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Serre’s Uniformity Conjecture

Conjecture (Serre's Uniformity Conjecture)

Let E/Q be without CM. Let p > 37. Then pg , is surjective.

Note: p surjective <= image contains SLp(FF}).

Theorem (Dickson)

Let H be a subgroup of GLo(Fp) not containing SLy(F,). Then (up to
conjugation)

*

(i) either H C By(p) := {<0 :)} (Borel subgroup)

(i) or HC NS (p) := {(g g>, (g g) Ca, B EIF:‘,} (normalizer of
split Cartan)

i) or HC p) (normalizer of non-split Cartan).

HC N li f lit C

(iv) or the image of H in PGLy(F,) is isomorphic to As, S4 or As (these
are called the exceptional subgroups of GLy(FFp)).




Vague Objective

Given

@ a field K,

@ a positive integer N,

@ and a subgroup H C GL(Z/NZ),
want to understand

(*) {elliptic curves E/K :  pg n(Gk) is conjugate to a subgroup of H}.

There is a modular curve Xy associated to H.

Provided H satisfies certain technical assumptions,
@ elements of (*) give rise to (non-cuspidal) K-points on Xy.

@ By understanding Xy(K) we can give a complete description of the
set (*).



Modular Curves corresponding to subgroups of GL,(F,)
Corresponding to six groups Bo(p), N (p), N;(p), A4, Sa, As in
Dickson's classification are six modular curves Xp(p), X (p), XL(p),
XA4(p)' X54(p) and XA5(p)'

To prove Serre’s uniformity conjecture, enough to show that the rational
points on each of these curves are either CM or cuspidal for p > 37.

In fact this has been accomplished for all these families except
Xz5(p)-

Theorem (Serre)
If p > 13 then X(Qp) = 0 for X = Xa,(p), Xs,(p), Xas(p)-

Theorem (Mazur)
If p > 37 then Xo(p)(Q) C {cusps, cm points}.

Theorem (Bilu, Parent and Rebolledo)
If p > 13 then X;"(p)(Q) C {cusps, cm points}.




To prove Serre’s uniformity conjecture, enough to show that the rational
points on each of these curves are either CM or cuspidal for p > 37.

In fact this has been accomplished for all these families except
Xqe(p)-

Theorem (Serre)

If p> 13 then X(Qp) = 0 for X = Xa,(p), Xs,(P), Xas(p)-

Theorem (Mazur)
If p > 37 then Xo(p)(Q) C {cusps, cm points}.

Theorem (Bilu, Parent and Rebolledo)
If p > 13 then X;"(p)(Q) C {cusps, cm points}.

Theorem (Balakrishnan, Dogra, Miiller, Tuitman, Vonk)
X;H(13)(Q) and X;5(13)(Q) consist of cusps and CM points.

The question of rational points on X£(p) is a famous open problem.



The Modular Curve X(1)—Recap

H:={x+yi : x, yeR, y >0} (upper half-plane)
H* := HUPY{(Q) (extended upper half-plane).

e Given any 7 € H, there is an elliptic curve E;/C such that

@ Every elliptic curve over C is isomorphic to E. for some 7.

e Moreover E;, = E,, if and only if 71 = y(72) for some v € SLy(Z).
.. we have a bijection
SL2(Z)\H < {isom classes of elliptic curves E/C},
SLy(Z) - 7 — [C/(Z + Z7)] ([ -] =isom class).

SL>(Z)\H is a Riemann surface. lts points are in 1 — 1 correspondence
with isom classes of elliptic curves over C.



‘. we have a bijection

SL2(Z)\H < {isom classes of elliptic curves E/C},
SLo(Z) - 7 — [C/(Z + ZT)] ([ -] = isom class).

@ SL»(Z)\H is a Riemann surface. Its points are in 1 —1
correspondence with isom classes of elliptic curves over C.

@ SL»(Z)\H is non-compact; its compactification is SLo(Z)\H*
(H* := HUPY(Q)).

@ SLy(Z)\H* is a compact Riemann surface of genus 0.

@ The points of P1(Q) C H* form one orbit under the action of SLy(Z),
so the compactification has only one extra point, called the ‘the oo
cusp’.

@ Any compact Riemann surface can be identified as the set of complex
points on an algebraic curve of the same genus.



@ SLy(Z)\H* is a compact Riemann surface of genus 0.

@ The points of P}(Q) C H* form one orbit under the action of SL»(Z),
so the compactification has only one extra point, called the ‘the co
cusp’.

@ Any compact Riemann surface can be identified as the set of complex
points on an algebraic curve of the same genus.

@ In this we case we denote the algebraic curve by X(1) = P!
J:SLa(Z)\H* — X(1)(C),
1
SLo(Z) -7+ j(1) = p + 744 +196884¢°% + - - - |

where
_)exp(2miT) TE€H
7o T € PY(Q).



@ In this we case we denote the algebraic curve by X(1) = P!,
J o SL(Z)\H" — X(1)(C),
1
SLy(Z) -7+ j(1) = p + 744 +196884¢° + - - - |,

where
_Jexp(2miT) T € H
7o 7 € PL(Q).

@ j sends cusp SL»(Z)\P}(Q) to oo € X(1)(C).

o Let Y(1) := X(1)\ oo = AL
Summary: There is a 1 — 1 correspondence between isomorphism classes
of elliptic curves E/C and points j € Y(1)(C) (the value is j € Y(1)(C)
corresponding to E/C is familiar j-invariant j(E)).

Now let K be any field. The correspondence between isomorphism classes
of E/K and points in Y(1)(K), sending E to its j-invariant E, remains
valid.



Summary: There is a 1 — 1 correspondence between isomorphism classes
of elliptic curves E/C and points j € Y(1)(C) (the value is j € Y(1)(C)
corresponding to E/C is familiar j-invariant j(E)).

Now let K be any field. The correspondence between isomorphism classes
of E/K and points in Y(1)(K), sending E to its j-invariant E, remains
valid.

Points j € Y(1)(K) correspond to classes of elliptic curves defined over K
which are isomorphic over K.

If E, E' are defined over K and isomorphic over K, then they are
quadratic twists, except possibly if they have j-invariants 0, 1728.

So we have the following 1 — 1 correspondence:

{elliptic curves over K with j-invariant # 0, 1728}/ ~
— je X(1)(K)\{0,1728, o0}

where ~ denotes quadratic twisting.



The modular curves Xi(N), Xo(N)
Fix N > 1.
e Want to understand isomorphism classes of pairs (E, P),
» where E is an elliptic curve;
» P is a point of order N;
» (E,P), (E’, P’) are isomorphic if there is an isomorphism ¢ : E — E’
with ¢(P) = P'.
e Given (E, P) with E/C,
» 37 € H such that E(C) *C/(Z+Z - ) AND
> this isom takes P to 1/N + (Z + Z1) € C/(Z + Zr);
» We identify [(E, P)] with [(C/(Z + ZT),1/N)];
> (C/(Z + Zm),1/N) = (C/(Z + Zs),1/N) iff Iy € T1(N) such that
71 = Y(72).

FL(N) = {(f_ 2) €SLy(Z) : a=d=1 (mod N), c=0 (mod N)}.
Obtain 1 — 1 correspondence

I (N)\H <« {isom classes of pairs (E/C, P)},
r(N)-7— [(C/(Z+ Z1),1/N)].



@ Also want to understand isomorphism classes of pairs (E, C) where
» E/C is an elliptic curve;
» C is a cyclic subgroup of order N,
» pairs (E1, Gi), (Ez, G;) are isomorphic if there exists isomorphism
¢ : E; — E; such that ¢(C1) = G.
» Write [(E, C)] for the isomorphism class of the pair (E, C).

Obtain 1 — 1 correspondence
Mo(N)\H <« {isom classes of pairs (E/C, C)},
Fo(N) -7 = [(C/(Z + Z7), (1/N))]-

where
Fo(N) = {(i Z) €SLy(Z) : c=0 (mod N)}.
Miracle: there are (open) curves Yi(N), Yo(N) defined over @, such that
Yi(N)(C) =T1(N)\H,  Yo(N)(C) = T'o(N)\H,

The completions X(1), X1(N), Xo(N) satisfy
Xi(N)(C) = To(N)\H",  Xo(N)(C) = To(N)\H",



Miracle: there are (open) curves Yi(N), Yo(N) defined over Q, such that
Yi(N)(C) = T (N)\H,  Yo(N)(C) = Fo(N)\H,

The completions X (1), X1(N), Xo(N) satisfy
X1(N)(C) =T (N\H",  Xo(N)(C) = To(N)\H",

We call X1(N)\ Y1(N), Xo(N)\ Yo(N) the sets of cusps of Xi(N), Xo(N)
respectively.

Facts.

e A point Q € Y1(N)(K) parametrises an isomorphism class of pairs
[(E, P)] where E/K and P is a point of order N. We write
Q =[(E, P)] € Yi(N)(K) (i.e. identify point Q € Y7 with pair it
represents).

@ This parametrisation is compatible with the action of Gk. Thus
Q° = [(E, P)]? where [(E, P)]? is simply defined as (E?, P?).

o Let @ =[(E, P)] € Yi(N)(K) as above. If E is defined over K, and
P is a K-rational point of order N, then

Q% =[(E,P)]” =[(E,P)] = Q for all o € Gk, and thus Q € Y1(K).



The Modular Curve Xy

We want to generalise previous constructions to an arbitrary group
H < GLx(Z/NZ).

o An isomorphism « : E[N] — (Z/NZ)? a level N structure on E.

@ A level N-structure is same as choice of basis for E[N]: P = a~(e1),
Q = a~(e) where e; = (1,0), e = (0,1).

e We call pairs (E1, 1) and (Ez, o) H-isomorphic, and write

(E1,01) ~n (B2, a2)
if there is an isom ¢ : E;y — E> and an element h € H such that

a1 = hoaso¢  (think of h€ H as h: (Z/NZ)? = (Z./NZ)?).

Exercise. Show that H-isomorphism is an equivalence relation. We denote
the H-isomorphism class of the pair (E, «) by [(E, «)]y.



We want to generalise previous constructions to an arbitrary group
H < GLy(Z/NZ).

e An isomorphism « : E[N] — (Z/NZ)? a level N structure on E.

@ A level N-structure is same as choice of basis for E[N]: P = a~(e1),
Q = a~(e) where e; = (1,0), &2 = (0,1).

e We call pairs (E1, 1) and (Ez, o) H-isomorphic, and write
(E1, 1) ~p (B2, 0)
if there is an isom ¢ : E; — E; and an element h € H such that
a1 = hoaso¢  (think of h€ H as h: (Z/NZ)? = (Z/NZ)?).
Exercise. Let H = Bi(N). Show that (E1, 1) ~y (E2, a2) if and only if
there is an isomorphism ¢ : E; — E; such that ¢(P1) = P, where
P =a7(1,0), Py=a;(1,0),

are respectively points of order N on E7, E>.



We want to generalise previous constructions to an arbitrary group
H < GLy(Z/NZ).

e An isomorphism « : E[N] — (Z/NZ)? a level N structure on E.

@ A level N-structure is same as choice of basis for E[N]: P = a~(e1),
Q = a~(e) where e; = (1,0), &2 = (0,1).

e We call pairs (E1, 1) and (Ez, o) H-isomorphic, and write
(E1, 1) ~p (B2, 0)
if there is an isom ¢ : E; — E; and an element h € H such that
a1 = hoaso¢  (think of h€ H as h: (Z/NZ)? = (Z/NZ)?).
Exercise. Let H = By(N). Show that (E1, 1) ~y (E2, a2) if and only if
there is an isomorphism ¢ : E; — E such that ¢((P1)) = (P2), where
P =a7%(1,0),  P.=a;'(1,0),

are respectively points of order N on E7, E>.



The congruence subgroup associated to H < GL,(Z/NZ)

Let
My :={AeSLyZ) : (A mod N) € SLy(Z/NZ) N H}.

Then
'y 2 T(N) := {AeSLx(Z) : A=1 (mod N)}.

.. Ty is a congruence subgroup of SL(Z).
Exercise. Show that

eo(vy = To(N), Ceyn) = F1(N).



The congruence subgroup associated to H < GL,(Z/NZ)
Let
M= {AESLa(Z) : (A mod N) € SLo(Z/NZ) N H).

Given 7 € H we write a for the level N structure on C/(Z + Zt):

a’T(]'/N) = (170)7 a’T(T/N) = (07 1)‘

e if E/C, a level N-structure on E then

» there is 7 € H such that £ = E;;
» the isomorphism E.(C) = C/(Z + Zr) identifies a with c;
» can think of (E,a) as (C/(Z + Z7), ;).

(*] [(C/(Z+ ZTl),OdTl)]H = [(C/(Z+ZTQ),CVT2)]H iff T = ’y(Tz) for
some v € ['y.

We conclude that there is a one-one correspondence

F\H < {[(E/C.a)ln}, Th-7 = [(C/H(Z+Z7),0r)]y -



The modular curve Xy

3 algebraic curves Xy O Yy, with Xy complete and Yy open such that

Yu(C) 2 Ty\H,  Xp(C) = My\H*.

det(H) < (Z/NZ)" €2~ Gal(Q(¢n)/Q)

Make sense to write

Ly = Q(¢)de).

Theorem

The modular curve Xy has a model defined over Ly.




Ly = Q(¢)deh.

Theorem
The modular curve Xy has a model defined over Ly.

Iy C SLp(Z) = 3 surjective morphism of Riemann surfaces

I'H\IHI* — SLQ(Z)\H*, I'H T — SLQ(Z) - T.

This induces a non-constant morphism of curves

J o Xy — X(1),
defined over Ly. The cusps of Xy is set j~1(00), and Yy := Xy \j~1(c0).
On complex points it factors through the earlier j-map

SLo(Z)\H* — X(1)(C).



Assumption: Henceforth suppose det(H) = (Z/NZ)*. .. Xy is defined
over Q (in fact defined over Spec(Z[1/N])) and so is j : Xy — X(1).

K be a perfect field, char(K) = 0, or char(K) { N.

e A point Q € Yy(K) represents class [(E, a)]y where E/K, a a mod
N level structure;

e we identify Q = [(E, a)]H.

Lemma

Let @ = [(E,)]n € Yu(K). Let E'/K be an elliptic curve that is
isomorphic to E. Then there is some isomorphism o' : E'[N] — (Z/NZ)?
such that Q = [(E’, &/)]H.

i.e. | can replace E by any isomorphic E’ and obtain the same point
Q € Yy provided | suitably choose the mod N level structure on E’.



Lemma

Let Q = [(E,)]n € Yu(K). Let E'/K be an elliptic curve that is
isomorphic to E. Then there is some isomorphism o' : E'[N] — (Z/NZ)?
such that Q = [(E', &/)]n.

i.e. | can replace E by any isomorphic E’ and obtain the same point
Q € Yy provided | suitably choose the mod N level structure on E’.

Proof.
Recall [(E, &)y = [(E, /)y iff 3¢ : E — E’ (isom) and h € H such that
a=hod od.

Let ¢ : E — E’ be an isomorphism. Let o/ = a0 ¢~1. Observe that
a = 1oa o¢ where | = identity of H.

S (E,@)w =B, )n. O




Galois action and rationality

Gk acts on pairs (E, «) (E,a)° = (E°,aoc?).

Action is compatible with action of Gk on Yy (K):

Q=[E.a)ly = Q" =[(E% acc V)u.

Lemma

Let Q € Yu(K). Then Q € Yn(K) iff Q = [(E, )]y for some E/K,

a: E[N] = (Z/NZ)? such that for all o € Gy, there is an ¢, € Autg(E)
and h, € H satisfying

a=hsoao00 1o, (1)

v

Proof. <= Condition (2) implies (E,a) ~y (E,a007!). Thus Q° = @
for all o € Gk and so Q € Yu(K).



Gk acts on pairs (E, «) (E,a) = (E%, acc™t).

Action is compatible with action of Gk on Yy(K):

Q=[E o)y = Q" =[(E% aco V.

Lemma

Let Q € Yu(K). Then Q € Yn(K) iff Q = [(E, a)]n for some E/K,

a: E[N] = (Z/NZ)? such that for all o € Gk, there is an ¢, € Autg(E)
and h, € H satisfying

a=h,0a00 o g,. (2)

Proof. = Suppose Q = [(E’, )|n € Ynu(K).
Note E' = E'? for all 0 € Gk. .. j(E') € K. . E' = E where E/K.
By previous lemma Q = [(E, a)]y for some «.

(2) follows [(E, a0 0~1)] = Q7 = Q = [(E, a)].

O



The case —/ ¢ H

Theorem

Suppose det(H) = (Z/NZ)* and —I € H.

(i) Every Q € Yu(K) is supported on some E/K (i.e. 3E/K and
a: E[N] =5 (Z/NZ)? such that Q = [(E, a)].

(i) If Q € Yu(K) and j(Q) # 0, 1728, then Q = [(E, «)]y such that E is
defined over K and pg n(Gk) C H (up to conjugation). Conversely, if
there is E is defined over K and pg y(Gk) C H (up to conjugation)
then [(E,a)] € Yn(K) for a suitable «.

(i) If Q € Yn(K) and j(Q) # 0, 1728, and Q = [(E, «)]n as above, then

Q = [(E', /)] for any quadratic twist E' /K defined over K, and for
suitable o/ .




Theorem

Suppose det(H) = (Z/NZ)* and —I € H.

(i) If Q € Yu(K) and j(Q) # 0, 1728, then Q = [(E, «)]y such that E is
defined over K and pg n(Gk) C H (up to conjugation). Conversely, if

there is E is defined over K and pg y(Gk) C H (up to conjugation)
then [(E, a)] € Yn(K) for a suitable «.

Some details for (ii). Note that j(Q) = j(E). As this # 0, 1728, the
automorphism group Aut(E) = {1,—1}. Thus ¢, = £1 and in particular
commutes with all other maps. But

a=h,oao00 tog, = aoo = (pshs) o a.
This can be rewritten as
ﬁE,N(U) = ¢ohs

once we have taken a~1(1,0), a~1(0,1) as basis for E[N]. Note that
¢ohs = £hy € H. Thus pg n(Gk) € H as required.




The case —/ ¢ H

Theorem
Suppose det(H) = (Z/NZ)* and —1 ¢ H.
(i) Every Q € Yu(K) is supported on some E/K (i.e. 3E/K and
a: E[N] = (Z/NZ)? such that Q = [(E, a)]n.
(i) If Q € Yu(K) and j(Q) # 0, 1728, then Q = [(E, «)]y such that E is
defined over K and ﬁE,N(GK) C H (up to conjugation). Conversely, if

there is E is defined over K and pg n(Gk) C H (up to conjugation)
then [(E, a)] € Yn(K) for a suitable «.

(i) If Q € Yn(K) and j(Q) # 0, 1728, and Q = [(E, «)]|n as above, then
E is unique.




Theorem

Suppose det(H) = (Z/NZ)* and —1 ¢ H.

(i) IfQ € Yu(K) and j(Q) # 0, 1728, then Q = [(E, a)|y such that E is
defined over K and pg n(Gk) C H (up to conjugation). Conversely, if

there is E is defined over K and pg n(Gk) C H (up to conjugation)
then [(E,a)] € Yu(K) for a suitable «.

(i) If Q € Yn(K) and j(Q) # 0, 1728, and Q = [(E, «)]n as above, then
E is unique.

Some details. As before ¢, € {£1} and pg n(0) = dohs.
The map ¢ : 0 — ¢, is a quadratic character.

If 9 is trivial then pg y(Gk) C H. Otherwise v is a quadratic character,
and by Galois theory its kernel fixes a quadratic extension K(\/H) of K.

Now ﬁEd,N = 1/) 'pE,NY and thus pEd,N(G) = ho— € H.

Replacing E by E4 and adjusting the level structure a gives Q = [(E, )]y
with E defined over K and pg y(Gk) C H.




