a, a) ∈ L, had to verify three conditions:
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(i) 0 ≤ vp(a) < n for p ∈ S and vp(a) = 0 if p $∈ S.

(ii) the gcd(a, a) divides (2q
√
−d)OD;

(iii) vl(N (a)) ≡ vl(C) (mod n) for l dividing C and vp(aa) ≡ 0 (mod n) for

all p ∈ S(2D \ C).

So we need to see how we should get representatives of the Selmer group that

satisfy the two last conditions.

For aa to be an n-th power, the norm of a must be an n-th power, so

by the choice of {γ, γ} ∈ Γ′, we have that the valuation of γ is a multiple of

n for the primes in S(2D \ C). Then we have to look for representatives of the

n-Selmer group whose valuation is a multiple of n for the primes in S(2D \ C).

By the definition of S-virtual n-th power, we only need to look at what happens

with the powers of the primes that divide 2D but do not divide C, in the norm of

the representatives of the n-Selmer group. Let q be a prime dividing 2D but not

C. Consider the map

θq : Seln(KD, S) → Z/nZ,

defined by θq(u) = (vq(N (u)) (mod n)). By condition (iii) above, we have that

γ ∈ Ker(θq), for all primes q | 2D and q ! C. The second part of third condition

is settled so let us consider the first part. We must have N (a)/C an nth power.

Let l be a prime diving C. Define then the map

ψl : Seln(KD, S) → Z/nZ,

defined by ψl(u) = vl(N (u)) (mod n). Again by condition (iii), we have that

{γ, γ} ∈ Γ′ only if γ ∈ φ−1
l (vl(C) (mod n)).

This takes care of the third condition.
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Let us now consider the second condition, (ii), gcd(a, a) divides 2q
√

dOD.

If {γ, γ} ∈ Γ′, then there exists (a, a) ∈ L and a fractional ideal c such that

〈γ〉 = ac−n.

As we have seen before, we have that a is an S-ideal.

So, given a γ representative of a class of Seln(K, S), we have that

〈γ〉 =
m∏

i=1

pki
i ,

with pi prime ideals and ki nonzero integers.

Define then 〈γ〉S,n to be the following ideal:

〈γ〉S,n :=
r∏

i=1

pκi
i ,

where κi = ki if ki > 0 or κi ≡ ki (mod n), with κi ∈ {0, 1, . . . , n − 1}. Then

we have that 〈γ〉S,n is an S ideal and

〈γ〉 = 〈γ〉S,nc
−n
S,n.

So to have {γ, γ} ∈ Γ′, we must have that gcd(〈γ〉S,n, 〈γ〉S,n) divides

2q
√
−d.

In conclusion we have proved the following result:

Theorem 2.4. Keeping the notation above we have that {γ, γ′} ∈ Γ′ if it satisfies

the following conditions:

(1) γ is an S-virtual n-th power.

(2) gcd(〈γ〉S,n, 〈γ〉S,n) | 2q
√
−d.

(3)

[γ] ∈
⋂

l|2DC

ψ−1
l (vl(C) (mod n)),

where [γ] is the class of γ in the Seln(KD, S), and q and l are prime numbers.
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(4) If (α, α) ∈ Γ′ different from {γ, γ}, satisfies the above conditions then

〈α〉S,n $= 〈γ〉S,n and 〈α〉S,n $= 〈γ〉S,n.

Though we have shown that distinct {γ, γ}, {γ′, γ′} ∈ Γ′ come from dif-

ferent n-Selmer groups class, the opposite is not true, in fact we can have that

two different n-Selmer class verifying the conditions above can give rise to two

elements that come from some ideal a ∈ L. This is due to the fact of for dif-

ferent classes of the Selmer group [γ] and [γ′], we can have 〈γ〉S,n = 〈γ′〉S,n or

〈γ〉S,n = 〈γ′〉S,n. That’s the reason to impose the condition (4).

With this result, instead of creating the set of ideals L and then testing

all the conditions for each of those ideals, we can create first the set of n-Selmer

group of KD with respect to the set S, defined above and then verify conditions

(2), (3) and (4) of the previous theorem.

As before, it is possible to obtain the n-Selmer group for the field KD with

respect to S(2DC), using the program MAGMA. As it also possible to implement

computational routines to verify condition (2), (3) and (4). Apart from the ad-

vantage of not having to create the set L, we also don’t need to test if each ideal

is principal and, if not, choose a representative for the inverse class in the class

group. A possible disadvantage of this method, seems to appear when we have

the field KD with class number one and we get some of the γ non-integral, due to

the fact that the choice of a representative of a class of Seln(KD, S) group can

be an algebraic number that is not necessarily an algebraic integer.

2.3.2 Sieving Γ

After obtaining Γ′ we still have to build the set Γ as shown in (2.16). Now we

will present a method that might, or not, eliminate some of the elements of Γ

34



that we do not need to consider for our Thue equations. This method has been

used before in [BMS06] to help eliminate modular forms or to find the {γ, γ} that

would give rise to a Thue equation. We will use it later on with modular forms,

but we will present now an adaptation of that method.

Suppose that l is a prime satisfying the following conditions.

(a) l ! 2D.

(b) l = nm + 1 for some integer m.

(c) (−d
l ) = 1, thus l splits in OD, say (l) = l1l2.

(d) Each γ ∈ Γ is integral at l; what we mean by this is that each γ belongs to

the intersection of the localizations OD,l1 ∩OD,l2 .

For such prime l we define Il(D) to be the set of τ ∈ Fl such that either:

• (τ 2 + D)m ≡ Cm (mod l) ; or

• (τ 2 + D)m ≡ 0 (mod l),

where m is as above.

We denote the two natural reduction maps by θ1, θ2 : OD,l1 ∩OD,l2 → Fl.

These of course correspond to the two square roots for d in Fl and are easy to

compute.

Now let Γl be the set of γ ∈ Γ for which there exists τ ∈ Il(D) such that:

• (τ + qθ1(
√
−d))m ≡ θ1(γ)m or 0 (mod l); and

• (τ + qθ2(
√
−d))m ≡ θ2(γ)m or 0 (mod l).

Proposition 2.3.5. Let D and C be as before. Let T (n) be a set of primes l

satisfying the conditions (a)-(d) above. With the notation as above, if there is
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Table 2.1: Number of Thue equations we must consider for Γ and for ΓT

D
n Γ or ΓT -11 -17 -19 -33 -38 -53 -56 -62 -66 -71 -77 -86

3 Γ 3 9 3 9 3 3 3 3 3 3 3 3
ΓT 2 6 3 6 3 0 3 3 3 3 3 3

5 Γ 5 15 5 15 5 5 5 5 5 5 5 5
ΓT 5 10 0 8 4 2 2 5 0 4 5 0

7 Γ 7 21 7 21 7 7 7 7 7 7 7 7
ΓT 5 14 7 12 0 4 4 0 7 0 0 5

a solution (x, y), to (2.2), then x + q
√
−d = γβn for some β ∈ OD and some

γ ∈ ΓT (n) := ∩ l∈T (n)Γl. In particular, if ΓT (n) is empty, then there is no solution

for the equation (2.2) for the exponent n.

Proof. Suppose that (x, y) is a solution to (2.2), then by Theorem 2.1 we have

that there exists γ ∈ Γ such that x + q
√
−d = γβn, where β ∈ OD. Using the

notation above it is easy to see that τ = θ1(x) = θ2(x) ∈ Il(D). Applying θi to

both sides and taking the m-th powers (recall that l = nm + 1) we obtain

(τ +qθi(
√
−d))m ≡ θi(γ)mθi(β)l−1 (mod l), with θi(β)l−1 ≡ 0 or 1 (mod l).

Thus γ ∈ Γl as defined above, then the proposition follows. QED

So after calculating Γ we can calculate ΓT (n) for some set T (n) of primes l

satisfying conditions above. If ΓT (n) is empty there are no solutions, if not we may

or may not, reduce the number of possible γ’s to consider, that is the number of

Thue equations that we must consider. To state the efficiency of this method, in

terms of reducing the number of Thue Equations that we might have to consider

at the beginning, just take a look at Table 2.1, when we consider the equation

(LN). We can see for example that for n = 3 and D = −53 and −88 we are

left with no Thue equations to consider after calculating ΓT , for a suitable set of
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primes T . The same happens for D = −19,−66 and -86 when n = 5 and for

D = −38,−62,−71 and −77 when n = 7.

It is possible to see that when D = 17 or 33, after calculating ΓT we reduce

the number of equations almost in one-third.

Also, we can see that when n grows the number of D’s for which there is a

difference on the number of Thue equations to consider after Γ and ΓT increases.

2.4 On eliminating and solving Thue equations

So far we have seen how to compute the Thue equations to get to the solutions of

our Equation, the question that arises now is: are all of them needed? Do we only

get the equations that come from a solution or do we get more than we need?

The answer is: it depends on the equation.

Example 2.4.1. Let us consider n = 5, D = −1 and C = 1 in 2.2, so we have

that OD = Z. After using Theorem 2.2, with D = −1 and the fact that our q is

1, we get the following Thue equations:

2 =






U5 − V 5

2U5 − 16V 5

16U5 − 2V 5

, 2x =






U5 + V 5

2U5 + 16V 5

16U5 + 2V 5

The two first equations give the solution (x, y) = (0,−1), the two second one the

solution (x, y) = (1, 0) and the two last ones (x, y) = (−1, 0). And these are all

the solutions for (LN) when D = −1 and n = 5. So we have seen an example

that all the Thue equations that we get come from a solution of our equation.

Consider now the same equation LN for n = 5 and let us put D = −7

in2.2. We have that O−7 = Z[
√

7], so we are in a real quadratic number field,

with class number one. The Thue equations that we get after the using Theorem
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2.1 are:

1 =






3U5 + 40U4V + 210U3V 2 + 560U2V 3 + 735UV 4 + 392V 5

48U5 + 635U4V + 3360U3V 2 + 8890U2V 3 + 11760UV 4 + 6223V 5

765U5 + 10120U4V + 53550U3V 2 + 141680U2V 3+

+187425UV 4 + 99176V 5

12192U5 + 161285U4V + 853440U3V 2 + 2257990U2V 3+

2987040UV 4 + 1580593V 5

49V 5 + 70U3V 2 + 5UV 4;

x =






8V 5 + 105U4V + 560U3V 2 + 1470U2V 3 + 1960UV 4 + 1029V 5

127V 5 + 1680U4V + 8890U3V 2 + 23520U2V 3 + 31115UV 4 + 16464V 5

2024U5 + 26775U4V + 141680U3V 2 + 374850U2V 3+

+495880UV 4 + 262395V 5

32257U5 + 426720U4V + 2257990U3V 2 + 5974080U2V 3+

+7902965UV 4 + 4181856V 5

245U4V + 70U2V 3 + V 5.

But we can see (using for that purpose a program like MAGMA) that none

of the Thue equations of the first equality have solutions, therefore our equation,

x2−7 = y5, has no solution. In this case all the Thue equations didn’t come from

any solution, for there are no solutions for (LN), when D = −7 and n = 5.

We will present three methods that will help us reduce further the number

of Thue equations that we need to consider, in order to compute the solutions to

the equation (2.2).
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2.4.1 First elimination method: A relation between the coefficients

The first method is a very simple one. If we have

r = a0U
p + a1U

p−1V + · · ·+ ap−1UV p−1 + apV
p, (2.20)

where r, U, V and all ai’s are integer numbers, then the gcd(a0, a1, . . . , ap−1, ap)

must divide r. So if this does not hold, we can discard the Thue equation. It is a

simple method but can be extremely helpful.

2.4.2 Second elimination method: Local solvability

If a Thue equation has a solution then the same equation over an l-adic field, will

also have a solution. Therefore, if we find an l-adic field over which the equation

doesn’t have a solution, then it won’t have a solution at all over Z. So we must

test if each Thue equation is everywhere locally solvable. And to do that we will

use Hensel’s lemma (see Lemmas 2.1.1, 2.1.2 and 2.1.3).

These versions of Hensel’s lemma allow us to work over a finite field, Fl,

with l a prime number, instead of working over an l-adic field, or even in the

integers of the l-adic field. Of all these versions the one we are going to need is

the third version, but even still we are going to restate it in a different way, to use

it later.

Lemma 2.4.1 (Hensel’s Lemma, version IV). Let f ∈ Z[X1, . . . , Xm], a

non-constant polynomial, l a prime number and let a = (a1, . . . , am) ∈ Zm have

the property that, for some k ≥ 0,

f(a) ≡ 0 (mod l2k+1)
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and, for some i ∈ {1, . . . ,m},
(

∂f

∂Xi

)
(a) $≡ 0 (mod lk+1).

Then there exists an element b ∈ Zm
l such that






b ≡ a (mod lk+1)

f(b) = 0
.

Proof. See [Mil06], Lemma 2.10 and Theorem 2.12. QED

Now consider

F (X, Y ) = a0Y
n + a1X

n−1Y + · · ·+ an−1XY n−1 + anY
n ∈ Z[X, Y ],

we want to solve the equation

F (X, Y ) = c,

where c is an integer different from zero. Let l be a prime.

Lemma 2.4.2. Let F (X, Y ), c and l as above. Let x1, y1 be integers such that:

F (x1, y1) ≡ c (mod l).

Then there exists x, y ∈ Zl such that





x ≡ x1 (mod l),

y ≡ y1 (mod l),

F (x, y) = c.

except possibly when
(

∂F
∂X

)
(x1, y1) ≡

(
∂F
∂Y

)
(x1, y1) ≡ 0 (mod l).
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Proof. Consider x1 and y1 as in the lemma. Since we must have
(

∂F
∂X

)
(x1, y1) $≡ 0

(mod l) or
(

∂F
∂Y

)
(x1, y1) $≡ 0 (mod l), suppose, without loss of generality, that

we are in the first case. Consider then G(X) = F (X, y1) − c and the lemma

follows from the previous lemma. QED

So we only need to see if there is a solution for the equation F (X, Y ) ≡ c

(mod l) that is not a solution for the partial derivatives of F modulo l.

Proposition 2.4.1. Let F (X, Y ), c, l, x1 and y1 as in the above lemma. Let n

be the degree of F . If l does not divide nc, there exists x, y ∈ Zl such that





x ≡ x1 (mod l)

y ≡ y1 (mod l)

F (x, y) = c

.

Proof. By the previous lemma we only need to show that we must have or
(

∂F
∂X

)
(x1, y1) $≡ 0 (mod l) or

(
∂F
∂Y

)
(x1, y1) $≡ 0 (mod l). Suppose

(
∂F
∂X

)
(x1, y1) ≡

(
∂F
∂Y

)
(x1, y1) ≡ 0 (mod l). By Euler’s homogeneous function theorem we have

that

X
∂F

∂X
(X, Y ) + Y

∂F

∂Y
(X, Y ) = nF (X, Y ).

Since F (x1, y1) ≡ c (mod l), we have that

0 ≡ x1
∂F

∂X
(x1, y1) + y1

∂F

∂Y
(x1, y1) (mod l)

≡ nF (x1, y1) (mod l)

≡ nc (mod l).

Therefore l divides nc, but we have supposed the opposite. QED
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Now, we only have to consider the case when l divides nc. Let v ∈ N0,

such that nc = lvm, and gcd(l, m) = 1. We have the following, more general

version, of the previous proposition

Proposition 2.4.2. Let F (X, Y ), c, l as in the above lemma. Let n be the degree

of F and v as above. Let x1, y1 be integers such that

f(x1, y1) ≡ c (mod l2v+1)

Then there exists x, y ∈ Zl such that

x ≡ x1 (mod lv+1), y ≡ y1 (mod lv+1), F (x, y) = c

Proof. The case v = 0 was already done in the previous lemma. Now consider

v ≥ 1. So if we had both partial derivatives equal to zero modulo lv+1, when

substitute by a solution, (x1, y1), of F (X, Y ) ≡ c (mod l2v+1) then, using once

again the Euler’s homogenous function theorem we have that:

0 ≡ x1
∂F

∂X
(x1, y1) + y1

∂F

∂Y
(x1, y1)

≡ nc (mod lv+1).

Therefore lv+1 divides nc, which is impossible by our definition of v. So one of

the partial derivatives is different from zero modulo lv+1. Then the result follows

from Hensel’s lemma, version IV. QED

With this last result, we have found a way to test for each prime l the

solubility of our Thue equation for the l-adic field Ql, without working with the

l-adic field itself. Now, the only problem we seem to deal with is the fact that

we cannot test this for each prime, since there are infinitely many primes. To

overcome this problem we only need to use the Hasse-Weil Bound for the number

of projective points on a curve defined over a finite field.

42



Theorem 2.5 (Hasse-Weil Bound). Let C be a nonsingular projective curve de-

fined on a finite field Fq, with genus g. Denote by NC(q) the number of projective

points on C that are defined over Fq. Then we have

|NC(q)− (q + 1)| ≤ 2g
√

q.

Proof. See Corollary 2.5.27 on [Coh07b]. QED

So given F (X, Y ) a homogenous polynomial with integers coefficients of

degree n ≥ 1 , and a non-zero integer c, our curve C will have as affine model

F (X, Y ) = c. The corresponding projective model is F (X, Y ) = cZn, which has

genus

g :=
(n− 1)(n− 2)

2
.

Remember that we are looking for points on C/Fp such that Z is different from

zero. When Z is equal to zero, we are talking about the points of C at infinity,

and there are at most n points at infinity.

Lemma 2.4.3. If q ! nc∆F , where ∆F is the discriminant of the polynomial F ,

and q > 2g2 + n − 1 + 2g
√

g2 + n− 1, then the equation F (X, Y ) = c has a

solution over Fq.

Proof. Since q > 2g2 + n− 1 + 2g
√

g2 + n− 1, we have that q + 1− 2g
√

q > n.

And as we also have that q ! nc∆F , we can apply the Hasse-Weil’s Bound to see

that our equation has a solution over Fq that is not a point at infinity. QED

So we only need to test the local solubility, using Proposition 2.4.2, for the

primes q ≤ 2g2 + n− 1 + 2g
√

g2 + n− 1 and for the primes q | nc∆F .
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2.4.3 Third elimination method: Finite solvability

So far we have been looking to the Thue equations of the type (2.6) or similar

to this one. Now we will use some information of the Thue equations of the type

(2.5). Let D, C and n be as before, (x, y) a solution of (2.2), then there are

integers A and B such that

x =
1

2

(
γ(A + Bω)n + γ(A + Bω)n

)
,

for a given pair (γ, γ) ∈ Γ, where (A, B) is a solution of the Thue equation (2.6).

We have that x = 1
2

(
γ(A + Bω)n + γ(A + Bω)n

)
is a Thue equation. So

if we know that l | x, then we have that

1

2

(
γ(A + Bω)n + γ(A + Bω)n

)
≡ 0 (mod l). (2.21)

Furthermore if vl(x) = v > 0, then

1

2

(
γ(A + Bω)n + γ(A + Bω)n

)
≡ 0 (mod lv). (2.22)

So if we know that a prime l | x, with vl(x) = v and that for a given pair

{γ, γ}, the equation 1
2

(
γ(A+Bω)n +γ(A+Bω)n

)
≡ 0 (mod lv) does not have

solutions, then 1
2

(
γ(A + Bω)n − γ(A + Bω)n

)
= 2q will not have a solution

either.

This elimination method can be applied, when we have that gcd(D, C) > 1,

then for any p | gcd(D, C) we can test if the equation (2.21) has solutions or not.

If D = D1D2 and C = D1D3, in first place we have that D1 | x and secondly, for

all primes l | D1, let v = vl(D1) we can check if the equation (2.22) has solutions

or not.

So if for a given prime l that we know that divides x the equation (2.21) or

(2.22) has no solutions, we can eliminate the corresponding Thue equation (2.6).
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The biggest problem with this method lays on the fact that in most cases

we do not have any information on the primes that must divide x or not.

2.4.4 Computing solutions of a Thue equation

If after using the elimination methods we are still left with Thue equations, we

have to see if they have solutions or not. For that, as it was said before, we

need only to use the program MAGMA, for it has already a command to solve Thue

equations. Even so we found useful to implement a method to help solve the

equations, already referred in [BMS06]. The idea is to simplify the Thue equation

(2.20) by minimizing its coefficients as much as possible. First of all we see if

there is the need to make a change of coordinates so that the “leading coefficient”

is the smallest possible, that is, changing U by V and vice-versa.

After this, we calculate c = gcd(a0, a1, . . . , an−1, an) and divide each coef-

ficient of and r by c (first elimination method). And thus we obtain a new Thue

equation

r̃ = b0U
n + b1U

n−1V + · · ·+ bn−1UV n−1 + bnV
n,

where r̃ = r/c and bi = ai/c. and we have that now gcd(b0, b1, . . . , bn−1, bn) = 1.

The next step is to find a change of coordinates U = αŨ + βṼ and

V = γŨ + δṼ , with α, β, γ, δ ∈ Z, such that, when we substitute these equalities

in our Thue equation we get the following formula:

r̃ = Ũn + c1Ũ
n−1Ṽ + · · ·+ cn−1Ũ Ṽ n−1 + cnṼ

n (2.23)

and we must have αδ − βγ = 1 so that we have the map defined by

(Ũ , Ṽ ) 0→ (αŨ + βṼ , γŨ + δṼ )
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is a bijection. This method is useful, due to the fact that when the coefficient

am is very large, this greatly complicates the equation. In fact, in some of the

equations that we get, the leading term has more than 10 digits, and this slows

down the process of looking for a possible solution.

How to find α, β, γ and δ that satisfy the our requirements? If α and γ

exists then they are a solution of the following Thue equation:

1 = b0U
n + b1U

n−1V + · · ·+ bn−1UV n−1 + bnV
n,

So if our equation has a solution, then we just need to find β and δ, but as

we must have αδ − βγ = 1, so α and γ are coprime so by the Euclid’s Algorithm

we can find β and δ. And finally, we make the change of coordinates and look for

the solutions for the new Thue equation (2.23)

This work doesn’t need to be done if our r̃ is equal to 1 (which happens

quite often in the cases that we have considered) in this case we just need to ask

for the solutions of the Thue equation and then try to compute a solution to (2.2).

And if a possible solution takes too much time to appear? For example

when we considered the equation x2 − 43 = y5, one Thue equation that we have

to solve is the following

179337367525896U5 + 5879968813306085U4V + (2.24)

+77115068036135280U3V 2 + 505677317944323310U2V 3+

+1657973962776908520UV 4 + 2174412467160590233V 5 = 1.

In the first attempts to solve this equation we end up waiting for more than

two days for a solution, or no solution at all. In the end we got no answer at all,

since the program seems to consume too much memory.
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The same happens with following equation, for the equation x2− 46 = y5.

−413653280369188080U5 + 14027665230330336005U4V (2.25)

−190280508969826516800U3V 2 + 1290545201190390912460U2V 3

−4376451706306009886400UV 4 + 5936507925475798197316V 5 = 1

In both cases, there is no need to apply the method described above, since

our coefficient r̃ is already 1. So what to do to overcome this problem? Is it

possible to find an substitution Ũ , Ṽ as before that could decrease the coefficients,

or at least the coefficient of V 5? Let, as before,

r = b0U
n + b1U

n−1V + . . . bn−1UV n−1 + bnV
n

be our Thue equation. First we begin by considering (α, γ) ∈ Z2 and define

bα,γ =
∣∣b0α

n + b1α
n−1γ + . . . bn−1αγn−1 + bnγ

n
∣∣. (2.26)

Then given a, b positive integers define

Ba,b := min{bα,γ : (α, γ) ∈ [−a, a]× [−b, b]}.

So we know that for a given pair (a, b) ∈ N2 there is an (α, γ) ∈ Z2 such that

Ba,b = bα,γ . It is easy to see that gcd(α, γ) = 1, otherwise there would be a prime

l | gcd(α, γ) and bα
l , γ

l
= 1

ln bα,γ. Then we find β and δ such that αδ−βγ = 1 and

we apply the substitution (Ũ , Ṽ ) = (αŨ + βṼ , γŨ + δṼ ) to our Thue equation

(2.26) and we obtain a new equation

r = c0Ũ
n + c1Ũ

n−1Ṽ + · · ·+ cn−1Ũ Ṽ n−1 + cnṼ
n,

where c0 = Ba,b. So we find a solution (Ã, B̃) for this new Thue equation,

remembering that a solution to the original Thue equation is given by (A, B) =

(δÃ− βB̃,−γÃ + αB̃).
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The best way for this process to work is to set a, b ≈ 103 and apply this

process as long as the new Ba,b < min{b0, b1, . . . , bn}.

Let us see how it works with the Thue equations that we mentioned above.

For both cases we will consider a = b = 103.

First we consider the Thue equation (2.24). After the first iteration we

have the following Thue equation

133U5− 3005U4V +27160U3V 2− 122740U2V 3 +277340UV 4− 250668V 5 = 1,

on the second iteration

4U5 − 60U4V − 180U3V 2 − 360U2V 3 − 345UV 4 − 133V 5 = 1

and this is how much we can minimize our Thue equation.

When we consider the Thue equation (2.25), after the first iteration we

have the following Thue equation

U5 + 15U4V − 180U3V 2 + 900U2V 3 − 2220UV 4 + 2188V 5 = 1,

that is now as much minimal as we can get in terms of its coefficients, in absolute

terms.

2.4.5 Final remarks

As we have said in the Introduction, most of the techniques can be already found

on the literature, but not applied to the real quadratic extension case, due to the

existence of a fundamental unit. Also most of the examples provided in this section

deal with that particular case. The existence of a fundamental unit does not only

imply a lot more Thue equations to work with but also some Thue equations

with huge coefficients. We have seen some above, (2.24) and (2.25) for example.

48



This is caused by the “size” of the fundamental unit. For example, one of the

fundamental units of O−94 is u = 2143295 + 221064
√

94. Consider the equation

x2 − 94 = y5. If we think that we have to calculate powers of the fundamental

unit up to the fourth power, or instead a power where the exponent is between −2

and 2, it is fair enough to expected that the coefficients turn out to be extremely

huge. If we didn’t end up using the method to reduce the coefficients of a Thue

equation, this last one for example and as the ones we have mentioned in 2.4.4,

would not be solved by the existing routines in the programs already mentioned.

In fact this method allows us to compute without much loss of time the solutions

for the equation (2.1), with p ∈ {2, 3, 5, 7, 11} for all our D in our range R. One

may notice that all the examples given in this section have in common, first the

equation (2.1), also the fact that p = 5, so it is possible to ask why not giving

other examples with a different prime p ≥ 5 or other equation. The reason for the

choice of p first deals with the fact, that there are other methods more suitable

for the case when p ≥ 7, as we will see about it later on. Secondly, it possible

to see that as p gets bigger, the time it takes to compute the Thue equations

also increases. The use of the Thue equations method is recommended when

considering specific cases of D and p, rather than for a huge amount of arbitrary

values of D and/or of p, provided that p is bigger than 5.

It is possible also to use this method to calculate the solutions of equation

(2.1) when p = 2 or 3, but it is much faster to use the procedure that we have

stated on the section 2.2.2 for p = 2 or as we will see for p = 3 in section 2.5,

than the method explained in this section.

In the Table 2.2 we give an account of how helpful or not the two methods

(working alone or not) can be, considering again the equation (2.1) with p = 5.

Let us start with a comparison between the two methods. From what it is
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possible to see in Table 2.21 (and in the rest of the results), the Local Solvability

method helps us to eliminate more Thue equations than the Coefficient one; just

take a look in the cases D = 2, 6, 17, 68 and 97, to confirm this observation.

In fact, taking a look at what happens when we apply the method LST (local

solubility test), having or not applied the method CT (coefficients test) before,

we always end up with the same result. So we see that the method CT is not

important at all. In fact the LST in a way uses CT, since in order for an equation to

have solutions over a finite field it has to satisfy the CT. In terms of computation

it runs much faster applying it before the LST.

Table 2.2: Efficiency of the elimination methods for the Thue equations
D −2 −5 −6 −7 −17 −65 −68 −70 −79 −82 −97
#ClKD 1 1 1 1 1 2 1 1 3 4 1
#ΓT

a 4 4 5 5 10 8 15 4 5 4 4
#ΓT + CTb 4 4 5 5 10 4 10 0 5 4 2
#ΓT + CLSTc 2 4 3 0 6 4 5 0 2 4 0
#ΓT + LSTd 2 4 3 0 6 4 5 0 2 4 0
Has solutions? Yes Yes No No Yes Yes No No No Yes No
#ΓT coming
from a solution
of C

2 2 0 0 4 2 0 0 0 2 0

aNumber of Thue equations
bCoefficient elimination test
cCoefficient and local solubility elimination tests
dLocal solubility elimination test

The LST seems to be the most efficient method to eliminate Thue equa-

tions, in cases like D = −7,−70 and -97 it eliminates every single equation, and

in some cases that we have solutions, it leaves the only ones that matter, for

example in the case D = −2, after the two methods being applied, we are left

with two equations and it is possible to see that both come from the only solution
1The Thue equations all came from equations of the form x2 −D = y5
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of that equation. But this is not the rule. In the case when D = −68 we are

left with five equations but our equation (2.1) has no solution when p = 5. When

considering D = −6 we are left with three equations and also none come from

a solution. In the cases D = −5,−10 and −82 we are left with four equations

and the solutions that exist only come from two, in each case. For D = −17 the

solutions only come from four equations, when we are left with six equations. So

though in some cases both methods (or only the LST) are very helpful, in some

other cases they don’t seem to help at all, since we don’t eliminate or eliminate

very few equations and the majority (sometimes all) of our Thue equations do not

come from a solution.

2.5 Mordell’s equation

In this chapter we will turn our attention to elliptic curves, mainly integral points

over a special case of elliptic curves.

2.5.1 Integral Points over an elliptic curve

Putting n = 3 in (LN) and we get the following equation

x2 = y3 −D.

. The equation (2.27) is an elliptic curve, known as Mordell’s equation, and we

are interested in its integral points. Fortunately there are standard algorithms

for computing the integral points on elliptic curves (see [Sma98, Chapter XIII],

[GPZ98], [GPZ94]) Those methods are implemented in MAGMA. In order to keep

the notation of the cited literature we ill use in this chapter the following notation

ED : x2 = y3 + D. (2.27)
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Before carrying on with the study of the Mordell’s equation, we would like

to mention the work of Hemer: he first solved Mordell’s equation (2.27) for all

1 ≤ |D| ≤ 100 (see [Hem54]).

We will give some more information about how to find some integral points,

the torsion points, and give a description to know if there are any integral points

or not.

Let us denote by ED,tors(Q) the set of torsion points of the elliptic curve

ED defined over the rationals and O denote the point at infinity.

Proposition 2.5.1. Let P = (x, y) belong to ED,tors(Q) \ {O}, then x, y are

integers, that is P is a integral solution of ED, and either x = 0 or x | 3D.

Moreover, if D = m6D1, where vp(D1) < 6, for any prime p, and m a nonzero

integer, we have:

(1) ED,tors(Q) - Z/2Z if and only if D1 $= 1 and is a cube;

(2) ED,tors(Q) - Z/3Z if and only if D1 = −432 or D1 $= 1 and is a square;

(3) ED,tors(Q) - Z/6Z if and only if D1 = 1;

(4) otherwise ED,tors(Q) is trivial.

Proof. For the first part of the proposition, using the Nagell-Lutz Theorem (see

[Coh07b, Theorem 8.1.10]) we have that P is an integral point, and that x = 0

or x2 | −27D2(= 3(3D)2). Thus X | 3D. For the second part just see the proof

of Proposition 8.1.13 of [Coh07b]. QED

So given D, it is possible to know all the torsion points and know how many

we should expect.
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Integral points of Mordell’s equation

The search for integer and rational solutions (in fact more the non-existence of

the solutions) for Mordell’s Equation (2.27) has been studied for several years.

Techniques using quadratic and cubic residues, unique factorization over number

fields and/or binary cubic forms are well known. Therefore we will just state and try

to sumarise some of the results known about the non-existence of integer solutions

to Mordell’s Equation(2.27).

Proposition 2.5.2. Let a, b,m, n be integers, such that D = ma3 − nb2. The

equation (2.27) has no integer solutions in the following cases:

(i) m = 1, n = 4, a ≡ 3 (mod 4) and p $≡ 3 (mod 4), whenever a prime p

divides b.

(ii) m = n = 1, a ≡ 2 (mod 4), b is odd and p $≡ 3 (mod 4), whenever we have

a prime p, such that p | b.

(iii) m = n = 1, a ≡ 2 (mod 4), b is odd, 3 ! b and D is squarefree.

(iv) m = 2, n = 3, ab $= 0, a $≡ 1 (mod 3), 3 ! b, a is odd if b is even and

p = t2 +27u2 is soluble in integers t and u if p is a prime such that p | a and

p ≡ 1 (mod 3). Note that, if |a| < 7, there is no need for the last condition.

(v) m = 1, n = 4, a is odd 3 ! b , D $≡ 1 (mod 8) and is also squarefree.

(vi) m = n = −1, a ≡ 2, 4 (mod 8), b ≡ 1 (mod 2) and p $≡ ±3 (mod 8) if

p | b, for a prime p.

(vii) m = −1, n = −2, a ≡ 4 (mod 8) and b is not divisible by any prime p such

that p ≡ 5, 7 (mod 8).
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(viii) m = n3, n is squarefree, n ≡ 1 (mod 4), a ≡ −1 (mod 4), b ≡ 0 (mod 2),

gcd(n, b) = 1 and 3 ! b if n ≡ 1 (mod 3); and lastly a and b have no

common prime factor p such that the quadratic character (−n
p ) = −1.

(ix) m = −1, n = −3, a ≡ 1 (mod 4), b ≡ ±2 (mod 6) and b has no prime

factor p ≡ ±5 (mod 12).

(x) m = 8, a, b are both odd, n = (−1)t2, where t = a−1
2 , 3 ! b, and if b $= 1

then D is squarefree.

Proof. For items (i)-(ix) you can consult the books [Coh07a, Proposition 6.7.6],

[Mor69, Chapter 26], [Ros95, Section 14.4]. We will prove the item (x), the proof

here presented is largely based on the proof of Proposition 6.7.6 in [Coh07a].

First some considerations about the possible integral solutions (x, y) of

(2.27). We have D = 8a3 − nb2. If n = 2, then we have that a ≡ 1 (mod 4). If

either x or y is even, then both are, and we would have that 4 | x2− y3 = D, but

D ≡ 2 (mod 4), since b is odd. Then both x and y are odd and we must have

y ≡ 3 (mod 4), from the fact that the square of any odd number is congruent

to 1 modulo 4, and that any cube of a odd number is congruent to itself modulo

4. In fact, in this case, we can go a little further and have the same equivalences

if we replace modulo 4 by modulo 8. If n = −2, then we can check that a ≡ 3

(mod 4). As before we also have that x and y are odd, but this time y ≡ 7

(mod 8).

Suppose that (x, y) is an integral solution of x2 = y3 + D, so we would

have also that (x, y) is an solution of

x2 + nb2 = y3 + D + nb2 = y3 + 8a3.

Note that y3 +8a3 = (y+2a)(y2−2ay+4a2). In each case we have that x2 +nb2
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is an odd number, the same for y ± 2a. Now we have that y2 − 2ay + 4a2 =

(y − a)2 + 3a2. So (y − a)2 + 3a2 ≡ 0 + 3 ≡ 3 (mod 4).

For n = 2, we then have that x2 + 2b2 ≡ 3 (mod 8). By quadratic

reciprocity we have that if p is a prime dividing x2 + 2b2, then p ≡ 1, 3 (mod 8),

for only in this cases we have -2 a quadratic residue modulo p. Suppose that

p ! b, then since a ≡ 1 (mod 4), we have that 2a ≡ 2 (mod 8), and also that

y + 2a ≡ 3 + 2 ≡ 5 (mod 8) and (y − a)2 + 3a2 ≡ 4 + 3 ≡ 7 (mod 8). So

therefore we have that there exists a prime p ≡ 5, 7 (mod 8), that divides x2 + 2,

which contradicts what we have seen above. So p divides both b and x. If b = 1

we are done. Consider now the case that b $= 1. We claim that p ! (y + 2a).

Indeed, since

(y − a)2 + 3a2 = (y + 2a)y + 4a2,

if we had p | (y + 2a) we would have p | 4a2, so p | a, since p = 2 is impossible

due to the fact that p | x, and x odd. But p | a implies p2 | D = 8a3 − 2b2, a

contradiction since D is squarefree (assumption made for b $= 1), thus proving our

claim. Thus the p-adic valuation of x2 + 2b2 is equal to that of (y − a)2 + 3a2

hence is odd, a contradiction since this would again imply that (−2
p ) = 1

For n = −2, an analogous reasoning proves our statement. In this case we

have x2 − 2b2 ≡ 1 − 2 ≡ 7 (mod 8). I p is a prime dividing x2 − 2b2, we have

that p ≡ 1, 7 (mod 8). Now we have that a ≡ 3 (mod 4), so 2a ≡ 6 (mod 8).

Hence we have that y + 2a ≡ 7 + 6 ≡ 5 (mod 8) and (y− a)2 + 3a2 ≡ 0 + 3 ≡ 3

(mod 8). So we must have a prime p ≡ 3, 5 (mod 8) that divides x2 − 2b2.

Therefore we must have p | gcd(b, y). If b = 1 then we are done, in the other

case a similar reasoning from the case above help us to conclude the proof of the

(x). QED
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Example 2.5.1. Let us consider, once more, the case D = 7. We have that D and

that 7 + 1 = 23. So by the above proposition, item (iii) we have that x2 = y3 + 7

does not have any integral solutions. The same happens for D = 6, for we have

6 ≡ 2 (mod 4) and 6 + 2 = 23, and 1 $≡ 3 (mod 4). Applying the above result

we have, for D = 6, 7, 215, 218, 998 or 999 Mordell’s equation ED has no integral

solutions. Proposition 2.5.2 shows there are no solutions to our equation for the

following values of D ≤ 100:

D = 6, 7, 11, 13, 23, 39, 47, 53, 61, 67, 83, 95.

Example 2.5.2. Consider now D = 17, it is possible to prove that the equation

(2.27) in this case has 8 solutions, up to the sign of y, that are:

(x, y) = (4, 1), (3, 2), (5, 2), (9, 4), (23, 8), (282, 43), (375, 52), (378661, 5234).

For n = 3 or a multiple of 3, we end up using the facilities of our MAGMA

implementation to find all the integral points in (LN) for the range (R)
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Chapter 3

Frey curves and Modular Forms

The methods explained in Chapter 2 for solving (LN) are well known, and some-

times called the classical approach to solving a Diophantine equation. As we have

said before, it works very nicely for small values of n, though as we have seen,

sometimes we can get stuck on solving Thue equations even for a small value of

n. From now on all the cases we are going to consider, we will have n a prime

p ≥ 7. Since we have D a negative integer, we will be considering the following

equation

x2 −D = yp, (3.1)

where in this case D is a positive integer in the range 1 ≤ D ≤ 100.

3.1 Modular forms and the modular approach

Now we will introduce one of the most amazing tools for solving Diophantine

equations, that consists of using a special elliptic curve, called a ‘Frey curve’ and

the study of that curve using modular forms. This method has led to the resolution

of many Diophantine problems, including the most notable of all Diophantine

57



equations, Fermat’s Last Theorem, proved by Wiles ([Wil95]).

3.1.1 Newforms and Elliptic curves

The main object that we will be using are the normalized newforms of weight 2,

without character on

Γ0(N) :=








 a b

c d



 ∈ SL2(Z) : c ≡ 0 (mod N)




 ,

which we simply abbreviate to newforms of level N , a positive integer, where a

newform is a modular form for a certain subgroup of SL2(Z) that is an eigenfunc-

tion of important operators called Hecke operators. Here are some facts about

newforms (see [Coh07b, Chapter 15] for a brief summary of results or [DS05],

[Miy06] or [Shi94] for more information):

• A newform f can be seen as a q-expansion

f = q +
∑

n≥2

cn(f)qn (3.2)

with no term in q0 and normalized so that the coefficient of q is equal to 1.

The coefficients cn(f) will be called the Fourier coefficients of f .

• The field Kf = Q(c2(f), c3(f), c4(f), . . . ) obtained by adjoining to Q the

Fourier coefficients of f is a finite and totally real extension of Q, in other

words a totally real number field.

• The Fourier coefficients cn(f) are algebraic integers, in others words they

belong to the ring of integers of Kf .

• Let L be the Galois closure of Kf . If f is a newform and σ is any el-

ement of G(L/Q), the Galois group of L with respect to Q, then fσ =
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q +
∑

n≥2 σ(cn(f))qn is again a newform and called a conjugate of f . We

will usually identify a newform with all of its conjugates.

• A newform satisfies the Ramanujan conjecture, proved by Deligne in the

general case, that is, if l is a prime we have |cl(f)| ≤ 2l1/2. Since this is also

true for the conjugates of f , we have in fact |σ(cl(f))| ≤ 2l1/2.

• For a given level N , the number of newforms (up to conjugacy or not) is

finite. A formula can be found on [Coh07b] (see Proposition 15.1.1).

Using the formula mentioned in the last item, we can see that for the levels

N = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28 and 60 there are no new-

forms.

A newform f is said to be rational when the field Kf is equal to Q, that

is, all the Fourier coefficients of f are rational integers. These newforms will be

important for us. Now we state the modularity theorem for elliptic curves, proved

by Wiles and successors (see [Wil95] , [TW95] and [BCDT01])

Theorem 3.1 (The Modularity Theorem for Elliptic Curves). Let N ≥ 1

be an integer. There is a one-to-one correspondence f 0→ Ef between rational

newforms of level N and isogeny classes of Elliptic curves E defined over Q and

of conductor equal to N . Under this correspondence, for all primes l not dividing

N , we have cl(f) = al(Ef ), where cl(f) is the l-th Fourier coefficient of f and

al(Ef ) = l + 1− |Ef (Fl)|, where |Ef (Fl)| is the number of Fl-rational points on

the elliptic curve Ef when considered over the finite field Fl.

The above theorem, which is one of the most notable achievements in

number theory, is needed to go back and forth with ease between rational newforms
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and elliptic curves. So far there is no need to understand in detail what is going

on, we just have to keep in mind that each (isogeny class of) elliptic curve(s) of

conductor N is associated to a rational newform of level N , and conversely. This

is not at all what is going to happen with our second essential tool that we will

be needing, which is Ribet’s lowering theorem.

3.1.2 Ribet’s level-lowering theorem

Given a newform f , an elliptic curve E and a prime l, we will denoted by cl the

lth Fourier coefficient of f and by al(E) = l + 1− |E(Fl)|.

Definition 3.1.1 (arises from see [Coh07b] Definition 15.2.1). Let E be an

elliptic curve over Q of conductor N , let f be a newform of level N ′, not necessarily

equal to N , and let Kf be the number field generated by the Fourier coefficients

of f . We will say that E arises modulo p from f , and write E ∼p f , if there exists

a prime ideal p of Kf above p such that cl ≡ al(E) (mod p), for all but finitely

many prime numbers l.

Remark. Rather than saying that E arises modulo p from the newform f , it is

usual here to say that the Galois representation

ρE
p : G(Q/Q) → Aut(E[p])

arises from the newform f .

For instance, if E = Ef is the elliptic curve of level N ′ corresponding to

a rational newform f then cl = al(E) for l ! N ′, so that E ∼p f for all primes

p. On the other hand, if E is an elliptic curve of conductor N such that E ∼p f

with f a rational newform of level N ′, then by the modularity theorem above we

know that f corresponds to an elliptic curve F = Ef defined over the rationals of

conductor N ′, and we will also write E ∼p F .
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We can however be more precise than the definition (see [BS04]):

Proposition 3.1.1. Assume that E ∼p f . Then there exists a prime ideal p of

Kf above p such that ,for all prime numbers l, we have:

(1) If l ! pNN ′ then al(E) ≡ cl (mod p).

(2) If l‖N but l ! pN ′ then cl ≡ ±(l + 1) (mod p)

However there is a slight but essential refinement of this proposition due

to Kraus-Oesterlé [KO92], which is the final form of the definition of ∼p that we

will use:

Proposition 3.1.2. Assume that E and F are elliptic curves over the rationals,

with respective conductors N and N ′, and assume E ∼p F as defined above.

Then for all prime numbers l we have:

(1) If l ! NN ′ then al(E) ≡ al(F ) (mod p).

(2) If l‖N but l ! N ′ then al(F ) ≡ ±(l + 1) (mod p)

The crucial refinement of this proposition is that we have removed the

assumption that l $= p. This will be important in terms of applications, since p

will be an unknown exponent in the equations that we want to solve, and it would

be very unpleasant to have conditions depending on p.

Let E be an elliptic curve defined over Q. Let ∆ be the discriminant for a

minimal model of E, and N be the conductor of E, which can be obtained using

an algorithm due to Tate (see Algorithms 5.1.3, 5.1.2 and 5.1.1). It is known N

and ∆ are related by the fact that N | ∆ and that N and ∆ have the same prime

divisors, the primes of bad reduction.
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Definition 3.1.2. Keep the above notation and let p be a prime number. We

define Np by the formula

Np = N/
∏

q‖N
p|vq(∆)

q,

where vq(∆) is the q-valuation of ∆. So in other words, Np is equal to N divided

by the product of all prime numbers q such that vq(N) = 1 and p | vq(∆).

It is important to have that the ∆ in the definition of Np is the discriminant

of a minimal model of E.

Now we can state a simplified special case of Ribet’s level-lowering theorem

that will be sufficient for our applications (see [Rib90]).

Theorem 3.2 (Ribet’s Level-Lowering Theorem). Let E be an elliptic curve

defined over the rationals and let p ≥ 5 be a prime number. Assume that there

does not exist a p-isogeny defined over Q from E to some other elliptic curve, and

let Np be as above. There exists a newform f of level Np such that E ∼p f .

As mentioned, Ribet’s theorem is more general than what we have stated,

but the present statement is sufficient for our purposes. In Ribet’s general theorem

there is a modularity assumption, that we can discard in our statement due to the

modularity theorem for elliptic curves.

In order to apply Ribet’s level-lowering theorem, we have to overcome some

technical difficulties. The most important one is the restriction that E should not

have any p-isogenies defined over Q, for simplicity we will say that E has no p-

isogenies, in other words that there should be no subgroup of order p of E that

is stable under conjugation (see [Coh07b], Definition 8.4.1). This unfortunately is

not easy to check, but there are several results that help us in doing so. We give

here two of the most useful.
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Table 3.1: Pairs (l, j) corresponding to rational isogenies
l j

11 −215,−112,−11.1313

17 −17.3733/217,−172.1013/2
19 −215.33

37 −7.113,−7.1373.20833

43 −218.33.53

67 −215.33.53.113

163 −218.33.53.233.293

Theorem 3.3. Let E/Q be an elliptic curve with j-invariant j and let l be a

prime. Then the Galois representation ρE
l is irreducible if (at least) one of the

following conditions holds:

(1) l = 11 or l ≥ 17 and the pair (l, j) has no corresponding entry in Table 3.1,

(2) E has a rational 2-torsion point, l ≥ 7 and

(l, j) $= (7,−33.53), (7, 33.53.173),

(3) l ≥ 5, E is semistable and all 2-torsion points are rational,

(4) l ≥ 11 and E is semistable.

Proof. for a proof see [Dah08]. QED

Theorem 3.4 (Diamond-Kramer [DK95]). Let E be an elliptic curve defined

over Q of conductor N and let p = 2, 3. If vp(N) ≥ 3 and is odd, then ρE
l is

irreducible for all primes l $= p.

Remark. If E has no p-isogenies then Ribet’s theorem implies that E ∼p f for

some newform f of level Np. At that level there may be rational newforms, but

also non-rational newforms defined over number fields of relatively large degree.
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3.2 Frey curves

The general strategy for applying the tools that we have introduced so far in

this section, to a Diophantine equation, is the following. We assume that our

Diophantine equation has a solution, and to such solution we associate, if possible,

an elliptic curve, called a Hellegouarch-Frey curve, or simply a Frey curve

3.2.1 The first Frey curve

One of the most interesting ideas in the proof of Fermat’s last theorem, was the

association of a given solution ap + bp = cp, where p is an odd prime and a, b, c

integers, to a particular elliptic curve given by the equation

Y 2 = X(X − ap)(X + bp), (FLT)

or equivalently,

Y 2 = X(X − ap)(X − cp).

This was first done by Yves Hellegouarch in his thesis [Hel72], but with a

different purpose. Back then, Hellegouarch was trying to study the properties of

the ramified division points over p. It was Gerhard Frey who first made a connection

with the existence of a solution to the Fermat equations, which would originate an

elliptic curve that could not exist, according to Serre’s ε-conjecture and Taniyama-

Shimura conjecture (see [Fre86]). This is why this curve is called nowadays Frey

curve, though in some literature it is called Frey-Hellegouarch (see [Hel72] for the

true origin of this curve). In 1990, Ribet proved the ε-conjecture, called nowadays

Ribet’s theorem ([Rib90]) and in 1995 Wiles, with the help of Taylor, finally proved

the Taniyama-Shimura conjecture for a special case of elliptic curves, where the

Frey curve could be included (see [Wil95] and [TW95]). Why does the Frey curve
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works? The minimal discriminant for the Frey curve (FLT) is

∆min =
1

28
(xyz)p,

and the conductor is

N = 2 Rad(xyz).

Now looking back at Ribet’s level lowering theorem, we have that if such curve ex-

isted the Galois representation associated to the curve would arise from a newform

of level 2. But such newforms do not exist and Fermat’s last theorem is proved.

3.2.2 Other examples of Frey curves

Nowadays one way to solve diophantine equations is using the modular approach,

and therefore a Frey curve attached to the diophantine equation.

Consider for example a generalization of the Fermat equation

xp + Lryp + zp = 0

where x, y, z are non-zero integers, pairwise coprime, p is a prime greater than or

equal to 5, L a prime number and 0 ≤ r < p. Let A, B, C be some permutation

of xp, Lryp and zp such that A ≡ −1 (mod 4) and 2 | B, and consider then the

following Frey curve

E : Y 2 = X(X − A)(X + B).

This example was studied by Serre, Kraus and Mazur. For the equation

x2 = yp + 2mzp

with x, y, z non-zero integers, with p prime and m ≥ 2, we associate the following

Frey curve

E : Y 2 = X(X2 + 2xX + yp).

65



Following [Sikar] we present some recipe for ternary diophantine equations.

By ternary Diophantine equations we mean equations of the form

Axl + Bym + Czn = 0 (3.3)

the triple of exponents (l, m, n) is called the exponent signature of the equation

(3.3). Which Frey curve is associated to a given exponent signature is detailed

for three important exponent signatures (p, p, p), (p, p, 2) and (p, p, 3) respectively

by Kraus [Kra97], by Bennett and Skinner [BS04] and by Bennett, Vatssal and

Yazdani [BVY04].

Signature (p, p, p)

We start with the exponent signature (p, p, p). Suppose that A, B, C are non-zero

pairwise coprime, p ≥ 5 and vq(ABC) < p, for every prime number q. Consider

the equation Axp + Byp + Czp = 0, assuming that Ax, By, Cz are non-zero and

pairwise coprime. Without loss of generality we also suppose that

Axp ≡ −1 (mod 4), Byp ≡ 0 (mod 2).

The Frey curve associated is

E : Y 2 = X(X − Axp)(X + Byp).

The minimal discriminant is

∆min





24(ABC)2(xyz)2p if 16 ! Byp,

2−8(ABC)2(xyz)2p if 16 | Byp,
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and the conductor N is given by

N =






2 Rad2(ABCxyz) if v2(ABC) = 0 or v2(ABC) ≥ 5,

2 Rad2(ABCxyz) if 1 ≤ v2(ABC) ≤ 4 and y is even,

Rad2(ABCxyz) if v2(ABC) = 4 and y is odd,

23 Rad2(ABCxyz) if v2(ABC) = 2 or 3 and y is odd,

25 Rad2(ABCxyz) if v2(ABC) = 1 and 3 and y is odd.

And we have the following result due to Kraus.

Theorem 3.5 (Kraus [Kra97]). Under the above assumptions, E ∼p f for some

newform f of level Np where

Np =






2 Rad2(ABC) if v2(ABC) = 0 or v2(ABC) ≥ 5,

2 Rad2(ABC) if 1 ≤ v2(ABC) ≤ 4 and y is even,

Rad2(ABC) if v2(ABC) = 4 and y is odd,

23 Rad2(ABC) if v2(ABC) = 2 or 3 and y is odd,

25 Rad2(ABC) if v2(ABC) = 1 and 3 and y is odd.

Signature (p, p, 2)

For signature (p, p, 2) we consider the equation

Axp + Byp = Cz2, p ≥ 7 is prime,

where we assume that Ax, By, Cz are non-zero and pairwise coprime. We more-

over suppose that, for all primes q we have

vq(A) < p, vq(B) < p, and vq(C) ≤ 1.

Without loss of generality we may suppose that we are in one of the following

situations:
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(i) ABCxy ≡ 1 (mod 2) and y ≡ −BC (mod 4).

(ii) xy ≡ 1 (mod 2) and either v2(B) = 1 or v2(C) = 1.

(iii) xy ≡ 1 (mod 2), v2(B) = 2 and z ≡ −By/4 (mod 4).

(iv) xy ≡ 1 (mod 2), v2(B) ∈ {3, 4, 5} and z ≡ C (mod 4).

(v) v2(Byp) > 6 and z ≡ C (mod 4).

In cases (i) and (ii) we consider the curve

E1 : Y 2 = X3 + 2CzX2 + BCypX.

In cases (iii) and (iv) we consider

NE
2 : Y 2 = X3 + 2CzX2 +

BCyp

4
X,

and in case (v) we consider

E3 : Y 2 + XY = X3 +
Cz − 1

4
X2 +

BCyp

64
X.

Theorem 3.6 (Bennett and Skinner [BS04]). With assumptions and notation as

above we have:

(a) The minimal discriminant of Ei is given by

∆i = 2δiC3B2A(xy2)p,

where δ1 = 6, δ2 = 0 and δ3 = −12.

(b) the conductor of the curve Ei is given by

N = 2αC2 Rad(ABxy),
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where

α =






5 if i=1, case (i)

6 if i=1, case (ii)

1 if i=2 , case (iii), v2(B) = 2 and y ≡ −BC/4 (mod 4)

2 if i=2 , case (iii), v2(B) = 2 and y ≡ BC/4 (mod 4)

4 if i=2 , case (iv) and v2(B) = 3

2 if i=2, case (iv) and v2(B) = 4 or 5

−1 if i=3, case (v) and v2(By7) = 6

0 if i=3, case (v) and v2(By7) ≥ 7.

(c) suppose that Ei does not have complex multiplication (this would follow if

we assume that xy $= ±1). Then Ei ∼p f for some newform f of level

Np = 2βC2 Rad(AB)

where

β =






α case (i)-(iv),

0 case (v) and v2(B) $= 0, 6,

1 case (v) and v2(B) = 0,

−1 case (v) and v2(B) = 6.

Signature (p, p, 3)

Finally, for signature (p, p, 3) we consider the equation

Axp + Byp = Cz3, p ≥ 5 is prime,

where we suppose, as before, that Ax, By, Cz are non-zero and pairwise coprime.

We suppose without loss of generality that

vq(A) < p, vq(B) < p, vq(C) < 3,
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for all primes q, and that

Ax $≡ 0 (mod 3), Byp $≡ 2 (mod 3).

The Frey curve we consider is the following

E : Y 2 + 3CzXY + C2BypY = X3.

Theorem 3.7 (Bennett, Vatsal and Yazdani [BVY04]). With notation and as-

sumptions as above:

(a) The conductor N of the curve E is given by

N = Rad3(ABxy) Rad3(C)2ε3

where

ε3 =






32 if 9 | 2 + C2Byp − 3Cz,

33 if 3 || 2 + C2Byp − 3Cz,

34 if v3(Byp) = 1

33 if v3(Byp) = 2

1 if v3(Byp) = 3

3 if v3(Byp) > 3

35 if 3 | C.

(b) Suppose that xy $= 1 and the curve E does not correspond to one of the

equations

1.25 + 27.(−1)5 = 5.13, 1.27 + 3.(−1)7 = 1.53.

Then E ∼p f for some newform f of level

Np = Rad3(AB) Rad3(C)2ε′3,
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where

ε′3 =






32 if 9 | 2 + C2Byp − 3Cz,

33 if 3 || 2 + C2Byp − 3Cz,

34 if v3(Byp) = 1

33 if v3(Byp) = 2

1 if v3(Byp) = 3

3 if v3(Byp) > 3 and v3(B) $= 3

35 if 3 | C.

3.2.3 How to choose a Frey curve

The key properties that a “Frey curve” E must have are the following:

- The coefficients of E depend on the solution of the Diophantine Equation.

- The minimal discriminant ∆ of E can be written in the form ∆ = C.Rp,

where R depends on the solution of the Diophantine equation, p is an un-

known prime occurring as an exponent in the Diophantine equation, and

most importantly C does not depend on the solution of the Diophantine

equation, but only on the equation itself.

- If l is a prime dividing R then E has multiplicative reduction at l; in other

words vl(N) = 1, where N is the conductor of E.

The conductor N will be divisible by the primes dividing C and R, but

because of the last condition above, the primes dividing R will be removed when

computing Np (see Definition 3.1.2); in other words, Np is a divisor of N that

is divisible only by primes dividing C, hence depending only on the equation.

Without knowing the solutions to the Diophantine equation we can thus easily

write a finite number of possibilities for Np depending only on the equation. Using

71



Ribet’s theorem we will then be able to list a finite set of newforms f such that

E ∼p f .

From then on we have to work more. Knowing the newform gives local

information on the elliptic curve E, and since the equation of E has coefficients

that depend on the solutions to the Diophantine equation, we may obtain useful

information about these solutions, including of course the fact that they do not

exist, as was the case for Fermat’s Last Theorem.

The rest of this section will be devoted to applying these tools to obtain

information about the solutions to our equation (3.1), even trying to solve it, when

possible.

3.3 Multi-Frey approach

Now we begin the modular approach to the equation (3.1), but using as much

information as we can from Frey curves, including several ones, instead of just

one.

3.3.1 Removing common factors

As we will see later on, it is desirable when applying the modular approach to (3.1),

for a prime p ≥ 7, to remove the possible common factors of the three terms in

the equation. This desire leads to a subdivision of cases according to the possible

common factors, as seen in the following elementary lemma.

Lemma 3.3.1. Suppose that (x, y, p) is a solution to (3.1) with p ≥ 7, y $= 0

and D in the range 1 ≤ D ≤ 100 . Then there are integers d1, d2 such that the

following conditions are satisfied:

(i) d1, d2 ≥ 1;
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(ii) D = d2
1d2;

(iii) gcd(d1, d2) = 1;

(iv) for all odd primes q | d1 we have (d2
q ) = 1;

(v) if d1 is even then d2 ≡ 1 (mod 8).

Moreover, there are integers s,t such that

x = d1t, y = Rad(d1)s,

t2 − d2 = esp, gcd(t, d2) = 1, s $= 0, (3.4)

where

e =
∏

q|d1
q prime

qp−2vq(d1) and Rad(e) = Rad(d1). (3.5)

Proof. Let q be a prime that divides both x and D, which implies that q divides

also y. Since D is in the range mentioned above, we have that vq(D) ≤ 6, in

fact the equality only happens when we have D = 64 and q = 2, so in particular

we have vq(D) < p. Let v = vq(D), so we can write x = qrx1, D = qvD1 and

y = quy1 where q ! x1D1y1. Now we rewrite our equation (3.1) in the following

way:

q2rx2
1 − qvD1 = qupyp

1. (3.6)

Now we have three possible cases v < 2r, v > 2r and v = 2r. Let us consider

the first case. So diving both sides of (3.6) by qv we have the following equation:

q2r−vx2
1−D1 = qup−vyp

1. Since up ≥ p > v, we have up−v > 0 and 2r−v > 0, so

we conclude that q | D1, which is impossible. We can reach the same conclusion

when 2r < v. So we can only have v = 2r, this means that gcd(x2, D) = d2
1,

where d1 is an integer greater than zero. We can rewrite x = d1t and D = d2
1d2,
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for some integers t, d2, and by what we have seen above, we have also gcd(d1, t) =

gcd(d1, d2) = 1. Moreover, because

d2
1 = gcd(x2, D) = gcd(d2

1t
2, d2

1d2) = d2
1 gcd(t2, d2),

we see that gcd(t2, d2) = 1, equivalently, gcd(t, d2) = 1. Removing the common

factors from x2 −D = yp we obtain t2 − d2 = esp, where e is given in (3.5) and

y = Rad(d1)s. The integrality of e and the equality Rad(d1) = Rad(e) follow

from the fact that p ≥ 7 and from the facts mentioned above. We have thus

proven (i), (ii) and (iii), it is easy to deduce (iv), about (v) we only need to see

that p−2v2(d1) ≥ 1 and is always an odd number, so if p−2v2(d1) > 1 and d1 is

even, then 8 | e and so d2 ≡ t2 ≡ 1 (mod 8). We only need to consider the case

that p− 2v2(d1) = 1, this means that 2v2(d1) = p− 1, and since 2v2(d1) ≤ 6, we

can only have p = 7 and D = 64, and so d1 = 8. In this case our equation would

be t2 − 1 = 2s7. So our d2 = 1 (mod 8), as desired. QED

Definition 3.3.1. Suppose that D is a non-zero integer and (x, y, p) is a solution

of (3.1) with y $= 0 and p a prime greater than or equal to 7. Let d1, d2 be

as in the above lemma and its proof. We call the pair (d1, d2) the signature of

the solution (x, y, p). We call the triple (t, s, p) the simplification of (x, y) by the

signature (d1, d2).

With this terminology, Lemma 3.3.1 associates with any D a finite set of

possible signatures (d1, d2) for the solutions (x, y, p) of (3.1) and y $= 0. Then

to solve (3.1) it is sufficient to solve it under the assumption that the solution’s

signature is (d1, d2) for each possible signature.

Example 3.3.1. For example if D = 4, there are two possible signatures satisfying

the conditions of Lemma 3.3.1, these are (d1, d2) = (1, 4) and (2, 1). For the
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second case we have then x = 2t and y = 2s, and we must solve the equation

t2 − 1 = 2p−2sp,

that has been solved by Siksek in [Sik03], where it is possible to see that we only

have solutions when p− 2 = 3, but since p ≥ 7, we know that this equation does

not have any solution with y $= 0. For the first signature we have that x = t and

y = s, and we have to solve the equation

t2 − 4 = sp, 2 ! st. (3.7)

Since t2 − 4 = (t − 2)(t + 2) and gcd(t − 2, t + 2) = 1, or we would have that

2 | s, solving (3.7) would be the same as solving the following Thue equation:

4 = yp
1 − yp

2 using a recipe for the Diophantine equations of exponenet signature

of the type (p, p, 2), (p, p, 3) or (p, p, p). But so far we won’t say anything about

this equation until we apply the modular approach.

3.3.2 Two Frey curves

So now we intend to, given a solution to our equation (3.1), construct a Frey

curve associated to it. But we will try to do a little bit more than that, we will

construct not one, but two Frey curves associated to a given solution. We will

try to demonstrate that, when possible, the use of several Frey curves is a more

powerful tool for the study of Diophantine equations. This ‘multi-Frey’ approach

often resolves with ease equations that would otherwise seem utterly hopeless.

We will use the method given by Ivorra-Kraus (see [IK06]) for Diophantine

equations with signature (p, p, 2), though in the section 3.2.2 we have considered

the work of Bennett-Skinner (see [BS04]). While in the latter paper, we only

get a Frey curve for each solution, in the former one we get two Frey curves for
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each given solution to our equation, though they can be seen as twists of each

other. Also in the latter paper the Frey curves that we obtain are minimal, while

in the former, though the Frey curves we consider are not always minimal, we get

conditions for the conductor N and for Np for a given prime number p. Let p be a

prime number great than or equal to 7, let a, b and c be nonzero rational integers,

pairwise coprime. Consider the following equation

axp + byp = cz2. (3.8)

Let (x, y, z) be a rational integer solution to (3.8), such that gcd(x, y, z) =

1. We will define two elliptic curves E1 and NE
2 over Q, such that each one has

at least one point of order 2 over Q. To simplify our study of these two elliptic

curves let us suppose that the following four conditions are satisfied:

E1: b is odd.

E2: c is square-free.

E3: If cz is odd, we can choose z in such way that we have cz ≡ −1 (mod 4).

E4: The integers ax and by are coprime.

With this in mind we define our elliptic curves in the following way:

E1 : Y 2 = X3 + (2cz)X2 + (acxp)X; (3.9)

NE
2 : Y 2 = X3 + (2cz)X2 + (bcyp)X. (3.10)

First we show that they are isogenous, up to a twist. Let us consider E1. Consider

r = 4c2z2 − 4acxp = 4cbyp. We have that

F : Y 2 = X3 − 4czX2 + rX,
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and E1 are isogenous of degree 2 (see Example 4.5 in [Sil85]). Now replace X by

−2X in F and we have:

F (2) : Y 2 = −8(X3 + 2czX2 + bcypX),

that is a quadratic twist of NE
2 .

Let us now apply this to our equation (3.1). Given D and one of its

signatures (d1, d2) as in the Lemma 3.3.1, our equation can be seen in the following

way:

d21
p + esp = 1.t2

So since p is an odd prime greater than or equal to seven, we can make the

following identifications

a = d2, b = e, c = 1, x = 1, y = s and z = t, (3.11)

when d1 is odd otherwise we make the following identifications:

a = e, b = d2, c = 1, x = s, y = 1 and z = t, (3.12)

Given an integer D, a signature (d1, d2), we define for an integer t the

following curves:

E(t) : Y 2 = X3 + (2t)X2 + (d2)X; (3.13)

F (t) : Y 2 = X3 + (2t)X2 + (t2 − d2)X. (3.14)

Let D, (x, y, p), (d1, d2) and (t, s, p) be as in Lemma 3.3.1. From (3.11),

(3.12), (3.9) and (3.10) we know that E(t) (resp. F (t)) is E1 (resp. NE
2 ) when d1

is odd and E(t) (resp F (t)) is NE
2 (resp. E1) when d1 is even, through the above

identifications. We can easily see that the discriminants of our curves E(t) and

77



Table 3.2: Values for the conductors N1 and N2

Case Conditions on d1 and/or d2 Conditions on s NE
2 NF

2

(I) d2 ≡ 4 (mod 16) none 26 24

(I) d2 ≡ 12 (mod 16) none 26 22

(I) v2(d2) = 3 none 26 25

(I) v2(d2) ∈ {4, 5} none 26 23

(I) v2(d2) = 6 none 26 1
(I) none s even 2 26

(I) 2v2(d1) = p− 3 s odd 25 26

(I) 2v2(d1) = p− 5 s odd 23 26

(I) 2v2(d1) ≤ p− 7 s odd 2 26

(II) none s even 2 26

(II) d2 ≡ 1 (mod 4) s odd 26 25

(II) d2 ≡ −1 (mod 4) s odd 25 26

(III) none none 27 27

(IV) none none 25 26

F (t) will be one of the following quantities ∆1, ∆2 , according to the identifications

made above

∆1 = 26eD2sp, ∆2 = 26e2Ds2p.

For the conductors we need to consider four cases:

(I) D ≡ 0 (mod 4).

(II) D ≡ 1 (mod 4).

(III) D ≡ 2 (mod 4).

(IV) D ≡ 3 (mod 4).

and then, using [IK06] is easy to see that we have that NE(t) = NE
2 Rad2(Ds)

for the first curve, and for the second we have NF (t) = NF
2 Rad2(Ds), where NE

2

and NF
2 are given in Table 3.2.
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Now let us take a look at the Galois representations of G(Q/Q) on the

E(t)[p] (resp F (t)[p]), the subgroup of p-torsion points of E(t)(Q) (resp. the

subgroup of p-torsion points of F (t)(Q)). We will denote this representation by

ρ1,p in the case E(t)[p] and by ρ2,p in the case F (t)[p].

Proposition 3.3.1. For i ∈ {1, 2} the representations ρi,p are irreducible.

Proof. Using Proposition 3.1 on [IK06] and the fact that p ≥ 7, we have that the

representations ρi,p are irreducible, for i ∈ {1, 2}. QED

So if we denote by NE(t),p (resp. NF (t),p)) the ‘conductor’ defined in Defini-

tion 3.1.2, for the representation ρ1,p (resp. ρ2,p). While from [IK06], Propositions

3.3 and 3.4 we get the Serre conductor for the representations ρi,p, for i ∈ {1, 2},

we can use this results to compute our conductors and we have that :

NE(t),p = NE
2 Rad2(D) and NF (t),p = NF

2 Rad2(D), (3.15)

where NE
2 and NF

2 are given in Table (3.2). So we have that the representation

ρ1,p (resp. ρ2,p) arises from a newform of level N = NE(t),p (resp. N = NF (t),p).

Definition 3.3.2. If (t, s, p) is a solution of (3.4) and if the representation ρi,p

arises from a cuspidal newform fi, for i ∈ {1, 2}, then we say that solution (t, s, p)

arises from the pair of newforms f = (f1, f2) via the Frey curves E(t) and F (t).

Example 3.3.2. Let D = 7, the only signature that we can have is (d1, d2) = (1, 7),

and so we are in case (IV), and we have NE(t),p = 257 and NF (t),p = 267. For

both quantities there are newforms of those respective level. For D = 4, as we

have seen before we have two signatures (d1, d2) = (1, 4) and (2, 1). For the first

case we have that NE(t),p = 26 = 64 and NF (t),p = 24 = 16. By one of our early

remarks we see that there are no newforms of level 16, so there is no solution for
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(3.1), with x and y coprime, for p ≥ 7. In fact if were looking for newforms at

level 64, we would find only one newform, and when applying the Ribet’s theorem

conditions, we would not find any obstacle to the existence to the fact that our

elliptic curve E1 arises modulo p from that (unique) newform of level 64. This

simple example shows how the use of two Frey curves is important to solve a

Diophantine equation, through this method. So we have that t2 − 4 = sp has no

solutions, with s $= 0, for if s = 0, then we would have t = ±2.

For the second signature we have that NE(t),p = 2 if s is even or p ≥ 9 or

NE(t),p = 8 if p = 7, but in both cases there are no newforms of those levels, so

the equation t2 − 1 = 2p−2sp has no solutions, as we have stated before. Just for

case of completeness we have that NF (t),p = 26.

Congruences and eliminating exponents

Given D and one of its signatures (d1, d2), let (t, s, p) be a solution of (3.4). So

we know that (t, s, p) arises from the pair of newforms f = (f, g), where f is a

newform of level NE(t),p and g a newform of level NF (t),p. Using the notation made

in the beginning of this section for the Fourier coefficients of a newform and for

the numbers al(E), for an elliptic curve E and a prime l of good reduction, we

have the following result:

Theorem 3.8. With the notation above, suppose that the solution (t, s, p) arises

from the pair f = (f, g), where f is a newform of level NE(t),p and g a newform of

level NF (t),p, each one defined over a number field Kf and Kg, respectively. Then

there are places Pf of Kf and Pg of Kg, both above p such that for every prime

l ! 2D we have:

al(E(t)) ≡ cl(f) (mod Pf ), al(F (t)) ≡ cl(g) (mod Pg), if t2−d2 $≡ 0 (mod l),
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l+1 ≡ ±cl(f) (mod Pf ), l+1 ≡ ±cl(g) (mod Pg), if t2−d2 ≡ 0 (mod l).

Note that t2 − d2 $≡ 0 (mod l) is equivalent to say that l ! s.

Proof. The result is standard (see [Kra98, Ser87, BS04, BMS06]); the conditions

l ! 2D and l ! s simply say that l is a good prime of good reduction for E(t)

and F (t), whereas the conditions l ! 2D and l | s imply that l is a prime of

multiplicative reduction. The result follows from Proposition 3.1.1 QED

If f and g are both rational newforms, by Proposition 3.1.2 we have the

following version of the previous theorem:

Theorem 3.9. With the notation above, suppose that the solution (t, s, p) arises

from the pair f = (f, g) of rational forms, where f corresponds to an elliptic curve

E and g to an elliptic curve F . Then for all the primes l ! 2D we have:

al(E(t)) ≡ al(E) (mod p), al(F (t)) ≡ al(F ) (mod p), if t2−d2 $≡ 0 (mod l),

l+1 ≡ ±al(E) (mod p), l+1 ≡ ±al(F ) (mod p), if t2−d2 ≡ 0 (mod l).

Now we will give a method that will allow us to start to eliminate exponents

p for the equation (3.4). The previous two results say that if (t, s, p) is a solution

of (3.4) , then it arises from a pair of newforms of certain levels and all of these can

be determined. Let us say that these pairs of newforms are f1 = (f1, g1), . . . , fn =

(fn, gn). Then to solve (3.4) it is sufficient to solve it, for each i, under the

assumption that the solution arises from pairs of newforms fi.

We will now give one method to attack (3.4), under the assumptions that

the solution arises from a particular pair of newforms (more will be presented in

the following sections). If successful, the first method will prove that (3.4) has no

solutions except possibly for finitely many exponents p and these are determined
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by this method. This method is actually quite standard, as far it is known the

basic idea is originally due to Serre [Ser87]. It is also found in Bennett and Skinner

[BS04]. We shall present here a version that can be found in [BMS06].

Proposition 3.3.2 (Method I). Let D, d1, d2 be a triple of integers satisfying

Lemma 3.3.1 (i)-(v). Let f = (f, g), be a pair of newforms, where f has coefficients

in the ring of integers of the number field Kf and g has coefficients in the ring of

integers of the number field Kg. We denoted by Nf the norm map of Kf and by

Ng the norm map of Kg. If l ! 2D is prime, let

Cl(f, E) = lcm{Nf (al(E(t))− cl(f)) : t ∈ Fl, t2 − d2 $≡ 0 (mod l)}

Cl(g, F ) = lcm{Ng(al(F (t))− cl(g)) : t ∈ Fl, t2 − d2 $≡ 0 (mod l)}

B′
l(f, E) =





Cl(f, E), if (d2

l ) = −1,

lcm{Cl(f, E),Nf ((l + 1)2 − cl(f)2)} if (d2
l ) = 1,

B′
l(g, F ) =





Cl(g, F ), if (d2

l ) = −1,

lcm{Cl(g, F ),Ng((l + 1)2 − cl(g)2)} if (d2
l ) = 1,

Bl(f, E) =





lB′

l(f, E), if Kf $= Q,

B′
l(f, E), if Kf = Q,

Bl(g, F ) =





lB′

l(g, F ), if Kg $= Q,

B′
l(g, F ), if Kg = Q,

and

Bl(f) = gcd{Bl(f, E), Bl(g, F )}.
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If p is greater than 7, and if (t, s, p) is a solution to (3.4) arising from the

pair of newforms f = (f, g), then p must divide Bl(f).

Proof. The proposition follows almost immediately from Theorems 3.8 and 3.9.

QED

Under the assumptions made (in this proposition), Method I eliminates all

but finitely many exponents p, provided of course that Bl(f) is non-zero. Accord-

ingly, we shall say that Method I is successful if there exists some prime l ! 2D so

that Bl(f) $= 0. There are two situations where Method I is guaranteed to succeed.

• If one the newforms f, g is not rational, without loss of generality let us say

that is f , then, for infinitely many primes l, the Fourier coefficients cl(f) /∈ Q

and so all the differences al(E(t)) − cl(f), and l + 1 ± cl(f) are certainly

non-zero, immediately implying that Bl(f) $= 0.

• Suppose that one of the newforms f or g is rational, let us say f , and so

the corresponding elliptic curve E is defined over Q. Suppose also that E

has no non-trivial 2-torsion. By the Čebotarev Density Theorem we know

that #E(Fl) is odd for infinitely many primes l. Let l ! 2D be any such

prime. From the model for the Frey curve E(t) we see that E(t) has non-

trivial 2-torsion, and so l+1−al(E(t)) = #E(t)(Fl) is even for any value of

t ∈ Fl, t2−d2 $= 0. In this case al(E(t))−cl(f) = al(E(t))−al(E) must be

odd and cannot be zero, similarly, the Hasse-Weil bound |cl| ≤ 2
√

l implies

that l + 1± cl(f) $= 0. Thus Bl(f) is non-zero in this case and Method I is

successful.
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3.3.3 Kraus Method

The second method is adapted from the ideas of Kraus [Kra98] (see also [CS03]

and [BMS06]). It can only be applied to one prime (exponent) p at a time and,

if successful, it does show that there are no solutions to (3.4) for that particular

exponent.

Let us briefly explain the idea of this second method. Suppose that f is a

newform with Fourier expansion as in (3.2) and suppose that p ≥ 7. Choose a

small integer n so that l = np + 1 is prime with l ! D. Suppose that (t, s) is a

solution of (3.4) arising from f . Working modulo l we see that d2
1t

2 − D = yp

is either 0 or an n − th root of unity. As n is small we can list all such t in Fl

and compute cl(f) and al(E(t)) for each t in our list. We may then find that for

no t in our list are the relations in Theorem 3.8 satisfied. In this case we have a

contradiction and we deduce that there are no solutions to (3.4) arising from f

for the exponent p.

Let us now write this formally. Suppose that p ≥ 7 is a prime number and

n an integer such that l = np + 1 is also prime and l ! 2D. Define

µn(Fl) = {ζ ∈ F∗l : ζn = 1} and A(n, l) =

{
ζ ∈ µn(Fl) :

(
ζ + D

l

)
= 0 or 1

}
.

For each ζ ∈ A(n, l), let δζ be an integer satisfying

δ2
ζ ≡ (ζ + D)/d2

1 (mod l).

It is convenient to write al(1, ζ) for al(Eδζ
). Notice that similar definitions are also

applied to the newform g and Frey curve F (t) and in this case we write al(2, ζ)

for al(Fδζ
) We can now give our sufficient condition for the insolubility of (3.4)

for the given exponent p.
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Proposition 3.3.3 (Method II). Let D, d1, d2 be a triple of integers satisfying

Lemma 3.3.1 (i)-(v), and let p ≥ 7. Let f = (f, g) be a pair newforms defined

over the number fields Kf and Kg respectively, that will be denoted K1 and K2

respectively. Let cl(1) (resp. cl(2)) be the l-th coefficient of the Fourier expansion

of f (resp. g). Let N1 (resp. N2) be the norm map of K1 (resp. K2). Suppose

that there exist integers n1, n2 ≥ 2 satisfying the following conditions.

(a) The integers l1 = n1p + 1 and l2 = n2p + 1 are both prime and l1, l2 ! D.

(b) Either
(

d2
li

)
= −1, or p ! Ni(4− c2

li
(i)), for i ∈ {1, 2}.

(c) For all ζ ∈ A(ni, li), with i ∈ {1, 2}, we have




p ! Ni(ali(i, ζ)− cli(i)), if li ≡ 1 (mod 4),

p ! Ni(ali(i, ζ)2 − c2
li
(i)), if li ≡ 3 (mod 4).

Then (3.4) does not have any solutions for the given exponent p arising from the

pair of newforms f.

Proof. Suppose that the hypotheses of the proposition are satisfied and that (t, s)

is a solution to (3.4).

Let i ∈ {1, 2}, first we show that t2−d2 $≡ 0 (mod li). Suppose otherwise.

Thus t2 − d2 ≡ 0 (mod li) and so li | s. In this case (d2
li

) = 1 and from part

(b) we know that p ! Ni(4 − c2
li
(i)). However, by Theorem 3.8 we know that

±cli ≡ li + 1 ≡ 2 (mod Pi), where Pi is a place of Ki above p and we obtain a

contradiction showing that t2 − d2 $≡ 0 (mod li).

From (3.4) and the definition of e in (3.5), we see the existence of some

ζ ∈ A(ni, li) such that

d2
1t

2 −D ≡ ζ (mod li) and t ≡ ±δζ (mod li).
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Replacing t by −t in the Frey curves E(t) and F (t) has the effect of twisting

the curve by -1 (this can be easily verified for each Frey curve on their definition

(3.13) and (3.14)). Let E1,t be the Frey curve E(t) and E2,t be the Frey curve

F (t). Thus ali(i, ζ) = ali(Ei,t) if li ≡ 1 (mod 4) and ali(i, ζ) = ±ali(Ei,t) if

li ≡ 3 (mod 4). Moreover by Theorem 3.8 ali(Ei,t) ≡ cli(i) (mod Pi) for some

place Pi of Ki above p. This clearly contradicts (c). Hence, there is no solution

to (3.4) arising from f for the exponent p. QED

If one of the newforms in the pair f is rational and moreover corresponds to

an elliptic curve with 2-torsion, then it is possible to strengthen the conclusion of

the previous Proposition by slightly strengthening the hypotheses. The following

variant is far less costly in computational terms as we explain below.

Proposition 3.3.4 (Method II: 2-rational version). Let D, d1, d2 be a triple of

integers satisfying Lemma 3.3.1 (i)-(v), and let p ≥ 7. Let f = (f1, f2) be a pair

newforms defined over the number fields Kf1 and Kf2 respectively, that will be

denoted K1 and K2 respectively. Let cl(1) (resp. cl(2)) be the l-th coefficient

of the Fourier expansion of f1 (resp. f2). Let Ni be the norm map of Ki, for

i = 1, 2. Suppose that one of the fi is a rational newform corresponding to elliptic

curve E/Q with 2-torsion. Suppose that there exists an integer ni ≥ 2 satisfying

the following conditions.

(a) The integer li = nip + 1 is prime, li < p2/4 and li ! D.

(b) Either
(

d2
li

)
= −1, or ali(E)2 $≡ 4 (mod p).

(c) For all ζ ∈ A(ni, li) we have




ali(i, ζ) $= ali(E), if li ≡ 1 (mod 4),

ali(i, ζ) $= ±ali(E), if li ≡ 3 (mod 4).
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Then (3.4) does not have any solutions for the given exponent p arising from the

pair of newforms f.

Proof. Comparing this with Proposition 3.3.3 we see that is sufficient to show, un-

der the additional assumptions, that if ali(i, ζ)2 ≡ ali(E)2 (mod p) then ali(i, ζ) =

±ali(E), and if ali(i, ζ) ≡ ali(E) (mod p) then ali(i, ζ) = ali(E). Suppose

that ali(i, ζ)2 ≡ ali(E)2 (mod p) (the other case is similar). Hence, ali(i, ζ) =

±ali(E) (mod p). Now note that both elliptic curves under consideration here

have 2-torsion. Hence, we can write ali(i, ζ) = 2b1 and ali(E) = 2b2 for some

integers b1 and b2. Moreover, by the Hasse-Weil bound we know that |bj| ≤
√

li.

Thus

b1 ≡ ±b2 (mod p) and |b1 + b2|, |b1 − b2| ≤ 2
√

li < p

as li < p2/4. Thus, b1 = ±b2 and this completes the proof. QED

Let us now explain how this improves our computation. To apply Propo-

sition 3.3.3 for some p we need to find a prime l satisfying conditions (a)-(c).

The computationally expensive part is to compute al(Ei) = cl and al(ζ) for all

ζ ∈ A(n, l). Let us, however, consider the application of Proposition 3.3.4 rather

than Proposition 3.3.3. The computation proceeds as before by checking condi-

tions (a), (b) first. When it comes to (c), we note that what we have to check

the following






#Ei,ζ(Fl) $= l + 1− al(Ei), if l ≡ 1 (mod 4),

#Ei,ζ(Fl) $= l + 1± al(Ei), if l ≡ 3 (mod 4),

for each ζ ∈ A(n, q). Rather than computing al(ζ) for each ζ, we first pick a

random point in Ei,ζ(Fl) and check whether it is annihilated by l + 1 − al(Ei) if

p ≡ 1 (mod 4) and either of the integers l + 1± al(Ei) if p ≡ 3 (mod 4). Only

87



if this is the case do we need to compute al(ζ) to test condition (c). In practice,

for primes p ≥ 108 this speeds up our computations for Method II.

Occasionally, Methods I and II fail to establish the non-existence of solutions

to an equation of the form (3.4) for a particular exponent p even when it does seem

that this equation has no solutions. The reasons for this failure are not clear to us.

We, shall, however give a third method, rather similar in spirit to Kraus’ Method

(Method II, both versions), but requiring stronger global information furnished by

Theorem 2.1 and more general than the method introduce in the section 2.3.2.

Suppose that D, d1, d2 are integers satisfying conditions (i)-(v) of Lemma

3.3.1. Let E(t) and F (t) be a pair of possible Frey curves associated with (3.4)

and let f = (f1, f2) be a pair of newforms, whose level is predicted in (3.15).

Keeping the above notation, for i ∈ {1, 2} define Tl(fi) to be the set of τ ∈ Fl

such that either:

• p | Ni(al(Ei,τ − cl(i))) and τ 2 − d2 $≡ 0 (mod l); or

• p | Ni(l + 1± cl(i)) and τ 2 − d2 ≡ 0 (mod l).

We now suppose that D is not a square and follow the notation of section

2.2. We will now present a similar method use already in section 2.3.2 for the

construction of Γ′. Fix a prime p ≥ 7. Suppose that l is a prime satisfying the

following conditions.

(a) l ! 2D.

(b) l = np + 1 for some integer n.

(c) (d
l ) = 1, thus l splits in OD, say (l) = l1l2.

(d) Each γ ∈ Γ is integral at l; what we mean by this is that each γ belongs to

the intersection of the localizations Ol1 ∩Ol2 .
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We denote the two natural reduction maps by θ1, θ2 : Ol1 ∩ Ol2 → Fl.

These of course correspond to the two squareroots for d in Fl and are easy to

compute.

Now, for i ∈ {1, 2} let Γl(fi) be the set of γ ∈ Γ for which there exists

τ ∈ Tl(fi) such that:

• (d1τ − qθ1(
√

d))n ≡ θ1(γ)n or 0 (mod l); and

• (d1τ − qθ2(
√

d))n ≡ θ2(γ)n or 0 (mod l).

Proposition 3.3.5 (Method III). Let p ≥ 7 be a prime. Let S be a set of primes l

satisfying the conditions (a)-(d) above. With the notation as above, if the newform

fi belongs to a pair of newforms f, that gives rise to a solution (t, s) of (3.4),

then d1t− q
√

d = γβp for some β ∈ OD and some γ ∈ ΓS(fi) := ∩l∈SΓl(fi). In

particular, if ΓS(fi) or ΓS(f1)∩ΓS(f2) is empty, then the pair of newforms f does

not give rise to any solution to (3.4) for this exponent p.

Proof. Suppose that (t, s) is a solution to (3.4) arising from the pair of newforms

f = (f1, f2) via the Frey curves E(t) and F (t), respectively. Fix i. Using the

notation above, it is clear to see that θ1(t) = θ2(t) is simply the reduction of

t modulo l. Let τ = θ1(t) = θ2(t) ∈ Fl. It follows from Theorem 3.8 that

τ ∈ Tl(fi). Let (x, y) be the solution of (3.1) corresponding to (t, s). Thus

x = d1t. We know by Theorem 2.1 that

d1t− q
√

d = γβp,

for some γ ∈ Γ and β ∈ OD. Applying θi to both sides and taking the n-th

powers (recall that l = np + 1) we obtain

(d1τ−qθi(
√

d))n ≡ θi(γ)nθi(β)l−1 (mod l) with θi(β)l−1 ≡ 0 or 1 (mod l).

Thus γ ∈ Γl(fi) as defined above. The proposition follows. QED
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3.4 Some examples: Practical applications of the meth-

ods explained

We will now present some examples of applications of the methods studied so far,

showing cases as only one method can work to show the non-existence of solutions

to (3.1) for p ≥ 7 or how they all work together for the same aim.

3.4.1 Non-existence of newforms

By Lemma 3.3.1, the exposition that follows and by Proposition 3.3.1 we can

associate solutions of 3.1, having p ≥ 7, with newforms of certain levels. If there

are no newforms of the predicted levels, we immediately deduce that there are no

solutions to (3.1). Using MAGMA to compute the newforms of the level associated to

each equation (3.4), we found all D in our range (R) where there are no newforms

at the predicted levels. So we have the following result.

Proposition 3.4.1 (Absence of newforms). Let D be an integer belonging to the

list

4, 12, 28, 32, 44, 60, 76, 92.

Then (3.1) does not have any (non trivial) solutions for any prime p ≥ 7. Moreover,

if D = 16 and 64, with signatures (d1, d2) = (1, 16) and (1, 64) respectively, then

the equation (3.4) does not have any (non trivial) solutions.

Example 3.4.1. We have already seen that for D = 4, we failed on having newforms

for some of the levels: with the signature (d1, d2) = (1, 4) it failed for the levels

predicted for the Frey curve E(t). While for the signature (d1, d2) = (2, 1), it was

for the levels of the Frey curve F (t).
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Example 3.4.2. For D = 12, it is using the Frey curve F (t) that we fail to have

newforms for the predicted level, while for the Frey curve E(t) for the predicted

levels we had 4 newforms, two of them could be eliminated by level lowering,

while with the other two we could not eliminate them with level lowering, and we

couldn’t eliminate any exponent p ≥ 7 for either of them. For D = 60 it was also

F (t) which failed to have newforms for the predicted levels, and we would have

a similar situation for the Frey curve E(t) where some of the newforms could not

be eliminated by level lowering and we would have all the exponents still to try.

For D = 92 we also have the same situation for F (t), while for E(t), while most

of the newforms eliminated by level lowering, we would still have two of newforms

left, but each one could only give solutions for the exponent p = 7.

Example 3.4.3. For D = 28, 32, 44, 76, it was also the Frey curve F (t) which failed

to have newforms for the predicted levels, but in these cases, for the Frey curve

E(t) it was possible to eliminate all the newforms associated to the predicted level

by the level lowering theorem.

Example 3.4.4. For D = 16 and 64 with signatures (d1, d2) = (1, 16) and (1, 64),

respectively, we could see that for one of the Frey curves there was no newforms

with the predicted level. But for the other signatures we can see that both Frey

curves have associated newforms for the predicted levels, that cannot be eliminated

by level lowering.

3.4.2 Non-existence of Solutions: Using Ribet’s level lowering

We have seen the cases where there are no newforms. Now we will see cases,

where we have newforms but we can eliminated them just using the level lowering

theorem or a version of it that suits us better, Proposition 3.3.2. Still using the
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program MAGMA for computation of newforms of certain levels and for implementing

the method explained on the Proposition 3.3.2, we have the following result.

Proposition 3.4.2. Let D be an integer belonging to the list

6, 7, 11, 13, 14, 18, 19, 27, 34, 38, 40, 43, 46, 47, 54, 56, 58, 59, 79, 83, 86, 88, 91, 96

Then (3.1) does not have any solutions for exponent a prime p ≥ 7.

Example 3.4.5. For D = 7 we only have the signature (d1, d2) = (1, 7). Thus

t = x and s = y and we need to solve the equation

t2 − 7 = sp, where p ≥ 7 (3.16)

As d1 = 1, by (3.11) we have associated to a solution (t, s, p) the following Frey

curves:

E(t) : Y 2 = X3 + 2tX2 + 7X, and

F (t) : Y 2 = X3 + 2tX2 + (t2 − 7)X.

From Proposition 3.3.1 and Table 3.2 we know that any solution to (3.16) arises

from a newform of level 224=25 × 7 associated to the Frey curve E(t) and from

a newform of level 448 = 26 × 7 associated to the Frey curve F (t).

Using MAGMA we find that there are, up to Galois conjugacy, precisely four

newforms at level 224, these are

f1 = q − 2q3 − q7 + q9 − 4q11 + O(q12),

f2 = q + 2q3 + q7 + q9 + 4q11 + O(q12),

f3 = q + αq3 + (α + 2)q5 + q7 + (−2α + 1)q9 + (−2α− 4)q11 + O(q12)

f4 = q + αq3 + (−β + 2)q5 − q7 + (2β + 1)q9 + (−2β + 4)q11 + O(q12),
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where α and β are such that:

α2 + 2α− 4 = 0 and β2 − 2β − 4 = 0.

For level 448, we find that there are, also up to Galois conjugacy, precisely ten

newforms, that are

g1 = q − 2q5 − q7 − 3q9 + 4q11 + O(q12),

g2 = q + 2q3 + q7 + q9 + O(q12),

g3 = q − 2q3 + 4q5 + q7 + q9 + O(q12),

g4 = q + 2q3 − q7 + q9 + 4q11 + O(q12),

g5 = q + 2q3 + 4q5 − q7 + q9 + O(q12),

g6 = q − 2q3 − q7 + q9 + O(q12),

g7 = q − 2q5 + q7 − 3q9 − 4q11 + O(q12),

g8 = q − 2q3 + q7 + q9 − 4q11 + O(q12),

g9 = q + αq3 + (−α− 2)q5 − q7 + (−2α + 1)q9 + (−2α− 4)q11 + O(q12),

g10 = q + βq3 + (β − 2)q5 + q7 + (2β + 1)q9 + (−2β + 4)q11 + O(q12),

where α and β are as before. The first two newforms (resp. first eight newforms)

associated with E(t) (resp. F (t)) are rational and so correspond to the two (resp.

eight) isogeny classes of elliptic curves of conductor 224 (resp. 448). And it is

possible to check that these elliptic curves have non-trivial 2-torsion, so by the

remark made after Proposition 3.3.2 we might not be so successful in eliminating

all but finitely many exponents p. But it turns out the opposite way,

B3(f1, E) = B3(f2, E) = 12 = 22 × 3,

B3(f3, E) = B3(f4, E) = 240 = 24 × 3× 5,
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So we can see that no solutions to (3.16) arise from f1 or f2, because otherwise,

we would have by Proposition 3.3.2 that p | 12, which contradicts p ≥ 7, the

same happens for f3 and f4, for if p | 240, then p = 2, 3 or 5, a contradiction.

So only with the information of the newforms associated to the Frey curve E(t)

we conclude that (3.16) has no solutions for p ≥ 7. For the sake of completeness

we will also show what happens with the newforms associated to the Frey curve

F (t). In these cases we have

B3(gi, F ) = 0, B5(gi, F ) = 4 = 22, for i ∈ {1, 7},

B3(gi, F ) = 12 = 22 × 3, for i ∈ {2, 3, 4, 5, 6, 8},

B3(g9, F ) = B3(g10, F ) = 240 = 24 × 3× 5.

So as before, we conclude that there are no solutions to (3.16) arise from the

newforms associated to the Frey curve F (t). Proving that (3.16) has no trivial

solutions. So when D = 7, we have that the only solution to (??) is (x, y, n) =

(±4,±3, 2).

Example 3.4.6. As we have seen in the previous example, the level lowering helped

us to eliminate all the newforms, associated to each of the Frey curves considered,

and as is possible to see in the results obtained, this is what happens in the majority

of the cases, where level lowering help us to show that there are no solutions for

the equations considered. In the cases where D = 43, 79, 83 and 91 we have that

the level lowering help us to eliminate all the newforms associated to one of the

Frey curves, E(t), while with the Frey curve F (t) we still obtain some newforms

to which we have finitely many powers left to exclude. When D = 13, 91 and 96 it

is also possible to eliminate all the newforms associated to one of the Frey curves,

E(t) in the first case, F (t) in the other cases, while for the other Frey curve, we

find that there are some newforms we cannot exclude by level lowering and we still
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have all the powers p ≥ 7 left to exclude.

3.4.3 Non existence of solutions: Using Kraus’ methods

So far we have seen the cases where with the non-existence of newforms or with

the level lowering method, we could solve our equations, basically showing there

were no solutions for a certain D, provided p is a prime greater than or equal to 7.

Now let us turn to the cases where the methods of Kraus (Method II-Propositions

3.3.3 and 3.3.4, and Method III-Proposition 3.3.5) help us to solve our equation

(3.1), when p ≥ 7.

Proposition 3.4.3. Let D be an integer belonging to the list

23, 30, 39, 42, 51, 61, 62, 67, 70, 71, 74, 93.

Then (3.1) does not have any (non trivial) solutions for p ≥ 7 a prime number.

We will now see examples where only Method II was the only required to

show the none existence of solutions, others where Method III was the one who

succeed in showing the non-existence of solutions and also examples where both

methods where required.

Example 3.4.7. Let D = 23. The only possible signature is (d1, d2) = (1, 23).

Therefore we have x = t and y = s. We are in case (IV), and there are 8

newforms of level 736 = 25 × 23 associated to the Frey curve

E(t) = Y 2 = X3 + 2tX2 + 23X,

and 26 newforms of level 1472 = 26 × 23 associated to the Frey curve

F (t) : Y 2 = X3 + 2tX2 + (t2 − 23)X.
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First we apply the level lowering (Method I) and we see that we are left with 2

newforms for each case, all of them predicting p = 7. The newforms are:

f1 = q + αq3 + (−α + 1)q5 + (α− 1)q7 + (−2α− 2)q9 + (−3α− 3)q11 + O(q12),

f2 = q + βq3 + (β + 1)q5 + (β + 1)q7 + (2β − 2)q9 + (−3β + 3)q11 + O(q12),

g1 = q + βq3 + (−β − 1)q5 + (−β − 1)q7 + (2β − 2)q9 + (−3β + 3)q11 + O(q12),

g2 = q + αq3 + (α− 1)q5 + (−α + 1)q7 + (−2α− 2)q9 + (−3α− 3)q11 + O(q12),

where α2 + 2α− 1 = 0 and β2 − 2β − 1 = 0.

We have that B3(fi, E) = B3(gj, F ) = 21 = 3× 7 for i, j ∈ {1, 2}. Using

Proposition 3.3.3, with n = 16, that is l = 16 × 7 + 1 = 113 we have that no

solution arises from a pair of newforms (fi, gj). So Method II was enough to solve

this case. The same happens when D = 61, 67. For D = 61 the case is quite

similar to this one, we are only left with the exponent p = 7 and all the newforms

are irrational. For D = 67, using the level lowering, we are left with four newforms

associated to the Frey curve F (t), two of them predicting p = 11 and the other

two p = 17. For the Frey curve E(t) we are left with two newforms predicting

p = 17. Therefore after Method I only predicts p = 17. After applying Method II,

Proposition 3.3.3 since the newforms are irrational, we can discard this case.

Example 3.4.8. Let D = 62, then we have that there is only one possible signature

(d1, d2) = (1, 62), so x = t and y = s. So we are in case (IV), and we have that

there are 16 newforms of level 27 × 31 = 3968 associated to the Fey curve

E(t) : Y 2 = X3 + 2tX2 + 64X,

and 16 newforms of level 3968 associated to the Frey curve

F (t) : Y 2 = X3 + 2tX2 + (t2 − 64)X.
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After applying the level lowering we are left with 2 newforms in each case. Those

newforms are

f1 = q + αq3 +
1

2
(α5 + α4 − 8α3 − 6α2 + 12α + 4)q5 +

1

2
(−α4 + 6α2 − 4)q7 + O(q9),

f2 = q + βq3 +
1

2
(−β5 + β4 + 8β3 − 6β2 − 12β + 4)q5 +

1

2
(β4 − 6β2 + 4)q7 + O(q9),

g1 = q + βq3 +
1

2
(β5 − β4 − 8β3 + 6β2 + 12β − 4)q5 +

1

2
(−β4 + 6β2 − 4)q7 + O(q9),

g2 = q + αq3 +
1

2
(−α5 − α4 + 8α3 + 6α2 − 12α− 4)q5 +

1

2
(α4 − 6α2 + 4)q7 + O(q9),

where α and β are such that:

α6 + 2α5 − 8α4 − 14α3 + 14α2 + 16α− 4 = 0 and

β6 − 2β5 − 8β4 + 14β3 + 14β2 − 16β − 4 = 0.

Using Proposition 3.3.2, and denoting by fi,j = (fi, gj), for i, j ∈ {1, 2} we have

that

B3(fi,j) = 22 × 3× 7,

B5(fi,j) = 23 × 5× 7× 587,

B7(fi,j) = 23 × 72 × 13× 229,

for all i, j ∈ {1, 2}. So we conclude that there are no solutions arising from the

pair fi,j with exponent p > 7. So let us see what happens with p = 7. Since each

pair of newforms has both newforms irrational, we can only apply Proposition

3.3.3. Unfortunately we could not find any n and respective l that would satisfy

the conditions of Proposition 3.3.3. We move to Method III, Proposition 3.3.5

And we see that with S = {29, 127}, we have that

ΓS(fi,j) = ∅

Therefore Method III alone managed to prove the non-existence of solutions for

this case. We have a similar situation with D = 30, 42 and 74. For all of them after
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applying Method I we were only left with the exponenet p = 7. When D = 74,

we were also left with irrational newforms, while for the remaining cases all the

newforms were rational.

Example 3.4.9. Let now D = 39. Also in this case we have only one signature

possible, that is, (d1, d2) = (1, 39), as also t = x and s = y. So we are looking

for solutions of the equation

t2 − 39 = sp, p ≥ 7. (3.17)

Once again, we have the following Frey curves:

E(t) : Y 2 = X3 + 2tX2 + 39X,

F (t) : Y 2 = X3 + 2tX2 + (t2 − 39)X.

So from E(t) we might have solutions arising from newforms of level 1248 and

from F (t) we might have solutions arising from newforms of level 2496. After

applying the level lowering method, we could not eliminate 2 newforms for the

Frey curve E(t) and 10 for the Frey curve F (t). The two newforms of level 1248

left are:

f1 = q + q3 − 2q5 + q9 − 4q11 + O(q12),

f2 = q − q3 − 2q5 + q9 + 4q11 + O(q12).

It is possible to see that for i ∈ {1, 2} we have

B53(fi, E(t)) = 24 × 32 × 5× 7× 11× 13,

Bl(fi, E(t)) = 0, for l ∈ {5, 7, 11, 17, 19, 23, 29}.
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So we see that there are no solutions arising from f1 and f2 with exponent p > 13.

If we consider one of the newform of level 2496, for example,

g = q − q3 − 2q5 + q9 + O(q12),

we would have Bl(g, F (t)) = 0, for all primes l ∈ {5, 7, 11, 17, 19, 23, 29, 31}.

So in this case we would have all the possibilities for exponent still open. But

taking into account the level lowering using the Frey curve E(t) we know the only

possibilities still left for p are 7, 11 and 13. Since both f1 and f2 are rational

newforms, we have associated elliptic curves defined over Q, let Ef1 be the elliptic

curve defined by f1 and Ef2 the elliptic curve defined by f2. Then we have

Ef1 : Y 2 = X3 + X2 − 234X + 1296,

Ef2 : Y 2 = X3 −X2 − 234X − 1296.

that are respectively the elliptic curves 1248E1 and 1248H1 in Cremona’s tables

[Cre96]. It is also possible to see that they have a non trivial two torsion subgroup,

so we can apply Proposition 3.3.4. For p = 7 or 13 we cannot find a value n that

satisfies the assumptions of the Proposition just mentioned. But when p = 11,

taking n = 2, that is, l = 23, we are able to verify all the assumptions of the

Proposition 3.3.3, for both of the newforms f1, f2. So we have already eliminated

p = 11. Then we are left to try Proposition 3.3.5. For p = 7 let S = {197, 281},

and for p = 13 let S = {131, 157, 313}. Then we have that, for i ∈ {1, 2}

ΓS(fi) = ∅,

showing that there are no solutions arising from any of the newforms f1 and f2

with exponent p = 7 or 13. We could have also have applied Method II and

Method III to the newforms coming from the Frey curve F (t) and reached the
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same conclusions, provided that we would only test the primes 7, 11 and 13, since

we knew already there was no need to test all the others. If we had considered

the newforms associated to the Frey curve E(t) we would have almost the same

scenario. For p = 11 and p = 13 the situation would be the same, that is, when

predicted by a newform they would be eliminated by the same method as above,

using the same primes l. For p = 7 the situation would be a bit different. There

would be two irrational newforms that would be eliminated by using Method II,

proposition 3.3.3, with the prime l = 29 verifying all the assumptions of the same

proposition. For the rational newforms though most of them would behave as

in the case of the Frey curve F (t), just changing the set S, we would find two

newforms that after applying Method III we would be left with a non-empty ΓS

for a certain S.

Therefore the equation (3.17) does not have any solutions for p ≥ 7.

For D = 30, 42, 51 and 71 we have also the same situation. For D =

51, some of the newforms coming from one of the Frey curves that were not

eliminated by the level lowering, leave all the options for exponent still open, while

the newforms, coming from the other Frey curve, that also were not eliminated

by level lowering, predict only a finite list of possible exponents. In all the other

cases, in both Frey curves, we are only left with newforms that predict a finite list

of possible exponents. So this also shows how the use of two Frey curves is more

than welcome. For D = 51, 70, 71, 93 we have a similar situation, we need both

methods to eliminate all newforms. When D = 71 after Method I, we are only left

with the exponent p = 7. Though if we had only considered the Frey curve F (t)

alone we would have to consider p = 17 also. Method III alone helps to eliminate

all the newforms associated with the Frey curve E(t) for p = 7. But we need

both methods II and III for the newforms associated to the Frey curve F (t) when
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p = 7. If we had considered p = 17, after method III we would have found a set

S of primes such that ΓS would be non-empty. For D = 51 we have to check the

exponents p = 7, 11.

3.4.4 Possible solutions

We have seen so far the cases where we could prove the non-existence of solutions

by non-existence of newforms, by applying the level lowering or by Kraus’ methods.

Now we shall see cases where all the previous methods failed in eliminating all the

newforms associated to the Frey curves, that is, cases where Method III indicates

that there might be a solution.

Proposition 3.4.4. Let D be an integer belonging to the list

31, 53, 66, 69, 78, 87, 95.

Then (3.1) does not have any (non trivial) solutions for p ≥ 7 a prime number.

Example 3.4.10. Let D = 78, it is possible to see that there is only one signature

for this case, that is (d1, d2) = (1, 78), and so t = x and s = y. We are looking

for solutions of the equation

t2 − 78 = sp, for a prime p ≥ 7. (3.18)

Our Frey curves are:

E(t) : Y 2 = X3 + 2tX2 + 78X,

F (t) : Y 2 = X3 + 2tX2 + (t2 − 78)X,

which predict that we may have solutions to (3.18) arising from newforms of level

4992 in both cases. We see that there are 36 newforms at this level, up to Galois
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conjugacy. After the applying the level lowering we are left with 6 newforms for

each case and for each of them the only power left to test is p = 7. After applying

Method II and Method III we are left with four newforms, two for each Frey curve,

that are:

f1 = q + q3 +
1

4
(−α2 + 16)q5 + 1

1

4
(α2 + 4α− 16)q7 + q9 + 2q11 + O(q12),

f2 = q − q3 + βq5 + (β2 + β − 4)q7 + q9 − 2q11 + O(q12),

g1 = q − q3 +
1

4
(−γ2 − 4γ + 16)q5 +

1

4
(γ2 + 8γ − 16)q7 + q9 − 2q11 + O(q12)

g2 = f = q + q3 + δq5 + (δ2 − δ − 4)q7 + q9 + 2q11 + O(q12),

where α, β, γ and δ are such that

α3 + 4α2 − 16α− 48 = 0, β3 − 8β + 4 = 0,

γ3 + 4γ2 − 24γ + 16 = 0 and δ3 − 8δ − 4 = 0.

For all of these newforms, Level lowering and Method II failed to eliminate them

and for Method III, setting ω =
√

78, we have that

Γ29(fi) = Γ29(gj) = {5617 + 636ω, 6688150613 + 757283934ω},

for i, j ∈ {1, 2}. Therefore we apply the method developed in 2.2 to solve our

Thue equations for p = 7 associated to these two values, and we find that there

are no solutions coming from those Thue equations. Therefore our equation (3.18)

does not have any non trivial solution.

Example 3.4.11. For D = 31, 53, 66, 78, 87 and 95, we had only to look for solu-

tions of Thue equations for p = 7, since the other possible powers were excluded

after the several methods. For D = 31, 53 and 95, after level lowering, we had

only the exponent p = 7 left for all the remaining newforms associated to the
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Frey curve E(t), while for the Frey curve F (t). There were newforms with all

exponents still possible; applying Proposition 3.3.2 we knew that if there was a

solution arising from a newform, then we would have that p = 7.

For every case mentioned above, after applying Method II and III we were

still left with the exponent p = 7. Therefore we proceeded to find the solutions

for the mentioned D’s when p = 7 using Thue equations and we found that there

were no solutions.

Proposition 3.4.5. For D = 22 and for p ≥ 7 the equation (3.1) has the

following solutions only

(x, y, p) = (±47, 3, 7).

Also for D = 94 with p ≥ 7, the equation (3.1) has the following solutions only

(x, y, p) = (±421, 3, 11).

Proof. For D = 22, we have the signature (d1, d2) = (1, 22). So our equation

(3.4) is essentially

t2 − 22 = sp,

for a prime p ≥ 7. Our Frey curves are

E(t) : Y 2 = X3 + 2tX2 + 22X;

F (t) : Y 2 = X3 + 2tX2 + (t2 − 22)X.

It is easy to see that the discrimant for the Frey curves are the following quantities

∆E(t) = 26222sp, ∆F (t) = 2622s2p.

But on the other hand, the conductor associated to the represenations of both

Frey curves is the same:

NE(t),p = NF (t),p = 27 × 11 = 1408.
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After applying level lowering we are left with the same 6 newforms for each Frey

curve, all of them predicting the exponent p = 7. The newforms are:

f1 = q − 2q5 + 4q7 − 3q9 + q11 + O(q12),

f2 = q − 2q5 − 4q7 − 3q9 − q11 + O(q12),

g1 = q + 2q5 + 4q7 − 3q9 − q11 + O(q12),

g2 = q + 2q5 − 4q7 − 3q9 + q11 + O(q12),

f3 = g3 = q + αq3 + (−2α + 1)q5 + (−α + 1)q7 + (2α− 2)q9 − q11 + O(q12),

f4 = g4 = q + αq3 + (2α− 1)q5 + (α− 1)q7 + (2α− 2)q9 − q11 + O(q12),

f5 = g5 = q + βq3 + (−2β − 1)q5 + (β + 1)q7 + (−2β − 2)q9 + q11 + O(q12),

f6 = g6 = q + βq3 + (2β + 1)q5 + (−β − 1)q7 + (−2β − 2)q9 + q11 + O(q12),

where α is a solution of X2 − 2X − 1 and β a solution of X2 + 2X − 1, and

the new forms f1, . . . , f6 are associated to the Frey curve E(t) and the newforms

g1, . . . , g6 to the Frey curve F (t).

The newforms f1, f2, g1 and g2 are rational and the corresponding Elliptic

curve has a non-trivial two-torsion subgroup. So we can use Method II, the rational

version for these newforms, Proposition 3.3.4. After applying Method II to all the

newforms in both cases, we eliminate f3, f6, g4 and g5 Now let l = 29 and fi,j

be the pair of newforms (fi, gj) with i ∈ {1, 2, 4, 5} and j ∈ {1, 2, 3, 6} Using

Method II we have that Γ29(fi,j) is

{∅} , if 1 ≤ i ≤ 2 or 1 ≤ j ≤ 2,
{
1, 42ω + 197, (42ω + 197)2, (42ω + 197)5, (42ω + 197)6

}
if i ≥ 3 or j ≥ 3,

where ω =
√

22. Using now the Thue equations methods, we have that the only

solution to (3.1) is the one mentioned in the proposition.
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For D = 94 is more or the less as the same above, with the only exception

that the exponent predicted is p = 11. QED

3.4.5 When and why does the Modular approach work?

After applying the Methods explained, there were some cases when we could not

eliminate any exponent p ≥ 7 for certain values of D. We will now explain why

this might have happened.

The first case is when D is a square, that is,

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

For this case, using the notation above, D = q2, so we have that the equation

(3.1) has alays the following solution:

(x, y, p) = (±q, 0, p),

for any p prime greater or equal than 7. Notice that the solution is not a coprime

one.

The second case is when D is a unit away from a square that is D = q2±1.

For the following values of D:

2, 3, 5, 8, 10, 15, 17, 24, 26, 35, 37, 48, 50, 63, 65, 80, 82, 99,

we will always have a coprime solution:

(|x|, |y|, p) = (q, 1, p),

where q2 = D ± 1 and p a prime greater and equal to 7.

For these two cases our equations have always a solution for any given

prime.
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Table 3.3: New equations for the values D in the third case
D New equation Solutions (x,y)
20 x2 − 4 = 5yp (±3, 1)
33 x2 − 33 = 8yp (±5,−1)
41 x2 − 41 = 8yp (±7, 1)
52 x2 + 4 = 13yp (±3, 1)
55 x2 − 11 = 5yp (±4, 1)
57 x2 − 19 = 3yp (±4,−1)
68 x2 − 17 = 16yp (±1,−1)
72 x2 − 9 = 8yp (±1,−1)
73 x2 − 73 = 8yp (±9,−1)
75 x2 − 15 = yp (±4, 1)
77 x2 + 7 = 11yp (±2, 1)
84 x2 − 4 = 21yp (±5, , 1)
85 x2 − 85 = 4yp (±9,−1)
90 x2 − 10 = 9yp (±1,−1)
97 x2 − 97 = 16yp (±9,−1)
98 x2 − 2 = 7yp (±3, 1)

The third case, as we will try to show in the next chapter, though it seems

that there are no solutions for any prime p greater than or equal to 7, except for

finitely many primes, we could not eliminate any of the exponents we were testing

with the Methods explained in this chapter. But we can find a new equation with

solutions for any given prime p. In Table 3.3, we present possible rearrangements

of the equation (3.1) for the values D given also in Table 3.3.

It is possible to check that both Frey curves given by the work of Ivorra-

Kraus [IK06] have the same levels if for a given value of D we consider the equation

(3.1) or the one given in the Table 3.3. We see that, though the modular method

is an effective method to solve Diophantine equations with no integral (rational)

solutions, it does fail. The reason, is due to the fact that two different equations

might originate Frey curves whose level predicted by Level lowering is the same,
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and we can have one equation with solutions and the other with none.

In the next section, we will try to solve, when possible, the cases mentioned

above.
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Chapter 4

Bounding our variables x, y and

p.

In this section we would like to present lower and upper bounds for x, y and p

for the equation (3.1). For this purpose we will use some strategies that will use

results on modular forms, on factorization over a number field and/or from linear

forms in two and three logarithms. The cases that we could not solve so far and

that have modular forms with infinitely many exponents left to eliminate are given

in Tables 4.1, 4.3 and 4.4.

4.1 Bounds coming from modular forms

We start with a proposition similar to a result in [BMS06]

Proposition 4.1.1. Suppose D is a non-zero integer and d1, d2 satisfy lemma

3.3.1. Suppose that (t, s, p) is a solution to (3.4) arising from a rational newform

f via a Frey curve Et or Ft. Then either Rad(s) | 2d1 or |s| ≥ (
√

p− 1)2.

Proof. As the newform is rational, we know that the newform f corresponds to an
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elliptic curve E/Q whose conductor equals the level of f . Suppose that Rad(s)

does not divide 2d1. As t and d2 are coprime we see that there is some prime l | s

so that l ! 2D. By Theorem 3.9 we see that p divides l + 1 ± al(E). It follows

from the Hasse-Weil Bound (Theorem 2.5) that l + 1± al(E) $= 0, and so

p ≤ l + 1± al(E) < (
√

l + 1)2,

again using Hasse-Weil. Thus l > (
√

p − 1)2 and the proposition follows as we

have that l | s. QED

4.1.1 Irrational newforms

The previous result only concerns rational forms, so first we have to see if after

applying Level Lowering we are still left with irrational newforms. If this is the

case we apply methods II and III for these irrational newforms to see if they arise

from a solution or not. In case we are still left with some exponents, that will

always be finitely many (see coments made after Proposition 3.3.2), we can apply

the method of Thue equations to solve these cases.

Proposition 4.1.2. Let D be one of the values in the Tables 4.1, 4.3 and 4.4,

with signature (d1, d2) and suppose that (t, s, p) is a solution to (3.4) arising

from a pair newforms f = (f, g) via the Frey curve Et and Ft, where one of the

newforms, f or g is irrational. Then (D, t, s, p) is one of the following:

(41,±13, 2, 7), (50,±7,−1, 7) (97,±15, 2, 7).

Proof. First we begin to see which values of D have pairs of newforms f = (f, g)

in which one of them is irrational. We can easily see that for the following values
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of D, there is no pair of newforms f with at least one irrational newform,

1, 2, 3, 8, 9, 15, 16, 24, 36, 45, 48, 64, 72, 75, 81.

After applying Methods I, II and III, we were able to eliminate all the pairs of

newforms f containing an irrational newform for the following values of D.

5, 10, 15, 17, 20, 25, 26, 33, 35, 37, 52, 57, 63, 65, 68, 77, 80, 82, 84, 90, 98, 99, 100.

So the only possible pairs (D, p) left to consider are:

(29, 7), (41, 7), (50, 7), (73, 7), (85, 7), (97, 7), (98, 7).

After using the Thue equations, we get the solutions mentioned in the proposition.

QED

4.1.2 Some solutions from the rational newforms case

So now we can focus on rational forms f that might give rise to a solution to

our equation (3.1). Let D be one of the values given in Tables 4.1,4.3 and 4.4.

By Proposition 4.1.1 we have that, if (t, s, p) is a solution arising from f , then

Rad(s)|2d1, where (d1, d2) is a signature of our equation (3.1) or s ≥ (
√

p− 1)2.

Let us see what happens in the first case.

Proposition 4.1.3. Let D be one of the values given in Table 4.4, and sup-

pose that (x, y, p) is a solution of (3.1), with signature (d1, d2) and simplification

(t, s, p), such that Rad(s)|2d1. Then (D, x, y, p) are the following:

(41,±13, 2, 7), (68,±14, 2, 7), (68,±46, 2, 11) or (97,±15, 2, 7).

For D in Table 4.3, with the same assumptions as before our solutions(|x|, |y|, p)

are (q, 1, p), with p a prime great than or equal to 7 and q a natural number such

that |D − q2| = 1.
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Proof. Suppose that D is one of the values in the tables mentioned and (x, y, p)

is a solution to (3.1). By Lemma 3.3.1 we have that x = td1 and y = Rad(d1)s,

where (t, s, p) satisfy (3.4), for some d1 and d2 a signature of our equation (3.1)

and we are assuming that Rad(s) | 2d1, so Rad(y) | 2d1.

When Rad(y) = 1, then we are in the case that D is a unit away from

a square, so D is one of the values of the table 4.3, and the solutions are

(|x|, |y|, p)=(q, 1, p), for all primes p ≥ 7, and q such that |D − q2| = 1.

Now suppose that Rad(y) = 2 then [Beu81] shows that for the equation

x2 + D = 2m, with |D| < 296 we must have m ≤ 18 + 2 log |D|/ log 2. A

short program implemented on MAGMA leads us to the solutions mentioned in the

proposition. So now we only need to consider the following cases:

D = 90, Rad(y) ∈ {3, 6} and D = 98, Rad(y) ∈ {7, 14}.

We have two cases, Rad(y) = l or Rad(y) = 2l, with l an odd prime number. In

the first case we are trying to find the solutions for the following equation

x2 −D = lm,

that is, equivalently, to solve the following equations:

x2 −D = y3, x2 −D = ly3 and x2 −D = l2y3.

So basically we are looking for integral points on elliptic curves where y is a power

of l. Also after implementing a program on MAGMA we find that there aren’t any

solutions of the required form. In the case of Rad(y) = 6, for D = 90, we

would have y = 2a3b, therefore we had to solve the following equation t21 − 5 =

2ap−13ap−2, and since a, b ≥ 1 and p ≥ 7 we have that 5 is a square modulo 6,
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which is absurd, so there is no solution in this case. For D = 98, if y = 2a7b,

since ap, bp ≥ 7, 4 | yp and 4 | x2 we would have that 4 | 98, which is also

absurd. QED

We have not dealt yet with the case of D being a square since it will be

done in a rather different way in the next section.

So for the values D in Tables 4.3, 4.4 we have only to look for solutions

(x, y, p) such that y ≥ (
√

p− 1)2.

4.2 Bounds for squares

Now we will take a look to the case when D is a square, so set D = q2, with q a

natural number. Our equation x2 −D = yp can be written in the following way

(x− q)(x + q) = yp.

Using unique factorization over the integers we have that

x− q = ayp
1, (4.1)

x + q = byp
2, (4.2)

where gcd(a, b) = gcd(x − q, x + q), and gcd(y1, y2) = 1. Let us estimate

gcd(x− q, x + q).

Proposition 4.2.1. Let D be as above, (x, y, p) be a solution to (3.1), with

signature (d1, d2) and (t, s, p) the simplification of the previous solution by the
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Table 4.1: Case I: D is a square
D D ≡ (mod 4) (d1, d2) c

1 1 (1, 1) 1 or 2

9 1 (1, 9) 1 or 2
(3, 1) 3 or 6

16 0 (4, 1) 8

25 1 (1, 25) 1 or 2
(5, 1) 5 or 10

36 0

(1, 36) 1
(2, 9) 4
(3, 4) 3
(6, 1) 12

49 1 (1, 49) 1 or 2
(7, 1) 7 or 14

64 0 (8, 1) 16

81 1 (1, 81) 1 or 2
(9, 1) 9 or 18

100 0

(1, 100) 1
(2, 25) 4
(5, 4) 5
(10, 1) 20

signature just mentioned. Let c = gcd(x− q, x + q), then we have that

c =






2d1 if q is odd and x is odd

d1 if q is odd and x is even

2d1 if q is even and d2 is odd

d1 if q is even and d2 is even

Proof. Let c = gcd(x − q, x + q), so we have that c | 2x and c | 2q, by the

definition of the signature (d1, d2), we have that d1 | c. On the other hand we

have that gcd(x2, D) = d2
1, it follows that c2 | 4d2

1 and so c | 2d1.

Let us now distinguish the cases when q is odd or even. First suppose it is

odd. We have that x = d1t, D = d2
1d2 and gcd(t, d2) = gcd(d1, d2) = 1. So if x
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is even, then t is even also, and we have that y is odd, and since c | y we have

that c is odd, therefore c = d1. If x is odd, then both numbers x ± q are even,

therefore 2 | c, so c = 2d1.

Now we turn to the case where q is even. Suppose that d2 is even. So we

have that d1 is odd, that is x and y are odd. So c = d1.

If d2 is odd, we see that this is equivalent to say that x is even, so we have

again that both numbers x ± q are even, and that t is odd too. Let d3 = q/d1,

that is still an integer. We have that d3 is odd. So by definition we have that

c = gcd(x− q, x + q)

= d1 gcd(t− d3, t + d3)

= 2d1 gcd
(t− d3

2
,
t + d3

2

)
.

And this ends the proof of our propostion. QED

For the values of D (a square) that we are still looking for possible solutions,

the values of c are given in table 4.1.

First let us solve the case when c = 1, that is x− q = yp
1 and x + q = yp

2,

where both y1, y2 are positive integers numbers, such that gcd(y1, y2) = 1, and

assume that y2 ≥ y1. We have the following proposition:

Proposition 4.2.2. Let D = q2, c = 1 and (x, y, p) a solution to our equation

(3.1), and y1 and y2 as above. We have that

p ≤ 2q and yp−1
1 ≤ 2q.

Proof. So let y1, y2 be as above. By the equalities x + q = yp
2 and x− q = yp

1, we
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have that

2q = yp
2 − yp

1

= (y2 − y1)(y
p−1
2 + yp−2

2 y1 + · · ·+ y2y
p−2
1 + yp−1

1 ).

Since y2, y1 are coprime, their difference is non-zero, that is, (y2− y1) ≥ 1.

It is also easy to see that yp−1
2 + yp−2

2 y1 + · · ·+ y2y
p−2
1 + yp−1

1 ≥ pyp−1
1 . Now since

pyp−1
1 ≥ max{p, yp−1

1 }, the proposition follows. QED

Therefore we implemented a simple program in MAGMA to compute y1,y2 and

p and test if they give rise to a solution to our equation. After running the program

we only found the following solution, (x, y, p) = (±12, 2, 7), when D = 16. This

happens as we have not distinguished the cases when c = 1 or not in our program.

Suppose now that c $= 1. Then by subtracting (4.1) and (4.2) we have that

2q = byp
2 − ayp

1, which it is possible to turn into an equation of the following form

Byp
2 − Ayp

1 = C,

where a = cA, b = cB, 2d = cC and gcd(A, B) = 1. So we only need to solve

these equations for each D and each value c associated to it. Though it seems a

rather hard task, trying to solve other types of diophantine equations, fortunately

the literature provides us with solutions for almost all the cases that we found and

provides ways to find the solutions in the other cases (see section 3.2.2 for the

recipes, and see [Ivo03], [BS04] and[BVY04] for solutions).

The equations we are going to find can be solved using the results concern-

ing three types of diophantine equations, that can be sumarized in the following

one

Aup + Bvp = Cwk, (4.3)
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Table 4.2: Coeffiecients for our equations E : Aup + Bvp = Cwk

D c AB C k

1 2 2p−2 1 2

9
2 2p−2 3 2
3 3p−2 2 3
6 6p−2 1 2

16 8 2p−6 1 2

25
2 2p−2 5 2
5 5p−2 2 2
10 10p−2 1 2

36
3 3p−2 4 3
4 2p−4 3 2
12 2p−43p−2 1 2

49
2 2p−2 7 2
7 7p−2 2 p
14 14p−2 1 p

64 16 2p−8 1 2

81
2 2p−2 9 2
9 3p−4 2 3
18 2p−23p−4 1 2

100
4 2p−4 5 2
5 5p−2 4 2
20 2p−45p−2 1 2

with p ≥ k. We say that equation (4.3) has signature (p, p, k). We notice that we

only have three cases, all coming from three different exponent signatures (p, p, 2),

(p, p, 3) and (p, p, p).

Before we prove our main goal, let us first find solutions to some equations

of the signature (p, p, p) for a prime p ≥ 7.

Proposition 4.2.3. Let p be a prime greater than or equal to 7. Consider now

the following equations:

E1: 7p−2xp + yp − 2 = 0;
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E2: 7p−2xp + 2p−2yp − 1 = 0;

E3: 14p−2xp + yp − 1 = 0.

None of the equations have solutions (x, y) such that xyz $= 0.

Proof. Using the recipe given in section 3.2.2 for the equations of signature

(p, p, p), we construct our Frey elliptic curves, estimate theirs conductors, as also

the level for the newforms, and we apply the level lowering, Theorem 3.2, and we

find out that there are no solutions to our equations arising from newforms of the

predicted level, using for this a routine implemented on MAGMA, similar to the one

used before. But for the sake of completeness we will show how to construct the

Frey curves and what levels they correspond to. Consider the following equation

Aup + Bvp + Cwp = 0,

where we assume Aup ≡ −1 (mod 4), Bvp ≡ 0 (mod 2). In the case E1 we

that Bvp = −2 and Aup = ±yp, since 7p−2xp ≡ yp (mod 4). In the case E2, we

have Bvp = 2p−2yp and Aup = −1, for the obvious reasons. For E3 we have that

Bvp = 14p−2xp and Aup = −1. With these equalities we build our Frey curve,

given by:

E : Y 2 = X(X − Aup)(X + Bvp).

In our cases we will have the following:

F1(t) : Y 2 = X(X ± t)(X − 2);

F2(s) : Y 2 = X(X + 1)(X +
1

4
s);

F3(u) : Y 2 = X(X + 1)(X + 1− u);
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where t = yp, s = (2y)p and u = yp. We have that the expected levels Np,i for

this curves are: Np,2 = Np,3 = 14 and Np,1 = 25 × 7. By [Kra97], we have that

Fi,v ∼p f for some newform f of level Np,i, as given above, where i ∈ {1, 2, 3}

and v ∈ {t, s, u}. So as we said before, we use MAGMA to test the level lowering

method and we see that there is no solution arising from a newform of the predicted

level. QED

Now we are ready to prove the following result:

Proposition 4.2.4. Let D be one of the values in table 4.1. Then the equation

(3.1), with p a prime number greater than or equal to 7 has no solutions with

y $= 0, except when D = 16, which the only solution is (x, y, p) = (±12, 2, 7).

Proof. For each value of D and corresponding c, we apply the recipe (or the

results found in the literature) for the signature (p, p, k) where k is given in the

table 4.2. For k = 2, AB a power of 2 and C = 1 we use the Theorem 1 of

[Ivo03], for the rest of the cases with k = 2 we use the results of [BS04]. For

k = 3 we use the results on [BVY04], and for k = p we use the Proposition

4.2.3, since the equations that we get are the eactly the ones that were stated

in the Proposition just mentioned. After using those results we still are left with

some cases: p = 7 for all the values of D in table 4.2 except D = 1 and 64,

and p = 11 for D = 64 and 100. After using the Thue equations approach

described in Proposition 2.2, the only solution we found was the one mentioned in

the statement of the proposition. QED

So by now we have already found out all the solutions for equation (3.1),

for all p ≥ 2 with D a square.
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4.3 A help from linear forms in logarithms

Now we proceed to find all the solutions for the values given in Table 4.4 and also

give some bounds for the values in Table 4.3, since these last ones are by far the

hardest case to solve that we have found so far. So let D be one of those values,

let (x, y, p) be a solution, with p ≥ 7 and y $= 0. We have seen by now that this

solution must arise from a rational newform f and that

y ≥ (
√

p− 1)2. (4.4)

Kraus’ methods, methods II and III presented in section 3.3.3, can help us find all

possible cases where there might be a solution up to p ≤ 108, possibly 109. So we

can assume from now on that

p ≥ 103, (4.5)

and we will also have that

|x| ≥ 103. (4.6)

These inequalities are sufficient for much of our later work.

In the remainder of this section we always write D = q2d, where d is

square free, and (x, y, p) will always be a solution to (3.1) satisfying the above

inequalities, with signature (d1, d2) and simplification (t, s, p). We will also write

down the linear form in logarithms corresponding to (3.1) and apply a theorem

of Matveev to obtain upper bounds for the exponent p. These upper bounds will

be far from the bounds that we have already imposed, but will help us to obtain

other new bounds from more recent work on linear forms in logarithms.

We start our exposition with a definition that can be found in the literature

(see for example [Coh07b, Chapter 12]).
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Definition 4.3.1 (See Definition 12.1.1 in [Coh07b]). Let K be a number field

of degree n, let α ∈ K∗ be of degree m | n and let

P (X) =
m∑

k=0

akX
k = a

m∏

i=0

(X − αi)

be its minimal polynomial in Z[X], with am $= 0, and the αi’s are the conjugates

of α. We define the logarithmic height h(α) by the following formula:

h(α) =
1

m

(
log(|am|) +

∑

1≤i≤m

max(log(|αi|), 0)
)

(4.7)

=
1

n

∑

v∈P(K)

max{log |α|v, 0}

=
1

n
log

( ∏

v∈P(K)

max{|α|v, 1}
)
,

where P(K) denotes the set of all places of K.

We will denote our logarithmic height in our number fields KD by hD.

Lemma 4.3.1. Let D be in Tables 4.3 4.4. Let (x, y, p), (d1, d2), as above.

Define

c =






2d1, if D ≡ 0 (mod 4) and d2 is odd

d1, if D ≡ 0 (mod 4) and d2 is even

2d1, if D ≡ 1 (mod 4) and x is odd

d1, if D ≡ 1 (mod 4) and x is even

d1, in the rest of the cases

(4.8)

Then c = la, where l ∈ {2, 3, 7} and a ∈ {0, 1, 2}. If a ≥ 1, then l spilts in

KD = Q(
√

d), say (l) = ll. Let k0 be the smallest positive integer such that the

ideal l
k0 is principal, say l

k0
= 〈α0〉. Also let

k =





1, if k0 = 2

2, if k0 = 1
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Table 4.3: Case II: D is a unit away from square
D D ≡ (mod 4) (d1, d2) c KD #Cl(KD)

2 2 (1, 2) 1 Q(
√

2) 1
3 3 (1, 3) 1 Q(

√
3) 1

5 1 (1, 5) 1 or 2 Q(
√

5) 1
8 0 (1, 8) 1 Q(

√
2) 1

10 2 (1, 10) 1 Q(
√

10) 2
15 3 (1, 15) 1 Q(

√
15) 2

17 1 (1, 17) 1 or 2 Q(
√

17) 1
24 0 (1, 24) 1 Q(

√
6) 1

26 2 (1, 26) 1 Q(
√

26) 2
35 3 (1, 35) 1 Q(

√
35) 2

37 1 (1, 37) 1 or 2 Q(
√

37) 1
48 0 (1, 48) 1 Q(

√
3) 1

50 2 (1, 50) 1 Q(
√

2) 1

63 3 (1, 63) 1 Q(
√

7) 1
(3, 7) 3

65 1 (1, 65) 1 or 2 Q(
√

65) 2
80 0 (1, 80) 1 Q(

√
5) 1

82 2 (1, 82) 1 Q(
√

82) 4
99 3 (1, 99) 1 Q(

√
11) 1

Then there exist λ ∈ KD, r ∈ {k, 2, . . . , p + k − 1}, such that

x− q
√

d

x + q
√

d
= αku2rλp, (4.9)

where u is a fundamental unit of KD such that log(u) = max{log(|u|), log(|u|)}, α =

(α0/α0)a, with α < 1 and positive, λ < 1 and also positive, and

hD(α) =
1

2

(
log(dα)− log(α)

)
,

hD(λ) =
1

2

(
log(dy)− log(λ)

)
,

where dα | ck0 and dy | y.
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Table 4.4: Case III: D is neither a square or a unit away from a square
D D ≡ (mod 4) (d1, d2) c KD #Cl(KD)

20 0 (1, 20) 1 Q(
√

5) 1
21 1 (1, 21) 1 or 2 Q(

√
21) 1

29 1 (1, 29) 1 or 2 Q(
√

29) 1
33 1 (1, 33) 1 or 2 Q(

√
33) 1

41 1 (1, 41) 1 or 2 Q(
√

41) 1
45 1 (1, 45) 1 or 2 Q(

√
5) 1

52 0 (1, 52) 1 Q(
√

13) 2
55 3 (1, 55) 1 Q(

√
55) 2

57 1 (1, 57) 1 or 2 Q(
√

57) 1

68 0 (1, 68) 1 Q(
√

17) 1
(2, 17) 4

72 0 (1, 72) 1 Q(
√

2) 1
73 1 (1, 73) 1 or 2 Q(

√
73) 1

75 3 (1, 75) 1 Q(
√

75) 1
77 1 (1, 77) 1 or 2 Q(

√
77) 1

84 0 (1, 84) 1 Q(
√

21) 1
85 1 (1, 85) 1 or 2 Q(

√
85) 1

90 2 (1, 90) 1 Q(
√

10) 2
(3, 10) 3

97 1 (1, 97) 1 or 2 Q(
√

97) 1

98 2 (1, 98) 1 Q(
√

7)
2

(7, 2) 7
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Proof. We begin with the factorization

(x + q
√

d)(x− q
√

d) = yp.

First we will show that any prime divisor l of y splits in KD. Suppose otherwise,

then we may write 〈l〉 = l or 〈l〉 = l2 for some prime ideal l satisfying l = l. If

p = 2r + 1 then clearly lr divides both factors on the left-hand side above and so

divides 2q
√

d. This is impossible in view of the fact that we are assuming p ≥ 103

and 1 ≤ D ≤ 100. Thus, we have shown that every prime divisor l of y splits in

our number field KD. Put

y =
∏

i∈I

lai
i and (li) = lili, i ∈ {1, . . . , r},

then we have

(x + q
√

d) =
∏

i∈I

(lbi
i l

ci

i ) and (x− q
√

d) =
∏

i∈I

(lci
i l

bi

i ),

with bi + ci = pai, for all i ∈ I and we assume (for ease of notation) that bi ≥ ci

for all i. Then, clearly,

d := gcd
(
〈x + q

√
d〉, 〈x− q

√
d〉

)
=

∏

i∈I

(lli)
ci =

∏

i∈I

〈li〉ci .

This shows that d = 〈c〉, where c ∈ Z. We will now calculate c and verify that

its value is in agreement with (4.8). From the definition of d we see that c | 2x

and that c | 2
√

dq. However, by our definition of signature, gcd(x2, D) = d2
1, it

follows that c2 | 4d2
1 and so c | 2d1. However, d1 | x and d1 | q. Hence, d1 | d and

so d1 | c. Thus c = d1 or c = 2d1. We note the following cases:

I : D ≡ 2, 3 (mod 4), so 2 ! y and then we have 2 ! c, therefore c = d1.

II : D ≡ 1 (mod 4). Consequently we have that d ≡ 1 (mod 4). Now we also

have that D = d2
1d2, x = d1t, where gcd(d2, t) = gcd(d1, d2) = 1.
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(i) If x is even, then t is even, thus 2 ! y and we have that c = d1.

(ii) If x is odd, then t is also odd. So define d3 = q/d1, which is still a

integer and an odd number. We have that d2 = d2
3d. So we have

〈c〉 = d = 2d1 gcd
((t + d3

√
d

2

)
,
(t− d3

√
d

2

))
,

since t±d3
√

d
2 ∈ OD, we have that c = 2d1.

III: D ≡ 0 (mod 4). We have that d2 is even if and only if x is odd, if and only

if y is odd. So if d2 is even then we have that c = d1. If d2 is odd, then t is

also odd too, and using the same argument as in item II, part (ii), we have

that c = 2d1.

This proves that c satisfies (4.8). Looking at Tables 4.3 and 4.4, we see

the possible values of c for the values of D we are looking at, and we see that

c = la, where a ∈ {0, 1, 2} and l ∈ {2, 3, 7}. Let j ∈ I be such that c = l
cj

j , thus,

ci = 0 for all i $= j. Then

(x + q
√

d) = l
cj

j .l
bj

j .
∏

j +=i

lpai
i ,

whence

(x + q
√

d) = (lj.l
−1
j )cj .

∏

i∈I

lpai
i = (aa−1)gp,

where a and g are integral idelas with a = l
cj ,N (a) = l

cj

j = c, therefore cj =

a,N (g) = y, and N denotes the norm. Thus, as fractional ideals,

(x− q
√

d

x + q
√

d

)
= (aa−1)2(gg−1)p.

Now we define k0, k, α0 as in the statement of the lemma. From the Tables

4.3 and 4.4, if c $= 1, then Thus, ak0 = 〈αa
0〉, with k0 ∈ {1, 2}, due to the class
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numbers of the our number fields KD and the value of our c (see tables 4.3 and

4.4) and we have the following relation, between ideals,

(x + q
√

d) = (a/a)gp = a2(N (a))−1gp = αak
0 c−1gp.

However, p is a prime greater or equal to 103, certainly not dividing the

class number. This shows that g is also principal, g = 〈λ0〉 say, where λ0 is an

algebraic integer chosen so that the following equality of elements of KD holds

x + q
√

d = αak
0 c−1urλp

0

with N (α0) = ck0 , u a fundamental unit of KD, satisfying the conditions on the

statement of the Lemma, with r ∈ {k, 2, . . . , p + k − 1} and N (λ0) = y. Put

α = α0/α0 and λ = λ0/λ0.

About having α < 1, if αa
0 generates ak0 , then αa

0u
s also generates it, for

any integer s. So we have α̃ = αa
0u

s/αa
0u

s = αu2s. So we want α̃ < 1, that is

log(α) + 2s log(u) < 0, which is equivalent to have

s < − log(α)

2 log(u)
. (4.10)

Therefore we choose

s =
⌊
− log(α)

2 log(u)

⌋
.

In order to have λ < 1, Now we multiply αa
0u

s by ut, where t is an integer. As

before we have that αa
0u

s+t generates the ideal ak0 . So from (4.9), we have that

αku2(sk+tk+r)λp < 1, that is equivalent to have

λ <
( 1

αku2(ks+kt)

)1/p

.

So we just need to consider 1
αku2(sk+tk+r) < 1

αku2(sk+tk+k) < 1, assuming that

r ≥ 1. But this is equivalent to have that −k log(α)−(2sk+2tk+2k) log(u) < 0,
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that is

− log(α)

2 log(u)
− 1− s < t. (4.11)

So combining the information of (4.10) and (4.11), we define

t =

⌊
− log(α)

2 log(u)
− 1− s

⌋
+ 1,

our new α0 to be α0ut+s and our new α to be αu2(t+s) and we will have

0 < α, λ < 1.

To verify that our new α is less than one, we just need to verify that

t + s ≤ − log(α)

2 log(u)
.

Given what we have seen before, we have Now

t =

⌊
− log(α)

2 log(u)
− 1− s

⌋
+ 1,

≤
⌊
− log(α)

2 log(u)
− 1−

⌊
− log(α)

2 log(u)

⌋⌋
+ 1,

≤ 0.

Therefore t + s ≤ s ≤ − log(α)
2 log(u) , by the definition of s.

For the rest of the proof, the statements concerning the heights of α and

λ, just use the definition of a logarithmic height, what we have just proved now

and the lemma 4.3.2 below as the fact that α−1 = α and λ−1 = λ. QED

Lemma 4.3.2. Let K be a number field of degree 2 over Q, let α be an algebraic

number such that α = α0/α0, where α0 is an algebraic integer. Let P (X) =

a2X2 + a1X + a0 be the minimal polynomial of α over Z[X], then a2 | N (α0).

Also, we have that h(α) = h(α).
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Proof. Let K = Q(
√

m), where m is a square-free integer. Let α = α0/α0, then

α = α0/α0. Let P̃ (X) be the minimal polynomial of α over Q[X], then it is a

well know fact that

P̃ (X) = (X − α)(X − α) = X2 − (α + α)X + αα.

Using only the definition of α and of a norm over a quadratic number field we

easly see that first αα = α0
α0

α0
α0

= 1 and secondly

α + α =
α0

α0
+

α0

α0
=

α2
0 + α2

0

α0α0
=

α2
0 + α2

0

N (α0)

. Thus we conclude that P (X) = a2.P̃ (X), where a2 | N (α0).

QED

We are now ready to write down the linear form in logarithms, Define

Λ := log

(
x− q

√
d

x + q
√

d

)
, (4.12)

where we consider the real logarithm. Now we separate in two cases:

(I) c = 1;

(II) c $= 1.

In case (I) our α0 can be chosen to be equal to 1, for 〈c〉 = 〈1〉 = OD,

that is already a principal ideal, and so (4.9) can be rewritten in the following way

x− q
√

d

x + q
√

d
= u2rλp,

and then our linear form in logarithms (4.12) turns out to be a linear form in two

logarithms, with the following expression:

Λ2 := 2r log(u) + p log(λ). (4.13)
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In case (II) there is nothing to change about the equality (4.9). So using

this last equality we have that our linear form in logarithms (4.12) is a linear form

in three logarithms with the following expression

Λ3 := k log(α) + 2r log(u) + p log(λ). (4.14)

By our choices in the previous Lemma we have that α, u, λ are all positive.

Now let us take a look at the logarithmic height of λ.

We have chosen λ to be positive and less than one. By (4.9) we have that

λp <
1

αku2r .

Applying logarithms in both sides, we have that

log(λ) <
1

p

(
− k log(α)− 2r log(u)

)
. (4.15)

Now, considering our bounds for x, considering it positive, we have that

x− q
√

d

x + q
√

d
≥ 103 − q

√
d

103 + q
√

d
,

due to the fact that the function f(x) = x−a
x+a , with a > 0 is always increasing

when x is positive. So let δ = 103−q
√

d
103+q

√
d
, therefore using again (4.9) and logarithms

we have that
1

p

(
log(δ)− k log(α)− 2r log(u)

)
≤ log(λ). (4.16)

.

Combining (4.15) (4.16) and the fact that λ = λ−1, we have that

1

p

(
log(δ)− k log(α)− 2r log(u)

)
≤ log(λ) ≤ 1

p

(
− k log(α)− 2r log(u)

)

1

p

(
k log(α) + 2r log(u)

)
≤ log(λ) ≤ 1

p

(
k log(α) + 2r log(u)− log(δ)

)
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Therefore, using Lemma 4.3.1 we have that

hD(λ) ≤ log(y)

2
+

1

2p

(
k log(α) + 2r log(u)− log(δ)

)
(4.17)

Just to mention that if we are in case (I), since we do not have αk appearing

in our expression for Λ2 (see (4.13)), we have that

hD(λ) ≤ log(y)

2
+

1

2p

(
2r log(u)− log(δ)

)
. (4.18)

4.3.1 A smart bound for Λ

We start by stating a simple lemma which we will use a few times to produce

bounds for linear forms in logarithms.

Lemma 4.3.3. Let ∆ ∈ C with |δ − 1| ≤ a. Then

| log(∆)| ≤ − log(1− a)

a
|∆− 1|. (4.19)

Proof. See Lemma B.2 in [Sma98]. QED

Let us give a first bound for Λ using basic methods.

Lemma 4.3.4. We have

log |Λ| ≤− p

2
log y + log(2.2q

√
d). (4.20)

Proof. From the equality (x− q
√

d)− (x + q
√

d) = −2q
√

d we easily see that
∣∣∣∣∣
x− q

√
d

x + q
√

d
− 1

∣∣∣∣∣ =
2q
√

d

x + q
√

d
< 2

q
√

d

|x| .

The inequalities given by (4.19) and by 2q
√

d/|x| ≤ 2 × 10−2 allied to the fact

that − log(1− a)/a ≤ 2.1/2, when 0 < a ≤ 2× 10.−2, we have that:

|Λ| < 2.1
q
√

d

|x| ,
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so that log |Λ| < − log |x|+ log(2.1q
√

d), using for that the bounds (4.6).

Now let us use the fact that yp − x2 = −D, so we have that

∣∣∣
yp

x2
− 1

∣∣∣ =
D

x2
<

q
√

d

|x| .

Using again the inequality given by (4.19), we see that

log(yp/x2) ≤ CD/x2 ≤ − log(1− q
√

d/|x|)q
√

d

|x| ,

where C = − log(1−q
√

d/|x|)|x|
q
√

d
. Now using the fact that − log(1 − a) ∗ a ≤

2 log(2.2/2.1), when 0 < a < 10−2 with the inequality above, we have that:

log(yp/x2) ≤ 2 log(2.2/2.1).

By the well-known properties of the logarithm function we have log(yp/x2) =

p log(y)− 2 log(x) and the result follows. QED

4.3.2 Matveev’s Theorem: A preliminary bound for p

To bound p we use the theory of linear forms of at most three logarithms, which

we have already seen in (4.13) and (4.14). We need the special case of two and

of three logarithms of a theorem of Matveev, but we will present its full statement

Theorem 4.1 (Matveev). Let α1, α2, . . . ,αn be algebraic numbers, let K be the

number field Q(α1, α2, . . . ,αn) of degree D. Put χ = [R(α1, α2, . . . ,αn) : R].

Let b1, b2, . . . , bn be integers such that b1 $= 0. Define

Λ := b1 log α1 + b2 log α2 + · · ·+ bn log αn.

Suppose that we have real numbers Aj for all j ∈ {1, 2, . . . , n} satisfying

Aj ≥ max{D h(αj), | log αj|, 0.16}.
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Assume that B ≥ max{1, max{|bj|Aj/An : 1 ≤ j ≤ n}}. For brevity we put

Ω = A1.A2. . . . .An,

C(n) =
16

n!χ
en(2n + 1 + 2χ)(n + 2)(4(n + 1))n+1

(en

2

)χ

,

C0 = log
(
e4.4n+7n5.5D2 log(eD)

)
, C1 = max

{n

6
, 1

}

W0 = log
(
1.5eBD log(eD)

)
.

Then

log |Λ| > −C(n)C0C1W0D2Ω. (4.21)

Proof. For a proof of this result see [Mat00]. QED

We are interested when we have D = 2, χ = 1 and n = 2 or 3. For both

values of n we have that C1 = 1. So (4.21) becomes the following inequality,

log |Λ| > −4C(n)C0W0Ω. (4.22)

Before making our bounds explicit, let us combine the inequalities of (4.20) and

(4.22) and get an “upper bound” for p. First we start with the inequality:

−p

2
log y + log

(
2.2q

√
d
)

> −4C(n)C0W0Ω.

Working with this inequality we get the following one

p

2
log y < 4C(n)C0W0Ω + log(2.2q

√
d),

that is

p <
2

log y

(
4C(n)C0W0Ω + log(2.2q

√
d)

)
, (4.23)

131



So we only need to find our Aj’s and B that satisfy the assumptions of

Theorem 4.1 and we can estimate a bound for p, using (4.23), for all the values

of D that we are still considering.

Let us study each case separately. First consider case (I), c = 1, recall

(4.13), Λ2 = 2r log(u) + p log(λ). So in Matveev’s Theorem we have α1 =

u, α2 = λ, b1 = 2r and b2 = p. We can take

A1 = max{log |u|, 0.16},

since hD(u) = 1
2 log(u), for the choice of u made in Lemma (4.3.1). Now

A2 ≥ max{2 hD(λ), | log λ|, 0.16}.

So, by what we have seen in (4.18), (4.15), with αk = 1, and considering the

bounds for y, we can choose

A2 = log(y) +
1

p

(
2r log(u)− log(δ)

)

Concerning B, we want to have B ≥ max{1, b1
A1
A2

, b2}, due to our bounds

(4.4), and for our choice of A1 and A2 we can take B = p.

Now we turn into the case (II), where c $= 1. From what we have seen

above, (4.14), we can consider α1 = α, α2 = u, α3 = λ, b1 = 1, b2 = 2r and

b3 = p. Considering what we have seen in the Lemma 4.3.1 and on (4.17), we can

choose

A1 = max{k0 log(c) + log |α|, 0.16},

A2 = max{log |u|, 0, 16}, and

A3 = log(y) +
1

p

(
k log(α) + 2r log(u)− log(δ)

)
.

And we also assume that B = p, just taking account how we have define A1, A2, A3

and the bounds (4.4). Now we are ready to apply Theorem 4.1.
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Table 4.5: Preliminaries bounds for p

D c n p0

2 1 2 16 588 404 257
3 1 2 26 032 647 527

5 1 2 8 558 182 513
2 3 103

8 1 2 16 588 404 257
10 1 2 37 745 048 087
15 1 2 43 781 188 457

17 1 2 44 566 352 087
2 3 14 467 052 424 709

20 1 2 8 558 182 513

21 1 2 31 758 311 327
2 3 103

24 1 2 49 605 855 317
26 1 2 50 123 053 649

29 1 2 33 648 055 843
2 3 103

33 1 2 93 108 842 791
2 3 39 428 986 936 327

35 1 2 54 451 041 013

37 1 2 54 818 536 139
2 3 103

41 1 2 103 476 735 361
2 3 49 550 951 449 781

45 1 2 8 558 182 513
2 3 103

48 1 2 26 032 647 527
50 1 2 16 588 404 257

D c n p0

52 1 2 23 313 066 299
55 1 2 137 697 171 301

57 1 2 156 672 054 503
2 3 77 200 788 568 381

63 1 2 62 275 863 257
3 3 24 341 940 110 029

65 1 2 62 489 936 051
2 3 34 377 987 147 247

68 1 2 44 566 352 087
4 3 10 626 098 324 363

72 1 2 16 588 404 257

73 1 2 234 413 560 127
2 3 124 762 180 522 643

75 1 2 26 032 647 527

77 1 2 46 842 338 843
2 3 103

80 1 2 8 558 182 513
82 1 2 65 718 762 353
84 1 2 31 758 311 327

85 1 2 47 472 286 013
2 3 103

90 1 2 37 745 048 087
3 3 5 226 185 260 435

97 1 2 309 478 531 499
2 3 321 528 361 566 911

98 1 2 16 588 404 257
7 3 5 825 508 008 693

99 1 2 68 508 206 209
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Proposition 4.3.1. Suppose that D is one of the values in tTables 4.3 and 4.4

and (x, y, p) is a solution to (3.1), with bounds given in (4.6), (4.4) and (4.5).

Then for p ≥ p0 given in Table 4.5, the equation (3.1) does not have any solution

for the values D in table 4.4 and for the values D in Table 4.3, the only solution

that there is for p ≥ p0 is the one where |y| = 1.

Proof. From (4.23) we have that

p ≤ C̃1 + C̃2

log(y)
,

where C̃1 = 2C(n)C0W0D2Ω and C̃2 = log(2.2q
√

d) As we have seen above, in

both cases (I) and (II) we have that B = p, and since W0 depends on B, we can

rewrite C̃1 as C̃1 = C̃3 log(C̃4p), where C̃4 is easily computable.

Now we consider the values A1, A2 and A3 (when necessary) as we have

defined above. We consider B = p. When c $= 1, A1 depends on α, as does A3

in case (II), but it is possible to calculate α for each case, verifying the hypothesis

of the Lemma 4.3.1, that c must split over KD, for c is going to be a power of a

prime. The value A2 (resp. A3) depends on y as in case (I) (resp. case (II)), which

means that Ω, in both cases, will depend on y. Therefore, we can rewrite C̃3 as

follows C̃3 = C̃5(log(y)/2+ C̃6), where now C̃5 and C̃6 are easily computable. So

as we have seen before, applying Matveev’s Theorem, we get the bound (4.23),

and considering what we have seen right now, we have that

p ≤
(
C̃5(log(y)/2 + C̃6) log(C̃4p) + C̃2

)
/ log(y) (4.24)

Now since we have that y ≥ (
√

p− 1)2, (4.24) implies:

p ≤
(
C̃5(log(

√
p− 1) + C̃6) log(C̃4p)− C̃2

)
/2 log(

√
p− 1)

Therefore we are looking for a zero of the function

f(X) = X −
(
C̃5(log(

√
X − 1) + C̃6) log(C̃4X)− C̃2

)
/2 log(

√
X − 1)
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If x0 is the zero of f(X) we take p0 = max{p a prime|p ≤ 8x09 + 1}. For

the computation of every constant mentioned above we wrote a simple program

in MAGMA, that gives us also the bounds, p ≤ p0, that are presented on table

4.5. QED

Remark. As we can see in Table 4.5, we have that in some cases p0 = 103. This

happens when c = 2, and for D = 5, 21, 29, 37, 45, 77 and 85, because in these

cases, 2 does not split in OD, which contradicts what we have seen in Lemma

4.3.1. Therefore in this cases we have that our bound for p is 103.

4.3.3 Linear forms in two logarithms

In this and in the next section we will consider separately the linear forms in two

logarithms Λ2 and in three logarithms Λ3. We will try to improve the bounds that

we have from applying Matveev’s theorem 4.1. For that purpose we will use two

of the main results of Mignotte’s paper [Mig08]

Let us begin with case (I), where Λ2 is a linear form in two logarithms.

For the case of linear forms in two logarithms, there are quite few papers on the

subject, more than in the case of linear forms in three logarithms, and one of the

best known papers is the paper of Laurent, Mignotte and Nesterenko [LMN95],

where we are provided with results that, when applied to our linear form Λ2 can

help us to estimate a good bound for p. Instead we will use Theorem 3 of [Mig08],

that provides a sharper bound for p than the main results of [LMN95]. And in

terms of practice, turns out to be easier. Before moving on to the statement and

application of the mentioned result, just for the sake of completeness, there is a

new paper of Laurent [Lau08], that provies an even sharper bound than Theorem

3 of [Mig08], but its philosophy and its pratical application are very similar to the
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results of [LMN95].

Let α1, α2 be two non-zero algebraic numbers, and let log α1 and log α2 be

any determinations of their logarithms. We consider here the linear form

Λ = b2 log α2 − b1 log α1,

where b1 and b2 are positive integers. Without loss of generality, we suppose that

the absolute values |α1| and |α2| are ≥ 1. Put

D = [Q(α1, α2) : Q]/[R(α1, α2) : R].

Suppose further more that the number α1 is not a root of unity.

Proposition 4.3.2. Consider Λ, b1, b2, α1, α2 and D as above. Let a1, a2, h, k be

positive real numbers, and r a real number > 1. Put ρ = log(r) and suppose that

h ≥ max{1, 1.5ρ,D
(

log

(
b1

a2
+

b2

a1

)
+ log ρ + f(K)

)
+ 0.0262},

ai ≥ max{4, 2.7ρ, r| log αi|− log |αi|+ 2D h(αi)}, (i = 1, 2),

a1a2 ≥ 20ρ2,

where

f(x) = log
(1 +

√
x− 1)

√
x

x− 1
+

log x

6x(x− 1)
+

3

2
+ log

3

4
+

log x
x−1

x− 1

and

L = 2 + 82h/ρ9 ≥ 5, K = 1 + 8kLa1a29.

Then we have the lower bound

log |Λ| ≥− ρkL2a1a2 −max{ρ(L− 0.5) + log
(
L2(1 +

√
k)

)
a2,D log 2},

provided k satisfies k ≤ 2.2ρ−2 and

kU − V
√

k −W ≥ 0,
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with

U = (L− 1)ρ− h, V = L/3, W =
1

4

( L

a2
+

1

a1

)
.

Proof. See section 4.4 of [Mig08] for the proof of this proposition. QED

Before showing how to apply this result to our case, let us first give some

considerations about the choice of some parameters.

Following the discussion in section 4.3 of [Mig08] we see that we need to

choose a k such that
4

9ρ2
≤ k ≤ 2.2

ρ2
,

and this will satisfy the conditions mentioned in Proposition 4.3.2. So we just

need to choose a positive real number k0 such that 40 ≤ k0 ≤ 1980 and

k =
k0

90
ρ−2.

From the statement of the proposition, we see that h is in some way de-

pendent on K and K is also dependent of h. To overcome this problem, we just

need to notice that the function f(x) mentioned in the Proposition, is decreasing,

so we can choose a value Kh ≥ 5 and set

h = max

{
1, 1.5ρ,D

(
log

(
b1

a2
+

b2

a1

)
+ log ρ + f(Kh)

)
+ 0.0262

}
.

Then we just need to verify that K ≥ Kh, which in some cases might not happen,

but then we simply adjust Kh to the value of K given in the computation and it

will work out.

Now let us see how to apply Proposition 4.3.2 to our case, Λ2. By our

choice of λ, we have that 0 < λ < 1, in order to apply Proposition 4.3.2, we

rewrite Λ2 in the following way

Λ2 := 2r log(u)− p log(λ),
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due to the fact that λ−1 = λ. Therefore we have the following identifications

α1 = λ, b1 = p, α2 = u and b2 = 2r.

First of all we fix r̃ > 1, then for each i ∈ {1, 2}, we can compute ai easily,

that turn out to be

a1 = max{4, 2.7ρ, 2 log y +
r̃ − 1

p
(2r log u− log δ)},

a2 = max{4, 2.7ρ, (r̃ + 1) log u},

where δ is as in section 4.3, in the discussion following Lemma 4.3.1. Let k0 and

k be as before. We choose h as we have stated before, choosing Kh = 5. Since

a1 is dependent on y and r, we choose y = 103 and r = p, the maximum value

permitted for r. And since both a1 and a2 are dependent on p, we choose p = p0,

the value given in Table 4.5.

Then we compute L and K as in the statement of the proposition. If

L ≥ 5, then we compute

C(L, ρ, k, a1, a2) = ρkL2a1a2−max{ρ(L− 0.5) + log
(
L2(1 +

√
k)

)
a2,D log 2}.

Then using a similar argument to the one presented after the statement of Matveev’s

Theorem, we have that

p ≤ 2

log y

(
C(L, ρ, k, a1, a2) + log 2.2q

√
d
)
.

We can repeat this process several times, till we find a lower bound for p that cannot

be improved, and for each iteration of this process, we might choose different Kh

and different r̃ and also a different k0, though our computations revealed that the

best result is always obtained for k0 = 40.

Let us give an example of how it works.
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Table 4.6: Bounds for p when D = 72.
j r̃ k0 Kh K L h p

1 9.159 40 1225 1230 44 47.616 29 017
2 9.242 40 560 562 20 21.123 6 047
3 9.465 40 480 483 17 17.981 4 463
4 8.821 40 465 467 17 17.417 4 177
5 8.686 40 460 464 17 17.294 4 133
6 8.665 40 460 464 17 17.274 4 111

Example 4.3.1. Consider D = 72, following the notation of these notes, we have

that KD = Q(
√

2). From Matveev’s Theorem, we have as first bound for p, 16

588 404 257. We choose u = 1 +
√

2, therefore we choose a1, a2 the following

equalities

a1 = max{4, 2.7ρ, 2 log y +
r̃ − 1

p
(1.7268× r + 0.003)},

a2 = max{4, 2.7ρ, 0.8814× (r̃ + 1)}.

Now choosing convenient k0 and r̃, taking y = 4 × 103 and with the

identifications made above at the discussion, the bounds we get at each iteration

of this process are given on table 4.6, where j means the jth-iteration.

So for D = 72 and p ≥ 4111 we know that equation (3.1) does not have

any integral solution.

For the rest of the cases we have the following Proposition:

Proposition 4.3.3. Let D be one of the values in Table 4.5, and suppose c = 1,

where c is defined in Lemma 4.3.1. Then for D a value in Table 4.4 the equation

(3.1) does not have any solution for p ≥ p0, where p0 is given in Table 4.7. When

D is a value in Table 4.3 , the equation (3.1) does not have any non-trivial solution

for p ≥ p0, where p0 is given in Table 4.7, meaning, that the only solution is the

trivial one, when |y| = 1.
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Table 4.7: Bounds for p using linear forms in two logarithms

D C(c) i p0

2 4 6 4 111
3 7.7 6 7 793
5 1.7 5 1 759
8 4 6 4 111
10 13.1 7 13 291
15 16.3 6 16 433
17 16.7 7 16 843
20 1.7 5 1 759
21 10.3 6 10 357
24 19.5 7 19 687
26 19.8 7 19 979
29 11.1 7 11 273
33 48.1 7 48 259
35 22.4 7 22 483
37 22.6 7 22 709
41 55.9 7 56 003
45 1.7 7 1 741
48 7.7 6 7 703

D C(c) i p0

50 4 6 4 111
52 6.6 6 6 661
55 83.3 7 83 389
57 99.5 7 99 667
63 27.1 6 27 253
65 27.2 7 27 367
68 16.7 7 16 843
72 4 6 4 111
73 171.9 7 172 049
75 7.7 6 7 793
77 18 7 18 097
80 1.7 5 1 759
82 29.3 7 29 423
84 10.2 6 10 369
85 18.3 7 18 461
90 13.1 7 13 291
97 248.5 8 248 639
98 4 6 4 111
99 31.1 7 31 223
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Proof. We start by fixing 1 < r̃ ≤ 100 and 40 ≤ k0 ≤ 198. We define then

ρ = log r̃, k =
k0

90ρ2
.

We set now Kh = 5, and we define the following quantities

h = max{1, 1.5ρ,D
(

log(
b1

a2
+

b2

a1
) + log ρ + f(Kh)

)
+ 0.0262},

a1 = max{4, 2.7ρ, 2 log y +
r̃ − 1

p
(2r log u− log δ)},

a2 = max{4, 2.7ρ, (r̃ + 1) log u},

where f is the function defined on proposition 4.3.2, b1 = p and b2 = 2p, where p

is equal to the bound that we got from using Matveev’s Theorem (see 4.5). We

choose y = C(c)103, with C(c) given in Table 4.7, due to the fact that for higher

values of y our bounds for p would be lower, as we said before, and C(c) is a

constant that depends on the value of c (see Lemma 4.3.1). We compute L and

K as in Proposition 4.3.2, and if a1a2 ≥ 20ρ2 then we define

p0 :=
2

log y

(
C(L, ρ, k, a1, a2) + log(2.2q

√
d)

)
.

And we iterate this process while p0 < p, and in each new iteration we take

p as equal to the p0 of the previous iteration. When finished, we can re-run

the computation, adjusting the values of Kh closer to the values of K given

in each iteration, so that the bounds can be better. Writing a program that

implements this process on MAGMA, we were able to compute the bounds given in

Table 4.7. QED

Proposition 4.3.4. For the following values of D, the equation (3.1) with p ≥ 7

does not have any solution.

20, 21, 29, 45, 52, 55, 72, 75, 77, 84, 85.
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Proof. From what we have seen in Table 4.2, these values only have a linear form

in two logarithms. So using the bounds we have in Table 4.7 combined with

Methods I, II and III from chapter 3, we can easily eliminate all exponents for all

values of D of the list above, except the following cases:

(D, p) = (29, 7), (55, 7), (75, 7).

Using Thue equations we were able to show there are no solutions for these par-

ticular cases. The proposition follows. QED

4.3.4 Linear forms in three logarithms

Now we turn in to the case (II), where our linear form is a linear form in three

logarithms Λ3. We shall apply the following theorem.

Theorem 4.2. We consider three non-zero algebraic numbers α1, α2 and α3,

which are all real and > 1 or all complex of modulus one and all $= 1.

Moreover, we assume that





either α1, α2 and α3 are multiplicatively independent, or

two are multiplicatively independent, the third one is a root of unity $= 1.

(M)

Let

D1 = [Q(α1, α2, α3) : Q], D2 = [R(α1, α2, α3) : R] and

D = D1/D2.

We also consider three positive rational integers b1, b2, b3 with gcd(b1, b2, b3) = 1

and the linear form

Λ := b2 log α2 − b1 log α1 − b3 log α3,
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where the logarithms of the αi are arbitrary determinations of the logarithm, but

which are all real or all purely imaginary. We assume that

0 < |Λ| < πD−1.6
1 .

And we assume also that

b2| log α2| = b1| log α1|+ b3| log α3| ± |Λ|.

We put

e1 = gcd(b1, b2), e3 = gcd(b3, b2), b2 = e1b
′
2 = e3b

′′
2.

Let K, L, R, R1, R2, R3, S, S1, S2, S3, T, T1, T2, T3 be positive rational inte-

gers, with

K ≥ 3, L ≥ 5, R > R1 + R2 + R3 S > S1 + S2 + S3 T > T1 + T2 + T3.

Let ρ ≥ 2 be a real number. Assume first that

(KL

2
+

L

4
− 1− 2K

3L

)
log ρ ≥(D + 1) log N + gL(a1R + a2S + a3T ) (4.25)

+D(K − 1) log b− 2 log(e/2),

where N = K2L, e = exp(1), g = 1
4 −

N
12RST ,

b = (b′2ν0)(b
′′
2η0)

(
K−1∏

k=1

k!

)− 4
K(K−1)

,

with

ν0 =
R− 1

2
+

(S − 1)b1

2b2
, η0 =

T − 1

2
+

(S − 1)b3

2b2
,

and

ai ≥ ρ| log αi|− log |αi|+ 2D h(αi), i = 1, 2, 3.

143



Put

µ =
√

(R1 + 1)(S1 + 1)(T1 + 1).

If, for some positive real number χ,

(i) (R1+1)(S1+1)(T1+1) > K×max {R1 + S1 + 1, R1 + T1 + 1, S1 + T1 + 1, χµ},

(ii) #{αr
1α

s
2α

t
2 : 0 ≤ r ≤ R1, 0 ≤ s ≤ S1, 0 ≤ t ≤ T1} > L,

(iii) (R2 + 1)(S2 + 1)(T2 + 1) > 2K2,

(iv) #{αr
1α

s
2α

t
2 : 0 ≤ r ≤ R2, 0 ≤ s ≤ S2, 0 ≤ t ≤ T2} > 2KL, and

(v) (R3 + 1)(S3 + 1)(T3 + 1) > 6K2L,

then either

Λ′ > ρ−KL,

where

Λ′ = |Λ|× LSeLS|Λ|/(2b2)

2b2
,

or at least one of the following conditions hold:

|b1| ≤ R1 and |b2| ≤ S1 and |b3| ≤ T1, (C1)

|b1| ≤ R2 and |b2| ≤ S2 and |b3| ≤ T2, (C2)

either there exist two non-zero rational integers r0 and s0 such that (C3)

r0b2 = s0b1

with

|r0| ≤ B1 :=
(R1 + 1)(T1 + 1)

M− T1
and |s0| ≤ B2 :=

(S1 + 1)(T1 + 1)

M− T1
,

where

M = max{R1 + S1 + 1, R1 + T1 + 1, S1 + T1 + 1, χµ},
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or there exist rational integers r1, s1, t1 and t2, with r1s1 $= 0, such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1,

which also satisfy

|r1s1| = ∆×BT , |s1t1| ≤ ∆×BR, |r1t2| ≤ ∆×BS,

where

BT :=
(R1 + 1)(S1 + 1)

M−max{R1, S1}
, BR :=

(S1 + 1)(T1 + 1)

M−max{S1, T1}
,

BS :=
(R1 + 1)(T1 + 1)

M−max{R1, T1}
and δ = gcd(r1, s1).

Moreover, when t1 = 0 we can take r1 = 1, and when t2 = 0 we can take s1 = 1.

Proof. For a proof of this result just see [Mig08]. QED

Now we will show how to use Theorem 4.2, as is shown in [Mig08, sec 5.2]

and also in [BMS06, sec 14.2].

To apply the theorem, we consider first an integer L ≥ 5 and real parame-

ters m > 0, ρ > 2 (then we will be able to define ai) and we put

K = 8mLa1a2a39, ma1a2a3 ≥ 2.

To simplify the presentation, we also assume m ≥ 1 and a1, a2, a3 ≥ 1,

and put

Ri = 8cia2a39, Si = 8cia1a39, Ti = 8cia1a29, (i = 1, 2, 3)

R := R1 + R2 + R3 + 1, S := S1 + S2 + S3 + 1, T := T1 + T2 + T3 + 1,

where the ci are positive real numbers. To prove the existence of such ci we need

to satisfy conditions (i)-(v) of the Theorem 4.2. From condition (i) and (ii) we

can take

c1 = max{(χmL)2/3,
√

2mL/a},
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where a = min{a1, a2, a3}. To satisfy condition (iii) and (ii) we can take

c2 = max{21/3(mL)2/3,
√

m/aL}.

Finally, because of the hypothesis (M), condition (v) holds for

c3 = (6m2)1/3L.

Remark. When α1, α2, α3 are multiplicatively independent then it is enough to

take c1 and c3 as above and c2 = 21/3(mL)2/3.

Then we have to verify the condition (4.25). When this inequality holds,

one obtains the lower bound Λ′ > ρ−KL and we get

log |Λ| > −KL log ρ− log(SL). (4.26)

Now, as we have done for case (I), we consider Λ3 in the following way

Λ3 = 2r log u− log αk − p log λ,

due to the fact that both α and λ are positive and less than 1. So we make the

following identifications

α1 = αk, α2 = u, α3 = λ, (4.27)

b1 = 1, b2 = 2r, b3 = p. (4.28)

We consider α1 = αk, to simplify the calculus.

For the a′is using the earlier observations about heights, we might consider

a1 = (ρ + 1) log α + 2 log(c),

a2 = (ρ + 1) log u,

a3 = 2 log y +
ρ− 1

p
(2r log u− log δ),
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where c is as in Lemma 4.3.1.

Let us turn now to the computation of b′ = b′2b
′′
2ν0η0. We have that, due

to our choice of b1, b2 and b3, d1 = d3 = 1 and b′2 = b′′2 = b2, unless b2 = 2p,

where d2 = p and b′′2 = 2.

So

b′ =

(
(R− 1)b′2

2
+

(S − 1)b1

2e1

)(
(R− 1)b′′2

2
+

(S − 1)b3

2e3

)

And this product will be maximized, when r = p + k − 1, and in this case

b′ =

(
2(R− 1)(p + k − 1)

2
+

(S − 1)

2

)(
2(p + k − 1)(R− 1)

2
+

(S − 1)p

2

)

We choose the maximum for b′ so that we will have a more consistent

bound for p considering each case of r ∈ {k, 2, . . . , p + k − 1}.

As before, when we combine the two bounds given by (4.20) and from

(4.26), we have that

p ≤ 2

log y

(
KL log ρ + log(SL) + log(2.2q

√
d)

)
. (4.29)

.

We only need to be careful, when conditions (C1), (C2) or (C3) are satisfied,

when this happens we call this the degenerate case.

After finding a bound for p as given by (4.29), to verify that we are not in

case (C1) or (C2), we just need to verify that

p >
1

2
max{S1, S2} or p ≥ max{T1, T2}.

Let us now see what happens when condition (C3) is verified. For the first

alternative, we need to have two rational integers r0, s0 such that

r0b2 = s0b1,
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with

|r0| ≤ B1, and |s0| ≤ B2.

By our linear form in three logarithms Λ3, we have that b1 = 1, b2 = 2r, so we

must have r0 = 1 and s0 = 2r. So we must have 2r ≤ B2, and when this happens,

then we just consider the linear form in two logarithms

Λ′
3 := log

(
u2rαk

)
− p log λ. (4.30)

Consider now the second alternative. We must have four rational integers

r1, s1, t1 and t2, with r1s1 $= 0 such that

(t1b1 + r1b3)s1 = r1b2t2, gcd(r1, t1) = gcd(s1, t2) = 1, (4.31)

|r1s1| ≤ δ ×BT , |s1t1| ≤ δ ×BR, and , |r1t2| ≤ δBS, (4.32)

where δ = gcd(r1, s1) and the quantities BR, BS and BT where defined in Theorem

4.2.

From our linear form in three logarithms Λ3, and rewriting r1 = r′1δ, s1 =

s′1δ we can rewrite (4.31) in the following way,

(t1 + r′1δp)s′1 = r′12rt2.

From the conditions imposed on r1, s1, t1 and t2 in (4.31) and (4.32) we have that

r′1 = 1, s′1 | 2r, 2r = q′s′1

|s1| ≤ BT , |s′1t1| ≤ BR, |t2| ≤ BS, and

t1 + δp = q′t2.

Following the discussion in section 5.3 of [Mig08] we have to distinguish

three cases:

Case 1 a = a1,
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Case 2 a = a2,

Case 3 a = a3,

where a = min{a1, a2, a3}.

From the definition of the ai’s and from the discussion how to calculate

the ai’s, we notice that a3 ≥ max{a1, a2}, therefore there is no need to consider

Case 3.

For Case 1, we write:

t1Λ3 = t12r log u− t1 log αk − t1p log λ

= t12r log u− (q′t2 − δp) log αk − t1p log λ

= log
(
ut12rα−kq′t2

)
− p log

(
λ

t1
α−δk

)
. (4.33)

Then, we consider a linear form in two logarithms Λ1
2 = log β2 − p log β1,

where β1 = λ
t1
α−δk and β2 = ut12rα−kq′t2 , and for this case we apply the proposi-

tion 4.3.2, following the explanation that we have presented after that proposition,

but using now the Matveev’s bounds for the linear form in three logarithms as an

upper bound for p.

Let us turn now in to the Case 2. This time we write down

t2Λ3 = t22r log u− t2 log αk − t2p log λ

= qt2s
′
1 log u− t2 log αk − t2p log λ

= (t1 + δps′1) log u− t2 log αk − t2p log λ

= log
(
α−kt2ut1s′1

)
− p log

(
u−s1λ

t2
)
. (4.34)

As before we turn out to have a linear form in two logarithms Λ2
2 = log γ2−p log γ1,

where γ1 = u−s1λ
t2 and γ2 = α−kt2ut1s′1 . We apply as before, the proposition 4.3.2

to this case, following also the same methods as before.
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Table 4.8: Bounds for p using linear forms in three logarithms
D p0

17 40 902 094 178
33 157 752 030 294
41 35 994 070 812
57 429 407 772 757
63 69 516 630 329
65 49 434 815 608
68 16 382 452 021
73 808 303 621 445
90 29 188 841 666
97 2 552 797 449 913
98 8 383 577 486

Proposition 4.3.5. Let D be one of the values in Table 4.5, with c $= 1 and

which the p0 $= 103. If D is in Table 4.4, the equation (3.1) does not have any

solution for p ≥ p0, where p0 is given in Table 4.8. If D is in Table 4.3 , the

equation (3.1) does not have any non-trivial solution for p ≥ p0, where p0 is given

in Table 4.8, meaning, that the only solution is the trivial one, when |y| = 1.

Proof. So we take α1, α2, α3, b1, b2, b3 as in (4.27) and (4.28). We start by fixing

30 ≤ r ≤ 60, 5 ≤ L ≤ 1500, 1 ≤ χ ≤ 30 and 1 ≤ m ≤ 200. We define ρ := r/10

and χ = c/10. We define a1, a2, a3 as in the Theorem 4.2. Then, we define

ci, K, Ri, Si, Ti, R, S and T as in the remarks above, with i ∈ {1, 2, 3}. We define

b′ as in the remark made above. After verying all the assumptions in the Theorem

4.2 we calculate a new bound p1 using (4.29). Then we see if we verify (C3) and

if we are Case 1 or Case 2. If this is the case, then using the remarks above we

compute new bounds p2 associated to (4.30) and p3 associated to one of the linear

forms in two logs, (4.33) or (4.34). We finally take p0 = max{p1, p2, p3}. QED
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Table 4.9: Upper and lower bounds for p
D c pmin pmax

2 1 13 4 111
3 1 13 7 793
5 1 13 1 759
8 1 13 4 111
10 1 13 13 291
15 1 13 16 433

17 1 13 16 843
2 108 40 902 094 178

24 1 13 19 687
26 1 13 19 979
33 2 108 157 752 030 294
35 1 13 22 483
37 1 13 22 709
41 2 108 35 994 070 812
48 1 13 7 703

D c pmin pmax

50 1 13 4 111
57 2 108 429 407 772 757

63 1 13 27 253
3 108 69 516 630 329

65 1 13 27 367
2 108 49 434 815 608

68 4 108 16 382 452 021
73 2 108 808 303 621 445
80 1 13 1 759
82 1 13 29 423
90 3 108 29 188 841 666
97 2 108 2 552 797 449 913
98 7 108 47 472 298 469
99 1 13 8 383 577 486

4.4 Proof of Theorem 1.1

We finally prove the main result of this thesis, Theorem 1.1. We will only look

for the solutions of equation (LN), when n is a prime number p, since (LN) can

be reduced to the equation (2.1) For p = 2, 3, 5 and D in our range, we use

the methods presented in Chapter 2 to compute all the solutions for the equation

(2.1). Recalling what we have seen in Chapter 3, we know that for the following

values of |D|

4, 6, 7, 11, 12, 13, 14, 18, 19, 23, 27, 28, 30, 31, 32, 34, 38, 39, 40, 42, 43, 44, 46, 47, 51, 53,

54, 56, 58, 59, 60, 61, 62, 66, 67, 69, 70, 71, 74, 76, 78, 79, 83, 86, 87, 88, 91, 92, 93, 95, 96,
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for p ≥ 7 the equation (2.1) does not have any solution, except when D = −4,

we only have the solution

(|x|, |y|, p) = (2, 0, p).

Also in the same chapter we have proved that for D = −22, we only have the

following solution

(|x|, |y|, p) = (47, 3, 7),

and for D = −94, we also have, as the only solution of (2.1), the following:

(|x|, |y|, p) = (421, 3, 11).

For the remaining values, we use the methods presented in this chapter. As we

have proved above when |D| is a square, that is, D = −d2, for a integer number

d, apart from the obvious solution (|x|, |y|, p) = (d, 0, p), when p ≥ 7, we only

have another solution, when D = −16, the solution being

(|x|, |y|, p) = (12, 2, 7).

When |D| = 20, 21, 29, 45, 52, 55, 72, 75, 77, 84, 85, Proposition 4.3.4 shows, that

equation (2.1) does not have any solution for p ≥ 7.

For the remaining values, using bounds provided by the linear forms in three

logarithms, the method of Thue equations (Chapter 2) and the Kraus Methods

(see Chapter 3), we have that, for |D| in Table 4.9, if D is not a unit away from a

square, then for p ≥ pmax and 7 ≤ p ≤ pmin, the solutions of the equation 2.1 are

given in Table A.1. When pmin ≤ p ≤ pmax, then we do not know if the equation

(2.1), has a solution or not. For D = 33, 41, 57, 68, 73, , 90, 97 and 98 we could

eliminate the case where the signature (d1, d2) associated to a solution (x, y, p)

had c = 1 (see Lemma 4.3.1).

152



When |D| is also in Table 4.9 and is a unit away from a square, then if

p ≥ pmax and 7 ≤ p ≤ pmin, the solutions of the equation 2.1 are given in Table

A.1. Again, when pmin ≤ p ≤ pmax, then we do not know if the equation (2.1),

does have another solution besides the obvious one, already mentioned in the Table

A.1. Just notice that when D is a unit away from a square, and c $= 1, using Kraus

Methods, we were able to see that there were no solutions for 7 ≤ p ≤ 108.

And this concludes the proof of Theorem 1.1.

4.5 What to do next?

As we have seen, there are some cases left to solve. If D = 33, 41, 57, 68, 73.90, 97

and 98 we are of the opinion that there are no solutions for equation (2.1) with

p ≥ 7. In chapter 5 we introduce a new Frey curve that might help us, to settle

this once and for all, though, as we will explain in the mentioned chapter, we are

not able to do so right now.

When D is a unit away from a square the equation has infinitely many

solutions, and most available methods fail. There are techinques coming from

Jacobians of curves ( see for example [Sto98, Sto02, BMS+08, BS08]), that can

succeed for curves of small genus, which is not so in our case.

So when D is a unit away from a square the situation is still very obscure,

though we are of the opinion that the only solutions to these cases, are the ones

where |y| = 1, for all primes p.
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Chapter 5

A new Frey curve

In this chapter we will study a new Frey curve associated to the exponent signature

(2, 3, p) of a ternary Diophantine equation. The aim of this study is to provide

us a new Frey curve for the resolution of Diophantine equations via the modular

approach. We begin by presenting the main result of this chapter

Theorem 5.1. Let A, B, C, x, y, z be integers, such that (Ax, By, Cz) = 1. Let

p be a prime number. Suppose also that for any prime number q we have

(a) vq(A) ≤ 1;

(b) vq(B) ≤ 2;

(c) and vq(C) ≤ p− 1.

Finally we consider the equation

Ax2 + By3 = Czp. (5.1)

The Frey curve associated to (5.1) is

E : Y 2 = X3 + 3AByX + 2A2Bx. (5.2)

Under the above assumptions we have:
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(1) The minimal discriminant of E is

∆min =





−2633A3B2Czp if v2(Czn) < 6

−2−633A3B2Czp if v2(Czn) ≥ 6

(2) The conductor N of the curve E is given by

N := 2ε23ε3 Rad2,3(AB)2 Rad2,3(Cz),

where ε3 is as given in Table 5.8 and ε2 is as given in Table 5.7.

(3) Suppose that p = 11 or p ≥ 17 and the curve E does not correspond to one

of the equations:

11.(±7)2 − 1.(8)3 = 33.(1)11, (±43)2 − 112.13 = 26.33.(1)11,

(±4973)2 − 11.(131)3 = 2.33.(1)11, 5.(±14891)2 − 17.3733 = 26.33.217,

5.(7717)2 − 172(101)3 = 27.33.(1)17, 19.3.(±3)2 − 1.(8.3)3 = 1.(1)19,

5.(±11.1433.11443)2 − 7(137.2083)3 = 26.33.(1)37, 5.(±47)2 − 7.113 = 26.33.(1)37,

3.43.(±32.7)− 1.(24.5)3 = (1)43, 3.67.(±3.7.31)2 − 1(23.5.11) = (1)67,

3.163.(±3.7.11.19.127)2 − 1.(24.5.23.29)3 = (1)163.

Then E ∼p f for some newform f of level

Np = N := 2ε23ε Rad2,3(AB)2 Rad 2, 3(C),

where ε3 is as given in table 5.8 and ε2 is as given in table 5.7 if v2(z) $= 1

or p $= 7.

Proof. Both the discrimant ∆, and conductors N and Np will be checked later on,

in the following sections and looking at the Tables 5.7, 5.8, 5.9. About E ∼p f

for some newform f of level Np, we just use Theorem 3.3 item (1). After verifying
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wich cases of our Diophantine equation of signature exponent (2, 3, p) the cases

mentioned in Table 3.1 correspond to, we exclude the equations mentioned in the

statement of this theorem. And we have proved the Theorem. QED

5.1 Tate’s Algorithm

Now we begin by recalling some facts and notation about elliptic curves (see for

example [Coh07a, Chapter 7], [Sil85] ). When we construct a Frey curve associated

to a Diophantine equation, we are looking for the existence or not of a newform

of a certain level. To know the level of the newforms we just need to know the

conductor of the Frey curves, that is, the conductor of an elliptic curve. One way

of doing it is to use Tate’s algorithm, ([Tat75]) Before that, we need to recall

some notation and results related to elliptic curves. Let

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6, (5.3)

an elliptic curve given in its Weierstrass equation, with a1, a2, a3, a4, a6 ∈ Q.

We can simplify the equation by completing the square. Thus replacing Y by
1
2(Y − a1X − a3) gives an equation of the form

E : Y 2 = 4X3 + b2X
2 + 2b4X + b6,

where

b2 = a2
1 + 4a2, b4 = 2a4 + a1a3, and b6 = a2

3 + 4a6.
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We also define quantities

b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b2
2 − 24b4,

c6 = −b3
2 + 36b2b4 − 216b6,

∆ = −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6,

jE = c3
4/∆.

One easily verifies that they satisfy the relations

4b8 = b2b6 − b2
4 and 1728∆ = c3

4 − c2
6.

Further, if we replace (X, Y ) by ((X − 3b2)/36, Y/108), we eliminate the X2

term, yielding the simpler equation

E : Y 2 = X3 − 27c4X − 54c6.

Two elliptic curves with different parameters may be isomorphic over Q.

Such an isomorphism must be given by the transformations X = u2X ′ + r, Y =

u3Y ′+su2X ′+ t, where r, s, t ∈ Q, u ∈ Q∗. We obtain a new model for the same

elliptic curve. Using the same quantities as those used in the formulas above, the

parameters of the new model are given in Table 5.1

Now we introduce Tate’s algorithm. We present the algorithm as it is given

in [Coh00], Algorithms 7.5.1, 7.5.2 and 7.5.3, with some modifications provided

by some facts that can be found in [Sil94, section IV.9]:

Algorithm 5.1.1 (Reduction of an Elliptic curve modulo a prime p ≥ 5). Given

integers a1, a2, a3, a4, a6 and a prime p > 3, this algorithm determines the exponent

f of p in the conductor of the elliptic curve

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6
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Table 5.1: Formulas for the new model of a Elliptic curve
ua′1 = a1 + 2s

u2a′2 = a2 − sa1 + 3r − s2

u3a′3 = a3 + ra1 + 2t
u4a′4 = a4 − sa3 + 2ra2 − (t + rs)a1 + 3r2 − 2st
u6a′6 = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1

u2b′2 = b2 + 12r
u4b′4 = b4 + rb2 + 6r2

u6b′6 = b6 + 2rb4 + r2b2 + 4r3

u8b′8 = b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u4c′4 = c4

u6c′6 = c6

u12∆′ = ∆
j′ = j

and integers u, r, s, t such that a′1, a
′
2, a

′
3, a

′
4, a

′
6 linked to a1, a2, a3, a4, a6 via the

formulas presented above give a model with the smallest possible power of p in its

discriminant.

1. [Initialize] Compute c4, c6, ∆ and j. If vp(j) < 0 set k ← vp(∆) + vp(j) else

set k = vp(∆).

2. [Minimal?] If k < 12 set u ← 1, r ← 0, s ← 0, and t ← 0. Otherwise, set

u ← p,k/12-; if a1 is odd then set s ← (u− a1)/2 else set s ← −a1/2. Set

a′2 ← a2 − sa1 − s2. Set r ← −a′2, (u
2 − a′2)/3 or (−u2 − a′2)/3 depending

on a′2 being congruent to 0, 1 or −1 modulo 3. Set a′3 ← a3 + ra1. If a′3

is odd, then set t ← (u3 − a′3)/2 else set t ← −a′3/2. Finally, set k ← k

(mod 12), ∆ ← ∆/u12, c4 ← c4/u4 and c6 ← c6/u6.

3. [Non-integral invariant] If vp(j) < 0, then k must be equal to 0 or 6. If

k = 0, set f ← 1. If k = 6 set f ← 2. Output f, u, r, s, t and terminate

algorithm.
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4. [Integral invariant] If k = 0 then set f ← 0 else set f ← 2. The possible

values for k are 0, 2, 3, 4, 6, 8, 9 and 10. Output f, u, r, s, t and terminate

algorithm.

For p = 2 or p = 3 the algorithm is much more complicated.

Algorithm 5.1.2 (Reduction of an Elliptic curve modulo 2 or 3). Given integers

a1, a2, a3, a4, a6 and a prime p = 2 or 3, this algorithm determines the exponent

f of p in the conductor of the elliptic curve

E := Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

and integers u, r, s, t such that a′1, a
′
2, a

′
3, a

′
4, a

′
6 linked to a1, a2, a3, a4, a6 via the

formulas presented above give a model with the smallest possible power of p in its

discriminant. For i ∈ {1, 2, 3, 4, 6} and k ∈ N we define ai,k = ai/pk.

1. [Initialize] Set u ← 1, r ← 0, s ← 0, and t ← 0. Compute ∆ and j using

the formulas given above. Set v ← vp(∆).

2. [Type I0] If v = 0 then set f ← 0 and go to step 22.

3. [Type Iv] If p ! b2 = a2
1 + 4a2 then set f ← 1 and go to step 22.

4. [Change equation] If p = 2, then set r1 ← a4 (mod 2), s1 ← (r1 + a2)

(mod 2) and t1 ← (a6 + r1(a4 + s1)) (mod 2), otherwise compute b6 using

the formulas above and set r1 ← −b6 (mod 3), s1 ← a1 (mod 3) and t1 ←

(a3 + r1a1) (mod 3).

5. [Type II] If p2 ! a6, then set f ← v and go to step 22.

6. [Type III] Compute b8 using the formulas above. If p3 ! b8, then set f ← v−1

and go to step 22.
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7. [Type IV] Compute b6 using the formulas above. If p3 ! b6, then set f ← v−2

and go to step 22.

8. [Change equation] If p3 ! a6 do the following. If p = 2, then set k ← 2,

otherwise set k ← a3 (mod 9). Use formulas above with parameters1, 0, 0, k

to compute a′1, . . . , a
′
6, then set a1 ← a′1, a2 ← a′2, . . . , a6 ← a′6 and finally

set t ← t + u3k.

9. [Type I∗0 ](At this point, we have p | a2, p2 | a4 and p3 | a6.) Set P ←

X3 + a2,1X2 + a4,2X + a6,3. If P has distinct roots modulo p, then set

f ← v − 4 and go to step 22.

10. [Change equation] Let a be the multiple root of the polynomial P modulo

p. If a $= 0, then use formulas above with parameters 1, ap, 0, 0 to compute

a′1, . . . , a
′
6, then set a1 ← a′1, a2 ← a′2, . . . , a6 ← a′6, r ← r + +u2ap and

t ← t + u2sap. If a is a double root go to step 16.

11. [Type IV ∗](Here p2 | a3, p4 | a6) Set P ← X2 + a3,2X + a6,4. If P has a

double root in Fp, then let a be that root. Otherwise set f ← v − 6 and go

to step 22.

12. [Change equation] If a $= 0 the use once again the formulas above with

parameters 1, 0, 0, ap2 to compute a′1, . . . a
′
6. then set a1 ← a′1, . . . , a6 ← a′6

and t ← t + u3ap2.

13. [Type III∗] If p4 ! a4, then set f ← v − 7 and go to step 22.

14. [Type II∗] if p ! a6, then set f ← v − 8 and go to step 22.

15. [Non-minimal equation] Using once again the formulas above with parame-

ters p, 0, 0, 0 to compute a′1, . . . , a
′
6, then set a1 ← a′1, . . . , a6 ← a′6, u ←
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pu, v ← v − 12 and go to step 2.

16. [Initialize loop]If p = 3 then set n = v− 6. For p = 2 set n = 0. Set v ← 1

and q ← p2. Also set f ← v − 4− n, so for p = 3 we have that f = 2.

17. [Type I∗v , day in] Set P ← X2 + a3,2+n/2X − a6,4+n. If P has distinct roots

go to step 22, with n ← n + 1 if p = 2.

18. [Change equation] Let a be the double root of P modulo p. If a $= 0, use

formulas above with parameters 1, 0, 0, aq to compute a′1, . . . , a
′
6, then set

a1 ← a′1, . . . , a6 ← a′6 and t ← t + u3aq.

19. [Type I∗v , day out] Set v ← v + 1 and P ← a2/pX2 + a4,3+n/2X + a6,4+n.

If P has distinct roots modulo p go to step 22, with n ← n + 2 if p = 2.

20. [Change equation] Let a be the double root of P modulo p. If a $= 0 use

formulas above with parameters 1, aq, 0, 0 to compute a′1, . . . a
′
6, then set

a1 ← a′1, . . . , a6 ← a′6, r ← r + u2aq and t ← t + u2saq.

21. [Loop] Set v ← v − 1, q ← p× q, n ← n + 2 and go to step 17.

22. [Common termination] Output the numbers f, u, r, s, t and terminate the

algorithm

Let us turn now to the global counterpart of this process.

Algorithm 5.1.3 (Global reduction of an Elliptic curve). Given integers a1, a2, a3,a4, a6,

this algorithm computes the arithmetic conductor N of the elliptic curve E :=

Y 2 + a1XY + a3Y = X3 + a2X2 + a4X + a6 and integers u, r, s, t such that

a′1, a
′
2, a

′
3, a

′
4, a

′
6 linked to a1, a2, a3, a4, a6 via the formulas presented above give a

model with the smallest possible discriminant (in absolute value) and such that

a′1, a
′
3 ∈ {0, 1} and a′2 ∈ {0,±1}.
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1. [Initialize] Set N ← 1, u ← 1, r ← 0, s ← 0 and t ← 0. Compute D ← |∆|

using formulas above.

2. [Finished] If D = 1, then output N, u, r, s, t and terminate algorithm.

3. [Local reduction] Find a prime divisor p of D. Then use Algorithm 5.1.2 or

5.1.1 to compute the quantities fp, up, rp, sp, tp. Set N ← Npfp . If up $= 1,

set u ← uup, r ← r + u2rp, s ← s + usp and t ← t + u3tp + u2srp. Finally

set D ← D/pvp(D). Go to step 2.

5.1.1 Papadopoulos’ tables for the exponent of the conductor of an

elliptic curve

It is possible to compute the conductor of an elliptic curve using instead the

information provided in the paper by I. Papadopoulos [Pap93], which provides all

possible cases for the value of the exponent of a given prime in the conductor of an

elliptic curve. This information is set in tables, that I will reproduce here (Tables

5.4,5.3,5.2) and we will use it to estimate possible values for the exponent for a

given prime of the conductor and for the valuation of ∆ for that same prime.

As before, let E be an elliptic curve over Q, as in (5.3), with a1, a2, a3, a4, a6

rational integers. Let c4, c6 and ∆ be as before and let N be the conductor for

the elliptic curve. In his paper, Papadopoulos presents us tables with the results

for vp(N) for a given prime p (distinguishing the cases p = 2, p = 3 and p ≥ 5),

according to the valuations vp(c4), vp(c6), vp(∆), to Néron types, Tate’s cases and

Kodaira symbols.

As we can see in Tables 5.3 and 5.4 we might have cases where though we

have the same (vp(c4), vp(c6), vp(∆)) we might end up with different values of fp.

Now we show how to distinguish each case, following Papadopoulos’ paper. We
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start for p = 3. In his paper, Papadopoulos uses the following terminology: we say

that a curve satisfies property Pi if there exists x ∈ Z such that x3−3c4x−2c6 ≡

(mod 33+i). For i = 2, 5 we have that the condition Pi in the table is equivalent

to the condition: there exists y ∈ Z such that

y3 + b2y
2 + 8b4y + 16b6 ≡ 0 (mod 3i).

For p = 2 the situation is a bit more messy. We have the following propo-

sition.

Proposition 5.1.1. Let E be an elliptic curve with Weierstrass form 5.3 that

corresponds in Table 5.4 to a Tate’s case ≥ 3. There exist r, t ∈ Z such that

2 | a4 + r2, 2 | t2 + a4a2 − a6.

We define

a2(r, s) := a2 + 3r − sa1 − s2,

a6(r, t) := a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1,

b6(r, x) := b6 + 2rb4 + r2b2 + 4r3 − x2,

b8(r) := b8 + 3rb6 + 3r2b4 + r3b2 + 3r4.

1) If a6(r, t) ≡ 0 (mod 4) then we are in a case ≥ 4.

2) If b8(r) ≡ 0 (mod 8) then we are in a case ≥ 5.

3) If b8(r)not ≡ 0 (mod 25) we are in Tate’s case 6, type I∗0 .

4) If b8(r) ≡ 0 (mod 25), then there exists t ∈ Z such that a6(r, t) ≡ 0

(mod 8). Choose such a t. We are in case 6 if we have v2(a6(r, t)) = 3),

otherwise we are in a case ≥ 7.

163



5) If b8(r) ≡ 0 (mod 25) and there exists s ∈ Z such that a2(r, s) ≡ 0

(mod 4), then we are in a case ≥ 8.

6) If v2(b8(r)) ≥ 7 we are in case ≥ 10.

7) If v2(c4) ≥ 8 and v2(∆) ≤ 12. Exists r ∈ Z such that v2(b8(r)) ≥ 8. E is a

non-minimal equation if exist x ∈ Z such that

v2(b6(r, x)) ≥ 8,

otherwise we are in case 10.

8) If v2(c4) ≤ 4, then exists r ∈ Z such that v2(b8(r)) ≥ 8 and a t ∈ Z such

that

v2(a6(r, t)) ≥ 5.

If v2(a6(r, t)) ≥ 6, then E is non-minimal.

5.2 The Frey curve associated to the Diophantine equa-

tion with signature (2, 3, n)

As we have said before we interested in providing a recipe for solving the ternary

Diophantine equation of signature (2, 3, p) (5.1). But we will study a more general

case. Consider the equation

Ax2 + By3 = Czn, (5.4)

where n ∈ N is greater than or equal to 2, A, B, C, x, y, z ∈ Z \ {0}, such that

1) (Ax, By, Cz) = 1;

2) and ∀p prime we have:
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Table 5.5: Coefficients and quantities for the Frey curve E(2,3,n)

a1 = 0
a2 = 0
a3 = 0
a4 = 3ABy
a6 = 2A2Bx
b2 = 0
b4 = 6ABy
b6 = 8A2Bx
b8 = −9A2B2y2

c4 = −2432ABy
c6 = −2632A2Bx
∆ = −2633A3B2(Ax2 + By3) = −2633A3B2Czn

jE(2,3,n)
= 2633By3/Czn

2.1) vp(A) ≤ 1;

2.2) vp(B) ≤ 2;

2.3) vp(C) ≤ n− 1.

Consider now the Frey curve attached to equation (5.4)

E(2,3,n) : Y 2 = X3 + 3AByX + 2A2Bx, (5.5)

similar to the Frey curve (5.2). Following the notation above, we have coefficients

and quantities mentioned above, relatively to our Frey curve (5.5), summarized

in Table 5.5.

5.2.1 The conductor of our Frey curve E(2,3,n)

We start applying the algorithm 5.1.3. First we have that

D := |∆| = 2633A3B2(Ax2 + By3) = 2633A3B2Czn.
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Let p be a prime. Since D $= 1, we will consider three cases first when p = 2,

then p = 3 and finally p ≥ 5.

5.2.2 Exponent for p = 2.

We start by applying algorithm 5.1.2 for p = 2. We start by setting u ← 1, r ←

0, s ← 0, t ← 0,

v = v2(∆) =






6 + 3v2(A) if 2 | Ax,

6 + 2v2(B) if 2 | By,

6 + v2(C) + nv2(z) if 2 | Cz.

(5.6)

If v = 0 then f2 = 0 and we have finished, but from (5.6) we see that v ≥ 6, so

we proceed to the next step of the algorithm 5.1.2. In step 3, if p ! b2, we have

that f2 = 1 and we have finished, but we have that b2 = 0, so we proceed to the

next step of the algorithm. We set

r1 ≡ a4 (mod 2),

s1 ≡ r1 + a2 (mod 2), and

t1 ≡ a6 + r1(a4 + s1) (mod 2).

With these parameters and u = 1, using the formulas given in Table 5.1 we

calculate the new coefficients a′1, . . . , a
′
6. From the definition of r1, s1, t1 and from

Table 5.5 we have that

s1 ≡ r1 + a2 ≡ a4 + a2 ≡ a4 (mod 2),

t1 = a6 + r1(a4 + s1) ≡ a6 + r1(r1 + r1) ≡ a6 ≡ 0 (mod 2).

Therefore we see that r1 and s1 depend on a4 (mod 2), and t1 is always 0. Now

we have that a4 = 3ABy, that means that a4 ≡ ABy (mod 2). Suppose that
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we have 2 | ABy, therefore a4 ≡ 0 (mod 2). Now 2 | ABy is equivalent to have

v2(A) = 1 or v2(B) ≥ 1 or v2(y) ≥ 1. We will separate this in three cases:

I v2(A) = 1, which implies that a4 ≡ 0 (mod 2), so r1 = s1 = 0. In this case

we have that v2(c4) = 5, v2(c6) ≥ 8 and v = 9.

II v2(B) ≥ 1, so a4 ≡ 0 (mod 2), which implies that r = s = 0. For this case

we have that v2(c4) ≥ 5, v2(c6) ∈ {7, 8} and v ∈ {8, 10}.

III v2(B) = 0 and v2(y) ≥ 1, once again a4 ≡ 0 (mod 2) and r = s = 0.

When it comes to the 2-valuation of c4, c6 and ∆ we have that, v2(c4) ≥

5, v2(c6) = v = 6, since we assume in this case that v2(B) = 0.

We must not forget the other case

IV v2(ABy) = 0. In this case a4 ≡ 1 (mod 2), so we have this time that

r = s = 1. We also have that v2(c4) = 4, v2(c6) ≥ 6 and v ≥ 6.

Let us start with case I. Take v2(A) = 1. Therefore a4 ≡ 0 (mod 2), thus we

have r1 = s1 = 0 and t1 = 0. Using u = 1, r = 0, s = 0, t = 0 and the formulas

from Table 5.1 we keep the same values of a1, a2, a3, a4, a6, b2, b4, b6 and b8. We

have also the following quantities:

v2(c4) = 5, v2(c6) ≥ 8 and v = 9.

According to Papadopoulos’ tables, we are in the Tate’s case 4, and we expect to

have f2 = 8. We move to the next step. So in step 5, if p2 ! a6 we set f2 = v

and finish. We have that a6 = 2A2Bx, so we have that v2(a6) ≥ 3. Therefore we

proceed to the next step. In step 6, if p3 ! b8 then set f2 = v− 1 and finish. Now

b8 = −9A2B2y2, and we have that v2(b8) = 2, so 8 ! b8. So if v2(A) = 1, then

f2 = v − 1 = 8, as expected. Now we move to case II. Now we have v2(B) ≥ 1
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and simple calculation show us we have a1, . . . , a6, b2, . . . , b8 as in case I. For this

case we have that:

v2(c4) ≥ 5, v2(c6) ∈ {7, 8} and v ∈ {8, 10}.

We now move to step 5. If p2 ! a6 then we set f2 = v and we are finished.

As before a6 = 2A2Bx, v2(a6) = 1 + v2(B) ≥ 2, so 4 | a6. We proceed to step

6. If p3 ! b8 then set f = v − 1 and finish. We have that b8 = 9A2B2y2 so

v2(b8) = 2v2(B) + 2v2(y). If v2(B) = 1 then we have v2(b8) = 2 + 2v2(y). So

we have then

II.1 if v2(y) = 0, then 8 ! b8. For this case we have that v2(c4) = 5, v2(c6) = 7

and v = 8.

II.2 if v2(y) ≥ 1, then 8 | b8. In this case we have that v2(c4) ≥ 5, v2(c6) = 7

and v = 8.

We also have a third case, II.3, v2(B) = 2. It is clear to see that 8 | b8, and also

that

v2(c4) ≥ 6, v2(c6) ≥ 8 and v = 10.

If we are in case II.1, that is, v2(B) = 1 and v2(y) = 0 then we have f2 = v−1 =

7, that corresponds to the Tate’s case 4 in Papadopoulos’ table. For cases II.2 and

II.3 we proceed to the next step. We are now in Step 7. If p3 ! b6 then f2 = v− 2

and we have finished. We have that b6 = 8A2Bx, and so v2(b6) ≥ 4, so 8 | b6.

We proceed to step 8. Does p3 | a6? We have that a6 = 2A2Bx. From the

case II.2 we see that v2(a6) = 2 while from the case II.3 we see that v2(a6) = 3.

So now treat each case separately. First case we consider is II.2. Since we have

v2(a6) = v2(2A2Bx) = 1 + v2(B) = 2, following the procedures of the algorithm
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we use u = 1, r = 0, s = 0, t = 2 to compute a1, . . . , a6, using the formulas in

Table 5.1. Therefore we have:

a′1 = 0, a′2 = 0, a′3 = 4,

a′4 = 3ABy, a′6 = 2A2Bx− 4.

Now we move to the next step. So now we have that 2 | a2 = 0, 22 | a4 = 3ABy,

true since v2(By) ≥ 2 and finally 23 | a6 = 2A2Bx − 4. Since v2(B) = 1 and

A is odd, we have that a6 ≡ 0 (mod 8). Set P = X3 + a2,1X2 + a4,2X + a6,3.

It is easy to see that a4 ≡ 0 (mod 8) if and only if v2(y) ≥ 2. Now let us

take a look at the equality a6 ≡ 0 (mod 16), that is equivalent to see that

2A2Bx − 4 ≡ 0 (mod 16). We have 2A2Bx − 4 ≡ 0 (mod 16) if and only if

2A2Bx ≡ 4 (mod 16). v2(2A2Bx) = 2, we have that or either 2Bx ≡ 4 or 12

(mod 16). So from what we have seen, we have that a4,2 ≡ 1 (mod 2) if and only

if v2(y) = 1 otherwise we have a4,2 = 0 (mod 2), and a6,3 ≡ 0 (mod 2) if and

only if 2A2Bx ≡ 4 (mod 16), and a6,3 ≡ 1 (mod 2) if and only if 2A2Bx ≡ 12

(mod 16). So we have four cases:

II.2.1 v2(y) ≥ 2 and 2A2Bx ≡ 4 (mod 16), where v2(c4) = 6, v2(c6) = 7 and

v = 8. So by Papadopoulos f2 = 4 (resp. 3) in Tate’s case 6∗ (resp. 7∗).

And we also have that P ≡ X3 + X ≡ X(X2 + 1) = X(X + 1)2 (mod 2),

which has a multiple root, a = 1 of multiplicity 2 in Fp.

II.2.2 v2(y) ≥ 2 and 2A2Bx ≡ 12 (mod 16). For this case we have that v2(c4) =

6, v2(c6) = 7 and v = 8, by what we have seen before of Papadopoulos’

table, we are expecting f2 to be equal to 4 (resp 3), when we are in Tate’s

case 6∗ (resp. 7∗). Our polynomial is of the form P ≡ X3 +X +1 (mod 2)

which has simple roots in Fp.
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II.2.3 v2(y) = 1 and 2A2Bx ≡ 4 (mod 16). Therefore we have that v2(c4) ≥

7, v2(c6) = 7 and v = 8. So accordingly to Papadopoulos’ we expect that

f2 = 4 (resp. 2) in the Tate’s case 6∗ (resp. 8∗). Our polynomial turns out

to be of the form P ≡ X3 (mod 2), which has a multiple root a = 0 of

multiplicity 3 over Fp.

II.2.4 v2(y) = 1 and 2A2Bx ≡ 12 (mod 16). For this case we see that we have

v2(c4) ≥ 7, v2(c6) = 7 and v = 8. As in the previous case we can expect

that f2 will be equal to 4 (resp. 2) when we are in Tate’s case 6∗ (resp.

8∗). On the other hand, our polynomial turns out to be P ≡ X3 + 1 =

(X + 1)(X2 + X + 1) which has simple roots over Fp.

We start with the case II.2.1 At this point we have

v2(y) = v2(B) = 1, 2A2Bx ≡ 4 (mod 16),

v2(c4) = 6, v2(c6) = 7, v = 8, and , P ≡ X(X + 1)2 (mod 2).

We have that P has a root a = 1 of multiplicity 2. We move on to step 10

Using a = 1, and u1 = 1, r1 = 2a, s1 = t1 = 0 we compute new coefficients

a1, a2, a3, a4, a6. (u = 1, r = 2, s = 0, t = 2 for output).

a′1 = 0, a′2 = 6, a′3 = 4,

a′4 = 3ABy + 12, a′6 = 2A2Bx + 6ABy + 4.

Since a is a double root we move to step 16. In step 16 we set n = 0 and

f2 = v − 5 − n. Now we proceed to the next step. For step 17 set P =

X2 + a3,2X − a6,4 ≡ X2 + X + a6,4 (mod 2), since a3,2 = 1. And therefore

either P ≡ X2 + X = X(X + 1) (mod 2) or P = X2 + X + 1 (mod 2), and

both of these polynomials have simple roots in Fp, so f2 = v − 5 = 3, which by
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Papadopoulos’ table we are in Tate’s case 7∗. To see that we are in Tate’s case

7∗, we need to find r ∈ Z such that v2(b8(r)) ≥ 5 and given that r that there isn’t

s ∈ Z such that a2(r, s) ≡ 0 (mod 4). We see that v2(b8(r)) ≥ 5 implies that

r ≡ 2 (mod 4), and therefore we have that a2(r, s) ≡ 0 (mod 4) is equivalent to

have s2 ≡ 2 (mod 4), which is impossible, so we are in case Tate 4.

We turn our attention to the case II.2.2. In this case we have

v2(y) = v2(B) = 1, 2A2Bx ≡ 12 (mod 16),

v2(c4) = 6, v2(c6) = 7, v = 8, and

P ≡ X3 + X + 1 (mod 2).

As we have seen before, we have that P has simple roots over Fp and so f2 =

v− 4 = 4, case Tate 6∗, according to Papadopoulos. To prove that we are in case

Tate 6∗ we need to see if the congruence v2(b8(r)) ≥ 5 does have a solution for an

r ∈ Z. If not then we are in case 6∗. If it has a solution, then there exists t ∈ Z

such that v2(a6(r, t)) ≥ 3. We are in case 6∗ if we have v2(a6(r, t)) = 3. It’s easy

to see that r ≡ 2 (mod 4), we have that v2(b8(r)) ≥ 5, and that’s the only case

when we have this congruence. Now picking up t = 2 we have that a6(r, t) ≡ 8

(mod 16), that is v2(a6(r, t)) = 3. So we are in case Tate 6∗.

We consider this time the case II.2.3. Remember that in this case we have

v2(y) ≥ 2, v2(B) = 1, 2A2Bx ≡ 4 (mod 16),

v2(c4) ≥ 7, v2(c6) = 7, v = 8, and P ≡ X3 (mod 2).

So P has a multiple root in a = 0 of multiplicity 3 over Fp. Since a = 0 and

has multiplicity 3 we move to step 11. In this step we have that p2 | a3 = 4 and

p4 ! a6 = 2A2Bx − 4. Set P = X2 + a3,2X + a6,4 ≡ X2 + X + a6,4. So as

in case II.2.1 step 17, we have that P will have simple roots over Fp. Therefore
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f2 = v − 6 = 2, which is case Tate 8∗ accordingly to Papadopoulos’ table. To

prove this, since we only need to distinguish between case 6∗ and case 8∗, we first

see if there is and r ∈ Z such that v2(b8(r)) ≥ 5 and if so, show that all t ∈ Z

such that v2(a6(r, t)) ≥ 3 imply that v2(a6(r, t)) > 3. First we use MAGMA to see

that v2(b8(r)) ≥ 5 implies that r ≡ 0 (mod 4), and then that when there is a

t ∈ Z such that v2(a6(r, t)) ≥ 3 we have that t ≡ 2 (mod 4) and v2(a6(r, t)) is

always greater than 3. And we are done with this case.

Now we finally consider the case II.2.4. As before, recall that we have

v2(y) ≥ 2, v2(B) = 1, 2A2Bx ≡ 12 (mod 16),

v2(c4) ≥ 7, v2(c6) = 7, v = 8, and P ≡ X3 + 1 (mod 2).

Since P has simple roots over Fp, we have that f2 = v− 4 = 4, so we are in case

Tate 6∗. As before, we need to see if there is an r ∈ Z such that v2(b8(r)) ≥ 5,

then for that r there is an t ∈ Z such that v2(a6(r, t)) = 3. For r ≡ 0 (mod 4)

we have that b8(r) ≡ 0 (mod 32) and that when there is a t ∈ Z such that

v2(a6(r, t)) ≥ 3, we have that a6(r, t) ≡ 8 (mod 16). So this proves we are in

case 6∗.

Now we go back to the case II.3. In this case we have v2(B) = 2. Looking

at c4, c6 and ∆ we have the following congruences:

v2(c4) ≥ 6, v2(c6) = 8, v = 10,

and we have that a6 ≡ 0 (mod 8). So we move on to the next step. We are now

in step 9 and we have that p | a2 = 0, p2 | a4 = 3ABy and p3 | a6 = 2A2Bx. Set

P = X3+a2,1X2+a4,2X+a6,3. Now we have that a6,3 ≡ 1 (mod 2) and a2,1 = 0.

Our choices for P are P = X3 + X + 1 or P = X3 + 1 = (X + 1)(X2 + X + 1)

which in both cases have simple roots over Fp, therefore f2 = v− 4 = 6, which is

case Tate 6, by Papadopoulos’ table.
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We move on to case III, where we have v2(y) ≥ 1 and v2(B) = 0. In this

case we have that v2(c4) ≥ 5, v2(c6) = 6 and v = 6. By Papadopoulos’ table we

are in case Tate 3 and are expecting f2 to be equal to 3. In step 5 we have that

if p2 ! a6, then f2 = v and we have finished. Recall that at this point we have

a6 = 2A2Bx and so v2(a6) = 1. Therefore 4 ! a6 and we have f2 = v = 3, as it

was predicted.

Now we turn to case IV, where we assume that v2(A) = v2(B) = v2(y) =

0, that is, ABy is odd, therefore we have r1 = s1 = 1.

Then we turn to step 4. From what we have seen above we have r1 = s1 = 1

and t1 = 0. As consequence, we now use the parameters u = r = s = 1 and

t = 0 as the Formulas of the Table 5.1, and we have new coefficients, that are:

a′1 = 2, a′2 = 2, a′3 = 0,

a′4 = 3ABy + 3, a′6 = 2A2Bx + 3ABy + 1

We move now to the next step. In step 5 if p2 ! a6 then we have f2 = v, and

as before, we have finished. Now a6 = 2A2Bx + 3ABy + 1, so a6 ≡ 0 (mod 4)

if and only if 2A2Bx + 3ABy + 1 ≡ 0 (mod 4) If we have v2(x) ≥ 1 then the

equality above turns to be 3ABy ≡ 3 (mod 4). When v2(x) = 0, then a6 ≡ 0

(mod 4) if and only if 3ABy ≡ 1 (mod 4). So we have the following cases:

IV.1 v2(x) = 0 and ABy ≡ 1 (mod 4), where p2 ! a6.

IV.2 v2(x) = 0 and ABy ≡ 3 (mod 4), where p2 | a6.

IV.3 v2(x) ≥ 1 and ABy ≡ 1 (mod 4), where p2 | a6.

IV.4 v2(x) ≥ 1 and ABy ≡ 3 (mod 4), where p2 ! a6.

We study each case separately from now on, starting with case IV.1
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So we have that

v2(x) = 0 ABy ≡ 1 (mod 4)

v2(c4) = 4, v2(c6) = 6, and v ≥ 7,

since AxBy is an odd number so Cz must be even. We also have that p2 ! a6 so

f2 = v, and looking at the table above, we see that the only case with v2(c4) =

4, v2(c6) = 6, v ≥ 7 and f2 = v is the case Tate 3, with v = 7. In fact using

MAGMA we can show that in this case we could only have v2(Czn) = 1, we just need

to consider all possible A, x,B, y (mod 4) that satisfy the assumptions above and

see that Ax2 + By2 ≡ 2 (mod 4).

We move on to case IV.2, where we have that

v2(x) = 0 ABy ≡ 3 (mod 4)

v2(c4) = 4, v2(c6) = 6, and v ≥ 7.

As we have seen before we have that p2 | a6 and v2(Czn) ≥ 1. In fact we can prove

that v2(Czn) ≥ 2. Since Ax2+By3 ≡ Czn (mod 4), we have that A+By ≡ Czn

(mod 4), since ABxy is odd. By the same reason we have that 1+ABy ≡ ACzn

(mod 4), since ABy ≡ 3 (mod 4) and A is odd then 4 | Czn. Now we move on

to step 6, since p2 | a6. If p3 ! b8 then set f2 = v − 1 and we have finished. Now

b8 = b8 + 3rb6 + 3r3b4 + r3b2 + 3r4 = −9A2B2y2 + 24A2Bx + 18ABy + 13, so

b8 ≡ 0 (mod 8) if and only if 2ABy ≡ 6 (mod 8), which is true, so we move

on to step 7 If p3 ! b6 then f2 = v − 2 and we have finished. We have that

b6 = b6 + 2rb4 + r2b2 + 4r3 = 8A2Bx + 12ABy + 4. So b6 ≡ 0 (mod 8) if

and only if 3ABy + 1 is even, which it is true. We move on to the next step.

At step 8 if p3 ! a6 we proceed in the following way, since p = 2. Set k ← 2

and compute new a1, . . . , a6 with parameters u1 = 1, r1 = 0, s1 = 0, t1 = 2,
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u = 1, r = 1, s = 1, t = 2 for output.

a′1 = 2, a′2 = 2, a′3 = 4,

a′4 = 3ABy − 1, a′6 = 2A2Bx + 3ABy − 3.

If p3 | a6, then keep the same old values:

a1 = a2 = 2, a3 = 0

a4 = 3ABy + 3, and a6 = 2A2Bx + 3ABy + 1.

Now, when does p3 | a6? Since a6 = 2A2Bx + 3ABy + 1, p3 | a6 if and only

if 2A2Bx + 3ABy ≡ 7 (mod 8). When ABy ≡ 3 (mod 8), we must have that

2A2Bx ≡ 6 (mod 8), while when ABy ≡ 7 (mod 8) we must have then that

2A2Bx ≡ 2 (mod 8). We have four cases then:

IV.2.1 2A2Bx ≡ 2 (mod 8) and ABy ≡ 3 (mod 8). In this case p3 ! a6, so we

use the new coefficients.

IV.2.2 2A2Bx ≡ 2 (mod 8) and ABy ≡ 7 (mod 8). In this case p3 | a6, we keep

the old coefficients.

IV.2.3 2A2Bx ≡ 6 (mod 8) and ABy ≡ 3 (mod 8). In this case p3 | a6, so we

use the old coefficients.

IV.2.4 2A2Bx ≡ 6 (mod 8) and ABy ≡ 7 (mod 8). In this case p3 ! a6, therefore

we use the new coefficients.

First let us take a look at what happens with v2(Czn). So far we know that

v2(Czn) ≥ 2. Let us see if we can make a distinction between v2(Czn) = 2 and

177



≥ 3. If we have that v2(Czn) ≥ 3 then we have that

v2(Czn) ≥ 3 ⇐⇒ Ax2 + By3 ≡ 0 (mod 8)

⇐⇒ A + By ≡ 0 (mod 8)

⇐⇒ 1 + ABy ≡ 0 (mod 8)

⇐⇒ ABy ≡ 7 (mod 8).

So for cases IV.2.2 and IV.2.4 we have v2(Czn) ≥ 3 while for the remaining

cases we have v2(Czn) = 2. We turn our attention first to the case IV.2.1

In this case we have that

v2(ABxy) = 0, 2A2Bx ≡ 2 (mod 8), ABy ≡ 3 (mod 8)

v2(Czn) = 2, v2(c4) = 4, v2(c6) = 6 and v = 8.

Since p3 ! a6, we have the new coefficients:

a1 = a2 = 2, a3 = 4, a4 = 3ABy − 1 and a6 = 2A2Bx + 3ABy − 3.

Remember that for output we have u = r = s = 1 and t = 2. We now move on to

step 9 At this point we must have p | a2, p2 | a4 and p3 | a6, which is true according

to the equalities that we have for this case. Set P = X3 + a2,1X2 + a4,2X + a6,3.

From the equalities for this case we have that a2,1 = 1, and a4,2 ≡ 0 (mod 2).

Let us see the values for a6,3 (mod 2). An easy calculation show us that a6 ≡ 0

(mod 16) if and only if we have

(2A2Bx, 3ABy) ∈ {(2, 11), (10, 3)} (mod 16),

and that a6 ≡ 8 (mod 16) if and only if we have

(2A2Bx, 3ABy) ∈ {(2, 3), (10, 11)} (mod 16),
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For the first case we obviously have that a6,3 ≡ 0 (mod 2) and for the second one

a6,3 ≡ 1 (mod 2). Now consider that a6,3 ≡ 1 (mod 2), therefore our polynomial

P ≡ X3 + X2 + 1 (mod 2), which has simple roots in F2. So f2 = v − 4 = 4,

and we are in case Tate 6∗. To prove this, as before, we need to see if there is

exists r ∈ Z such that v2(b8(r)) ≥ 5. If not we are in case 6∗ otherwise, there

will be a t ∈ Z such that a6(r, t) ≡ 0 (mod 8). We are in case 6∗ if for that

t, a6(r, t) ≡ 8 (mod 16). Now when r ≡ 1 (mod 4), v2(b8(r)) ≥ 5, and we see

that for a6(r, t) ≡ 0 (mod 8) if t ≡ 2 (mod 4). Consider now the case when

a6,3 ≡ 0 (mod 2), we have then P ≡ X3 + X2 ≡ X2(X + 1) (mod 2), which

has a root in a = 0 of multiplicity two in F2. Move to step 10. Since a = 0 and is

a double root, we move on to step 16. Set n ← 0 and f2 ← v − 5− n. Proceed

to the next step. In step 17 we start by setting P = X2 + a3,2X − a6,4. Since

a3,2 = 1, we have that P ≡ X2 + X + 1 (mod 2) or P ≡ X2 + X ≡ X(X + 1)

(mod 2), which both have simple roots over F2. So f2 = v−5 = 3, corresponding

to case Tate 7∗ according do Papadopoulos’ table. To verify this, there must be

an r ∈ Z such that v2(b8(r)) ≥ 5 and a for such r there is no such s ∈ Z such

that a2(r, s) ≡ 0 (mod 4). Using MAGMA we verify that v2(b8(r)) is verified when

r ≡ 1 (mod 4), therefore there is no such s ∈ Z such that a2(r, s) ≡ 3r− s2 ≡ 0

(mod 4).

We are done with case IV.2.1 Move on to the next case, IV.2.2. The

situation in this case is the following:

v2(ABxy) = 0, 2A2Bx ≡ 2 (mod 8), ABy ≡ 7 (mod 8)

v2(Czn) ≥ 3 v2(c4) = 4, v2(c6) = 6 and v ≥ 9.

We also have seen that p3 ! a6 so we keep the old coefficients, that are:

a1 = a2 = 2, a3 = 0, a4 = 3ABy + 3, and a6 = 2A2Bx + 3ABy + 1,
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with u = r = s = 1, t = 0 accumulated.

We proceed to step 9. We have at this point p | a2, p2 | a4 and p3 | a6,

As before, set P = X3 + a2,1X2 + a4,2X + a6,3. It’s easy to see that a2,1 = 1

and a4,2 ≡ 0 (mod 2). Let us look at a6,3, it’s easy to see that a6,3 ≡ 0 (mod 2)

if and only if (2A2Bx, ABy) ≡ (10, 7), (2, 15) (mod 16), and also that a6,3 ≡ 1

(mod 2) if and only if (2A2Bx, ABy) ≡ (2, 7), (10, 15) (mod 16). Let us consider

in first place a6,3 ≡ 1 (mod 2). In this case we have that P ≡ X3 + X2 + 1

(mod 2) which has simple roots over F2. So we have that f2 = v − 4 ≥ 5,

which by the previous table we are in case 6, and v = 9. In fact running a

little program in MAGMA it’s easy to prove that when ABxy ≡ 1 (mod 2) and

(2A2Bx, ABy) ≡ (2, 7), (10, 15) (mod 16), we have that v2(Czn) = 3, therefore

v = 6 + v2(Czn) = 9. Consider now the case when a6,3 ≡ 0 (mod 2). For

this we have that P ≡ X3 + X2 ≡ X2(X + 1) (mod 2), which clearly has a

double root, a = 0 over F2. For this fact we proceed to step 16. Set n ← 0

and f2 = v − 5 − n. Move on to the next step. As before in step 17 we start

by setting P = X2 + a3,2X − a6,4. Since a3 = 0, then a3,2 = 0, implying that

P ≡ X2+1 = (X+1)2 (mod 2) or P ≡ X2 (mod 2), both of which have double

roots, r0 = a6,4. We have that r0 = 0, when a6 ≡ 0 (mod 32), that is, when

(2A2Bx, ABy) ≡ (2, 31), (10, 7), (18, 15), (26, 23) (mod 32), and that r0 = 1,

when (2A2Bx, ABy) ≡ (2, 15), (10, 23), (18, 31), (26, 7) (mod 32) Move to the

next step. In step 18 we set n ← n + 1. Using u′ = 1, r′ = s′ = 0 and t′ = r0p2,

with u = r = s = 1 and t = r0p2 for output, calculate the new coefficients:

a′1 = 2, a′2 = 2, a′3 = 2r0p
2,

a′4 = 3ABy + 3− 2r0p
2, a′6 = 2A2Bx + 3ABy + 1− r0p

4.
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Move on to step 19. Set P = a2,1X2 + a4,3X + a6,5. It’s easy to see that

a2,1 = 1. Now let us take a look at the value of a4,3 (mod 2). If r0 ≡ 0 then

a4,3 ≡ 0 (mod 2) if and only if ABy ≡ 15 (mod 16), otherwise we will have

a4,3 ≡ 1 (mod 2). When r0 = 1, then a4,3 ≡ 0 (mod 2), if and only if ABy ≡ 7

(mod 16). So when (2A2Bx, ABy) ≡ (2, 31), (10, 23), (18, 15), (26, 7) (mod 32)

our polynomial P will be of the form P ≡ X2 + a6,5 (mod 2), having a dou-

ble root at r1 = a6,5. When (2A2Bx, ABy) ≡ (2, 15), (10, 7), (18, 31), (26, 23)

(mod 32), our polynomial is of the form P ≡ X2 + X + a6,5 (mod 2), which

has simple roots over F2. So for this case we are finished with f2 = v − 5 −

n = v − 6. From Papadopoulos’ table we see that we are in case 7∗, with

v = 10, meaning that v2(Czn) = 4. Using MAGMA, we confirm that when

(2A2Bx, ABy) ≡ (2, 15), (10, 7), (18, 31), (26, 23) (mod 32), then we must have

v2(Czn) = 4. For the remaining cases we move on to step 20. Let r1 be the

double root of P modulo 2. Using the formulas from Table 5.1 and the parame-

ters u′ = 1, r′ = r1p2, u′ = t′ = 0 compute the new coefficients a1, a2, a3,a4, a6,

u = 1, r = 1 + r1p2, s = 1, t = (r0 + r1)p2.

a′1 = 2, a′2 = 3r1p
4 − 1, a′3 = 2(r0 + r1)p

2,

a′4 = 3ABy + 3r1p
4 − 2(r0 + r1)p

2,

a′6 = 2A2Bx + 3r1p
2ABy + r1p

6 − (r0 + r1)p
4.

Move to the next step. Now in step 21 we set q ← qp and n ← n + 2. We go

back to step 17. Set P = X2 + a3,3X − a6,5. It is easy to see that a3,3 ≡ 0

or 1 (mod 2), depending on r0 and r1. When a3,3 ≡ 1 (mod 2) then P has

simple roots and we are finished, that is, f2 = v − 5 − n = v − 7. By using

Papadopoulos table we see that we are in case 7∗ with v = 11 and f2 = 4 or

in case 10∗ with v = 10 and f2 = 3. But using MAGMA we see that for these
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cases we can only have v ≥ 11, so it’s case 7∗. When a3,3 ≡ 0 (mod 2), we

have as before that P will have a double root modulo 2, r2 = a6,5 (mod 2).

Well, if we decide to do one more step we will see that this process seems to be

going on forever. How do we stop it? Well, we will use the information that we

have from Papadopoulos’ table and from the case we are on. First, using MAGMA

we can see that, when (2A2Bx, ABy) ≡ (2, 15), (10, 7) (mod 16) we have that

v2(Czn) ≥ 4. So looking at the Papadopoulos’ table 5.4, we have that we can

only be in case 7∗ or in case 9∗ or in 10∗. Looking at the algorithm, we can see

that the Kodaira type is I∗v , and looking at the Papadopoulos’ table we have that

for this Kodaira type and for the values of v2(c4), v2(c6) and v we must have case

Tate 7∗. To prove that we are in this case we just need to find r ∈ Z such that

v2(b8(r)) ≥ 5 and that for such r there is no s such that a2(r, s) ≡ 0 (mod 4).

Now we have that a2(r, s) = 3r2− s2. So a2(r, s) $≡ 0 (mod 4), only when r ≡ 1

or 2 (mod 4). We use MAGMA to find possible r such that v2(b8(r)) ≥ 5, and

we see that this is only possible when r ≡ 1 (mod 4), therefore we have that

we are in Tate’s case 7∗ so we have that f2 = 4. Also using MAGMA we see that

v2(Czn) ≥ 4 for all cases and that, we only have the v2(Czn) = 4 when

(2A2Bx, ABy) ≡ (2, 15), (10, 7), (18, 31), (26, 23) (mod 32).

We have v2(Czn) = 5 when (2A2Bx, ABy) is one of the following tuples

(mod 64)

(2, 31), (10, 23), (18, 47), (26, 39), (34, 63), (42, 55), (50, 15), (58, 7),

and v2(Czn) ≥ 6, when (2A2Bx, ABy) (mod 64) is one tuple of the following

list

(2, 63), (10, 55), (18, 15), (26, 7), (34, 31), (42, 23), (50, 47), (58, 39),
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And with this we are finished with the case IV.2.2.

We move on to the case IV.2.3 First of all, let us recall which are the

conditions that we have for this case,

v2(ABxy) = 0, 2A2Bx ≡ 6 (mod 8), ABy ≡ 3 (mod 8)

v2(Czn) = 2 v2(c4) = 4, v2(c6) = 6 and v = 8.

We also have p2 | a6, so keep the old coefficients, that are

a1 = a2 = 2, a3 = 0, a4 = 3ABy + 3, and a6 = 2A2Bx + 3ABy + 1,

with u = r = s = 1 and t = 0 for output.

We move to step 9. As always, at this point we have that pi | a2i, with

i ∈ {1, 2, 3}. Set P = X3 + a2,1X2 + a4,2X + a6,3 We can see that a2,1 =

1 and that a4,2 ≡ 1 (mod 2), since a4 ≡ 4 (mod 8). So P ≡ X3 + X2 +

X ≡ X(X2 + X + 1) (mod 2), which has simple roots over F2 if a6,3 ≡ 0

(mod 2) or P ≡ X3 + X2 + X + 1 ≡ (X + 1)3 (mod 2), which has a root,

a = 1 of multiplicity 3. It is possible to see that a6 ≡ 0 (mod 16) if and only

if (2A2Bx, ABy) ≡ (6, 3), (14, 11) (mod 16) and that a6,3 ≡ 1 (mod 2) if and

only if (2A2Bx, ABy) ≡ (6, 11), (14, 3) (mod 16). So when a6,3 ≡ 0 (mod 2),

that is when (2A2Bx, ABy) ≡ (6, 3), (14, 11) (mod 16), our polynomial P has

simple roots, so we are finished with f2 = v − 4 = 4, Tate’s case 6∗. We see that

v2(b8(r)) ≥ 5 has solutions if and only if r ≡ 3 (mod 4), and that v2(a6(r, t)) ≥ 3

if and only if when t ≡ 2 (mod 4), and in this case the congruence becomes and

equality equal to 3. When a6,3 ≡ 1 (mod 2), that is when (2A2Bx, ABy) ≡

(6, 11), (14, 3) (mod 16), we have that our polynomial P has a triple root a = 1.

So we proceed to step 10. We change the equation with parameters u1 = 1, r1 =

2, s1 = t1 = 0, for output we have u = 1, r = 3, s = 1, t = 2. So our new
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coefficients are:

a′1 = 2, a′2 = 8, a′3 = 4,

a′4 = 3ABy + 23, a′6 = 2A2Bx + 9ABy + 23.

Proceed now to step 11. Now we must have p2 | a3 = 4 and p4 | a6, which is true

for both cases. Set then, P = X2 + a3,2X + a6,4. Since a3,2 ≡ 1 (mod 2) and

X2+X or X2+X+1 have simple roots on F2, we are finished with f2 = v−6 = 2,

that corresponds to Tate’s case 8∗ on Papadopoulos’ table. It’s easy to verify that

v2(b8(r)) ≥ 5 if and only if r ≡ 3 (mod 4), so this implies that a2(r, s) ≡ 0

(mod 4) only when s is odd, so we are in Tate case 8∗. And we are finished with

case IV.2.3.

We move now to case IV.2.4 Let us recall the conditions and the specific

values we have for this case:

v2(AxBy) = 0, 2A2Bx ≡ 6 (mod 8), ABy ≡ 7 (mod 8),

v2(Czn) ≥ 3, v2(c4) = 4, v2(c6) = 6, and v ≥ 9.

We also have that p3 ! a6, so for that reason we choose the new coefficients:

a1 = a2 = 2, a3 = 4, a4 = 3ABy − 1, and

a6 = 2A2Bx + 3ABy − 3,

with u = r = s = 1 and t = 2 for output.

The same as in case IV.2.2. We proceed now to step 9. At this point we

have that pi | a2i, for i ∈ {1, 2, 3}. Set P = X3 +a2,1X2 +a4,2X +a6,3. It is easy

to see that a2,1 = 1 and that a4,2 ≡ 1 (mod 2), since a4 ≡ 4 (mod 8). Therefore

we have that, or P ≡ X3 +X2 +X ≡ X(X2 +X +1) (mod 2), which has simple

roots over F2, when a6,3 ≡ 0 (mod 2) or that P ≡ X3 +X2 +X +1 ≡ (X +1)3
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(mod 2),which has a triple root on a = 1, when a6,3 ≡ 1 (mod 2). Now a6,3 ≡ 0

(mod 2) ⇐⇒ a6 ≡ 0 (mod 16). This is verified when (2A2Bx, ABy) ≡

(6, 15), (14, 7) (mod 16). On the other hand when a6,3 ≡ 1 (mod 2) we have

that (2A2Bx, ABy) ≡ (6, 7), (14, 15) (mod 16). So for a6,3 ≡ 0 (mod 2) we are

finished and f2 = v − 4 ≥ 5, so it can only be Tate’s case 6, which implies that

v = 9, by using MAGMA we confirm that when (2A2Bx, ABy) ≡ (6, 15), (14, 7)

(mod 16), we have that v2(Czn) = 3. Now when a6,3 ≡ 1 (mod 2), we move

to step 10, with (2A2Bx, ABy) ≡ (6, 7), (14, 15) (mod 16). Using u1 = 1, r1 =

1, s1 = t1 = 0, we change coefficients, with u = 1, r = 3, s = 1, t = 4 for output.

So we have that

a′1 = 2, a′2 = 8, a′3 = 8,

a′4 = 3ABy + 19, a′6 = 2A2Bx + 9ABy + 11

Since a = 1 is a root of multiplicity 3 we move to step 11. At this point p2 | a3

and p4 | a6. So set P ≡ X2 + a3,2X + a6,4. Since a3,2 ≡ 0 (mod 2) then

P ≡ (X + 1)2 (mod 2) or P ≡ X2 (mod 2) both have roots of multiplicity

2. The root depends on the congruence a6,4 (mod 2). We have that a6,4 ≡

0 (mod 2) when (2A2Bx, ABy) ≡ (6, 23), (14, 15), (22, 7), (30, 31) (mod 32).

On the other hand, we have that a6,4 ≡ 1 (mod 2) when (2A2Bx, ABy) ≡

(6, 7), (14, 31), (22, 23), (30, 15) (mod 32). From now on we will divide in two

cases:

IV.2.4.1 (2A2Bx, ABy) ≡ (6, 23), (14, 15), (22, 7), (30, 31) (mod 32).

IV.2.4.2 (2A2Bx, ABy) ≡ (6, 7), (14, 31), (22, 23), (30, 15) (mod 32).

We will start with case IV.2.4.1. Since a = 0, we move on to step

13. If p4 | a4 set f2 = v − 7. So we have a4 ≡ 3ABy + 19 ≡ 3ABy + 3
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(mod 16). So if ABy ≡ 7 (mod 16) then a4 ≡ 8 (mod 16), while ABy ≡

15 (mod 16) then a4 ≡ 0 (mod 16). So for (2A2Bx, ABy) ≡ (6, 23), (22, 7)

(mod 32) we are finished, and f2 = v − 7 ≥ 2. Since v − 7 ≥ 3 we have that

v ≥ 10. So it can only be 7∗ with v = 11 and f2 = 4 or 9∗ with f2 = 3 and

v = 10. It’s easy see v2(b8(r)) ≥ 5 ⇐⇒ r ≡ 3 (mod 4), so a2(r, s) ≡ 0

(mod 4) has a solution, just consider s ≡ 1 (mod 2). So we are in case in

9∗. We could also see that v2(Czn) = 4 for this case. For the remaining case,

(2A2Bx, ABy) ≡ (14, 15), (30, 31) (mod 32) we move on to the next step. In

step 14 we need to know if p6 | a6 or not. If not then f2 = v − 8. Now

when do we have a6 ≡ 0 (mod 64)? Since we have that (2A2Bx, ABy) ≡

(14, 15, (30, 31) (mod 32) and a6 = 2A2Bx + 9ABy + 11, we have that a6 ≡

0 (mod 64) if and only if (2A2Bx, ABy) ≡ (14, 47), (30, 31), (46, 15), (62, 63)

(mod 64), and on the other hand we have that p6 ! a6 when (2A2Bx, ABy) ≡

(14, 15), (30, 63), (46, 47), (62, 31) (mod 64), for this case we have that f2 =

v − 8 ≥ 1. By Papadopoulos table we have that v − 8 ≥ 3 that is v ≥ 11, so we

are in case Tate 7∗ with f2 = 4 and v ≥ 12 or in case Tate 10∗ with f2 = 3 and

v = 11. Using MAGMA once again we see that when (2A2Bx, ABy) ≡ (14, 15),

(30, 63), (46, 47), (62, 31) (mod 64), v2(Czn) = 5 which implies that v = 11, so

we must be in Tate’s case 10∗. We just need to find r ∈ Z such that v2(b8(r)) ≥ 5,

which is true when r ≡ 3 (mod 4), and so since a2(r, s) ≡ 0 (mod 4), take

s ≡ 1 (mod 2), we have proved that we are in Tate’s case 10∗. For the remaining

case, (2A2Bx, ABy) ≡ (14, 47), (30, 31), (46, 15), (62, 63) (mod 64), we move

on to step 15. Using once again the formulas given in Table 5.1 with parameters

u1 = 2, r1 = 0, s1 = 0, t1 = 0,(for output we have u = 2, r = 3, s = 1, t = 4) we
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Table 5.6: v2(∆) = 12

.
m 2 3 4 5 6 ≥ 7

v2(z) 3 2 1 1 1 0
v2(C) 0 0 2 1 0 6

compute the new coefficients.

a′1 = 1, a′2 = 2, a′3 = 1,

a′4 = (3ABy + 19)/16, a′6 = (2A2Bx + 9ABy + 11)/64

We have that v ← v − 12 = v2(C) + nv2(z) − 6, since ∆ ← ∆/212, we have

that v2(c4) = v2(c6) = 0, since c4 ← c4/24 and c6 ← c6/26. So by Papadopoulos’

table we have that before changing the coefficients we were in a non minimal

case, now with the new coefficients, we are for sure in a minimal case since both

v2(c4) = v2(c6) = 0.

We now proceed to step 2. If v = 0 then f2 = 0. Now this happens

when v2(C) + nv2(z) = 6. Since n ≥ 2 and v2(C) ≤ n− 1 we have the following

cases where v = 0. So when (2A2Bx, ABy) ≡ (14, 47), (30, 31), (46, 15), (62, 63)

(mod 64) and m, z and C are as in the table we are done with f2 = 0, Tate’s

case 1. For the rest we move on to step 3. Since p ! a2
1 + 4a2 = 1 + 8 = 9, then

set f2 = 1, which corresponds in Papadopoulos’ table to Tate’s case 2. And we

are done with case IV.2.4.1, we move now to case IV.2.4.2.

For this case we have (2A2Bx, ABy) ≡ (6, 7), (14, 31), (22, 23), (30, 15)

(mod 32). Since a6,4 ≡ 1 (mod 2), we have that our polynomial P defined at

step 11, is such that P ≡ (X + 1)2 (mod 2). So it has a double root in a = 1.

Therefore we move on to step 12. Using parameters u1 = 1, r1 = 0, s1 = 0, t1 = 4,
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for output we will have u = 1, r = 3, s = 1, t = 8 we compute the new coefficients:

a′1 = 2, a′2 = 8, a′3 = 16,

a′4 = 3ABy + 11, a′6 = 2A2Bx + 9ABy − 37.

Proceed now to step 13. If p4 | a4 set f2 = v − 7. So we have a4 = 3ABy + 11.

So if ABy ≡ 7 (mod 16) then a4 ≡ 0 (mod 16), while ABy ≡ 15 (mod 16)

then a4 ≡ 8 (mod 16). So for (2A2Bx, ABy) ≡ (14, 31), (30, 15) (mod 32) we

are finished, and f2 = v − 7 ≥ 2. Since v − 7 ≥ 3 we have that v ≥ 10. So

it can only be 7∗ with v = 11 and f2 = 4 or 9∗ with f2 = 3 and v = 10. So

we just need to have an r ∈ Z such that v2(b8(r)) ≥ 5. If r ≡ 1, 2 (mod 4)

then we are in case 7∗ otherwise, when r ≡ 0, 3 (mod 4) we are in case 9∗,

since for the first set of congruences we will not find s ∈ Z such that for the

given r, a2(r, s) ≡ 0 (mod 4), while for the second set of congruences we will.

Using MAGMA we see that the congruence v2(b8(r)) ≥ 5 is satisfied only with

r ≡ 3 (mod 4) so it’s case 9∗. We could also see that v2(Czn) = 4 for this

case. For the remaining case, (2A2Bx, ABy) ≡ (6, 7), (22, 23) (mod 32) we

move on to the next step. As before, in step 14, we want to know if p6 | a6 or

not. If not then f2 = v − 8. Now when do we have a6 ≡ 0 (mod 64)? Since

we have that (2A2Bx, ABy) ≡ (6, 7), (22, 23) (mod 32) and a6 = 2A2Bx +

9ABy − 37, we have that a6 ≡ 0 (mod 64) if and only if (2A2Bx, ABy) ≡

(6, 39), (22, 23), (38, 7), (54, 55) (mod 64), and on the other hand we have that

p6 ! a6 when (2A2Bx, ABy) ≡ (6, 7), (22, 55), (38, 39), (54, 23) (mod 64), for

this case we have that f2 = v−8 ≥ 1. By Papadopoulos table we have that v−8 ≥

3 that is v ≥ 11, so we are in case Tate 7∗ with f2 = 4 and v ≥ 12 or in case de Tate

10∗ with f2 = 3 and v = 11. Using MAGMA once again we see that v = 11, since

that when we have (2A2Bx, ABy) ≡ (6, 7), (22, 55), (38, 39), (54, 23) (mod 64),
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we have that v2(Czn) = 5, so we can only be in Tate’s case 9∗. For the remaining

case, (2A2Bx, ABy) ≡ (6, 39), (22, 23), (38, 7), (54, 55) (mod 64), we move on

to step 15. Using once again the formulas given in Table 5.1 with parameters

u1 = 2, r1 = 0, s1 = 0, t1 = 0,(for output we have u = 2, r = 3, s = 1, t = 8) we

compute the new coefficients.

a′1 = 1, a′2 = 2, a′3 = 2,

a′4 = (3ABy + 11)/16, a′6 = (2A2Bx + 9ABy − 37)/64

And as before, we have that v ← v−12 = v2(C)+nv2(z)−6, since ∆ ← ∆/212,

we have that v2(c4) = v2(c6) = 0, since c4 ← c4/24 and c6 ← c6/26. As we have

seen in a similar case above, by Papadopoulos’ table we see that before changing

the coefficients we were in a non minimal case, now with the new coefficients, we

are for sure in a non-minimal case since both v2(c4) = v2(c6) = 0. We now proceed

to step 2. If v = 0 then f2 = 0. Now this happens when v2(C) + nv2(z) = 6.

Since n ≥ 2 and v2(C) ≤ n − 1, the cases where v = 0 are presented in Table

5.6. So when (2A2Bx, ABy) ≡ (6, 39), (22, 23), (38, 7), (54, 55) (mod 64) and

m, z and C are as in the table we are done with f2 = 0, Tate’s case 1. For the

rest we move on to step 3. Since p ! a2
1 +4a2 = 1+8 = 9, then set f2 = 1, which

corresponds in Papadopoulos’ table to Tate’s case 2. And we are finished with

case IV.2.4.2 as well with the case IV.2 We move now to the case IV.3 In this

case we have that v2(x) ≥ 1 and ABy ≡ 1 (mod 4), which implied that p2 | a6,

just to recall here are the coefficients at this point :

a1 = a2 = 2, a3 = 0, a4 = 3ABy + 3, and

a6 = 2A2Bx + 3ABy + 1.

Remember also that we have v2(c4) = 4, v2(c6) ≥ 7 and v = 6.
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We now move to step 6. First, we compute b8 = b8 + 3b6 + 3b4 + 3 =

−9A2B2y2 + 24A2Bx + 18ABy + 3. If p3 ! b8 then set f2 = v − 1. Now b8 ≡ 0

(mod 8) is equivalent to

−(3ABy)2 + 2ABy + 3 ≡ 0 (mod 8) ⇐⇒ 2 + 2ABy ≡ 0 (mod 8)

⇐⇒ 2ABy ≡ 6 (mod 8)

⇐⇒ ABy ≡ 3 (mod 4),

which is false, so p3 ! b8 and we are done with f2 = v − 1 = 5, Tate’s case 4∗.

Since for r ∈ Z such that r ≡ 1 (mod 4) we have that 2 ! a4 + r2, and for that

r p3 ! b8(r), we see that it’s Tate’s case 4∗. So case IV.3 is done. We move now

to case IV.4, where we have that

v2(x) ≥ 1, ABy ≡ 3 (mod 4), p2 ! a6

v = 6 v2(c4) = 4, v2(c6) ≥ 7

a1 = a2 = 2, a3 = 0, a4 = 3ABy + 3, and

a6 = 2A2Bx + 3ABy + 1.

Since p2 ! a6 we have that f2 = v = 6, which by Papadopoulos’ table we are i

case 3∗. It’s easy to see that a4 + r2 is even when r is odd and with t even we

have that t2 + a4a2 − a6 is even too. For this values of r and t do we have that

v2(a6(r, t)) ≥ 2? Remember that for this case a6(r, t) = a6 + ra4 + r3− t2. Since

4 | a6 and 4 | t2 we have that if 4 | a6(r, t) then 4 | 3ABy + 1, since r is odd, but

then ABy ≡ 1 (mod 4), which is not our assumption, then we are in case 3∗. So

we are finished for p = 2.
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5.2.3 Exponent for p = 3

Now we move on to the prime p = 3. We start by setting u ← 1, r ← 0, s ←

0, t ← 0,

v = v3(∆) =






6 + 3v3(A) if 3 | Ax,

6 + 2v3(B) if 3 | By,

6 + v3(C) + nv3(z) if 3 | Cz,

3 otherwise.

(5.7)

We move on to the next step. In step 2 if v = 0 then set f3 = 0 and we are finished.

From what we can see from above, v ≥ 3. So move on to the next step. For step 3

if p ! b2 then set f3 = 1 and we are finished. Since b2 = 0, we have to move on to

the next step. In step 4 set r1 ≡ −b6 (mod 3), s1 ≡ a1 (mod 3), t1 ≡ (a3 + ra1)

(mod 3). With these parameters compute the new a1, . . . , a6. Since a1 = a3 = 0

we have that s1 = 0 and t1 = 0. Now b6 = 8A2Bx ≡ 2A2Bx (mod 3). If

3 | ABx then r1 = 0. And so, we do not need to change our coefficients. If

3 ! ABx, then we can have A2Bx ≡ ±1 (mod 3). If A2Bx ≡ 1 (mod 3) we

have that b6 ≡ 2 (mod 3), then r1 = 1. In this case our coefficients will be

a′1 = 0, a′2 = 3, a′3 = 0,

a′4 = 3(ABy + 1), a′6 = 2A2Bx + 3ABy + 1.

If A2Bx ≡ 2 (mod 3), then r1 = 2. In this case we have the following coefficients

a′1 = 0, a′2 = 6, a′3 = 0,

a′4 = 3(ABy + 4), a′6 = 2A2Bx + 6ABy + 8.

So we have five possible cases

I : v3(A) = 1, so v3(b6) ≥ 1 and r1 = 0;
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II : v3(B) ≥ 1, so v3(b6) ≥ 1 and r1 = 0;

III : v3(A) = 0 and v3(x) ≥ 1, so v3(b6) ≥ 1 and r1 = 0;

IV : 3 ! ABx and A2Bx ≡ 1 (mod 3), which implies that r1 = 1;

V : 3 ! ABx and A2Bx ≡ 2 (mod 3), so we have that r1 = 2.

We move on to step 5 considering case I. So for this case we have r1 =

s1 = t1 = 0, so we don’t change our coefficients.

We proceed to step 5. If 32 ! a6, then set f3 = v and we are finished.

Since we have that 3 | A, then 32 | 2A2Bx = a6. We proceed then to step 6. If

p3 ! b8 then set f3 = v − 1 and we have finished. We have that b8 = −9A2B2y2.

Clearly we have that p3 | b8. We proceed to the step 7. If p3 ! b6, then set

f3 = v − 2 and we are finished. Now b6 = 8A2Bx, v3(b6) ≥ 3 if and only if

v3(A) = 1 and v3(x) ≥ 1. So when we have v3(A) = 1 and v3(x) = 0 we are

finished with f3 = v − 2 = 4, Tate’s case 5. So we proceed to the next step

with the case where v3(A) = 1 and v3(x) ≥ 1. We are now in step 8. Does

p3 ! a6? Since we have v3(A) = 1 and v3(x) ≥ 1 it does, so we move on to the

step 9. At this point we must have pi | a2i, with i ∈ {1, 2, 3}, which it is true.

Set P = X3 + a2,1X2 + a4,2X + a6,3. As we have that a2 = 0 and v3(a4) = 2, we

then have that a2,1 = 0 and a4,2 ≡ 1, 2 (mod 3). Now, v3(a6) ≥ 4 if and only if

v3(x) ≥ 2. So we have that a6,3 ≡ 0, 1, 2 (mod 3). So P (mod 3) can be of the

following ones:

• P ≡ X3 + X ≡ X(X2 + 1) (mod 3);

• P ≡ X3 + X + 1 ≡ (X + 2)(X2 + X + 1) (mod 3);

• P ≡ X3 + X + 2 ≡ (X + 1)(X2 + 2X + 2) (mod 3);
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• P ≡ X3 + 2X ≡ X(X + 1)(X + 2) (mod 3);

• P ≡ X3 + 2X + 1 (mod 3);

• P ≡ X3 + 2X + 1 (mod 3).

It is easy to see that in all possibilities for P we have that P has simple roots over

F3. So we re finished with f3 = v − 4 = 2, Tate’s case 6.

We turn to case II, where we have that v3(B) ≥ 1, r1 = s1 = t1 = 0, so

no need to change coefficients, that is our coefficients are:

a1 = a2 = a3 = 0, a4 = 3ABy, and a6 = 2A2Bx.

We also have the following information:

v3(c4) ≥ 3, v3(c6) ∈ {4, 5} and v ∈ {5, 7}

We proceed to step 5. If p2 ! a6 then f3 = v. Now a6 = 2A2Bx,

p2 | a6 ⇐⇒ v3(B) = 2. So if v3(B) = 1 we have that f3 = v = 5, Tate’s

case 3. For v3(B) = 2 we move to the next step. For step 6 we compute

b8 = −(3ABy)2, since v3(B) = 2 we have that p3 | b8. Move to step 7. If p3 ! b6,

then set f3 = v − 2. Now b6 = 8A2Bx, and clearly we have that v3(b6) = 2, so

p3 ! b6 and f3 = v − 2 = 5, which by Papadopoulos’ table corresponds to Tate’s

case 5. Case II is done, we move on to case III.

In this case we have that v3(x) ≥ 1 and v3(A) = 0. So r1 = 0 and we

don’t change coefficients. We also have that v3(c4) = 2, v3(c6) ≥ 4 and v = 3.

We proceed now to step 5. If p2 ! a6 then set f3 = v. Since a6 = 2A2Bx, we

have that p2 ! a6 if and only if v3(x) = 1, and in this case f3 = v = 3, Tate’s case

3. When we have v3(x) ≥ 2, then p2 | a6 and we move on to step 6. Compute

now b8 = −9A2B2y2. In this case we have that v3(b8) = 2, therefore p3 ! b8 and
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so f3 = v − 1 = 2, Tate’s case 4. And we are done with case III. Proceed now to

case IV.

First of all, let us recall that in this case we have that v3(ABx) = 0, and

A2Bx ≡ 1 (mod 3), so r1 = 1 and we have to change our coefficients. These are

our new coefficients:

a1 = 0, a2 = 3, a3 = 0, a4 = 3ABy + 3, and

a6 = 2A2Bx + 3ABy + 1.

About the values of v3(c4), v3(c6) and v we have the following cases:

• If 3 | y then v3(c4) ≥ 3, v3(c6) = 3 and v = 3.

• If 3 | Cz then v3(c4) = 2, v3(c6) = 3 and v ≥ 4.

• If 3 ! Cyz then v3(c4) = 2, v3(c6) = 3 and v = 3.

We move on to the next step. We are now in Step 5. If p2 ! a6, then set

f3 = v and we are finished. a6 = 2A2Bx+3ABy+1, recall that we have 3 ! ABx

and A2Bx ≡ 1 (mod 3). If 3 | y then 9 | 3ABy and so, in order to have 9 | a6

we must have that 2A2Bx+1 ≡ 0 (mod 9), that is A2Bx ≡ 4 (mod 9). If 3 ! y,

then A2Bx ≡ 1, 4 or 7 (mod 9). Consider first that A2Bx ≡ 1 (mod 9), then

in order to have a6 ≡ 0 (mod 9) we must have 3ABy ≡ 6 (mod 9). Turning

now to the case A2Bx ≡ 4 (mod 9) we get that 3ABy ≡ 0 (mod 9) in order

to have p2 | a6, which implies that 3 | y. And finally when we have A2Bx ≡ 7

(mod 9), if we have a6 ≡ 0 (mod 9) then we have that 3ABy ≡ 3 (mod 9).

So when (A2Bx, 3ABy) ≡ (1, 6), (7, 3), (4, 0) (mod 9), we have p2 | a6. On the

other hand when we have (A2Bx, 3ABy) ≡ (1, 0), (1, 3), (4, 3), (4, 6), (7, 0), (7, 6)

(mod 9) we have that p2 ! a6, so we have finished for these cases, with f3 = v. By

Papadopoulos we can be in case Tate 3 not P2, with f3 = v = 3 or in case Tate 4,
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with f3 = v = 4. Using MAGMA, we see that when (A2Bx, 3ABy) ≡ (4, 6), (7, 6)

(mod 9) then v3(Czn) = 1, while for the other cases v3(Czn) = 0, that is, for all

the numbers A, x,B, y in {0, 1, . . . , 8} such that assumptions above are verified,

we have that Ax2 +By3 ≡ 3 or 6 (mod 9). So for (A2Bx, 3ABy) ≡ (4, 6), (7, 6)

(mod 9) we are in Tate’s case 4. For the remaining ones, to show that we are in

case Tate 3 not P2, we must see that there is no r ∈ Z such that

r3 + b2r
2 + 8b4r + 16b6 ≡ 0 (mod 32).

This is easily verified with a simple algorithm implemented on MAGMA. Also using

MAGMA we see that when (A2Bx, 3ABy) ≡ (4, 0), (7, 3) (mod 9), v3(Czn) =

0 implying that v = 3 and that when (A2Bx, 3ABy) ≡ (1, 6) (mod 9) then

v3(Czn) ≥ 2, that is v ≥ 5. We move now to step 6. If p3 ! b8, set f3 = v − 1

and we are finished. We have that b8 = −9A2B2y2 +24A2Bx+18ABy+3. Now

p3 | b8 ⇐⇒ (A2Bx, 3ABy) ≡ (1, 6) (mod 9), and so for (A2Bx, 3ABy) ≡

(4, 0), (7, 3) (mod 9) we have finished with f3 = v − 1 = 2, and so we are in

case Tate 4 P2. In fact, for these cases we have that the congruence r3 + b2r2 +

8b4r + 16b6 ≡ 0 (mod 9) has a solution for some r ∈ Z. So we are still left with

(A2Bx, 3ABy) ≡ (1, 6) (mod 9). Proceed then to step 7. If p3 ! b6 then set f3 =

v−2 and we are finished. In this case we have b6 = 8A2Bx+12ABy+4. So p3 | b6

if and only if (A2Bx, 3ABy) ≡ (1, 24), (10, 6), (19, 15) (mod 27). Therefore p3 !

b6 if and only if (A2Bx, 3ABy) ≡ (1, 6), (1, 15)(10, 15), (10, 24)(19, 6), (19, 24)

(mod 27), so for these case we are finished with f3 = v − 2 ≥ 3. By Tate’s

case 5, with v = 5 and f3 = 3. In fact, using MAGMA, it’s possible to see that

for these cases we have v3(Czn) = 2. For the remaining cases we move to step

8. If p3 ! a6, set k ≡ a3 (mod 9), but since a6 = 2A2Bx + 3ABy + 1, and

we have that b6 = 4a6, so since p3 | b6 we have that p3 | a6. So we move to

195



the next step. As before, we now have that p | a2, p2 | a4 and p3 | a6. Set

P = X3 + a2,1X2 + a4,2X + a6,3. We clearly see that a2,1 ≡ 1 (mod 3), and

that a4,2 ≡ 0, 1, 2 (mod 3) if 3ABy ≡ 24, 6, 15 (mod 27) respectively. Now let

us take a look at a6,3 (mod 3). When we have that 3ABy ≡ 24 (mod 3), then

a6,3 = 0 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (1, 78), (28, 24), (55, 51) (mod 81)

a6,3 = 1 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (1, 24), (28, 51), (55, 78) (mod 81)

a6,3 = 2 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (1, 51), (28, 78), (55, 24) (mod 81)

When we have that 3ABy ≡ 6 (mod 27), we have that

a6,3 = 0 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (10, 60), (37, 6), (64, 33) (mod 81)

a6,3 = 1 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (10, 6), (37, 33), (64, 60) (mod 81)

a6,3 = 2 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (10, 33), (37, 60), (64, 6) (mod 81)

And finally, when 3ABy ≡ 15 (mod 27), we have that

a6,3 = 0 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (19, 42), (46, 69), (73, 15) (mod 81)

a6,3 = 1 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (19, 69), (46, 15), (73, 42) (mod 81)

a6,3 = 2 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (19, 15), (46, 42), (73, 69) (mod 81)

Now let us take a look at P (mod 3). When (A2Bx, 3ABy) ≡ (1, 78), (28, 24),

(55, 51) (mod 81), we have that P ≡ X3 + X2 = X2(X + 1) (mod 3), which

has a double root a = 0 in F3. For (A2Bx, 3ABy) ≡ (1, 24), (28, 51), (55, 78)

(mod 81), we have that P ≡ X3 + X2 + 1 = (X + 2)(X2 + 2X + 2), which has

simple roots over F3. In the case (A2Bx, 3ABy) ≡ (1, 51), (28, 78), (55, 24)

(mod 81), our polynomial is of the form P ≡ X3 + X2 + 2 (mod 3), that

has simple roots over F3. We have that P ≡ X3 + X2 + X = X(X + 2)2

(mod 3), that has a double root a = 1 over F3, when we are in the case
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(A2Bx, 3ABy) ≡ (10, 60), (37, 6), (64, 33) (mod 81). On the other hand P ≡

X3 + X2 + X + 1 ≡ (X + 1)(X2 + 1) (mod 3), which has simple roots over

F3, when (A2Bx, 3ABy) ≡ (10, 6), (37, 33), (64, 60) (mod 81). The polyno-

mial is of the form P ≡ X3 + X2 + X + 2 (mod 3), which also has simple

roots over F3 when (A2Bx, 3ABy) ≡ (10, 33), (37, 60), (64, 6) (mod 81). Now,

we have that P ≡ X3 + X2 + 2X ≡ X(X2 + X + 2) (mod 3), with sim-

ple roots over F3, when (A2Bx, 3ABy) ≡ (19, 42), (46, 69), (73, 15) (mod 81).

While for (A2Bx, 3ABy) ≡ (19, 69), (46, 15), (73, 42) (mod 81), we see that

P ≡ X2 + X2 + 2X + 1 (mod 3), which turns out to have simple roots over

F3. And finally, when (A2Bx, 3ABy) ≡ (19, 15), (46, 42), (73, 69) (mod 81), we

have that P ≡ X3 + X2 + 2X + 2 ≡ (X + 2)(X + 1)2 (mod 3), which has a

double root. Now looking to algorithm for the case p = 3, when it has a double

root, we proceed after step 10, to step 16, where we find out that f3 = 2, Tate’s

case 7 according to Papadopoulos’ table. And as before when P has simple roots,

f = v − 4 ≥ 2. Using MAGMA, we see that for the cases where our polynomial P

has simple roots we have that v3(Czn) = 3, so we have that v = 6 and f3 = 2,

so we are in case Tate 6. When P has double roots we see that v3(Czn) ≥ 7 so

v ≥ 7. So we are done with case IV. We turn to case V

First of all, let us recall that in this case we have that v3(ABx) = 0, and

A2Bx ≡ 2 (mod 3), so r1 = 2 and we have to change our coefficients. These are

our new coefficients:

a1 = 0, a2 = 6, a3 = 0, a4 = 3ABy + 12, and

a6 = 2A2Bx + 6ABy + 8.

About the values of v3(c4), v3(c6) and v, just in case IV, we have the following

cases:
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• If 3 | y then v3(c4) ≥ 3, v3(c6) = 3 and v = 3.

• If 3 | Cz then v3(c4) = 2, v3(c6) = 3 and v ≥ 4.

• If 3 ! Cyz then v3(c4) = 2, v3(c6) = 3 and v = 3.

We move on to the next step. In step 5 if p2 ! a6, then set f3 = v and we are

finished. We have that a6 = 2A2Bx+6ABy+8, recall that we have also 3 ! ABx

and A2Bx ≡ 12 (mod 3). If 3 | y then 9 | 6ABy and so, in order to have 9 | a6

we must have that 2A2Bx+8 ≡ 0 (mod 9), that is A2Bx ≡ 5 (mod 9). If 3 ! y,

then A2Bx ≡ 2, 5 or 8 (mod 9). Consider first that A2Bx ≡ 2 (mod 9), then

in order to have a6 ≡ 0 (mod 9) we must have 3ABy ≡ 3 (mod 9). Turning

now to the case A2Bx ≡ 5 (mod 9) we get that 3ABy ≡ 0 (mod 9) in order

to have p2 | a6, which implies that 3 | y. And finally when we have A2Bx ≡ 8

(mod 9), if we have a6 ≡ 0 (mod 9) then we have that 3ABy ≡ 6 (mod 9).

So when (A2Bx, 3ABy) ≡ (2, 3), (5, 0), (8, 6) (mod 9), we have p2 | a6. On the

other hand when we have (A2Bx, 3ABy) ≡ (2, 0), (2, 6), (5, 3), (5, 6), (8, 0), (8, 3)

(mod 9) we have that p2 ! a6, so we have finished for these cases, with f3 = v. By

Papadopoulos we can be in case Tate 3 not P2, with f3 = v = 3 or in case Tate 4,

with f3 = v = 4. Using MAGMA, we see that when (A2Bx, 3ABy) ≡ (5, 6), (2, 6)

(mod 9) then v3(Czn) = 1, whille for the other cases v3(Czn) = 0. So for

(A2Bx, 3ABy) ≡ (2, 6), (5, 6) (mod 9) we are in Tate’s case 4. For the remaining

ones, to show that we are in case Tate 3 not P2, we must see that there is no

r ∈ Z such that

r3 + b2r
2 + 8b4r + 16b6 ≡ 0 (mod 32).

This is easily verified with a simple algorithm implemented on MAGMA. Also using

MAGMA we see that when (A2Bx, 3ABy) ≡ (2, 3), (5, 0) (mod 9), v3(Czn) = 0
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implying that v = 3 and that when (A2Bx, 3ABy) ≡ (8, 6) (mod 9) then

v3(Czn) ≥ 2, that is v ≥ 5. We move now to step 6. If p3 ! b8, set f3 = v−1 and

we are finished. We have that b8 = −9A2B2y2 + 48A2Bx + 72ABy + 48. Now

p3 | b8 ⇐⇒ (A2Bx, 3ABy) ≡ (8, 6) (mod 9), and so for (A2Bx, 3ABy) ≡

(2, 3), (5, 0) (mod 9) we have finished with f3 = v − 1 = 2, and so we are in

case Tate 4 P2. In fact, for these cases we have that the congruence r3 + b2r2 +

8b4r + 16b6 ≡ 0 (mod 9) has a solution for some r ∈ Z. So we are still left with

(A2Bx, 3ABy) ≡ (8, 6) (mod 9). Proceed then to step 7. If p3 ! b6 then set f3 =

v−2 and we are finished. In this case we have b6 = 8A2Bx+24ABy+32. So p3 |

b6 if and only if (A2Bx, 3ABy) ≡ (8, 15), (17, 6), (26, 24) (mod 27). Therefore

p3 ! b6 if and only if (A2Bx, 3ABy) ≡ (8, 6), (8, 24)(17, 15), (17, 24)(26, 6), (26, 15)

(mod 27), so for these case we are finished with f3 = v − 2 ≥ 3. By Tate’s case

5, with v = 5 and f3 = 3. In fact, using MAGMA, it’s possible to see that for

this cases we have v3(Czn) = 2. For the remaining cases we move to step 8.

If p3 ! a6, set k ≡ a3 (mod 9), but since a6 = 2A2Bx + 6ABy + 8, and we

have that b6 = 4 ∗ a6, so since p3 | b6 we have that p3 | a6. So we move to

the next step. As before, we now have that p | a2, p2 | a4 and p3 | a6. Set

P = X3 + a2,1X2 + a4,2X + a6,3. We clearly see that a2,1 ≡ 2 (mod 3), and

that a4,2 ≡ 0, 1, 2 (mod 3) if 3ABy ≡ 15, 24, 6 (mod 27) respectively. Now

let us take a look at P (mod 3). When a4,2 ≡ 0 and a6,3 = 0, we have that

P ≡ X3 + 2X2 = X2(X + 2) (mod 3), which has a double root a = 0 in F3.

For a4,2 ≡ 0 and a6,3 = 1„ we have that P ≡ X3 + 2X2 + 1 (mod 3), which has

simple roots over F3. In the case a4,2 ≡ 0 and a6,3 = 0„ our polynomial is of the

form P ≡ X3 +2X2 +2 ≡ (X +1)(X2 +X +2) (mod 3), that has simple roots

over F3. We have that P ≡ X3 + 2X2 + X = X(X + 1)2 (mod 3), that has a

double root a = 2 over F3, when we are in the case a4,2 ≡ 1 and a6,3 = 0. On
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the other hand P ≡ X3 + 2X2 + X + 1 (mod 3), which has simple roots over

F3, when a4,2 ≡ 1 (mod 3) and a6,3 ≡ 1 (mod 3). The polynomial is of the form

P ≡ X3 +2X2 +X +2 ≡ (X +2)(X2 +1) (mod 3), which also has simple roots

over F3 when we have a4,2 ≡ 1 (mod 3) and a6,3 ≡ 2 (mod 3). Now, we have

that P ≡ X3 + 2X2 + 2X ≡ X(X2 + 2X + 2) (mod 3), with simple roots over

F3, when a4,2 ≡ 2 (mod 3) and a6,3 = 0 (mod 3). While for a4,2 ≡ 2 (mod 3)

and a6,3 = 1 (mod 3), we see that P ≡ X2 + 2X2 + 2X + 1 = (X + 2)(X + 1)2

(mod 3), which has a double root a = 2 in F3. And finally, when a4,2 ≡ 2

(mod 3) and a6,3 = 2 (mod 3), we have that P ≡ X3 + X2 + 2X + 2 (mod 3),

which has simple roots. Now using MAGMA, once again, we are able to which cases

of (A2Bx, 3ABy) (mod 81) correspond to each of the polynomials mentioned

above. Here is the list, we start with the cases where 3ABy ≡ 15 (mod 27), then

a6,3 = 0 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (8, 69), (35, 42), (62, 15) (mod 81)

a6,3 = 1 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (8, 42), (35, 15), (62, 69) (mod 81)

a6,3 = 2 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (8, 15), (35, 69), (62, 42) (mod 81)

When we have that 3ABy ≡ 24 (mod 27), we have that

a6,3 = 0 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (26, 51), (53, 24), (80, 78) (mod 81)

a6,3 = 1 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (26, 24), (53, 78), (80, 51) (mod 81)

a6,3 = 2 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (26, 78), (53, 51), (80, 24) (mod 81)

And finally, when 3ABy ≡ 6 (mod 27), we have that

a6,3 = 0 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (17, 60), (44, 33), (71, 6) (mod 81)

a6,3 = 1 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (17, 33), (44, 6), (71, 60) (mod 81)

a6,3 = 2 (mod 3) ⇐⇒ (A2Bx, 3ABy) ≡ (17, 6), (44, 60), (71, 33) (mod 81)
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Same as in case IV, we have that by looking at the algorithm for the case p = 3,

when it has a double root, we proceed after step 10, to step 16, where we find

out that f3 = 2, Tate’s case 7 according to Papadopoulos’ table. And as before

when P has simple roots, f = v − 4 ≥ 2. Using MAGMA, we see that for the cases

where our polynomial P has simple roots we have that v3(Czn) = 3, so we have

that v = 6 and f3 = 2, so we are in case Tate 6. When P has double roots we

see that v3(Czn) ≥ 7 so v ≥ 7. So we are done with case V.

5.2.4 Exponent for p ≥ 5

Now we turn to the case when p is a prime greater or equal to 5. For that we

apply Algorithm 5.1.1. Now we set v = vp(∆), so we have that

v =






3vp(A) if 3 | ax,

2vp(B) if 3 | By,

vp(C) + nvp(z) if 3 | Cz,

1 othwerise.

(5.8)

We start our algorithm. First we compute c4 = −2432ABy, c6 = −2632A2Bx,

∆ = −2633A3B2Czn and j = 2633By3/Czn. If vp(j) < 0 set k = v − vp(j),

else set k = v. Move on to the next step. In step 2 we re-arrange the equation to

transform it in a minimal one. Is k < 12? If vp(j) < 0 then k = vp(j) + vp(∆) =

−vp(∆) + vp(∆), since we only have vp(j) < 0 if p | Czn. Otherwise p | AB

and due to our assumptions we have that 3vp(A) ≤ 3 and 2vp(B) ≤ 4, so we

have that k < 12. Set u ← 1, r ← 0, s ← 0 and t ←. We proved to step 3. If

vp(j) < 0, that is when p | Cz, then set v1 = −vp(j). So in this case we have

that v ≥ 1, vp(c4) = vp(c6) = 0. By Papadopoulos we have that we can only be

in case Tate 2, with v ≥ 1 and fp = 1. k must be equal to 0 or 6. In this case we
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have that k = vp(∆) + vp(j) = vp(C) + nvp(z)− vp(C)− nvp(z) = 0 (mod 12).

So fp = 1, as predicted by Papadopoulos. If vp(j) ≥ 0, that is p | By, p | Ax, or

p ! ABCxyz we move to step 4. Now if p | Ax then vp(j) = 0, v = 3vp(A) ≥ 0,

vp(c4) = vp(A) ≥ 0 and vp(c6) = 2vp(A) + vp(x) ≥ 1. If we have that p | By

then vp(j) ≥ 1, v = 2vp(B) ≥ 0, vp(c4) = vp(By) ≥ 1 and vp(v6) = vp(B) ≥ 0.

When p ! ABCxyz then vp(j) = v = vp(c4) = vp(c6) = 0. Then first if k = 0

then fp = 0, that is when p ! ABCz, case Tate 1, else fp = 2, that is when

p | AB, case Tate 3,4,5. So the conductor of our Frey curve E(2,3,n) is given by

the following formula

NE(2,3,n)
= 2f23f3

∏

p≥5prime ,
p|ABCz

pfp

where f2, f3 and fp are given in the following tables, Table 5.7, Table 5.8 and

Table 5.9. In Table 5.8 R1 and R2 stand for the following lists:

R1 : {(1, 24), (1, 51), (8, 15), (8, 42), (10, 6), (10, 33), (17, 6), (17, 60), (19, 42),

(19, 69), (26, 24), (26, 78), (28, 51), (28, 78), (35, 15), (35, 69), (37, 33), (37, 60),

(44, 33), (44, 60), (46, 15), (46, 69), (53, 51), (53, 78), (55, 24), (55, 78), (62, 42),

(62, 69), (64, 6), (64, 60), (71, 6), (71, 33)(73, 15), (73, 42), (80, 24), (80, 51)},

R2 : {(1, 78), (8, 69), (10, 60), (17, 33), (19, 15), (26, 51), (28, 24), (35, 42), (37, 6),

(44, 6), (46, 42), (53, 24), (55, 51), (62, 15), (64, 33), (44, 6), (73, 69), (80, 78)}.

With this we have completed the proof of Theorem 5.1

5.3 Final comments

We wanted to use this Frey curve and the possible levels for the newform to

eliminate some exponents for the cases we are left with, especially the cases where
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Table 5.9: Values of the exponent for the conductor with p ≥ 5
vp(A) vp(x) vp(B) vp(y) vp(Czn) (vp,4

a, vp,6
b, vc) vp(j) fp TCd

0 0 0 0 ≥ 1 (0, 0,≥ 1) ≤ −1 1 2
1 ≥ 0 0 0 0 (1,≥ 2, 3) 0 2 4
0 ≥ 1 0 0 0 (0,≥ 1, 0) 0 0 1
0 0 1 ≥ 0 0 (≥ 1, 1, 2) 1 2 3
0 0 2 ≥ 0 0 (≥ 2, 2, 4) 2 2 5
0 0 0 ≥ 1 0 (≥ 1, 0, 0) ≥ 3 0 1

avp(c4)
bvp(c6)
cv := vp(∆)
dTate’s Case

Table 5.10: Possible values for Np

D Np

33 2α2 × 35 × 112

41 2α2 × 3α3 × 412

57 2α2 × 35 × 192

68 26 × 3β3 × 172

73 2α2 × 3β3 × 732

90 27 × 35 × 52

97 2α2 × 3β3 × 972

98 27 × 3α3 × 72

D is not a square plus or minus one. But unfortunately nowadays there is not

enough computational power to calculate the newforms and eliminated them using

the level lowering method (Method I). The reason for this is the high level for the

possible newforms, we present a table with the possible values of Np for each case

of D still left to eliminate, and where we think there are no integral solutions.

Hopefully in a nearby future, there will be enough computational power to

calculate the newforms pretended as well use the Methods exposed in Chapter 3

to help us find all the solutions for the values of D given in the Table 5.10.
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Appendix A

Tables with the final results

Table A.1: Solutions for x2 + D = yn with D in the range (R) and n ≥ 2 and that are
completely solved

D Solutions (|x|, y, n)

-1 (1, 0, n), (0,−1, n) with n odd , (3, 2, 3)
-4 (2, 0, n), (6, 2, 5)
-6
-7 (4,±3, 2)
-9 (3, 0, n), (5,±4, 2), (5,±2, 4), (15, 6, 3), (1,−2, 3), (253, 40, 3), (6, 3, 3)
-11 (6,±5, 2), (56, 5, 5)
-12 (4,±2, 2), (2,−2, 3), (47, 1± 3, 2)
-13 (7,±6, 2), (16, 3, 5)
-14
-16 (4, 0, n), (5,±3, 2), (12, 2, 7)
-18 (19, 7, 3)
-19 (10,±9, 2), (12, 5, 3)
-20 (6,±4, 2), (6,±2, 4)
-21 (5,±2, 2), (11,±10, 2)
-22 (7, 3, 3), (47, 3, 7)
-23 (12,±11, 2)
-25 (5, 0, n), (13,±12, 2),
-27 (6, 3, 2), (14,±13, 2), (0,−3, 3)
-28 (8,±6, 2), (1,−3, 3), (6, 2, 3)
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-29 (15,±14, 2)
-30 (83, 19, 3)
-31 (16,±15, 2), (2,−3, 3)
-32 (9,±7, 2), (6,±2, 2), (8, 2, 5), (0,−2, 5)
-34
-36 (6, 0, n), (10,±8, 2), (3,−3, 3), (10, 4, 3), (42, 12, 3), (2,−2, 5)(10,±2, 6)
-38 (37, 11, 3)
-39 (8,±5, 2), (20,±19, 2)
-40 (11,±9, 2), (7,±3, 2), (16, 6, 3), (11,±3, 4)
-42
-43 (22,±21, 2), (4,−3, 3)
-44 (12,±10, 2), (6,−2, 3), (13, 5, 3)
-45 (7,±2, 2), (9,±6, 2), (23,±22, 2)
-46 (17, 3, 5)
-47 (24,±23, 2)
-49 (7, 0, n), (25,±24, 2), (9, 2, 5)
-51 (10,±7, 2), (26,±25, 2), (26,±5, 4)
-52 (14,±12, 2), (5,−3, 3)
-53 (27,±26, 2)
-54 (9, 3, 3)
-55 (8,±3, 2), (28,±27, 2), (28, 9, 3), (28,±3, 6)
-56 (9,±5, 2), (15,±13, 2), (8, 2, 3)
-58
-59 (30,±29, 2)
-60 (8,±2, 2), (16,±14, 2)
-61 (31,±30, 2)
-62
-64 (8, 0, n), (10,±6, 2), (1,±15, 2), (0,−4, 3), (24, 8, 3), (24, 2, 9)
-66
-67 (34,±33, 2)
-69 (13,±10, 2), (35,±34, 2),
-70
-71 (36,±35, 2), (14, 5, 3),
-72 (9,±3, 2), (11,±7, 2), (19,±17, 2), (8,−2, 3)
-74
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-75 (10,±5, 2), (14,±11, 2), (38,±37, 2)
-76 (20,±18, 2), (7,−3, 3),
-77 (9,±2, 2), (39,±38, 2)
-78
-79 (40,±39, 2), (302, 45, 3)
-81 (9, 0, n), (41,±40, 2), (7,−2, 5), (18, 3, 5)
-83 (42,±41, 2)
-84 (10,±4, 2), (22,±20, 2)(10,±2, 4)
-85 (11,±6, 2), (43,±42, 2)
-86
-87 (16,±13, 2), (44,±43, 2),
-88 (13,±9, 2), (23,±21, 2), (13,±3, 4)
-89 (45,±44, 2), (5,±4, 3), (9,−2, 3), (33, 10, 3), (408, 55, 3), (11, 2, 5)
-91 (10,±3, 2), (46,±45, 2), (8,−3, 3)
-92 (24,±22, 2), (10, 2, 3)
-93 (17,±14, 2), (47,±46, 2), (130, 7, 5)
-94 (11, 3, 3), (421, 3, 11)
-95 (12,±7, 2), (48,±47, 2)
-96 (10,±2, 2), (11,±5, 2), (14,±10, 2), (25,±23, 2), (8,−2, 5)

-100 (10, 0, n), (26,±24, 2), (6,−4, 3), (15, 5, 3), (90, 20, 3), (118, 24, 3),
(137190, 2660, 3)
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Table A.2: Solutions for x2 + D = yn with D in the range (R) and n ≥ 2 and that are
not completely solved

D Solutions (|x|, y, n)

-2 (1,−1, n), with n odd
-3 (2, 1, n)
-5 (2,−1, n), with n odd, (3, 2, 2)
-8 (3, 1, n), (4, 2, 3), (312, 46, 3), (0,−2, 3)
-10 (3,−1, n) with n odd,
-15 (4, 1, n), (8,±7, 2), (1138, 109, 3),

-17 (4,−1, n), with n odd,(9,±8, 2), (9, 4, 3), (3, 2, 3), (5, 2, 3), (23, 8, 3),
(282, 43, 3), (375, 52, 3), (378661, 5234, 3), (9, 2, 6)

-24 (5, 1, n), (7,±5, 2), (4,−2, 3), (32, 10, 3), (736844, 8158, 3)
-26 (5,−1, n) with n odd, (2537, 23, 5)
-33 (7,±4, 2), (17,±16, 2), (7,±2, 4), (17,±4, 4), (17,±2, 8), (5,−2, 3), (1,−2, 5)
-35 (6, 1, n), (18,±17, 2)

-37 (6,−1, n) with n odd, (19,±18, 2), (8, 3, 3), (3788, 243, 3), (3788, 27, 5)
(3788, 3, 15)

-41 (21,±20, 2), (7, 2, 3), (3,−2, 5), (13, 2, 7)
-48 (7, 1, n), (8,±4, 2), (13,±11, 2), (8,±2, 4), (4,−2, 5)
-50 (7,−1, n) with n odd,
-57 (11,±8, 2), (29,±28, 2), (5,−2, 5), (7,−2, 3), (11, 4, 3), (20, 7, 3), (11,±2, 6)
-63 (8, 1, n), (12,±9, 2), (32,±31, 2), (6,−3, 3), (12,±3, 4)

-65 (8,−1, n) with n odd, (9,±4, 2), (33,±32, 2), (1,−4, 3), (14113, 584, 3),
(9,±2, 4), (33, 4, 5), (33,±2, 10)

-68 (18,±16, 2), (2,−4, 3), (1874, 152, 3), (18,±4, 4), (14, 2, 7), (18,±2, 8),
(4,−2, 11)

-73 (37,±36, 2), (3,−4, 3), (9, 2, 3), (10, 3, 3), (17, 6, 3), (611, 72, 3), (6717, 356, 3),
(37,±6, 4)

-80 (9, 1, n), (12,±8, 2), (21,±19, 2), (4,−4, 3), (12, 4, 3), (292, 44, 3), (12,±2, 6)
-82 (8,−1, n) with n odd,
-90
-97 (49,±48, 2), (15, 2, 7)
-98 (21, 7, 3),
-99 (10, 1, n), (18,±15, 2), (50,±49, 2), (50,±7, 4)
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Appendix B

Magma code

In this appendix we give implementations for MAGMA of our algorithms to solve

(LN). Note that sometimes the symbols used in the programs are different than

those used in the main text.

B.1 Algorithm to compute the solutions of the equation

x2 + D = y2

In this section we implement the algorithm described in section 2.2.4 to find all

the solutions of x2 + D = y2, with −100 ≤ D ≤ 100 and D $= 0.

f o r D i n [−100. .−1] ca t [ 1 . . 1 0 0 ] do

S :={};

f o r d i n D i v i s o r s ( Abs (D) ) do

a :=(D d i v d)+d ;

i f I sEven ( a ) then

S:=S j o i n { [ a d i v 2 , ( a−2∗d ) d i v 2] , [− a d i v 2 , ( a−2∗d ) d i v 2 ] } ;

end i f ;

end f o r ;

p r i n t f " the s o l u t i o n s o f the equa t i on x^2−1∗%o=y^2 , a r e the f o l l o w i n g
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\n [ x , y ]:=%o\n" , D, S ;

end f o r ;

B.2 Algorithm to compute the solutions of the equation

x2 + D = y3

As we have said in section 2.5.1, MAGMA has a method already implemented to find

integral points on a elliptic curve. So we use that function in order to find all the

solutions of x2 + D = y3. The algorithm is the following.

f o r D i n [−100. .−1] ca t [ 1 . . 1 0 0 ] do

E:= E l l i p t i c C u r v e ( [ 0 ,D ] ) ;

I n tP t s := I n t e g r a l P o i n t s (E ) ;

S :={[P [ 2 ] , P [ 1 ] ] : P i n I n tP t s } ;

p r i n t f " the s o l u t i o n s o f the equa t i on x^2−1∗%o=y^3 , a r e the f o l l o w i n g

\n [ x , y ]:=%o\n" , D, S ;

end f o r ;

B.3 Code for Thue equations method

In this section we will present all the functions needed to solve the equation 2.2

using Thue equations as described in section 2.2.

B.3.1 Basic arithmetic function

We start by defining a function Primefactors, where given a number n as input

we have as output the set of the prime factors of n, when n = 0 or 1, then the

output is the empty set. This function we will also be needed in section B.4.
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P r ime f a c t o r s := f u n c t i o n ( n )

i f n eq 0 or Abs ( n ) eq 1 then

r e t u r n {} ;

end i f ;

i f Abs ( n ) gt 1 then

r e t u r n {p : p i n Pr imeBas i s ( n ) } ;

end i f ;

end f u n c t i o n ;

B.3.2 The set Λn

We build this easy function to obtain the set Λn given in section 2.2.3.

UniSet := f u n c t i o n (Q, n )

i f D i s c r im i n a n t (Q) l t 0 then

G,m:=UnitGroup (Q) ;

Gn:=sub<G | [ n∗G. i : i i n [ 1 . . Ngens (G) ] ] > ;

q ,mq:=quo<G|Gn>;

r e t u r n [ ( g@@mq @m) : g i n q ] ;

e l s e

u:=Fundamenta lUnit (Q) ;

i f n eq 2 then

r e t u r n ( [ u^k : k i n [ 0 , 1 ] ] ca t [−1∗u^k : k i n [ 0 , 1 ] ] ) ;

e l s e

r e t u r n [ u^k : k i n [ 0 . . n−1 ] ] ;

end i f ;

end i f ;

end f u n c t i o n ;
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B.3.3 The Selmer Group and Γ set

The functions presented in this section are related with the construction of the

n-Selmer group of a number field K for a given finite set of prime ideals S.

We start by presenting a function that obtains the factorization of an ideal

in an S-ideal times an ideal coprime with S given by Proposition 2.3.1.

S n I d e a l F a c t o r i z a t i o n := f u n c t i o n ( a , S , n )

F:= F a c t o r i z a t i o n ( a ) ;

O:=Ring ( Un i v e r s e (S ) ) ;

aSL :=[ x : x i n F | x [ 1 ] i n S ] ca t [<1∗O,1 >] ;

aSPL :=[ x : x i n F | x [ 1 ] n o t i n S and x [ 2 ] mod( n ) eq 0 ] ;

aSPL:= aSPL ca t [<1∗O,1 >] ;

aS :=&∗[ x [ 1 ]^ x [ 2 ] : x i n aSL ] ;

aCS:=&∗[ x [ 1 ] ^ ( x [ 2 ] d i v n ) : x i n aSPL ] ;

r e t u r n aS∗aCS eq a , aS , aCS ;

end f u n c t i o n ;

The following function outputs an Abelian group G isomorphic to the n-

Selmer group ouf K for given finite set of prime ideals S, as an homomorphism m

from K∗ to the abelian group G, that comutes with the natural projection of K

on the n-Selmer group and the isomorphism between the n-Selmer group and the

group G.

nSelmerGroup := f u n c t i o n (n , S)

O:=Ring ( Un i v e r s e (S ) ) ;K:=NumberFie ld (O) ;

C , mC:= Clas sGroup (O) ;

Cn:= sub <C | [ n∗C . i : i i n [ 1 . . Ngens (C) ] ] > ;

q ,mq:= quo <C | Cn>;

SS:= {Parent (1∗O) | } ;

s := sub <q | [x@@mC @ mq : x i n S] >;

p_Z:=2;

wh i l e s ne q do
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l p := F a c t o r i z a t i o n (p_Z∗O) ;

l p := [ x [ 1 ] : x i n l p | Norm( x [ 1 ] ) l e 10^3 or Degree ( x [ 1 ] ) eq 1 ] ;

f o r i i n l p do

i f i i n S then

con t i nu e ;

end i f ;

I :=i@@mC@mq ;

i f not I i n S then

I n c l u d e (~SS , i ) ;

s := sub<q | s , I >;

end i f ;

end f o r ;

p_Z:= NextPrime (p_Z) ;

end wh i l e ;

U, mU, bU:= SUnitGroup ( [ Un i v e r s e (S ) | x : x i n S j o i n SS ] : Raw ) ;

SbU:=[ x [ 1 ] : x i n F a c t o r i z a t i o n ((&∗ E l t s e q (bU))∗O) ] ;

mbU:= Matr i x ( [ [ Va l u a t i o n ( x , y ) : y i n SbU ] : x i n E l t s e q (bU ) ] ) ;

sL := Set s eq (S j o i n SS ) ;

m1:= Matr i x ( [ E l t s e q (x@@mC) : x i n sL ] ) ;

i f #SS eq 0 then

k:= U;

e l s e

pG:= Abe l i anGroup ( [ n : x i n SS ] ) ;

vbU:= Matr i x ( [ [ Va l u a t i o n ( x , y ) : y i n SS ] : x i n E l t s e q (bU ) ] ) ;

h:= hom<U −>pG | [ pG ! E l t s e q ( (U. i@mU)∗vbU ) : i i n [ 1 . . Ngens (U) ] ] > ;

k:= Kerne l ( h ) ;

end i f ;

KpS , mKpS := quo<k | [ n∗k . i : i i n [ 1 . . Ngens ( k ) ] ] > ;

Se ln :=KpS ;

from_KpS := map<KpS −> NumberFie ld (O) |

x:−> PowerProduct (bU , x @@ mKpS @ mU)>;

to_KpS:= f u n c t i o n ( x )
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i f Parent ( x ) ne K then

e r r o r " e r r o r : Argument must be an e l ement o f " , K;

end i f ;

i f x eq 0 then

e r r o r " e r r o r : e l ement shou ld be non−z e r o " ;

end i f ;

s t , aS , bS:= S n I d e a l F a c t o r i z a t i o n ( x∗O, S , n ) ;

i f s t then

m2:= Matr i x ( [ E l t s e q (−(bS@@mC ) ) ] ) ;

s t , c := I s C o n s i s t e n t (m1,m2 ) ;

i f s t then

J :=&∗[ sL [ i ]^ c [ 1 , i ] : i i n [ 1 . .# sL ] ] ;

_, e l t := I s P r i n c i p a l ( J∗bS ) ;

xU:=K! ( x∗ e l t ^(−n ) ) ;

mxU:= Matr i x ( [ [ Va l u a t i o n (xU , y ) : y i n SbU ] ] ) ;

s t , c2 := I s C o n s i s t e n t (mbU,mxU) ;

g:=U!(&+[ c2 [ 1 , i ]∗U. i : i i n [ 1 . . Ngens (U ) ] ] ) ;

r e t u r n mKpS( k ! g ) ;

e l s e

e r r o r

" e r r o r : the l a r g e s e t o f I d e a l s does not g en e r a t e C/pC" ;

end i f ;

e l s e

e r r o r " e r r o r : e l ement shou ld be an a l g e b r a i c number

which v a l u a t i o n modulo any pr ime i d e a l o u t s i d e o f S

i s cong ruent to 0 mod %o" , n ;

end i f ;

end f u n c t i o n ;

r e t u r n KpS , map<F i e l dO f F r a c t i o n s (O)−>KpS |

x:−>to_KpS( x ) , y:−>from_KpS( y )>;

end f u n c t i o n ;
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The following functions help to obtain the Γ′ set from the n-Selmer Group

as is presented in Theorem 2.4.

nPowerTest := f u n c t i o n (g ,C , SC , n ) ;

Ng:=Norm( g ) ;

Ng2n:=&∗[p^( Va l ua t i o n (Ng , p ) mod 2∗n ) : p i n SC ] ;

C2n:=&∗[p^( Va l ua t i o n (C^2 ,p ) mod 2∗n ) : p i n SC ] ;

s t := Ng2n eq C2n ;

r e t u r n s t ;

end f u n c t i o n ;

sma l l S e lme r := f u n c t i o n (p ,D,C , IC , S ) ;

S2D:=[ p : p i n P r imeD i v i s o r s (2∗D) | p no t i n P r imeD i v i s o r s (C ) ] ;

SC:=[ p : p i n P r imeD i v i s o r s (C ) ] ;

SCF:= F a c t o r i z a t i o n (C ) ;

G, ph i :=nSelmerGroup (p , S ) ;

A:= FreeAbe l i anGroup ( 1 ) ;

Ap , p s i :=quo<A| p∗A>;

A2p , p s i 2 :=quo<A|2∗ p∗A>;

Gnew:=G;

f o r q i n S2D do

h:=hom<Gnew−>Ap | x :−> ( Va l ua t i o n (Norm( x@@phi ) , q )∗A. 1 ) @ps i >;

Gnew:= Kerne l ( h ) ;

end f o r ;

Gnew:={g : g i n Gnew} ;

f o r v i n SCF do

Gnew:={g : g i n Gnew | ( ( Va l u a t i on (Norm( g@@phi ) , v [ 1 ] ) mod 2∗p )

eq ( v [ 2 ] mod 2∗p ) ) } ;

end f o r ;

r e t u r n Gnew ,G, ph i ;

end f u n c t i o n ;

Subse tTes t := f u n c t i o n ( IFA , g )

f o r I p i n IFA do
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i f Min ( [ Va l u a t i o n (g , P lace ( I p [ 1 ] ) ) ,

Va l u a t i o n ( Con jugate ( g ) , P lace ( I p [ 1 ] ) ) ] ) gt I p [ 2 ] then

r e t u r n f a l s e ;

end i f ;

end f o r ;

r e t u r n t r u e ;

end f u n c t i o n ;

IExp := f u n c t i o n (m, n )

i f m ge 0 then

r e t u r n m;

e l s e

r e t u r n (m mod n ) ;

end i f ;

end f u n c t i o n ;

TestIGCD:= f u n c t i o n ( I , IA )

J :=GCD( I , Con jugate ( I ) ) ;

f o r P i n F a c t o r i z a t i o n ( J ) do

i f P [ 2 ] gt Va l u a t i o n ( IA , P [ 1 ] ) then

r e t u r n f a l s e ;

end i f ;

end f o r ;

r e t u r n t r u e ;

end f u n c t i o n ;

SieveGCD:= f u n c t i o n (Gnew , phi , IF2DC ,O, n , I2DC , IF2D )

Se t I p :={};

S e t I 1 :={};

Ip2DC:={ Ip [ 1 ] : I p i n IF2DC } ;

f o r g i n Gnew do

I2DC:={@ Ip : I p i n F a c t o r i z a t i o n ( ( g@@phi )∗O) | I p [ 1 ] i n Ip2DC @} ;

i f #I2DC gt 0 then
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NewI :=&∗[ I p [ 1 ]^ IExp ( I p [ 2 ] , n ) : I p i n I2DC ] ;

e l s e

NewI :=1∗O;

end i f ;

i f ( NewI i n ( S e t I 1 j o i n { Conjugate ( I ) : I i n S e t I 1 } ) ) eq f a l s e

and Subse tTes t ( IF2D , NewI ) then

Se t I p := Se t I p j o i n { [ NewI , ( g@@phi )∗O] } ;

S e t I 1 := Se t I 1 j o i n {NewI } ;

end i f ;

end f o r ;

r e t u r n Se t I p ;

end f u n c t i o n ;

The following functions help to sieve the set Γ as is presented in Proposition

2.3.5.

Loc I n t := f u n c t i o n (G, l , a )

Q:=Parent ( a ) ;

O:=MaximalOrder (Q) ;

IL := l ∗O;

LF:= F a c t o r i z a t i o n ( IL ) ;

L1:=LF [ 1 ] [ 1 ] ;

L2:=LF [ 2 ] [ 1 ] ;

PL1:= Place ( L1 ) ;

PL2:= Place ( L2 ) ;

f o r g i n G do

i f ( Va l u a t i o n (g , L1 ) l t 0) o r ( Va l u a t i o n (g , L2 ) l t 0) then

r e t u r n f a l s e , L1 , L2 ;

end i f ;

end f o r ;

r e t u r n t rue , L1 , L2 ;

end f u n c t i o n ;

t l T e s t := f u n c t i o n ( l , p ,D, a , g , q , L1 , L2 )
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n :=( l −1) d i v p ;

F1 , th1 := R e s i d u eC l a s s F i e l d ( L1 ) ;

F2 , th2 := R e s i d u eC l a s s F i e l d ( L2 ) ;

i :=0;

r e p e a t

t1 :=( i−q∗ th1 ( a ))^n ;

t2 :=( i−q∗ th2 ( a ))^n ;

r1 :=( th1 ( g ))^n ;

r2 :=( th2 ( g ))^n ;

i f ( ( t1 eq r1 ) or ( t1 eq 0) ) and ( ( t2 eq r2 ) or ( t2 eq 0) ) then

r e t u r n t r u e ;

e l s e

i := i +1;

end i f ;

u n t i l i eq l ;

r e t u r n f a l s e ;

end f u n c t i o n ;

Gammapfunction := f u n c t i o n (p ,D, d , q , GS , a )

S :={};

GR:={};

B:=1000;

l :=1;

r e p e a t

r e p e a t

r e p e a t

r e p e a t

r e p e a t

l := l +2∗p ;

i f l g t ( p∗B+1) then

r e t u r n GS ;

end i f ;
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u n t i l I sP r ime ( l ) ;

u n t i l (D mod l ) eq 0 ;

u n t i l ( KroneckerSymbol (d , l ) eq 1 ) ;

s t , L1 , L2 :=( Loc I n t (GS , l , a ) ) ;

u n t i l s t ;

G1:={g : g i n GS | t l T e s t ( l , p ,D, a , g , q , L1 , L2 ) } ;

i f #G1 l t #GS then

GS:=G1 ;

S:=Append (S , l ) ;

end i f ;

u n t i l #GS eq 0 ;

r e t u r n GS ;

end f u n c t i o n ;

B.3.4 Building up the Thue equations from the set Γ

The next function constructs Thue equations from the set Γ as is stated in Theorem

2.1.

GamTHEqtns:= f u n c t i o n ( a ,DW, n ,GS ,P , P1 , Pt , Pt1 )

Q:=Parent ( a ) ;

O:=MaximalOrder (Q) ;

GTE:={@@} ;

f o r g i n GS do

ng:=Denominator ( g ) ;

i n t g :=O! ( ng∗g ) ;

i n t g c :=Conjugate ( i n t g ) ;

f q :=(P∗ i n t g−P1∗ i n t g c )∗DW/(2∗ a ) ;

f x :=(P∗ i n t g+P1∗ i n t g c )∗DW/2 ;

i f Degree ( Eva l ua t e ( fq , Pt ) ) eq n then

GTE:=GTE j o i n

{@[ Eva l ua t e ( fq , Pt ) , Eva l ua t e ( fx , Pt ) , ng , I n t e g e r s ( ) ! Norm( g ) ]@} ;
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end i f ;

i f ( Degree ( Eva l ua t e ( fq , Pt ) ) l t n ) and

( Degree ( Eva l ua t e ( fq , Pt1 ) ) eq n ) then

GTE:=GTE j o i n

{@[ Eva l ua t e ( fq , Pt1 ) , Eva l ua t e ( fx , Pt1 ) , ng , I n t e g e r s ( ) ! Norm( g ) ]@} ;

end i f ;

end f o r ;

r e t u r n GTE;

end f u n c t i o n ;

B.3.5 Elimination methods for Thue equations

The following functions are used to implement the first elimination method, see

section 2.4.1.

CoefDiv := f u n c t i o n ( f ) ;

d:=Degree ( f ) ;

Coef : = [ ] ;

f o r i i n [ 1 . . d+1] do

Coef :=Coef ca t [ C o e f f i c i e n t ( f , i −1) ] ;

end f o r ;

c :=GreatestCommonDiv i sor ( Coef ) ;

r e t u r n c ;

end f u n c t i o n ;

Coe fTes te := f u n c t i o n ( tp , q )

r e t u r n I s D i v i s i b l e B y ( q∗ tp [ 3 ] , CoefDiv ( tp [ 1 ] ) ) ;

end f u n c t i o n ;

The following functions are used to implement the second elimination method,

using local solvability, as it was presented in section 2.4.2.

Roots2Var := f u n c t i o n ( f , p , v , q )

C:=GCD( CoefDiv ( f ) , q ) ;
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m:=v+1;

n:=Degree ( f ) ;

i f v eq 0 then

i f I s D i v i s i b l e B y (C , p ) then

r e t u r n t r u e ;

e l s e

Zp<x>:=Po lynomia lR ing (GF(p ) ) ;

f o r a i n [ 0 . . p−1] do

F:=&+[ C o e f f i c i e n t ( f , i )∗ x^ i ∗a^(n− i ) : i i n [ 0 . . n ]]−q ;

i f F eq 0 then

r e t u r n t r u e ;

e l s e

i f #Roots (F) gt 0 then

r e t u r n t r u e ;

end i f ;

end i f ;

end f o r ;

r e t u r n f a l s e ;

end i f ;

e l s e

v := Va l ua t i o n (C , p ) ;

m1:=v+1;

S := [ [ i , j ] : i , j i n [ 0 . . p^m1−1 ] ] ;

wh i l e (#S gt 0) and (m1 l e m) do

S1 : = [ ] ;

f o r P i n S do

u:=P [ 1 ] ;

v :=P [ 2 ] ;

r e s t :=&+[ C o e f f i c i e n t ( f , i )∗u^ i ∗v^(n− i ) : i i n [ 0 . . n ]]−q ;

i f ( r e s t mod p^m1) eq 0 then

S1:=S1 ca t [P ] ;

end i f ;
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end f o r ;

i f #S1 eq 0 then

r e t u r n f a l s e ;

e l s e

S := [ [P[1]+ i ∗p^m1,P[2]+ j ∗p^m1 ] : P i n S1 , i i n [ 0 . . p−1] ,

j i n [ 0 . . p−1 ] ] ;

m1:=m1+1;

end i f ;

end wh i l e ;

r e t u r n t r u e ;

end i f ;

end f u n c t i o n ;

Loca lThueEquat ion := f u n c t i o n ( th , q )

ng:= I n t e g e r s ( ) ! ( th [ 3 ] ) ;

f := th [ 1 ] ;

D i s c f := D i s c r im i n an t ( f ) ;

n:=Degree ( f ) ;

Zx:=Parent ( f ) ;

x :=Zx . 1 ;

Z2uv<u , v>:=Po lynomia lR ing ( I n t e g e r s ( ) , 2 ) ;

A<u1 , v1>:=Af f i n eSpac e ( R a t i o n a l s ( ) , 2 ) ;

F:=&+[( I n t e g e r s ( ) ! C o e f f i c i e n t ( f , i ) )∗ u^ i ∗v^(n− i ) : i i n [ 0 . . n ]]−q∗ng ;

genF :=(n+1)∗(n+2)/2;

BndF:=

Truncate ( n+2∗genF^2−1+2∗Sqr t ( genF^4+(n−1)∗genF ^2))+1;

P r imeL i s t 1 :={p : p i n [ 1 . . BndF ] | I sP r ime ( p )} j o i n

P r ime f a c t o r s ( D i s c f ) j o i n P r ime f a c t o r s ( n∗ng ) ;

DiscF1 := I n t e g e r s ( ) ! D i s c r im i n a n t ( Eva l ua t e (F , [ u , 1 ] ) , u ) ;

DiscF2 := I n t e g e r s ( ) ! D i s c r im i n a n t ( Eva l ua t e (F , [ 1 , v ] ) , v ) ;

i f DiscF1 ∗DiscF2 eq 0 then

BadPrimesF := P r ime f a c t o r s ( DiscF1+DiscF2 )
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j o i n P r imeL i s t 1 ;

e l s e

BadPrimesF := P r ime f a c t o r s (GCD( DiscF1 , DiscF2 ) )

j o i n P r imeL i s t 1 ;

end i f ;

f o r p i n BadPrimesF do

v := Va l ua t i o n ( n∗q∗ng , p ) ;

i f Roots2Var ( f , p , v , q∗ng ) eq f a l s e then

r e t u r n f a l s e ;

end i f ;

end f o r ;

r e t u r n t r u e ;

end f u n c t i o n ;

This function is used to implement the third elimination method as we have

presented in section 2.4.3.

Roots21Var := f u n c t i o n ( f , p , v , q )

m:=v ; n:=Degree ( f ) ;

i f m eq 1 then

Zp<x>:=Po lynomia lR ing (GF(p ) ) ;

f o r a i n [ 0 . . p−1] do

F:=&+[ C o e f f i c i e n t ( f , i )∗ x^ i ∗a^(n− i ) : i i n [ 0 . . n ]]−q ;

i f F eq 0 then

r e t u r n t r u e ;

e l s e

i f F ne 0 and #Roots (F) gt 0 then

r e t u r n t r u e ;

end i f ;

end i f ;

end f o r ;

r e t u r n f a l s e ;

e l s e
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A<u1 , v1>:=Af f i n eSpac e ( I n t e g e r s ( p^m) , 2 ) ;

C:=Curve (A,

&+[ C o e f f i c i e n t ( f , i )∗ u1^ i ∗v1^(n− i ) : i i n [ 0 . . n ]]−q ) ;

i :=0;

wh i l e i l t p^m do

j :=0;

wh i l e j l t p^m do

P1:=A ! [ i , j ] ;

i f (P1 i n C) then

r e t u r n t r u e ;

end i f ;

j := j +1;

end wh i l e ;

i := i +1;

end wh i l e ;

r e t u r n f a l s e ;

end i f ;

end f u n c t i o n ;

xF inThueEquat ions := f u n c t i o n ( tp ,D1 ,D2 ,D3 , n )

GD13:=GCD(D2 ,D3 ) ;

i f ( Abs (D1) eq 1) and (GD13 eq 1) then

r e t u r n t r u e ;

e l s e

tx := tp [ 2 ] ;

Z2uv<u , v>:=Po lynomia lR ing ( I n t e g e r s ( ) , 2 ) ;

PD1:= F a c t o r i z a t i o n (D1 ) ;

PD23 :=[ p : p i n P r imeD i v i s o r s (GD13 ) |

p no t i n P r imeD i v i s o r s (D1 ) ] ;

f o r p i n PD1 do

v :=p [ 2 ] ; p1:=p [ 1 ] ;

s t :=Roots21Var ( tx , p1 , v , 0 ) ;
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i f s t eq f a l s e then

r e t u r n f a l s e ;

end i f ;

end f o r ;

f o r p i n PD23 do

v :=1;

s t :=Roots21Var ( tx , p , v , 0 ) ;

i f s t eq f a l s e then

r e t u r n f a l s e ;

end i f ;

end f o r ;

end i f ;

r e t u r n t r u e ;

end f u n c t i o n ;

B.3.6 Solving Thue equations

The following functions are used to compute the solutions of a Thue equation.

The first one help us to minimize the coefficients of a Thue equation (see page

47).

MinimizeThueCoef := f u n c t i o n ( f , n , q )

Zuv<u , v>:=Po lynomia lR ing ( I n t e g e r s ( ) , 2 ) ;

s :=Min ( [ Abs ( C o e f f i c i e n t ( f , i ) ) : i i n [ 0 . . n ] ] ) ;

f :=&+[ C o e f f i c i e n t ( f , i )∗u^ i ∗v^(n− i ) : i i n [ 0 . . n ] ] ;

f 1 := f ;

S := [ 1 , 0 ] ;

r :=s−1;

s1 := s ;

A:= Matr i x ( I n t e g e r s ( ) , 2 , 2 , [ 1 , 0 , 0 , 1 ] ) ;

A1:=A;

wh i l e ( r l t s ) and ( r ge 1) do
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A:=A1 ;

s := s1 ;

f := f1 ;

r1 := r ;

f o r a , b i n [−3∗10^3. .3∗10^3] do

i f GCD(a , b ) eq 1 then

s2 := Eva l ua t e ( f , [ a , b ] ) ;

i f ( Abs ( s2 ) gt 0) and (Abs ( s2 ) l t r1 ) then

r1 :=Abs ( s2 ) ;

S :=[ a , b ] ;

end i f ;

i f Abs ( s2 ) eq q then

i f s2 eq q then

S :=[ a , b ] ;

e l s e

S:=[−1∗a ,−1∗b ] ;

end i f ;

b reak ; b reak ;

end i f ;

end i f ;

i f r1 eq 1 then

break ;

end i f ;

end f o r ;

r := Eva l ua t e ( f , S ) ;

i f r l t 0 then

S:=[−S [1] ,−S [ 2 ] ] ;

r :=−1∗ r ;

end i f ;

g , PL:=XGCD(S ) ;

f 1 := Eva l ua t e ( f , [ S [ 1 ] ∗ u−PL [ 2 ] ∗ v , S [ 2 ] ∗ u+PL [ 1 ] ∗ v ] ) ;

f u := Eva l ua t e ( f1 , [ u , 1 ] ) ;
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s1 :=Min ( [ C o e f f i c i e n t ( fu , u , i ) : i i n [ 0 . . n ] ] ) ;

B:= Matr i x ( I n t e g e r s ( ) , 2 , 2 , [ S [1] ,−PL [ 2 ] , S [ 2 ] , PL [ 1 ] ] ) ;

A1:=A∗B;

i f r1 eq 1 then

A:=A1 ;

f := f1 ;

end i f ;

end wh i l e ;

r e t u r n A, f ;

end f u n c t i o n ;

This function help us to solve a Thue equation using the unimodular method

as described in page 47, when it is possible or just using the methods already

implemented in MAGMA to solve a Thue equation.

UnimodularThue := f u n c t i o n (n , tp , q1 )

f := tp [ 1 ] ;

q:= I n t e g e r s ( ) ! ( tp [ 3 ] ∗ q1 ) ;

Zx:=Parent ( f ) ;

x :=Zx . 1 ;

cn :=Abs ( C o e f f i c i e n t ( f , n ) ) ;

c0 :=Abs ( C o e f f i c i e n t ( f , 0 ) ) ;

cGCD:=CoefDiv ( f ) ;

i f ( c0 l t cn ) and ( c0 gt 0) then

f :=Zx !(&+[( C o e f f i c i e n t ( f , i ) d i v cGCD)∗ x^(n− i ) : i i n [ 0 . . n ] ] ) ;

U1:=−1;

q1:= q d i v cGCD ;

l c o e f :=c0 d i v cGCD ;

e l s e

f :=Zx !(&+[( C o e f f i c i e n t ( f , i ) d i v cGCD)∗ x^( i ) : i i n [ 0 . . n ] ] ) ;

U1 :=1;

q1:= q d i v cGCD ;

l c o e f :=cn d i v cGCD ;
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end i f ;

i f l c o e f eq 1 then

a :=1;

b :=0;

c :=0;

d :=1;

S:= So l u t i o n s (Thue ( f ) , q1 ) ;

r e t u r n S , U1 , a , b , c , d ;

e l s e

i f l c o e f gt 1 then

A, f 1 :=MinimizeThueCoef ( f , n , q ) ;

f := Eva l ua t e ( f1 , [ x , 1 ] ) ;

a :=A [ 1 , 1 ] ;

b:=A [ 1 , 2 ] ;

c :=A [ 2 , 1 ] ;

d:=A [ 2 , 2 ] ;

e l s e

a :=1;

b :=0;

c :=0;

d :=1;

end i f ;

t :=Thue ( f ) ;

S1:= So l u t i o n s ( t , 1 ) ;

i f #S1 eq 0 then

i f q1 eq 1 then

S : = [ ] ;

r e t u r n S , U1 , a , b , c , d ;

e l s e

S:= So l u t i o n s ( t , q1 ) ;

r e t u r n S , U1 , a , b , c , d ;

end i f ;
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e l s e

i f q1 eq 1 then

S:=S1 ;

r e t u r n S , U1 , a , b , c , d ;

e l s e

a1 :=S1 [ 1 ] [ 1 ] ;

c1 :=S1 [ 1 ] [ 2 ] ;

m, d1 , b1:=XGCD( a1 , c1 ) ;

g:=&+[ C o e f f i c i e n t ( f , i )∗ ( ( a1∗x−b1)^ i )∗ ( ( c1∗x+d1 )^(n− i ) ) :

i i n [ 0 . . n ] ] ;

S:= So l u t i o n s (Thue ( g ) , q1 ) ;

a2 :=a∗a1+b∗ c1 ;

b2:=−a∗b1+b∗d1 ;

c2 :=c∗a1+d∗ c1 ;

d2:=−c∗b1+d∗d1 ;

r e t u r n S , U1 , a2 , b2 , c2 , d2 ;

end i f ;

end i f ;

end i f ;

end f u n c t i o n ;

This function help us to determine if there was a solution of our equation

2.2 associated to a given a Thue equation.

ThueEqtsMethods := f u n c t i o n ( tp , q1 ,D,C ,DW)

n:=Degree ( tp [ 1 ] ) ;

S o l u t i o nS e t :={};

P a r t i a l S o l :={} ; ;

S , U1 , a , b , c , d:=UnimodularThue (n , tp , q1 ) ;

i f #S eq 0 then

r e t u r n So l u t i o nS e t ;

e l s e

f o r Sp i n S do
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NewS:=[ a∗Sp [1]+b∗Sp [ 2 ] , c∗Sp [1]+d∗Sp [ 2 ] ] ;

i f U1 eq 1 then

P a r t i a l S o l := P a r t i a l S o l j o i n {NewS , [−1∗NewS[1] ,−1∗NewS [ 2 ] ] } ;

e l s e

P a r t i a l S o l := P a r t i a l S o l j o i n { [NewS [ 2 ] , NewS [ 1 ] ] ,

[−1∗NewS[2] ,−1∗NewS [ 1 ] ] } ;

end i f ;

end f o r ;

end i f ;

Xt:={&+[ C o e f f i c i e n t ( tp [ 2 ] , i )∗ ( Xs [ 1 ] ) ^ i ∗(Xs [ 2 ] ) ^ ( n− i ) : i i n [ 0 . . n ] ] :

Xs i n P a r t i a l S o l } ;

ng:= I n t e g e r s ( ) ! ( tp [ 3 ] ) ;

X:={ I n t e g e r s ( ) ! ( x d i v (DW∗ng ) ) : x i n Xt |

Root ( ( ( x /(DW∗ng))^2+D)/C , n ) i n I n t e g e r s ( ) } ;

S o l u t i o nS e t :={[ x , I n t e g e r s ( ) ! ( Root ( ( x^2+D)/C , n ) ) ] : x i n X} ;

r e t u r n So l u t i o nS e t ;

end f u n c t i o n ;

B.3.7 The algortihm

Finally we give the algorithm to obtain the solutions of (2.2) for a given n (we

present the algorithm for n = 5). We separate the algortihm in two parts, first

deals with the case when KD is a quadratic field, the second one when K = Q,

following in this case the method presented in section 2.2.2.

Z:= I n t e g e r s ( ) ;

Z1<x>:=Po lynomia lR ing (Z ) ;

f o r D1 i n [ 1 . . 1 0 0 ] do

f o r D2 i n [ −100 . . 100 ] , D3 i n [ 1 . . 1 0 0 ] do

n :=5;

i f (D2 ne 0) then

D:=D1∗D2 ;C:=D1∗D3 ; D23:=GCD(D2 ,D3 ) ;
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p r i n t f "The equa t i on %o∗x^2+1∗%o=%o∗y^%o ,\ n" ,

D1 ,D2 ,D3 , n ;

d , q:= S q u a r e f r e e F a c t o r i z a t i o n (D) ;

i f −d ne 1 then

Q<a>:=Quad r a t i c F i e l d (−d ) ;

K<u , v>:=Po lynomia lR ing (Q, 2 ) ;

O:=MaximalOrder (Q) ;

IB := I n t e g r a l B a s i s (Q) ;

w1:= IB [ 1 ] ;

w2:= IB [ 2 ] ;

Pol1 :=(u∗w1+v∗w2)^n ;

Po l1c :=(u∗Conjugate (w1)+v∗Conjugate (w2))^n ;

Pnt1 :=[ x , 1 ] ; Pnt2 :=[1 , x ] ;

DW:=Denominator (w2 ) ;

i f ((−d−1) mod 4) eq 0 then

q1:=q∗DW;

e l s e

q1:=q ;

end i f ;

S2DC:=(2∗q∗a∗C)∗O;

IC :=C∗O;

IFS2DC:={ I : I i n F a c t o r i z a t i o n (S2DC ) } ;

PrIS2DC:={ Ip [ 1 ] : I p i n IFS2DC } ;

S2D:=(2∗q∗a )∗O;

IFS2D:={ I : I i n F a c t o r i z a t i o n (S2D ) } ;

PrIS2D :={ Ip [ 1 ] : I p i n IFS2D } ;

Gnew ,G, ph i := sma l l S e lme r (n ,D,C , IC , PrIS2DC ) ;

S e t I :=

SieveGCD (Gnew , phi , IFS2DC ,O, n , S2DC , IFS2D ) ;

GammaSet1 :={};

f o r I i n S e t I do

st , e l t := I s P r i n c i p a l ( I [ 1 ] ) ;
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st1 , e l t 1 := I s P r i n c i p a l ( I [ 2 ] ) ;

i f s t then

GammaSet1:=GammaSet1 j o i n { e l t } ;

e l s e

GammaSet1:=GammaSet1 j o i n { e l t 1 } ;

end i f ;

end f o r ;

LUni :=UniSet (Q, n ) ;

GammaSet2:={g∗u : u i n LUni , g i n GammaSet1 } ;

GammaSet:=

Gammapfunction (n ,D, d , q1 , GammaSet2 , a ) ;

STEqts :=

GamThEqtns ( a ,DW, n , GammaSet , Pol1 , Pol1c , Pnt1 , Pnt2 ) ;

STEqts :={@tp : tp i n STEqts | Coe fTes te ( tp , q1 )

and Loca lThueEquat ion ( tp , q1 )@}

STEqts :={@tp : tp i n STEqts |

xF inThueEquat ions ( tp , D1 ,D2 ,D3 , n )@} ;

S e t o f S o l u t i o n s :={};

f o r th i n STEqts do

SolThue :=ThueEqtsMethods ( th , q1 ,D,C ,DW) ;

S e t o f S o l u t i o n s := S e t o f S o l u t i o n s j o i n SolThue ;

end f o r ;

p r i n t f " the s o l u t i o n s a r e [X,Y] := %o\n" ,D1 ,D2 ,D3 , n ,

S e t o f S o l u t i o n s ;

e l s e

p r i n t f "we a r e work ing ove r the r a t i o n a l s f i e l d \n " ;

RaDn:=&∗[p^n : p i n Pr imeBas i s (2∗q ) ] ;

S:= Car t e s i anPower ( D i v i s o r s (RaDn ) , 2 ) ;

S I :=[ v : v i n S | Pr imeBas i s ( v [ 1 ] ) eq Pr imeBas i s ( v [ 2 ] )

and ( I s D i v i s i b l e B y (2∗q ,GCD( v [ 1 ] , v [ 2 ] ) ) )

and ( I sPower ( v [ 1 ] ∗ v [ 2 ] , n ) ) ] ;

Vaz :={};
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f o r v i n SI , c1 i n D i v i s o r s ( Abs (C) ) do

c2 :=C d i v c1 ;

r :=v [ 1 ] ∗ c1 ; s :=v [ 2 ] ∗ c2 ;

i f I s D i v i s i b l e B y (2∗q ,GCD( r , s ) ) then

fq := r ∗x^n−s ; f x := r ∗x^n+s ;

t :={[ fq , fx , 1 ] } ;

t :={ tp : tp i n t | Loca lThueEquat ion ( tp , 2∗ q )

and xF inThueEquat ions ( tp , D1 ,D2 ,D3 , n ) } ;

Vaz:= Vaz j o i n t ;

end i f ;

end f o r ;

STEqts :=Vaz;#STEqts ;

S e t o f S o l u t i o n s :={};

f o r th i n STEqts do

SolThue :=ThueEqtsMethods ( th , 2∗ q ,D,C , 2 ) ;

S e t o f S o l u t i o n s := S e t o f S o l u t i o n s j o i n SolThue ;

end f o r ;

S e t o f S o l u t i o n s := S e t o f S o l u t i o n s j o i n { [ q , 0 ] , [ − q , 0 ] } ;

p r i n t f " the s o l u t i o n s a r e [X,Y] := %o\n" ,D1 ,D2 ,D3 , n ,

S e t o f S o l u t i o n s ;

end i f ;

end i f ;

end f o r ;

end f o r ;

B.4 Code for the Modular Approach

In this section we presented the code to implement the modular approach as it

was presented in Chapter 3.
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B.4.1 The trace of the Frey curves

The following function has as output the Frobenius trace of the Frey curve E(t)

or F (t) for a prime l and 0 ≤ t ≤ l− 1, such that E(t) and F (t) are well defined.

Cong r u e n c eE l l i p t i c C u r v e s := f u n c t i o n (D, l , ta )

L :=[ i : i i n [ 1 . . l ] | ( i ^2−D) mod l ne 0 ] ;

E :=[ E l l i p t i c C u r v e ( [ 0 , 2∗ i , 0 , t ∗ i ^2+(−1)^ ta ∗D, 0 ] ) : i i n L ] ;

FroTr :=[ I n t e g e r s ( ) ! F r ob en i u sT r a c eD i r e c t (E [ i ] , l ) : i i n [ 1 . .#L ] ] ;

r e t u r n FroTr , L ;

end f u n c t i o n ;

B.4.2 The signature of the equation x2 −D = yn

The following function given the input D gives all possible signatures of the equa-

tion x2 −D = yn, as we have seen in Lemma 3.3.1

S i gn a t u r e := f u n c t i o n (D)

S := [ [ a , b ] : a , b i n D i v i s o r s (D) | a^2∗b eq D and Gcd ( a , b ) eq 1 ] ;

S1 : = [ ] ;

f o r P i n S do

i f I sEven (P [ 1 ] ) then

i f I s D i v i s i b l e B y (P[2 ]−1 ,8) then

S1:=S1 ca t [P ] ;

end i f ;

e l s e

S1:=S1 ca t [P ] ;

end i f ;

end f o r ;

S2 : = [ ] ;

f o r P i n S1 do

i f P [ 1 ] ne 1 then

F:= F a c t o r i z a t i o n (P [ 1 ] ) ;
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F :=[ a [ 1 ] : a i n F | IsOdd ( a [ 1 ] ) ] ;

i f #F gt 0 then

R:=&+[KroneckerSymbol (P [ 2 ] , q ) : q i n F ] ;

e l s e

R:=0;

end i f ;

i f R eq #F then

S2:=S2 ca t [P ] ;

end i f ;

e l s e

S2:=S2 ca t [P ] ;

end i f ;

end f o r ;

r e t u r n S2 ;

end f u n c t i o n ;

B.4.3 Levels of the Frey curves

The following function given an integer n and a set of finite primes S, returns

as output RadS(n). The function Primefactors was already defined in section

B.3.1.

RadicalNumber := f u n c t i o n (D, S)

i f D eq 0 then

r e t u r n 0 ;

e l s e

i f Abs (D) eq 1 then

r e t u r n 1

e l s e

Rad:=&∗[p : p i n P r ime f a c t o r s (D) and p no t i n S ] ;

r e t u r n Rad ;

end i f ;
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end i f ;

end f u n c t i o n ;

This function given D and the signature (d1, d2), returns the levels predicted

the by level lowering.

NewLevel := f u n c t i o n (D, d1 , d2 )

D1:=Radica lNumber (D, { 2 } ) ;

i f I s D i v i s i b l e B y (D, 4 ) then

v1 := Va l ua t i o n ( d1 , 2 ) ;

v2 := Va l ua t i o n ( d2 , 2 ) ;

i f v2 gt 0 then

NLE:=[2^6∗D1 ] ;

T : = [ ] ;

i f v2 eq 2 then

i f I s D i v i s i b l e B y ( d2−4 ,16) then

T:=T cat [ 4 ] ;

e l s e

t :=T cat [ 2 ] ;

end i f ;

end i f ;

i f v2 eq 3 then

T:=T cat [ 5 ] ;

end i f ;

i f ( v2−4)∗( v2−5) eq 0 then

T:=T cat [ 3 ] ;

end i f ;

i f v2 eq 6 then

T:=T cat [ 0 ] ;

end i f ;

i f v2 ge 7 then

t :=1;

end i f ;
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NLF:=[(2^ t )∗D1 : t i n T ] ;

end i f ;

i f v2 eq 0 then

NLF:=[2^6∗D1 ] ;

i f v1 eq 1 then

T:= [ 1 , 3 ] ;

end i f ;

i f v1 ge 2 then

T:= [ 1 , 3 , 5 ] ;

end i f ;

NLE:=[2^ t ∗D1 : t i n T ] ;

end i f ;

end i f ;

i f I s D i v i s i b l e B y (D−1 ,4) then

i f d2 mod 4 eq 1 then

t e :=6;

t f :=5;

e l s e

t e :=5; t f :=6;

end i f ;

NLE:=[2∗D1,2^ te ∗D1 ;

NLF:=[2^6∗D1,2^ t f ∗D1 ] ;

end i f ;

i f I s D i v i s i b l e B y (D−2 ,4) then

NLE:=[D1∗2^7 ] ;NLF:=[2^7∗D1 ] ;

end i f ;

i f I s D i v i s i b l e B y (D−3 ,4) then

NLE:=[2^5∗D1 ] ; NLF:=[2^6∗D1 ] ;

end i f ;

r e t u r n NLE ,NLF ;

end f u n c t i o n ;
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B.4.4 Cuspforms and level lowering

This function just gathers all the newforms of possible different levels associated

to a signature (d1, d2).

NewCuspforms := f u n c t i o n (NLE ,NLF)

cuspE := [ ∗ ∗ ] ; cuspF := [ ∗ ∗ ] ;

f o r N i n NLE do

cuspE :=cuspE ca t Newforms ( CuspForms (N) ) ;

end f o r ;

f o r N i n NLF do

cuspF :=cuspF ca t Newforms ( CuspForms (N) ) ;

end f o r ;

r e t u r n cuspE , cuspF ;

end f u n c t i o n ;

The two following functions just implement the result of Proposition 3.3.2

to check for which possible primes p the equation x2 − D = yp might have a

solution.

CuspTeste := f u n c t i o n ( f ,N, SE ,D, d2 , PWofE , t e s t e , r e s )

powersofE :={}; l :=3;

wh i l e l l e 150 do

i f I sP r ime ( l ) then

i f I s D i v i s i b l e B y (2∗D, l ) eq f a l s e then

FroTr , L:= Cong r u e n c eE l l i p t i c C u r v e s ( d2 , l , t e s t e ) ;

c l := C o e f f i c i e n t ( f , l ) ; p r imos1 : = [ ] ;

r e s t o :=Lcm ( [ I n t e g e r s ( ) ! ( Norm( c l−FroTr [ i ] ) ) : i i n [ 1 . .#L ] ] ) ;

i f r e s t o ne 0 then

i f KroneckerSymbol ( d2 , l ) eq 1 then

r e s t o :=Lcm( r e s t o , I n t e g e r s ( ) ! Norm ( ( l +1)^2− c l ^2 ) ) ;

end i f ;

end i f ;

i f r e s eq 1 then
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r e s t o := r e s t o ∗ l ;

end i f ;

i f r e s t o ne 0 then

pr imos := P r ime f a c t o r s ( r e s t o ) ;

e l s e

pr imos :={p : p i n [ 7 . . 1 5 0 ] | I sP r ime ( p ) } ;

end i f ;

p r i n t f " f o r pr ime %o we have tha t B_l ( f ) i s %o , w i th pr ime

f a c t o r s %o \n" , l , r e s t o , p r imos ;

p o s s i b l e p ow e r s :={ l : l i n pr imos | l ge 7} ;

i f #powersofE eq 0 then

i f #po s s i b l e p ow e r s eq 0 then

i f ( l −7) ne 0 then

no v a i t :=201;

e l s e

powersofE :={7}; n o v a i t :=2;

end i f ;

e l s e

powersofE :=powersofE j o i n p o s s i b l e p ow e r s ;

n o v a i t :=2;

end i f ;

e l s e

powersofE := powersofE meet p o s s i b l e p owe r s ;

i f #powersofE eq 0 then

no v a i t :=150;

e l s e

n o v a i t :=2;

end i f ;

end i f ;

e l s e

n o v a i t :=2;

end i f ;
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e l s e

n o v a i t :=2;

end i f ;

expoente := l ;

l := l+no v a i t ;

end wh i l e ;

i f I sP r ime ( expoente ) then

p:= expoente ;

e l s e

Maximo:=Max( powersofE ) ;

LPw:=Min ( powersofE ) ;

n o v a i t := l ;

end i f ;

p r i n t f "\n f o r the newform %o o f l e v e l %o d e f i n e d ove r the f i e l d %o

we have the f o l l o w i n g p o s s i b i l i t i e s o f powers %o \n\n" , f ,

N, Ba s eF i e l d ( f ) , powersofE ;

i f #powersofE ge 1 then

SE:=SE cat [∗ f ∗ ] ; PWofE:=PWofE ca t [ powersofE ] ;

end i f ;

r e t u r n SE , PWofE ;

end f u n c t i o n ;

Lower ingTes te := f u n c t i o n (D, d2 , cuspE , t e s t e )

SE :=[∗ ∗ ] ; PWofE : = [ ] ;

f o r i i n [ 1 . .# cuspE ] do

f :=cuspE [ i ] [ 1 ] ; N:= Le v e l ( f ) ; K:= Ba s eF i e l d ( f ) ;

i f #Ba s i s (K) eq 1 then

r e s :=0;

E:= E l l i p t i c C u r v e ( f ) ;

e l s e

r e s :=1;

end i f ;
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p r i n t f "we a r e t e s t i n g the newform %o d e f i n e d ove r %o\n" , f ,K;

SE , PWofE:=CuspTeste ( f ,N, SE ,D, d2 , PWofE , t e s t e , r e s ) ;

end f o r ;

r e t u r n SE , PWofE ;

end f u n c t i o n ;

B.4.5 Kraus methods

The following functions are used to implement the Kraus methods (see section

3.3.3) to check if a newform f might arise or not from a solution of the equation

x2 −D = yp. Some of the functions used by the following functions were already

defined in section B.3.3.

NormTest := f u n c t i o n ( a l z e t , c l , p , l )

i f l mod 4 eq 1 then

r e t u r n I s D i v i s i b l e B y ( I n t e g e r s ( ) ! ( Norm( a l z e t−c l ) ) , p ) ;

e l s e

r e t u r n I s D i v i s i b l e B y ( I n t e g e r s ( ) ! ( Norm( a l z e t ^2− c l ^2)) , p ) ;

end i f ;

end f u n c t i o n ;

NormTestR:= f u n c t i o n ( a l z e t , c l , p , l )

i f l mod 4 eq 1 then

r e t u r n ( a l z e t−c l ) eq 0 ;

e l s e

r e t u r n ( a l z e t ^2− c l ^2) eq 0 ;

end i f ;

end f u n c t i o n ;

k r a u s l p := f u n c t i o n ( l , p , c l , d1 , d2 ,D, ta , Rat , E ) ;

n:= ( l −1) d i v p ;

F l :=GF( l ) ;

i f Rat then
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El :=ChangeRing (E , F l ) ;

i f ( I s D i v i s i b l e B y ( I n t e g e r s ()!(4− c l ^2) , p ) eq f a l s e )

o r ( KroneckerSymbol ( d2 , l ) eq −1) then

g:= P r im i t i v eE l emen t ( F l )^p ;

z e t a :=1/g ;

f o r i i n [ 0 . . ( n−1)] do

z e t a := ze t a ∗g ;

t f , d e l t a := I sSqua r e ( F l ! ( z e t a+D) ) ;

i f t f then

d e l t a := F l ! ( d e l t a /d1 ) ;

Ed:= E l l i p t i c C u r v e ( [ F l | 0 , 2∗ de l t a , 0 , ta ∗ d e l t a ^2+(−1)^ ta ∗d2 , 0 ] ) ;

O:=Ed ! 0 ;

cont :=1;

wh i l e cont l e 5 do

P:=Random(Ed ) ;

i f Trace ( E l )∗P eq O then

cont := cont +1;

e l s e

cont :=10;

end i f ;

end wh i l e ;

i f cont eq 6 then

a l z e t :=Trace (Ed ) ;

i f NormTestR ( a l z e t , c l , p , l ) then

r e t u r n f a l s e ;

end i f ;

end i f ;

end i f ;

end f o r ;

r e t u r n t r u e ;

e l s e

r e t u r n f a l s e ;
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end i f ;

e l s e

i f ( I s D i v i s i b l e B y ( I n t e g e r s ( ) ! Norm(4− c l ^2) , p ) eq f a l s e )

o r ( KroneckerSymbol ( d2 , l ) eq −1) then

g:= P r im i t i v eE l emen t ( F l )^p ;

z e t a :=1/g ;

f o r i i n [ 0 . . ( n−1)] do

z e t a := ze t a ∗g ;

t f , d e l t a := I sSqua r e ( F l ! ( z e t a+D) ) ;

i f t f then

d e l t a := F l ! ( d e l t a /d1 ) ;

a l z e t :=Trace (

E l l i p t i c C u r v e ( [ F l | 0 , 2∗ de l t a , 0 , ta ∗ d e l t a ^2+(−1)^ ta ∗d2 , 0 ] ) ) ;

i f NormTest ( a l z e t , c l , p , l ) then

r e t u r n f a l s e ;

end i f ;

end i f ;

end f o r ;

r e t u r n t r u e ;

e l s e

r e t u r n f a l s e ;

end i f ;

end i f ;

end f u n c t i o n ;

k rausp := f u n c t i o n (p , f , d1 , d2 ,D, ta , Rat , E ) ;

l :=1;

i f Rat then

B:= F l oo r ( ( p^2−4)/(4∗p ) ) ;

r e p e a t

r e p e a t

l := l +2∗p ;
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i f l g t ( p∗B+1) then

r e t u r n f a l s e , 0 ;

end i f ;

u n t i l I sP r ime ( l ) and

( I s D i v i s i b l e B y (D, l ) eq f a l s e ) ;

c l := F r ob en i u sT r a c eD i r e c t (E , l ) ;

u n t i l k r a u s l p ( l , p , c l , d1 , d2 ,D, t , Rat , E ) ;

e l s e

B:=1000;

r e p e a t

r e p e a t

l := l +2∗p ;

i f l g t ( p∗B+1) then

r e t u r n f a l s e , 0 ;

end i f ;

u n t i l I sP r ime ( l ) and

( I s D i v i s i b l e B y (D, l ) eq f a l s e ) ;

c l := C o e f f i c i e n t ( f , l ) ;

u n t i l k r a u s l p ( l , p , c l , d1 , d2 ,D, ta , Rat , E ) ;

end i f ;

r e t u r n t rue , ( ( l −1) d i v p ) ;

end f u n c t i o n ;

two t o r s i o n := f u n c t i o n ( f )

K:= Ba s eF i e l d ( f ) ;

i f #Ba s i s (K) eq 1 then

E:= E l l i p t i c C u r v e ( f ) ;

i f I s D i v i s i b l e B y (#Tors ionSubgroup (E ) , 2 ) then

p r i n t " f i s r a t i o n a l and has a non− t r i v i a l two−t o r s i o n subgroup " ;

r e t u r n t rue , E ;

e l s e

p r i n t " f i s r a t i o n a l but does not have a non− t r i v i a l two−t o r s i o n
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subgroup " ;

r e t u r n f a l s e , [ ] ;

end i f ;

e l s e

p r i n t " f i s not r a t i o n a l " ;

r e t u r n f a l s e , [ ] ;

end i f ;

end f u n c t i o n ;

Gam:= f u n c t i o n (D, p , d , q )

Q<a>:=Quad r a t i c F i e l d ( d ) ;

O:=MaximalOrder (Q) ;

IB := I n t e g r a l B a s i s (Q) ;

w1:= IB [ 1 ] ;

w2:= IB [ 2 ] ;

w:=Fundamenta lUnit (Q) ;

A:=(2∗ a∗q )∗O;

C:=1;

S2DC:=(2∗q∗a∗C)∗O;

IC :=C∗O;

IFS2DC:={ I : I i n F a c t o r i z a t i o n (S2DC ) } ;

PrIS2DC:={ Ip [ 1 ] : I p i n IFS2DC } ;

S2D:=(2∗q∗a )∗O;

IFS2D:={ I : I i n F a c t o r i z a t i o n (S2D ) } ;

PrIS2D :={ Ip [ 1 ] : I p i n IFS2D } ;

Gnew ,G, ph i := sma l l S e lme r (p ,D,C , IC , PrIS2DC ) ;

S e t I :=SieveGCD (Gnew , phi , IFS2DC ,O, p , S2DC , IFS2D ) ;

GammaSet1 :={};

f o r I i n S e t I do

st , e l t := I s P r i n c i p a l ( I [ 1 ] ) ;

s t1 , e l t 1 := I s P r i n c i p a l ( I [ 2 ] ) ;

i f s t then
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GammaSet1:=GammaSet1 j o i n { e l t } ;

e l s e

GammaSet1:=GammaSet1 j o i n { e l t 1 } ;

end i f ;

end f o r ;

LUni :=UniSet (Q, p ) ;

GammaSet2 :=[ g∗u : u i n LUni , g i n GammaSet1 ] ;

r e t u r n GammaSet2 , a ;

end f u n c t i o n ;

Gamse t l t lT e s t := f u n c t i o n ( l , p , d1 , d2 , ta , a , b , f , q , L1 , L2 )

n :=( l −1) d i v p ;

F l :=GF( l ) ;

F1 , th1 := R e s i d u eC l a s s F i e l d ( L1 ) ;

F2 , th2 := R e s i d u eC l a s s F i e l d ( L2 ) ;

c l := C o e f f i c i e n t ( f , l ) ;

i :=0;

r e p e a t

t e s t 1 :=( th1 ( d1∗ i−q∗a ))^n ;

t e s t 2 :=( th2 ( d1∗ i q ∗a ))^n ;

r e s t 1 :=( th1 ( b ))^n ;

r e s t 2 :=( th2 ( b ))^n ;

i f KroneckerSymbol ( d2 , l ) eq 1 then

i f I s D i v i s i b l e B y ( i ^2−d2 , l ) then

i f I s D i v i s i b l e B y (Norm ( ( l +1)^2− c l ^2) , p ) then

i f ( ( t e s t 1 eq r e s t 1 ) o r ( t e s t 1 eq 0) )

and ( ( t e s t 2 eq r e s t 2 ) or ( t e s t 2 eq 0) ) then

r e t u r n t r u e ;

e l s e

i := i +1;

end i f ;

e l s e
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i := i +1;

end i f ;

e l s e

a l :=Trace (

E l l i p t i c C u r v e ( [ F l | 0 , 2∗ i , 0 , ta ∗ i ^2+d2∗(−1)^ ta , 0 ] ) ) ;

i f I s D i v i s i b l e B y (Norm( a l−c l ) , p ) then

i f ( ( t e s t 1 eq r e s t 1 ) o r ( t e s t 1 eq r e s t 1 ) ) and

( ( t e s t 2 eq r e s t 2 ) or ( t e s t 2 eq r e s t 2 ) ) then

r e t u r n t r u e ;

e l s e

i := i +1;

end i f ;

e l s e

i := i +1;

end i f ;

end i f ;

e l s e

a l :=Trace ( E l l i p t i c C u r v e ( [ F l | 0 , 2∗ i , 0 , ta ∗ i ^2+d2∗(−1)^ ta , 0 ] ) ) ;

i f I s D i v i s i b l e B y (Norm( a l−c l ) , p ) then

i f ( ( t e s t 1 eq r e s t 1 ) o r ( t e s t 1 eq r e s t 1 ) )

and ( ( t e s t 2 eq r e s t 2 ) or ( t e s t 2 eq r e s t 2 ) ) then

r e t u r n t r u e ;

e l s e

i := i +1;

end i f ;

e l s e

i := i +1;

end i f ;

end i f ;

u n t i l i eq l ;

r e t u r n f a l s e ;

end f u n c t i o n ;
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Gamp:= f u n c t i o n (p ,D, d1 , d2 , f , ta )

i f I s Squa r e (D) eq f a l s e then

d , q:= S q u a r e f r e e F a c t o r i z a t i o n (D) ;

Gamset , a :=Gam(D, p , d , q ) ;

S : = [ ] ;

GR : = [ ] ;

B:=100;

l :=1;

r e p e a t

r e p e a t

r e p e a t

r e p e a t

r e p e a t

l := l +2∗p ;

i f l g t ( p∗B+1) then

r e t u r n S , Gamset ;

end i f ;

u n t i l I sP r ime ( l ) ;

u n t i l ( I s D i v i s i b l e B y (D, l ) eq f a l s e ) ;

u n t i l ( KroneckerSymbol (d , l ) eq 1 ) ;

s t , L1 , L2 :=( Loc I n t ( Gamset , l , a ) ) ;

u n t i l s t ;

GN:=#Gamset ;

Gamset :=[ b : b i n

Gamset | t l T e s t ( l , p , d1 , d2 , ta , a , b , f , q , L1 , L2 ) ] ;

GN2:=#Gamset ;

i f GN2 l t GN then

S:=Append (S , l ) ;

end i f ;

u n t i l #Gamset eq 0 ;

r e t u r n S , Gamset ;
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end i f ;

end f u n c t i o n ;

krausRange := f u n c t i o n (PE ,PmE, f , d1 , d2 ,D, ta , pBnd ,CDEC) ;

K:= Ba s eF i e l d ( f ) ;

S : = [ ] ;

i f #PE l e 10 then

L1:=Min (PE ) ; L2:=Max(PE ) ;

e l s e

L1 :=10^8;

i f #PmE l e 10 then

L2:=Max(PmE) ;

e l s e

L2:=pBnd ;

end i f ;

end i f ;

i f I sP r ime ( L1 ) eq f a l s e then

p:=NextPrime ( L1 ) ;

e l s e

p:=L1 ;

end i f ;

Rat , E:= two t o r s i o n ( f ) ; Rat ; E ;

i f Rat then

CremonaReference (CDEC, E ) ;

end i f ;

GammaS : = [ ] ;

r e p e a t

k , n:= krausp (p , f , d1 , d2 ,D, ta , Rat , E ) ;

i f k eq f a l s e then

i f I s Squa r e (D) then

S:=Append (S , p ) ;

GammaSet : = [ ] ;
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lGamma : = [ ] ;

GammaSet : = [ ] ;

e l s e

lGamma , GammaSet:=Gamp(p ,D, d1 , d2 , f , ta ) ;

i f #GammaSet gt 0 then

S:=Append (S , p ) ;

GammaS:=GammaS ca t [ [ ∗ GammaSet , p ∗ ] ] ;

end i f ;

end i f ;

p r i n t p , k , n , lGamma , GammaSet ,

"Norms a r e " , [ Norm( a ) : a i n GammaSet ] ;

e l s e

lGamma : = [ ] ; GammaSet : = [ ] ;

end i f ;

p:=NextPrime ( p ) ;

u n t i l p gt L2 ;

S:= Seqse t (S ) ;

i f #PE l e 10 then

S:=S meet PE ;

end i f ;

r e t u r n S ,GammaS ;

end f u n c t i o n ;

B.4.6 The algorithm

To end this section,we present the algorithm used to test the Modular approach

to equations x2 −D = yp. We have the algorithm for the case D = 98.

CDEC:=CremonaDatabase ( ) ;

f o r D i n [ 9 8 ] do

pBnd :=10^8;

S ign := S i gn a t u r e (D) ;
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f o r P i n S ign do

d1:=P [ 1 ] ;

d2:=P [ 2 ] ;

SkrE := [ ∗ ∗ ] ;

PKrE : = [ ] ;

SkrF := [ ∗ ∗ ] ;

PKrF : = [ ] ;

p r i n t f "\n the Curve X^2−%o=Y^p , w i th

s i g n a t u r e d1=%o and d2=%o\n\n " ,D, d1 , d2 ;

NLE , NLF:=NewLevel (D, d1 , d2 ) ;

NE:= Seqse t (NLE ) ;

NF:= Seqse t (NLF ) ;

p r i n t f "\n the l e v e l s f o r the newforms a s s o c i a t e d

wi th the Frey cu r ve Et a r e %o \n\n" , NLE ;

p r i n t f "\n the l e v e l s f o r the newforms a s s o c i a t e d

wi th the Frey cu r ve Ft a r e %o \n\n" , NLF ;

cuspE , cuspF :=NewCuspforms (NLE ,NLF ) ;

p r i n t f "\n CuspE has %o newforms\n\n" , #cuspE ;

p r i n t f "\n CuspF has %o newforms\n\n" , #cuspF ;

i f (#cuspE∗#cuspF ) eq 0 then

p r i n t f "\n the Curve X^2−%o=Y^p , w i th s i g n a t u r e

d1=%o and d2=%o has no p r i m i t i v e s o l u t i o n s ,

by non e x i s t e n c e o f newforms\n\n " ,D, d1 , d2 ;

e l s e

i f #cuspE l t #cuspF then

C1:=cuspF ;

C2:=cuspE ;

t1 :=1;

t2 :=0;

p r i n t "C1 i s CuspF and C2 CuspE " ;

e l s e

C1:=cuspE ;
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C2:=cuspF ;

t1 :=0;

t2 :=1;

p r i n t "C1 i s CuspE and C2 CuspF " ;

end i f ;

p r i n t f "\n We a r e t e s t i n g the L e v e l Lower ing

f o r C1\n\n " ;

SE , PwofE:= Lower ingTes te (D, d2 , C1 , t1 ) ;

i f #SE eq 0 then

p r i n t f "\n the Curve X^2−%o=Y^p , w i th

s i g n a t u r e d1=%o and d2=%o has no

p r i m i t i v e s o l u t i o n s , by l e v e l l ow e r i n g

o f C1\n\n " ,D, d1 , d2 ;

e l s e

p r i n t f "\n We a r e t e s t i n g the L e v e l Lower ing

f o r C2\n\n " ;

SF , PwofF:= Lower ingTes te (D, d2 , C2 , t2 ) ;

i f #SF eq 0 then

p r i n t f "\n the Curve X^2−%o=Y^p , w i th

s i g n a t u r e d1=%o and d2=%o has no

p r i m i t i v e s o l u t i o n s , by l e v e l l ow e r i n g

o f C2\n\n " ,D, d1 , d2 ;

e l s e

PmE:={};

f o r i i n [ 1 . .# PwofE ] do

PmE:=PmE j o i n PwofE [ i ] ;

end f o r ;

PmF:={};

f o r i i n [ 1 . .# PwofF ] do

PmF:=PmF j o i n PwofF [ i ] ;

end f o r ;

i f #(PmE meet PmF) eq 0 then
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p r i n t f "\n the Curve X^2−%o=Y^p , w i th

s i g n a t u r e d1=%o and d2=%o has no

p r i m i t i v e s o l u t i o n s , by l e v e l l ow e r i n g

o f C1 + C2\n\n " ,D, d1 , d2 ;

e l s e

SE ; SF ;

p r i n t f "\n f o r C1 we have l e f t %o newforms

to t e s t and f o r C2 we have l e f t %o newforms

\n\n",#SE,#SF ;

p r i n t f "\n We a r e t e s t i n g the Methods I I+ I I I

f o r C1\n\n " ;

GamE : = [ ] ;

GamF : = [ ] ;

f o r i i n [ 1 . .#SE ] do

f :=SE [ i ] ;

PE:=PwofE [ i ] ;

N:= Le v e l ( f ) ;

K:= Ba s eF i e l d ( f ) ;

B:= Ba s i s (K) ;

p r i n t f "\n t e s t i n g the modular form f=%o o f l e v e l=%o

f o r the cu r ve C1\n\n" , f , N;

PE ,GE:=

krausRange (PE ,PmF, f , d1 , d2 ,D, t1 , pBnd ,CDEC) ;

i f #PE gt 0 then

SkrE :=SkrE ca t [∗ f ∗ ] ;

PKrE:=PKrE ca t [PE ] ;

GamE:=GamE cat [GE ] ;

end i f ;

end f o r ;

i f #SkrE gt 0 then

p r i n t f "\n We a r e t e s t i n g the Methods I I+ I I I

f o r C2\n\n " ;
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f o r i i n [ 1 . .#SF ] do

f :=SF [ i ] ;

PE:=PwofF [ i ] ;

N:= Le v e l ( f ) ;

K:= Ba s eF i e l d ( f ) ;

B:= Ba s i s (K) ;

p r i n t f "\n t e s t i n g the modular form f=%o o f

l e v e l=%o f o r the cu r ve C2\n\n" , f , N;

PE ,GE:=

krausRange (PE ,PmE, f , d1 , d2 ,D, t2 , pBnd ,CDEC) ;

i f #PE gt 0 then

SkrF :=SkrF ca t [∗ f ∗ ] ;

PKrF:=PKrF ca t [PE ] ;

GamF:=GamF cat [GE ] ;

end i f ;

end f o r ;

i f #SkrF eq 0 then

p r i n t f "\n the Curve X^2−%o=Y^p , w i th s i g n a t u r e

d1=%o and d2=%o has no p r i m i t i v e s o l u t i o n s

by k rau s methods\n\n" ,D, d1 , d2 ;

e l s e

IE :=[ i : i i n [ 1 . .# SkrE ] |

#Ba s i s ( Ba s eF i e l d ( SkrE [ i ] ) ) ge 1 ] ;

IF :=[ i : i i n [ 1 . .# SkrF ] |

#Ba s i s ( Ba s eF i e l d ( SkrF [ i ] ) ) ge 1 ] ;

Cusps := [ [∗ SkrE [ i ] , g ∗ ] : i i n IE , g i n SkrF ]

ca t [ [ ∗ f , SkrF [ i ] ∗ ] : f i n SkrE , i i n IF ] ;

Powers :=[PKrE [ i ] meet PKrF [ j ] : i i n IE , j i n IF ]

ca t [ E meet PKrF [ i ] : E i n PKrE , i i n IF ] ;

p r i n t f "\n The p o s s i b l e cusps and powers f o r

which the cu r ve X^2−%o=Y^p wi th s i g n a t u r e

d1=%o , d2=%o might have s o l u t i o n a r e %o %o ,
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\ nwith Gammas:%o\n %o\n\n" , D, d1 , d2 ,

Cusps , Powers ,GamE,GamF ;

end i f ;

e l s e

p r i n t f "\n the Curve X^2−%o=Y^p , w i th s i g n a t u r e

d1=%o and d2=%o has no p r i m i t i v e s o l u t i o n s

by k rau s methods\n\n" ,D, d1 , d2 ;

end i f ;

end i f ;

end i f ;

end i f ;

end i f ;

end f o r ;

end f o r ;

B.5 Code for Linear forms in logarithms

In this section we presented the functions that were used to obtain the bounds

given by linear forms in logarithms in Chapter 4.

B.5.1 Calculating gcd, α’s and logarithmic heights

. In this section we present functions that are need to calculate the constant c, α

as the logarithmic height of α, given by the Lemma 4.3.1.

The first function obtains the constant c = gcd(x + q
√

d, x −
√

d), given

by the Lemma mentioned above.

dValue := f u n c t i o n (D,P)

d1:=P [ 1 ] ; d2:=P [ 2 ] ;

i f (D mod 4) eq 2 then

r e t u r n [ d1 ] ;
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end i f ;

i f (D mod 4) eq 3 then

r e t u r n [ d1 ] ;

end i f ;

i f (D mod 4) eq 0 then

i f I sEven ( d2 ) then

r e t u r n [ d1 ] ;

e l s e

r e t u r n [2∗ d1 ] ;

end i f ;

end i f ;

i f (D mod 4) eq 1 then

r e t u r n [ d1 , 2∗d1 ] ;

end i f ;

end f u n c t i o n ;

The following function help us to choose the fundamental unit u of KD,

such that log u = max{log |u|, log |u|}.

MaxUnit := f u n c t i o n ( u )

RR:= Re a l F i e l d ( ) ;

v1 :=RR! Conjugate ( u ) ;

u1:=RR! u ;

u2:=RR!(−1∗u ) ;

v2 :=RR! Conjugate (−1∗u ) ;

Rl := [ [ u1 , Ab so l u t eLoga r i t hm i cHe i gh t ( u ) ] ,

[ u2 , Ab so l u t eLoga r i t hm i cHe i gh t (−1∗u ) ] ,

[ v1 , Ab so l u t eLoga r i t hm i cHe i gh t ( Con jugate ( u ) ) ] ,

[ v2 , Ab so l u t eLoga r i t hm i cHe i gh t ( Con jugate (−1∗u ) ) ] ] ;

Ul :=[ u ,−1∗u , Con jugate ( u ) , Con jugate ( u ) ] ;

N:=[ Rl [ i ] : i i n [ 1 . . 4 ] | Rl [ i ] [ 1 ] gt 1 ] ;

N2:=[ Ul [ i ] : i i n [ 1 . . 4 ] | Rl [ i ] [ 1 ] gt 1 ] ;

M:=Max ( [ Log (N[ i ] [ 1 ] ) : i i n [ 1 . .#N ] ] ) ;
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f o r i i n [ 1 . .#N] do

i f Log (N[ i ] [ 1 ] ) eq M then

r e t u r n N[ i ] [ 1 ] , N[ i ] [ 2 ] , N2 [ i ] ;

end i f ;

end f o r ;

end f u n c t i o n ;

The following functions helps us to calcultae α verifying the hypothesis of

the Lemma 4.3.1, including the fact that α < 1.

AlphaZero := f u n c t i o n ( I )

L :=[P :P i n D i v i s o r s ( I ) | ( P∗Conjugate (P) eq I )

and (P ne Conjugate (P ) ) ] ;

T:={};

f o r P i n L do

i f #T eq 0 then

T:=T j o i n {P} ;

e l s e

i f ( (P i n T) eq f a l s e ) and

( ( Conjugate (P) i n T) eq f a l s e ) then

T:=T j o i n {P} ;

end i f ;

end i f ;

end f o r ;

r e t u r n T;

end f u n c t i o n ;

I d e a lO r d e r := f u n c t i o n ( I , c l )

D ivC l := D i v i s o r s ( c l ) ;

f o r d i n DivC l do

st , e l t := I s P r i n c i p a l ( I ^d ) ;

s t2 , e l t 2 := I s P r i n c i p a l ( Con jugate ( I )^d ) ;

i f ( s t and s t 2 ) then
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i f Abs ( R e a l F i e l d ( ) ! Con jugate ( e l t )/ R e a l F i e l d ( ) ! e l t )

l t Abs ( R e a l F i e l d ( ) ! Con jugate ( e l t 2 )/ R e a l F i e l d ( ) ! e l t 2 )

then

r e t u r n e l t , d ;

e l s e

r e t u r n e l t 2 , d ;

end i f ;

end i f ;

end f o r ;

end f u n c t i o n ;

A1Value := f u n c t i o n ( I , c l , v , uc )

T:=AlphaZero ( I ) ; RR:= Re a l F i e l d ( ) ;

A1 : = [ ] ;

f o r I i n T do

e l t , k1 := I d e a lO r d e r ( I , c l ) ;

a l pha :=Conjugate ( e l t )/ e l t ;

a lpha1 :=(RR! Conjugate ( e l t ) ) / (RR! e l t ) ;

k := 2 d i v k1 ;

s := F l oo r (1−Log (Abs ( a lpha1 ) )/ (2∗ Log ( v ) ) ) ;

r := F l oo r (−1∗Log (Abs ( a lpha1 ) )/ (2∗ Log ( v))−1/− s )+1;

e l t 1 := e l t ∗Conjugate ( uc )^( r+s ) ;

a l pha :=Conjugate ( e l t 1 )/ e l t 1 ;

a lpha1 :=(RR! Conjugate ( e l t 1 ) ) / (RR! e l t 1 ) ;

i f Abs ( a lpha1 ) l t 1 then

a lpha := a lpha ^(−1); a lpha1 :=1/ a lpha1 ;

end i f ;

i f a lpha1 l t 0 then

a lpha1 :=−1∗ a lpha1 ;

a l pha :=−1∗ a lpha ;

end i f ;

i f a lpha1 gt 0 then
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i f k eq 1 then

ha:= Abso l u t eLoga r i t hm i cHe i gh t ( a lpha ) ;

A1:=A1 ca t [Max(2∗ha , 0 . 1 6 ) ] ;

e l s e

hb:= Abso l u t eLoga r i t hm i cHe i gh t ( a lpha ) ;

ha := Abso l u t eLoga r i t hm i cHe i gh t ( a lpha ^2) ;

k :=1;

a lpha1 := a lpha1 ^2;

A1:=A1 ca t [Max(2∗hb , 0 . 1 6 ) ] ;

end i f ;

e l s e

i f k eq 1 then

ha:= Abso l u t eLoga r i t hm i cHe i gh t (−1∗ a lpha ) ;

A1:=A1 ca t [Max(2∗ha , 0 . 1 6 ) ] ;

a lpha1 :=−1∗ a lpha1 ;

e l s e

hb:= Abso l u t eLoga r i t hm i cHe i gh t (−1∗ a lpha ) ;

ha := Abso l u t eLoga r i t hm i cHe i gh t ( a lpha ^2) ;

k :=1;

a lpha1 := a lpha1 ^2;

A1:=A1 ca t [Max(2∗hb , 0 . 1 6 ) ] ;

end i f ;

end i f ;

end f o r ;

i f #A1 gt 0 then

r e t u r n A1 , k , a lpha1 , ha ;

e l s e

r e t u r n A1 , 0 , 0 , 0 ;

end i f ;

end f u n c t i o n ;
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B.6 Zeros of a real function

The following function is a version of the bisection method of a root-finding algo-

rtihm, which will be used to obtain the lower bounds.

FZeros := f u n c t i o n (F , a , b , E r r o r )

i f (F( a )∗F(b ) ) l t 0 then

wh i l e Abs ( a−b ) ge E r r o r do

c := R e a l F i e l d ( ) ! ( ( a+b ) / 2 ) ;

i f F( c ) eq 0 then

r e t u r n t rue , c ;

e l s e

i f (F( a )∗F( c ) ) gt 0 then

a:=c ;

e l s e

b:=c ;

end i f ;

end i f ;

end wh i l e ;

i f F( a ) gt 0 then

r e t u r n t rue , b ;

e l s e

r e t u r n t rue , b ;

end i f ;

e l s e

i f F( a ) l t 0 then

r e t u r n t rue , b ;

e l s e

r e t u r n t rue , b ;

end i f ;

end i f ;

end f u n c t i o n ;
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B.6.1 Linear form in two logarithms

The following functions implement results of the Proposition 4.3.2. We have four

different versions, one for the two linear forms:

Λ2 := 2r log(u) + p log(λ),

Λ′
3 := log

(
ut12rα−kq′t2

)
− p log

(
λ

t1
α−δk

)
and

t1Λ3 := log(ut12rα−kq′t2)− p log(λ
t1
α−δk).

t2Λ3 = log
(
α−kt2ut1s′1

)
− p log

(
u−s1λ

t2
)
.

We make the distinction in order to have better implementations of the

method for each case.

LinearFormsinTwoLogs := f u n c t i o n (B, v , hv ,D1 ,D2 , i )

D:=D1^2∗D2 ;

B1:=B;km:=100;

kc :=40;

RI := [ 5 0 0 0 . . 1 0 0 0 0 0 ] ;

k f :=0;

Kf :=0;

L f :=0;

r f :=0;

h f :=0;

kmf :=0;

f o r r1 i n RI do

r := r1 /1000 ;

l :=Log ( r ) ;

a2 :=Max ( [ 4 , 2 . 7 ∗ l , ( r−1)∗Log ( v)+4∗hv ] ) ;

yB:=10^3;

d e l t a :=(10^3− Sqr t (D))/(10^3+ Sqr t (D) ) ;
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a1 :=Max ( [ 4 , 2 . 7 ∗ l ,

2∗Log ( ( Sqr t ( yB)−1)^2)+( r +1)∗(2∗(B−1)∗Log ( v)−Log ( d e l t a ) )/B ] ) ;

i f ( a1∗a2 ge 20∗ l ^2) and ( a1 gt 0) and ( a2 gt 0) then

k:=kc /(90∗ l ^2) ;

K:=0;

j :=1;

s t := f a l s e ;

wh i l e s t eq f a l s e do

i f j gt 1 then

k1 := F l oo r (K/10 ) ;

r e s t o :=K/10−k1 ;

i f r e s t o gt 0 .5 then

km:=k1∗10+5;

e l s e

km:=k1 ∗10 ;

end i f ;

end i f ;

f :=Log((1+ Sqr t (km−1))∗ Sqr t (km)/(km−1))+

Log (km)/(6∗km∗(km−1))+3/2+

Log (3/4)+Log (km/(km−1))/(km−1);

h:=Max ( [ 1 , 1 . 5 ∗ l ,

2∗( Log (B/a2+(2∗B−2)/a1)+Log ( l )+ f )+0 . 0262 ] ) ;

L:=2+F l oo r (2∗h/ l ) ;

K:=1+F l oo r ( k∗L∗a1∗a2 ) ;

i f K ge km then

i f (K−km) l t 5 then

s t := t r u e ;

e l s e

i f j ge 3 then

s t := t r u e ;

e l s e

s t := f a l s e ;
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end i f ;

end i f ;

e l s e

s t := f a l s e ;

end i f ;

j := j +1;

end wh i l e ;

i f L ge 5 then

pBnd:= Prev i ou sPr ime (

F l o o r (

2∗( l ∗k∗L^2∗a1∗a2+

Max ( [ l ∗(L−0.5)+Log (L^2∗(1+ Sqr t ( k )∗ a2 ) ) , 2∗ Log ( 2 ) ] )

+Log (2 . 2∗ Sqr t (D) ) ) / Log ( ( Sqr t ( yB)−1)^2)

)

) ;

i f pBnd l t B1 then

B1:=pBnd ;

Kf :=K;

r f := r1 ;

k f :=kc ;

h f :=h ;

L f :=L ;

kmf:=km;

end i f ;

end i f ;

end i f ;

end f o r ;

r e t u r n B1 , Kf , Lf , hf , r f , kf , kmf ;

end f u n c t i o n ;

Lf2L1 := f u n c t i o n (B, v , hv , a lpha , ha ,D1 ,D2 ,BTS, i )

D:=D1^2∗D2 ;
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B1:=B;km:=100;

kc :=40;

RI := [ 5 0 0 0 . . 2 0 0 0 0 0 ] ;

k f :=0;

Kf :=0;

L f :=0;

r f :=0;

h f :=0;

kmf :=0;

f o r r1 i n RI do

r := r1 /1000 ; l :=Log ( r ) ;

a2 :=Max ( [ 4 , 2 . 7 ∗ l ,

r ∗Abs ( Log ( v^BTS∗ a lpha ^(−1)))

−Log ( v^BTS∗ a lpha ^(−1))+4∗( hv∗BTS+ha ) ] ) ;

yB:=( Sqr t (B)−1)^2;

d e l t a :=(10^9− Sqr t (D))/(10^9+ Sqr t (D) ) ;

a1 :=Max ( [ 4 , 2 . 7 ∗ l ,

2∗Log ( ( Sqr t ( yB)−1)^2)+

( r +1)∗(2∗(B1−1)∗Log ( v)−Log ( d e l t a ) )/B1 ] ) ;

i f ( a1∗a2 ge 20∗ l ^2) and

( a1 gt 0) and ( a2 gt 0) then

k:=kc /(90∗ l ^2) ;

K:=0;

j :=1;

s t := f a l s e ;

wh i l e s t eq f a l s e do

i f j gt 1 then

k1 := F l oo r (K/10 ) ;

r e s t o :=K/10−k1 ;

i f r e s t o gt 0 .5 then

km:=k1∗10+5;

e l s e
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km:=k1 ∗10 ;

end i f ;

end i f ;

f :=Log((1+ Sqr t (km−1))∗ Sqr t (km)/(km−1))

+Log (km)/(6∗km∗(km−1))+3/2+Log (3/4)

+Log (km/(km−1))/(km−1);

h:=Max ( [ 1 , 1 . 5 ∗ l ,

2∗( Log (B1/a2+(2∗B1−2)/a1)+Log ( l )+ f )+0 . 0262 ] ) ;

L:=2+F l oo r (2∗h/ l ) ;

K:=1+F l oo r ( k∗L∗a1∗a2 ) ;

i f K ge km then

i f (K−km) l t 5 then

s t := t r u e ;

e l s e

i f j ge 3 then

s t := t r u e ;

e l s e

s t := f a l s e ;

end i f ;

end i f ;

e l s e

s t := f a l s e ;

end i f ;

j := j +1;

end wh i l e ;

i f L ge 5 then

F1:=map<Re a l F i e l d ( ) −> Rea l F i e l d ( ) |

x :−> x −2∗( l ∗k∗L^2∗a1∗a2+

Max ( [ l ∗(L−0.5)+Log (L^2∗(1+ Sqr t ( k )∗ a2 ) ) , 2∗ Log ( 2 ) ] )

+Log (2 . 2∗ Sqr t (D) ) ) / Log ( ( Sqr t ( x )−1)^2)>;

st3 , pBnd:= Fze ro s (F1 ,10^3 ,B1 , 1 ) ;

i f s t 3 then
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i f P r ev i ou sPr ime (pBnd ) l t B1 then

B1:= Prev i ou sPr ime (pBnd ) ;

Kf :=K;

r f := r1 ;

k f :=kc ;

h f :=h ;

L f :=L ;

kmf:=km;

end i f ;

end i f ;

end i f ;

end i f ;

end f o r ;

r e t u r n B1 , Kf , Lf , hf , r f , kf , kmf ;

end f u n c t i o n ;

L f2L2pt2 :=

f u n c t i o n (B, v , hv , a lpha , ha ,D1 ,D2 ,BR,BS ,BT, i )

D:=D1^2∗D2 ;

B1:=B;

km:=100;

kc :=40;

RI := [ 5 0 0 0 . . 2 0 0 0 0 0 ] ;

k f :=0;

Kf :=0;

L f :=0;

r f :=0;

h f :=0;

kmf :=0;

f o r r1 i n RI do

r := r1 /1000 ; l :=Log ( r ) ;

a2 :=Max ( [ 4 , 2 . 7 ∗ l ,
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r ∗Abs (BR∗Log ( v)−BS∗Log ( a lpha ))−BR∗Log ( v )

+BS∗Log ( a lpha )+4∗( hv∗BR+ha∗BS ) ] ) ;

yB:=( Sqr t (B)−1)^2;

d e l t a :=(10^9− Sqr t (D))/(10^9+ Sqr t (D) ) ;

l og1 :=( Log (1/ a lpha )+2∗(B1−1)∗Log ( v)−Log ( d e l t a ) )/B1 ;

l og2 :=(−1∗Log (1/ a lpha )−2∗(B1−1)∗Log ( v ) )/B1 ;

h l :=Log ( ( Sqr t ( yB)−1)^2)/2 +log1 /(2∗B1 ) ;

a1 :=Max ( [ 4 , 2 . 7 ∗ l , r ∗Abs(−BT∗Log ( a lpha )+BS∗ l o g1 )+

BT∗Log ( a lpha )−BS∗ l o g2 +4∗(ha∗BT+h l ∗BS ) ] ) ;

i f ( a1∗a2 ge 20∗ l ^2) and ( a1 gt 0)

and ( a2 gt 0) then

k:=kc /(90∗ Log ( r )^2 ) ;

K:=0;

j :=1;

s t := f a l s e ;

wh i l e s t eq f a l s e do

i f j gt 1 then

k1 := F l oo r (K/10 ) ;

r e s t o :=K/10−k1 ;

i f r e s t o gt 0 .5 then

km:=k1∗10+5;

e l s e

km:=k1 ∗10 ;

end i f ;

end i f ;

f :=Log((1+ Sqr t (km−1))∗ Sqr t (km)/(km−1))+

Log (km)/(6∗km∗(km−1))+3/2+Log (3/4)+

Log (km/(km−1))/(km−1);

h:=Max ( [ 1 , 1 . 5 ∗ l , 2∗ ( Log (B1/a2+(2∗B1−2)/a1 )

+Log ( l )+ f )+0 . 0262 ] ) ;

L:=2+F l oo r (2∗h/ l ) ;

K:=1+F l oo r ( k∗L∗a1∗a2 ) ;
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i f K ge km then

i f (K−km) l t 5 then

s t := t r u e ;

e l s e

i f j ge 3 then

s t := t r u e ;

e l s e

s t := f a l s e ;

end i f ;

end i f ;

e l s e

s t := f a l s e ;

end i f ;

j := j +1;

end wh i l e ;

i f L ge 5 then

F1:=map<Re a l F i e l d ( ) −> Rea l F i e l d ( ) |

x :−> x −2∗( l ∗k∗L^2∗a1∗a2+

Max ( [ l ∗(L−0.5)+Log (L^2∗(1+ Sqr t ( k )∗ a2 ) ) , 2∗ Log ( 2 ) ] )

+Log (2 . 2∗ Sqr t (D))+Log (BS) )/ Log ( ( Sqr t ( x )−1)^2)>;

st3 , pBnd:= Fze ro s (F1 ,10^3 ,B1 , 1 ) ;

i f s t 3 then

i f P r ev i ou sPr ime (pBnd ) l t B1 then

B1:= Prev i ou sPr ime (pBnd ) ;

Kf :=K;

r f := r1 ;

k f :=kc ;

h f :=h ;

L f :=L ;

kmf:=km;

end i f ;

end i f ;
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end i f ;

end i f ;

end f o r ;

r e t u r n B1 , Kf , Lf , hf , r f , kf , kmf ;

end f u n c t i o n ;

L f2L2pt1 := f u n c t i o n (B, v , hv , a lpha , ha ,D1 ,D2 ,BR,BS ,BT, i )

D:=D1^2∗D2 ;

B1:=B;

km:=100;

kc :=40;

RI := [ 5 0 0 0 . . 2 0 0 0 0 0 ] ;

k f :=0;

Kf :=0;

L f :=0;

r f :=0;

h f :=0;

kmf :=0;

f o r r1 i n RI do

r := r1 /1000 ;

l :=Log ( r ) ;

a2 :=Max ( [ 4 , 2 . 7 ∗ l ,

r ∗Abs (BR∗Log ( v)−BS∗Log ( a lpha ))−BR∗Log ( v)+

BS∗Log ( a lpha )+4∗( hv∗BR+ha∗BS ) ] ) ;

yB:=( Sqr t (B)−1)^2;

d e l t a :=(10^9− Sqr t (D))/(10^9+ Sqr t (D) ) ;

l og1 :=( Log (1/ a lpha )+2∗(B1−1)∗Log ( v)−Log ( d e l t a ) )/B1 ;

l og2 :=(−1∗Log (1/ a lpha )−2∗(B1−1)∗Log ( v ) )/B1 ;

h l :=Log ( ( Sqr t ( yB)−1)^2)/2 +log1 /(2∗B1 ) ;

a1 :=Max ( [ 4 , 2 . 7 ∗ l ,

r ∗Abs(−BT∗Log ( v)+BS∗ l o g1 )+BT∗Log ( v )

−BS∗ l o g2 +4∗(hv∗BT+h l ∗BS ) ] ) ;
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i f ( a1∗a2 ge 20∗ l ^2) and ( a1 gt 0)

and ( a2 gt 0) then

k:=kc /(90∗ Log ( r )^2 ) ;

K:=0;

j :=1;

s t := f a l s e ;

wh i l e s t eq f a l s e do

i f j gt 1 then

k1 := F l oo r (K/10 ) ;

r e s t o :=K/10−k1 ;

i f r e s t o gt 0 .5 then

km:=k1∗10+5;

e l s e

km:=k1 ∗10 ;

end i f ;

end i f ;

f :=Log((1+ Sqr t (km−1))∗ Sqr t (km)/(km−1))

+Log (km)/(6∗km∗(km−1))+3/2+Log (3/4)

+Log (km/(km−1))/(km−1);

h:=Max ( [ 1 , 1 . 5 ∗ l ,

2∗( Log (B1/a2+(2∗B1−2)/a1)+Log ( l )+ f )+0 . 0262 ] ) ;

L:=2+F l oo r (2∗h/ l ) ;

K:=1+F l oo r ( k∗L∗a1∗a2 ) ;

i f K ge km then

i f (K−km) l t 5 then

s t := t r u e ;

e l s e

i f j ge 3 then

s t := t r u e ;

e l s e

s t := f a l s e ;

end i f ;
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end i f ;

e l s e

s t := f a l s e ;

end i f ;

j := j +1;

end wh i l e ;

i f L ge 5 then

F1:=map<Re a l F i e l d ( ) −> Rea l F i e l d ( ) |

x :−> x −2∗( l ∗k∗L^2∗a1∗a2+

Max ( [ l ∗(L−0.5)+Log (L^2∗(1+ Sqr t ( k )∗ a2 ) ) , 2∗ Log ( 2 ) ] )

+Log (2 . 2∗ Sqr t (D))+Log (BR))/ Log ( ( Sqr t ( x )−1)^2)>;

st3 , pBnd:= Fze ro s (F1 ,10^3 ,B1 , 1 ) ;

i f s t 3 then

i f P r ev i ou sPr ime (pBnd ) l t B1 then

B1:= Prev i ou sPr ime (pBnd ) ;

Kf :=K;

r f := r1 ;

k f :=kc ;

h f :=h ;

L f :=L ;

kmf:=km;

end i f ;

end i f ;

end i f ;

end i f ;

end f o r ;

r e t u r n B1 , Kf , Lf , hf , r f , kf , kmf ;

end f u n c t i o n ;
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B.6.2 Linear form in three logarithms

The following functions are used to implement the result of the Theorem 4.2 to

obtain bounds for linear forms in three logarithms.

The first two functions are to calculate the two linear forms that we have

when we are in Case 1 or Case 2 of the afore mentioned Theorem. The third

one is the implementation of the method to obtain lower bounds for the linear

forms in logarithms, using Theorem 4.2.

Cond i t i on3p t1 :=

f u n c t i o n ( Bl1 , v , hv , a lpha , ha ,D1 ,D2 ,BTS)

B2 :=7;

wh i l e B2 l t Bl1 do

i f B2 gt 7 then

Bl1 :=B2 ;

end i f ;

B2 , K1 , L1 , h , r1 , k , km:=

Lf2L1 ( Bl1 , v , hv , a lpha , ha ,D1 ,D2 ,BTS, i ) ;

end wh i l e ;

r e t u r n B2 ;

end f u n c t i o n ;

Cond i t i on3p t2 :=

f u n c t i o n ( Bl1 , v , hv , a lpha , ha ,D1 ,D2 ,BR,BS ,BT, a1 , a2 )

B2 :=7;

wh i l e B2 l t Bl1 do

i f B2 gt 7 then

Bl1 :=B2 ;

end i f ;

i f a1 l t a2 then

B2 ,K2 , L2 , h , r2 , k , km:=

Lf2L2pt1 ( Bl1 , v , hv , a lpha , hv ,D1 ,D2 ,BR,BS ,BT, j ) ;
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e l s e

B2 ,K2 , L2 , h , r2 , k , km:=

Lf2L2pt2 ( Bl1 , v , hv , a lpha , hv ,D1 ,D2 ,BR,BS ,BT, j ) ;

end i f ;

end wh i l e ;

r e t u r n B2 ;

end f u n c t i o n ;

L inea rFormin3Logs :=

f u n c t i o n ( a lpha , ha , v , hv ,D1 ,D2 ,B, d e l t a )

D:=D1^2∗D2 ;

Bmig:=B;

r1 :=0; r2 :=0; r3 :=0;

s1 :=0; s2 :=0; s3 :=0;

t1 :=0; t2 :=0; t3 :=0;

Ch i r :=0; mv:=0; kv :=0;

rh :=0; Lv :=0;

BTh:=0; BRh:=0; BSh :=0;

BTRh:=0; BTSh:=0;

a1h :=0; a2h :=0;

Bmin :=0;

Rho :=30;

wh i l e Rho l e 200 do

Rh:=Rho /10 ;

Rh ;

L :=5;

PL:=0;

wh i l e L l e 1500 do

Chi :=5;

Mt:=1;

c h i :=Chi /10 ;

Bt :=0;
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r 1 t :=0; r 2 t :=0; r 3 t :=0;

s 1 t :=0; s 2 t :=0; s 3 t :=0;

t 1 t :=0; t 2 t :=0; t 3 t :=0;

Ch i t :=0; mt :=0; kt :=0;

r h t :=0; Lt :=0;

BTt :=0; BRt :=0; BSt :=0;

BTRt :=0; BTSt :=0;

a1t :=0; a2t :=0;

B1 :=7;

B:=Bmig ;

a1 :=(Rh−1)∗Log ( a lpha )+4∗ha ;

a2 :=(Rh−1)∗Log ( v)+4∗hv ;

a3 :=(Rh+1)∗Max( Log (1/ a lpha )+2∗(B−1)∗Log ( v)−Log ( d e l t a ) ,

−1∗Log (1/ a lpha )−2∗(B−1)∗Log ( v ) )/B

+2∗Log ( ( Sqr t (B)−1)^2);

i f ( a1 ge 1) and ( a2 ge 1) and ( a3 ge 1) then a:=Min ( [ a1 , a2 , a3 ] ) ;

mMax:=Max ( [ 3 / ( L∗a1∗a2∗a3 ) , 8/ ( a^3∗L∗ c h i ^4) ,

L^2/(4∗ a ^ 3 ) ] ) ;

mfun:=map<Re a l F i e l d ()−> Rea l F i e l d ( ) |

x:−> ( F l oo r ( x∗L∗a1∗a2∗a3 )∗L/2+L/4−1

−2∗F l oo r ( x∗L∗a1∗a2∗a3 )/(3∗L ) )∗ Log (Rh)

− (3∗ Log ( F l o o r ( x∗L∗a1∗a2∗a3 )^2∗L)+(1/4

−F l oo r ( x∗L∗a1∗a2∗a3 )^2∗L/

(12∗ ( F l o o r ( a2∗a3 ∗( c h i ∗x∗L )^(2/3) )

+F l oo r ( a2∗a3 ∗2^(1/3)∗( x∗L )^(2/3) )

+F l oo r ( a2∗a3 ∗(6∗ x ^2)^(1/3)∗L)+1)∗

( F l o o r ( a1∗a3 ∗( c h i ∗x∗L )^(2/3) )

+F l oo r ( a1∗a3 ∗2^(1/3)∗( x∗L )^(2/3) )

+F l oo r ( a1∗a3 ∗(6∗ x ^2)^(1/3)∗L)+1)∗

( F l o o r ( a2∗a1 ∗( c h i ∗x∗L)^(2/3))+

F l oo r ( a2∗a1 ∗2^(1/3)∗( x∗L)^(2/3))+

F l oo r ( a2∗a1 ∗(6∗ x ^2)^(1/3)∗L)+1)))∗L∗
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( a1 ∗( F l o o r ( a2∗a3 ∗( c h i ∗x∗L)^(2/3))+

F l oo r ( a2∗a3 ∗2^(1/3)∗( x∗L)^(2/3))+

F l oo r ( a2∗a3 ∗(6∗ x ^2)^(1/3)∗L)+1)+

a2 ∗( F l o o r ( a1∗a3 ∗( c h i ∗x∗L)^(2/3))+

F l oo r ( a1∗a3 ∗2^(1/3)∗( x∗L)^(2/3))+

F l oo r ( a1∗a3 ∗(6∗ x ^2)^(1/3)∗L)+1)+

a3 ∗( F l o o r ( a2∗a1 ∗( c h i ∗x∗L)^(2/3))+

F l oo r ( a2∗a1 ∗2^(1/3)∗( x∗L)^(2/3))+

F l oo r ( a2∗a1 ∗(6∗ x ^2)^(1/3)∗L)+1))+

2∗( F l o o r ( x∗L∗a1∗a2∗a3 )−1)∗(

Log ( ( F l o o r ( a2∗a3 ∗( c h i ∗x∗L )^(2/3) )

+F l oo r ( a2∗a3 ∗2^(1/3)∗( x∗L )^(2/3) )

+F l oo r ( a2∗a3 ∗(6∗ x ^2)^(1/3)∗L ))/2

+(F l o o r ( a1∗a3 ∗( c h i ∗x∗L )^(2/3) )

+F l oo r ( a1∗a3 ∗2^(1/3)∗( x∗L )^(2/3) )

+F l oo r ( a1∗a3 ∗(6∗ x ^2)^(1/3)∗L ) )/

(2∗ (2∗B−2)))+2∗Log (2∗B−2)+

Log ( ( F l o o r ( a2∗a1 ∗( c h i ∗x∗L)^(2/3))+

F l oo r ( a2∗a1 ∗2^(1/3)∗( x∗L)^(2/3))+

F l oo r ( a2∗a1 ∗(6∗ x ^2)^(1/3)∗L))/2+

( F l o o r ( a2∗a3 ∗( c h i ∗x∗L)^(2/3))+

F l oo r ( a2∗a3 ∗2^(1/3)∗( x∗L)^(2/3))+

F l oo r ( a2∗a3 ∗(6∗ x ^2)^(1/3)∗L ) )∗

B/(2∗(2∗B−2)))

−4/( F l o o r ( x∗L∗a1∗a2∗a3)^2−

F l oo r ( x∗L∗a1∗a2∗a3 ) )∗ (

Log ( F l o o r ( x∗L∗a1∗a2∗a3 )−1)∗

( F l o o r ( x∗L∗a1∗a2∗a3)−1)/2+

(−3∗ F l oo r ( x∗L∗a1∗a2∗a3)^2+

6∗ F l oo r ( x∗L∗a1∗a2∗a3 )−2)/4

)

)
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−2∗Log ( Exp (1)/2)) >;

st4 ,mT:=FZeros (mfun ,mMax,10^5 ,10^(−15)) ;

i f mT eq 10^5 then

m1:=mMax;

e l s e

m1:=mT;

end i f ;

f o r m i n [ m1, (m1+F l oo r (m1)+1)/2 ,

F l o o r (m1)+1 ,m1+1 ,(m1+F l oo r (m1)+1)/2+1 ,

F l o o r (m1)+2] do

c1 :=Max( ( c h i ∗m∗L )^(2/3) , Sq r t (2∗m∗L/a ) ) ;

c2 :=Max(2^(1/3)∗ (m∗L )^(2/3) , Sq r t (m/a )∗L ) ;

c3 :=(6∗m^2)^(1/3)∗L ;

T1:= F l oo r ( c1∗a1∗a2 ) ;

T2:= F l oo r ( c2∗a1∗a2 ) ;

T3:= F l oo r ( c3∗a1∗a2 ) ;

Tm:=Max(T1 , T2 ) ;

T:=T1+T2+T3+1;

K:= F l oo r (m∗L∗a1∗a2∗a3 ) ;

R1:= F l oo r ( c1∗a2∗a3 ) ;

R2:= F l oo r ( c2∗a2∗a3 ) ;

R3:= F l oo r ( c3∗a2∗a3 ) ;

S1:= F l oo r ( c1∗a1∗a3 ) ;

S2:= F l oo r ( c2∗a1∗a3 ) ;

Sm:=Max(S1 , S2 ) ;

S3:= F l oo r ( c3∗a1∗a3 ) ;

R:= R1+R2+R3+1;

S:= S1+S2+S3+1;

N:=L∗K^2;

g:= 1/4−N/(12∗R∗S∗T) ;

nu0:= Log ( (R−1)/2+(S−1)/(2∗(2∗B−2) ) ) ;

e ta0 := Log ( (T−1)/2+(S−1)∗B/(2∗(2∗B−2) ) ) ;
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exp :=−4/(K∗(K−1)) ;

e :=Exp ( 1 ) ;

p i :=Pi ( R e a l F i e l d ( ) ) ;

v1 :=(K∗L/2+L/4−1−2/3∗K/L)∗ Log (Rh)

−3∗Log (N)−g∗L∗( a1∗R+a2∗S+a3∗T)

−2∗Log ( e /2)−2∗(K−1)∗(2∗Log (2∗B−2)+

eta0+nu0+2∗Log (K)−3

+2∗Log (2∗ p i ∗K/Exp (3/2 ) ) / (K−1)

−(2+6∗ p i ^(−2)+Log (K) ) / ( 3∗ (K^2−K) ) ) ;

i f v1 gt 0 then

V:= Sqr t ( ( R1+1)∗(S1+1)∗(T1+1)) ;

M:=Max ( [ R1+S1+1,R1+T1+1,S1+T1+1, c h i ∗V ] ) ;

BTR:= F l oo r ( ( R1+1)∗(T1+1)/(M−T1 ) ) ;

BTS:= F l oo r ( ( S1+1)∗(T1+1)/(M−T1 ) ) ;

BR:= F l oo r ( ( S1+1)∗(T1+1)/(M−Max(T1 , S1 ) ) ) ;

BS:= F l oo r ( ( R1+1)∗(T1+1)/(M−Max(R1 , T1 ) ) ) ;

BT:= F l oo r ( ( S1+1)∗(R1+1)/(M−Max(S1 , R1 ) ) ) ;

F1:=map<Re a l F i e l d ( ) −> Rea l F i e l d ( ) |

x :−> x −2∗(K∗L∗Log (Rh)+Log (L∗Max ( [ R , S ,T ] ) )

+Log (2 . 2∗D1∗ Sqr t (D2 ) ) ) / Log ( ( Sqr t ( x )−1)^2)>;

st3 , Btry := Fze ro s (F1 ,10^3 ,B , 1 ) ;

B1:= Prev i ou sPr ime ( F l o o r ( Btry ) ) ;

i f s t 3 and (B1 l t B) and (Tm l t B1) and

(m∗a1∗a2∗a3 ge 2) and (Sm l t B1) then

i f Bt eq 0 then

r 1 t :=R1 ; r 2 t :=R2 ; r 3 t :=R3 ;

s 1 t :=S1 ; s 2 t :=S2 ; s 3 t :=S3 ;

t 1 t :=T1 ; t 2 t :=T2 ; t 3 t :=T3 ;

Ch i t := ch i ; mt:=m; kt :=K;

r h t :=Rh ; Lt :=L ;

BTt:=BT; BRt:=BR; BSt:=BS ;

BTRt:=BTR; BTSt:=BTS ;
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a1t :=a1 ; a2t :=a2 ;

Bt:=B1 ;

e l s e

i f ( Abs (BTS) l t Abs (BTSt ) ) and

(Abs (BR) l t Abs (BRt ) ) and (Abs (BS) l t Abs (BSt ) )

and (Abs (BT) l t Abs (BTt ) ) then

r 1 t :=R1 ; r 2 t :=R2 ; r 3 t :=R3 ;

s 1 t :=S1 ; s 2 t :=S2 ; s 3 t :=S3 ;

t 1 t :=T1 ; t 2 t :=T2 ; t 3 t :=T3 ;

Ch i t := ch i ; mt:=m; kt :=K;

r h t :=Rh ; Lt :=L ;

BTt:=BT; BRt:=BR; BSt:=BS ;

BTRt:=BTR; BTSt:=BTS ;

a1t :=a1 ; a2t :=a2 ;

Bt:=B1 ;

end i f ;

end i f ;

end i f ;

e l s e

B1:=Bmig ;

end i f ;

i f ( Bt l t Bmig ) and (Bt gt 0) then

i f Bmin eq 0 then

p r i n t f "p Bound:=%o , f o r rho:=%o , L:=%o , m:=%o ,

c h i :=%o\n" , rht , Bt , Lt , mt , Ch i t ;mMax;

r 1 t :=R1 ; r 2 t :=R2 ; r 3 t :=R3 ;

s 1 t :=S1 ; s 2 t :=S2 ; s 3 t :=S3 ;

t 1 t :=T1 ; t 2 t :=T2 ; t 3 t :=T3 ;

Ch i t := ch i ; mt:=m; kt :=K;

r h t :=Rh ; Lt :=L ;

BTt:=BT; BRt:=BR; BSt:=BS ;

BTRt:=BTR; BTSt:=BTS ;
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a1t :=a1 ; a2t :=a2 ;

Bt:=Bt ;

e l s e

i f ( Bt l t Bmin ) then

p r i n t f "p Bound:=%o , f o r rho:=%o , L:=%o , m:=%o ,

c h i :=%o\n" , rht , Bt , Lt , mt , Ch i t ;mMax;

r 1 t :=R1 ; r 2 t :=R2 ; r 3 t :=R3 ;

s 1 t :=S1 ; s 2 t :=S2 ; s 3 t :=S3 ;

t 1 t :=T1 ; t 2 t :=T2 ; t 3 t :=T3 ;

Ch i t := ch i ; mt:=m; kt :=K;

r h t :=Rh ; Lt :=L ;

BTt:=BT; BRt:=BR; BSt:=BS ;

BTRt:=BTR; BTSt:=BTS ;

a1t :=a1 ; a2t :=a2 ;

Bt:=Bt ;

end i f ;

end i f ;

end i f ;

end f o r ;

end i f ;

L:=L+1;

end wh i l e ;

Rho:=Rho+1;

end wh i l e ;

B:=Bmig ;

BC31:= Cond i t i on3p t1 (Bmig , v , hv , a lpha , ha ,D1 ,D2 ,BTSh ) ;

i f BC31 l t B then

BC32:= Cond i t i on3p t2 (

Bmig , v , hv , a lpha , ha ,D1 ,D2 ,BRh , BSh ,BTh , a1h , a2h ) ;

i f BC32 l t B then

Bmin3:=Max ( [ BC32 , BC31 , Bmin ] ) ;

i f Bmin3 l t B then

280



Bmig:=Bmin3 ;

r e t u r n r1 , r2 , r3 , s1 , s2 , s3 , t1 , t2 , t3 , Chi r ,mv , kv , rh , Lv ,

Bmig ,BRh , BSh ,BTh ;

e l s e

r e t u r n 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , Bmig , 0 , 0 , 0 ;

end i f ;

e l s e

r e t u r n 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , Bmig , 0 , 0 , 0 ;

end i f ;

end i f ;

end f u n c t i o n ;

B.6.3 The Algorithm

We present now the algorithm to compute the bounds presented in the main body

of this thesis, as well we have the implementation of the Matveev’s results, as we

presented in Thereom 4.1 and the following discussion.

f o r D i n [ 1 7 ] do

D2 ,D1:= Squ a r e F r e e F a c t o r i z a t i o n (D) ;

Q<a>:=Quad r a t i c F i e l d (D2 ) ;

O:=MaximalOrder (Q) ;

u:=Fundamenta lUnit (Q) ;

v , hv , uc :=MaxUnit ( u ) ;

c l :=ClassNumber (Q) ;

SignD:= S i gn a t u r e (D) ;

f o r P i n SignD do

dVal :=dValue (D,P ) ;

p r i n t f " f o r D=%o we have the f o l l o w i n g p o s s i b i l i t e s

f o r d : %o\n" ,D, dVal ;

f o r d i n dVal do

i f d eq 1 then
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A1 : = [ 1 ] ; n :=2; a lpha :=1;

e l s e

n :=3;

A1 , k , a lpha , ha :=A1Value ( d∗O, c l , v , uc ) ;

end i f ;

d e l t a :=(10^9− Sqr t (D))/(10^9+ Sqr t (D) ) ;

A2:=Max(2∗ hv , 0 . 1 6 ) ;

e :=Exp ( 1 ) ;

Cn:=(16/ F a c t o r i a l ( n ) )∗ ( e^n )∗ (2∗ n+3)∗(n+2)∗

( e∗n /2)∗ (4∗ ( n+1))^(n+1);

C0:=Log ( e ^(4 .4∗ n+7)∗n^(5 .5)∗4∗ Log (2∗ e ) ) ;

C1:=3∗ e∗Log (2∗ e ) ;

i f #A1 ge 1 then

f o r A i n A1 do

omega1:=A∗A2 ;

d e l t a :=(10^9− Sqr t (D))/(10^9+ Sqr t (D) ) ;

C5:=Cn∗C0∗omega1 ∗2 ;

C6:=2∗Log (2 . 2∗D1∗ Sqr t (D2 ) ) ;

F1:=map<Re a l F i e l d ( ) −> Rea l F i e l d ( ) |

x :−> x −2∗(Log (C1∗x )∗C5∗( Log ( ( Sqr t ( x)−1)^2)+

Max( Log (1/ a lpha )+2∗(x−1)∗Log ( v)−Log ( d e l t a ) ,

−Log (1/ a lpha )−2∗(x−1)∗Log ( v ) )/ x)−C6)/

Log ( ( Sqr t ( x )−1)^2)>;

st3 , B2:= Fze ro s (F1 , C5 , 10^15 , 1 ) ;

i f ( s t 3 ) then

B2:= F l oo r (B2+1);

B:= Prev i ou sPr ime (B2 ) ;

p r i n t f " f o r D=%o , wi th s i g n a t u r e ( d1 , d2)=%o ,

wi th d=%o , we have the f o l l o w i n g upper bound

f o r the p r imes p , by Matveev r e s u l t s , %o\n\n " ,

D, P , d , B ;

i :=1;
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i f n eq 2 then

B2 :=7;

wh i l e B2 l t B do

i f B2 gt 7 then

B:=B2 ;

end i f ;

B2 ,K, L , h , r , k , km:=

LinearFormsinTwoLogs (B, v , hv ,D1 ,D2 , i ) ;

p r i n t f " f o r D=%o , wi th s i g n a t u r e ( d1 , d2)=%o ,

wi th d=%o , f o r i t e r a t i o n number %o

we have the f o l l o w i n g upper bound f o r the p r imes p ,

by LMN r e s u l t s , %o , w i th K=%o ,km:=%o L=%o ,

rho=%o , h=%o , k:=%o \n\n" , D, P , d , i , B2 ,K, km, L , r , h , k ;

i := i +1;

end wh i l e ;

end i f ;

i f ( n eq 3) then

i :=1;

B2 :=7;

wh i l e B2 l t B do

i f B2 gt 7 then

B:=B2 ;

end i f ;

R1 , R2 , R3 , S1 , S2 , S3 , T1 , T2 , T3 , Chi ,m,K, rh , L , B2 ,BR,BS ,

BT:= L inea rFormin3Logs ( a lpha , ha , v , hv ,D1 ,D2 ,B, d e l t a ) ;

p r i n t f " f o r D=%o , wi th s i g n a t u r e ( d1 , d2)=%o , wi th d=%o ,

we have the f o l l o w i n g upper bound f o r the p r imes p ,

by Mignotte r e s u l t s and i t e r a t i o n %o , %o , \ n wi th R1=%o ,

R2=%o , R3=%o , S1=%o , S2=%o , S3=%o , T1=%o , T2=%o ,

T3=%o , K=%o , L=%o , rho=%o , m=%o and ch i=%o \n

and wi th Br=%o , BS=%o and BT=%o\n\n" , D, P , d , i ,

B2 , R1 , R2 , R3 , S1 , S2 , S3 , T1 , T2 , T3 ,K, L , rh ,m, Chi ,
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BR,BS ,BT;

i := i +1;

end wh i l e ;

end i f ;

end i f ;

end f o r ;

e l s e

C:=10^8;

p r i n t f " f o r D=%o , wi th s i g n a t u r e ( d1 , d2):=%o , w i th d:=%o ,

we have the f o l l o w i n g upper bound f o r the p r imes p ,

by Matveev Theorem , %o\n\n " ,D,P , d ,C ;

end i f ;

end f o r ;

end f o r ;

end f o r ;
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