Explicit Arithmetic of Modular Curves Lecture II: Modular Curves

Samir Siksek (Warwick/IHÉS/IHP)

18 June 2019

Serre's Uniformity Conjecture

Conjecture (Serre's Uniformity Conjecture)

Let E/\mathbb{Q} be without CM. Let p > 37. Then $\overline{\rho}_{E,p}$ is surjective.

Note: $\overline{\rho}$ surjective \iff image contains $SL_2(\mathbb{F}_p)$.

Theorem (Dickson)

Let H be a subgroup of $GL_2(\mathbb{F}_p)$ not containing $SL_2(\mathbb{F}_p)$. Then (up to conjugation)

- (i) either $H \subseteq B_0(p) := \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\}$ (Borel subgroup)
- (ii) or $H \subseteq N_s^+(p) := \left\{ \begin{pmatrix} \alpha & 0 \\ 0 & \beta \end{pmatrix}, \begin{pmatrix} 0 & \alpha \\ \beta & 0 \end{pmatrix} : \alpha, \beta \in \mathbb{F}_p^* \right\}$ (normalizer of split Cartan)
- (iii) or $H \subseteq N_{ns}^+(p)$ (normalizer of non-split Cartan).
- (iv) or the image of H in $PGL_2(\mathbb{F}_p)$ is isomorphic to A_4 , S_4 or A_5 (these are called the exceptional subgroups of $GL_2(\mathbb{F}_p)$).

Vague Objective

Given

- a field K,
- a positive integer N,
- and a subgroup $H \subseteq GL_2(\mathbb{Z}/N\mathbb{Z})$,

want to understand

(*) {elliptic curves
$$E/K$$
 : $\overline{\rho}_{E,N}(G_K)$ is conjugate to a subgroup of H }.

There is a modular curve X_H associated to H.

Provided H satisfies certain technical assumptions,

- elements of (*) give rise to (non-cuspidal) K-points on X_H .
- By understanding $X_H(K)$ we can give a complete description of the set (*).

Modular Curves corresponding to subgroups of $GL_2(\mathbb{F}_p)$ Corresponding to six groups $B_0(p)$, $N_s^+(p)$, $N_{ns}^+(p)$, A_4 , A_5 in

Dickson's classification are six modular curves $X_0(p)$, $X_{s}^+(p)$, $X_{ns}^+(p)$, $X_{ns}^$

To prove Serre's uniformity conjecture, enough to show that the rational points on each of these curves are either CM or cuspidal for p > 37.

In fact this has been accomplished for all these families except $X_{ps}^+(p)$.

Theorem (Serre)

If $p \ge 13$ then $X(\mathbb{Q}_p) = \emptyset$ for $X = X_{A_4}(p)$, $X_{S_4}(p)$, $X_{A_5}(p)$.

Theorem (Mazur)

If p > 37 then $X_0(p)(\mathbb{Q}) \subset \{cusps, cm \ points\}$.

Theorem (Bilu, Parent and Rebolledo)

If p > 13 then $X_s^+(p)(\mathbb{Q}) \subset \{cusps, cm \ points\}$.

To prove Serre's uniformity conjecture, enough to show that the rational points on each of these curves are either CM or cuspidal for p>37.

In fact this has been accomplished for all these families except $X_{ps}^+(p)$.

Theorem (Serre)

If $p \geq 13$ then $X(\mathbb{Q}_p) = \emptyset$ for $X = X_{A_4}(p)$, $X_{S_4}(p)$, $X_{A_5}(p)$.

Theorem (Mazur)

If p > 37 then $X_0(p)(\mathbb{Q}) \subset \{\text{cusps}, \text{cm points}\}.$

Theorem (Bilu, Parent and Rebolledo)

If p > 13 then $X_s^+(p)(\mathbb{Q}) \subset \{cusps, cm \ points\}$.

Theorem (Balakrishnan, Dogra, Müller, Tuitman, Vonk)

 $X_s^+(13)(\mathbb{Q})$ and $X_{ns}^+(13)(\mathbb{Q})$ consist of cusps and CM points.

The question of rational points on $X_{ns}^+(p)$ is a famous open problem.

The Modular Curve X(1)—Recap

$$\mathbb{H}:=\{x+yi:x,\ y\in\mathbb{R},\ y>0\}$$
 (upper half-plane) $\mathbb{H}^*:=\mathbb{H}\cup\mathbb{P}^1(\mathbb{Q})$ (extended upper half-plane).

- Given any $\tau \in \mathbb{H}$, there is an elliptic curve E_{τ}/\mathbb{C} such that $E_{\tau}(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z} \cdot \tau)$.
- Every elliptic curve over $\mathbb C$ is isomorphic to E_{τ} for some τ .
- Moreover $E_{\tau_1} \cong E_{\tau_2}$ if and only if $\tau_1 = \gamma(\tau_2)$ for some $\gamma \in \mathsf{SL}_2(\mathbb{Z})$.
- ... we have a bijection

$$\mathsf{SL}_2(\mathbb{Z}) \backslash \mathbb{H} \leftrightarrow \{ \text{isom classes of elliptic curves } E/\mathbb{C} \},$$

 $\mathsf{SL}_2(\mathbb{Z}) \cdot \tau \mapsto [\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)] \qquad ([\cdot] = \text{isom class}).$

 $SL_2(\mathbb{Z})\backslash \mathbb{H}$ is a Riemann surface. Its points are in 1-1 correspondence with isom classes of elliptic curves over \mathbb{C} .

... we have a bijection

$$\begin{split} \mathsf{SL}_2(\mathbb{Z}) \backslash \mathbb{H} & \leftrightarrow \{ \mathsf{isom \ classes \ of \ elliptic \ curves \ } E/\mathbb{C} \}, \\ \mathsf{SL}_2(\mathbb{Z}) \cdot \tau & \mapsto [\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)] \qquad ([\; \cdot \;] = \mathsf{isom \ class}). \end{split}$$

- $SL_2(\mathbb{Z})\backslash \mathbb{H}$ is a Riemann surface. Its points are in 1-1 correspondence with isom classes of elliptic curves over \mathbb{C} .
- $SL_2(\mathbb{Z})\backslash \mathbb{H}$ is non-compact; its compactification is $SL_2(\mathbb{Z})\backslash \mathbb{H}^*$ $(\mathbb{H}^* := \mathbb{H} \cup \mathbb{P}^1(\mathbb{Q})).$
- $SL_2(\mathbb{Z})\backslash \mathbb{H}^*$ is a compact Riemann surface of genus 0.
- The points of $\mathbb{P}^1(\mathbb{Q}) \subset \mathbb{H}^*$ form one orbit under the action of $SL_2(\mathbb{Z})$, so the compactification has only one extra point, called the 'the ∞ cusp'.
- Any compact Riemann surface can be identified as the set of complex points on an algebraic curve of the same genus.

- $SL_2(\mathbb{Z})\backslash \mathbb{H}^*$ is a compact Riemann surface of genus 0.
- The points of $\mathbb{P}^1(\mathbb{Q}) \subset \mathbb{H}^*$ form one orbit under the action of $SL_2(\mathbb{Z})$, so the compactification has only one extra point, called the 'the ∞ cusp'.
- Any compact Riemann surface can be identified as the set of complex points on an algebraic curve of the same genus.
- In this we case we denote the algebraic curve by $X(1) = \mathbb{P}^1$.

$$j: \mathsf{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^* \to X(1)(\mathbb{C}) \,,$$

$$\mathsf{SL}_2(\mathbb{Z}) \cdot \tau \mapsto j(\tau) = \frac{1}{q} + 744 + 196884q^2 + \cdots \,,$$

where

$$q:=egin{cases} \exp(2\pi i au) & au\in\mathbb{H}\ 0 & au\in\mathbb{P}^1(\mathbb{Q}). \end{cases}$$

• In this we case we denote the algebraic curve by $X(1) = \mathbb{P}^1$.

$$j: \mathsf{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^* o X(1)(\mathbb{C}) \,,$$
 $\mathsf{SL}_2(\mathbb{Z}) \cdot \tau \mapsto j(\tau) = rac{1}{q} + 744 + 196884q^2 + \cdots \,,$

where

$$q:=egin{cases} \exp(2\pi i au) & au\in\mathbb{H}\ 0 & au\in\mathbb{P}^1(\mathbb{Q}). \end{cases}$$

- j sends cusp $\mathsf{SL}_2(\mathbb{Z})\backslash\mathbb{P}^1(\mathbb{Q})$ to $\infty\in X(1)(\mathbb{C})$.
- Let $Y(1) := X(1) \setminus \infty \cong \mathbb{A}^1$.

Summary: There is a 1-1 correspondence between isomorphism classes of elliptic curves E/\mathbb{C} and points $j \in Y(1)(\mathbb{C})$ (the value is $j \in Y(1)(\mathbb{C})$ corresponding to E/\mathbb{C} is familiar j-invariant j(E)).

Now let K be any field. The correspondence between isomorphism classes of E/\overline{K} and points in $Y(1)(\overline{K})$, sending E to its j-invariant E, remains valid.

Summary: There is a 1-1 correspondence between isomorphism classes of elliptic curves E/\mathbb{C} and points $j\in Y(1)(\mathbb{C})$ (the value is $j\in Y(1)(\mathbb{C})$ corresponding to E/\mathbb{C} is familiar j-invariant j(E)).

Now let K be any field. The correspondence between isomorphism classes of E/\overline{K} and points in $Y(1)(\overline{K})$, sending E to its j-invariant E, remains valid.

Points $j \in Y(1)(K)$ correspond to classes of elliptic curves defined over K which are isomorphic over \overline{K} .

If E, E' are defined over K and isomorphic over \overline{K} , then they are quadratic twists, **except possibly if they have** j**-invariants** 0, 1728.

So we have the following 1-1 correspondence:

{elliptic curves over
$$K$$
 with j -invariant $\neq 0$, 1728 }/ $\sim \implies j \in X(1)(K) \setminus \{0, 1728, \infty\}$

where \sim denotes quadratic twisting.

The modular curves $X_1(N)$, $X_0(N)$

Fix N > 1.

- Want to understand isomorphism classes of pairs (E, P),
 - where E is an elliptic curve;
 - P is a point of order N;
 - ▶ (E, P), (E', P') are **isomorphic** if there is an isomorphism $\phi : E \to E'$ with $\phi(P) = P'$.
- Given (E, P) with E/\mathbb{C} ,
 - $lacktriangledown \exists au \in \mathbb{H} ext{ such that } E(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z}+\mathbb{Z}\cdot au) ext{ AND}$
 - ▶ this isom takes P to $1/N + (\mathbb{Z} + \mathbb{Z}\tau) \in \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$;
 - We identify [(E, P)] with $[(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), 1/N)]$;

•
$$(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau_1), 1/N) \cong (\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau_2), 1/N)$$
 iff $\exists \gamma \in \Gamma_1(N)$ such that $\tau_1 = \gamma(\tau_2)$.

$$\Gamma_1(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}_2(\mathbb{Z}) : a \equiv d \equiv 1 \pmod{N}, c \equiv 0 \pmod{N} \right\}.$$

Obtain 1-1 correspondence

$$\Gamma_1(N) \setminus \mathbb{H} \leftrightarrow \{ \text{isom classes of pairs } (E/\mathbb{C}, P) \},$$

 $\Gamma_1(N) \cdot \tau \mapsto [(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), 1/N)].$

Also want to understand isomorphism classes of pairs (E, C) where
 ► E/C is an elliptic curve;

C is a cyclic subgroup of order N;

▶ pairs (E_1, C_1) , (E_2, C_2) are **isomorphic** if there exists isomorphism $\phi: E_1 \to E_2$ such that $\phi(C_1) = C_2$.

Write [(E,C)] for the isomorphism class of the pair (E,C).

Obtain 1-1 correspondence

$$\Gamma_0(N) \setminus \mathbb{H} \leftrightarrow \{ \text{isom classes of pairs } (E/\mathbb{C}, C) \},$$

 $\Gamma_0(N) \cdot \tau \mapsto [(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), \langle 1/N \rangle)].$

where

$$\Gamma_0(N) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{SL}_2(\mathbb{Z}) \quad : \quad c \equiv 0 \pmod{N} \right\}.$$

Miracle: there are (open) curves $Y_1(N)$, $Y_0(N)$ defined over \mathbb{Q} , such that $Y_1(N)(\mathbb{C}) \cong \Gamma_1(N) \backslash \mathbb{H}$, $Y_0(N)(\mathbb{C}) \cong \Gamma_0(N) \backslash \mathbb{H}$,

The completions
$$X(1)$$
, $X_1(N)$, $X_0(N)$ satisfy

$$X_1(N)(\mathbb{C})\cong\Gamma_1(N)\backslash\mathbb{H}^*,\qquad X_0(N)(\mathbb{C})\cong\Gamma_0(N)\backslash\mathbb{H}^*,$$

The completions X(1), $X_1(N)$, $X_0(N)$ satisfy $X_1(N)(\mathbb{C}) \cong \Gamma_1(N) \backslash \mathbb{H}^*, \qquad X_0(N)(\mathbb{C}) \cong \Gamma_0(N) \backslash \mathbb{H}^*,$ We call $X_1(N) \backslash Y_1(N)$, $X_0(N) \backslash Y_0(N)$ the sets of **cusps** of $X_1(N)$, $X_0(N)$

Miracle: there are (open) curves $Y_1(N)$, $Y_0(N)$ defined over \mathbb{Q} , such that $Y_1(N)(\mathbb{C}) \cong \Gamma_1(N) \setminus \mathbb{H}$, $Y_0(N)(\mathbb{C}) \cong \Gamma_0(N) \setminus \mathbb{H}$,

Facts.

respectively.

represents).

- A point $Q \in Y_1(N)(\overline{K})$ parametrises an isomorphism class of pairs [(E,P)] where E/\overline{K} and P is a point of order N. We write $Q = [(E,P)] \in Y_1(N)(\overline{K})$ (i.e. identify point $Q \in Y_1$ with pair it
 - This parametrisation is compatible with the action of G_K . Thus $Q^{\sigma} = [(E, P)]^{\sigma}$ where $[(E, P)]^{\sigma}$ is simply defined as (E^{σ}, P^{σ}) .
 - Let $Q = [(E, P)] \in Y_1(N)(\overline{K})$ as above. If E is defined over K, and P is a K-rational point of order N, then $Q^{\sigma} = [(E, P)]^{\sigma} = [(E, P)] = Q$ for all $\sigma \in G_K$, and thus $Q \in Y_1(K)$.

The Modular Curve X_H

We want to generalise previous constructions to an arbitrary group $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$.

- An isomorphism $\alpha : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2$ a level N structure on E.
- A level *N*-structure is same as choice of basis for E[N]: $P = \alpha^{-1}(e_1)$, $Q = \alpha^{-1}(e_2)$ where $e_1 = (1,0)$, $e_2 = (0,1)$.
- We call pairs (E_1, α_1) and (E_2, α_2) *H*-isomorphic, and write

$$(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$$

if there is an isom $\phi: E_1 \to E_2$ and an element $h \in H$ such that

$$\alpha_1 = h \circ \alpha_2 \circ \phi$$
 (think of $h \in H$ as $h : (\mathbb{Z}/N\mathbb{Z})^2 \cong (\mathbb{Z}/N\mathbb{Z})^2$).

Exercise. Show that H-isomorphism is an equivalence relation. We denote the H-isomorphism class of the pair (E, α) by $[(E, \alpha)]_H$.

We want to generalise previous constructions to an arbitrary group $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$.

- An isomorphism $\alpha : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2$ a level N structure on E.
- A level *N*-structure is same as choice of basis for E[N]: $P = \alpha^{-1}(e_1)$, $Q = \alpha^{-1}(e_2)$ where $e_1 = (1,0)$, $e_2 = (0,1)$.
- We call pairs (E_1, α_1) and (E_2, α_2) *H*-isomorphic, and write

$$(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$$

if there is an isom $\phi: E_1 \to E_2$ and an element $h \in H$ such that

$$lpha_1 \ = \ h \circ lpha_2 \circ \phi$$
 (think of $h \in H$ as $h : (\mathbb{Z}/N\mathbb{Z})^2 \cong (\mathbb{Z}/N\mathbb{Z})^2$).

Exercise. Let $H = B_1(N)$. Show that $(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$ if and only if there is an isomorphism $\phi : E_1 \to E_2$ such that $\phi(P_1) = P_2$, where

$$P_1 = \alpha_1^{-1}(1,0), \qquad P_2 = \alpha_2^{-1}(1,0),$$

are respectively points of order N on E_1 , E_2 .

We want to generalise previous constructions to an arbitrary group $H \leq \mathsf{GL}_2(\mathbb{Z}/N\mathbb{Z})$.

- An isomorphism $\alpha : E[N] \to (\mathbb{Z}/N\mathbb{Z})^2$ a level N structure on E.
- A level *N*-structure is same as choice of basis for E[N]: $P = \alpha^{-1}(e_1)$, $Q = \alpha^{-1}(e_2)$ where $e_1 = (1,0)$, $e_2 = (0,1)$.
 - We call pairs (E_1, α_1) and (E_2, α_2) *H*-isomorphic, and write

$$(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$$

if there is an isom $\phi: E_1 \to E_2$ and an element $h \in H$ such that

 $lpha_1 = h \circ lpha_2 \circ \phi$ (think of $h \in H$ as $h : (\mathbb{Z}/N\mathbb{Z})^2 \cong (\mathbb{Z}/N\mathbb{Z})^2$).

Exercise. Let $H = B_0(N)$. Show that $(E_1, \alpha_1) \sim_H (E_2, \alpha_2)$ if and only if there is an isomorphism $\phi : E_1 \to E_2$ such that $\phi(\langle P_1 \rangle) = \langle P_2 \rangle$, where

$$P_1 = \alpha_1^{-1}(1,0), \qquad P_2 = \alpha_2^{-1}(1,0),$$

are respectively points of order N on E_1 , E_2 .

The congruence subgroup associated to $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$

Let

$$\Gamma_H:=\{A\in \mathsf{SL}_2(\mathbb{Z})\ :\ (A\mod N)\in \mathsf{SL}_2(\mathbb{Z}/N\mathbb{Z})\cap H\}.$$

Then

$$\Gamma_H \supseteq \Gamma(N) := \{A \in \mathsf{SL}_2(\mathbb{Z}) : A \equiv I \pmod{N}\}.$$

 Γ_H is a congruence subgroup of $SL_2(\mathbb{Z})$.

Exercise. Show that

$$\Gamma_{B_0(N)} = \Gamma_0(N), \qquad \Gamma_{B_1(N)} = \Gamma_1(N).$$

The congruence subgroup associated to $H \leq GL_2(\mathbb{Z}/N\mathbb{Z})$

Let

$$\Gamma_H := \{ A \in \mathsf{SL}_2(\mathbb{Z}) \ : \ (A \mod N) \in \mathsf{SL}_2(\mathbb{Z}/N\mathbb{Z}) \cap H \}.$$

Given $\tau \in \mathbb{H}$ we write α_{τ} for the level N structure on $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$:

$$\alpha_{\tau}(1/N) = (1,0), \qquad \alpha_{\tau}(\tau/N) = (0,1).$$

- if E/\mathbb{C} , α level N-structure on E then
 - ▶ there is $\tau \in \mathbb{H}$ such that $E = E_{\tau}$;
 - ▶ the isomorphism $E_{\tau}(\mathbb{C}) \cong \mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$ identifies α with α_{τ} ;
 - can think of (E, α) as $(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), \alpha_{\tau})$.
- $[(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau_1), \alpha_{\tau_1})]_H = [(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau_2), \alpha_{\tau_2})]_H$ iff $\tau_1 = \gamma(\tau_2)$ for some $\gamma \in \Gamma_H$.

We conclude that there is a one-one correspondence

$$\Gamma_H \setminus \mathbb{H} \leftrightarrow \{ [(E/\mathbb{C}, \alpha)]_H \}, \qquad \Gamma_H \cdot \tau \mapsto [(\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau), \alpha_\tau)]_H.$$

The modular curve X_H

 \exists algebraic curves $X_H \supset Y_H$, with X_H complete and Y_H open such that

$$Y_H(\mathbb{C}) \cong \Gamma_H \backslash \mathbb{H}, \qquad X_H(\mathbb{C}) \cong \Gamma_H \backslash \mathbb{H}^*.$$

$$\det(H) \leq (\mathbb{Z}/N\mathbb{Z})^* \stackrel{\chi_N}{\underset{\cong}{\longleftarrow}} \operatorname{Gal}(\mathbb{Q}(\zeta_N)/\mathbb{Q})$$

Make sense to write

$$L_H := \mathbb{Q}(\zeta_N)^{\det(H)}.$$

Theorem

The modular curve X_H has a model defined over L_H .

$$L_H := \mathbb{Q}(\zeta_N)^{\det(H)}.$$

Theorem

The modular curve X_H has a model defined over L_H .

$$\Gamma_H \subset \mathsf{SL}_2(\mathbb{Z}) \implies \exists$$
 surjective morphism of Riemann surfaces

$$\Gamma_H \backslash \mathbb{H}^* \to \mathsf{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^*, \qquad \Gamma_H \cdot \tau \to \mathsf{SL}_2(\mathbb{Z}) \cdot \tau.$$

This induces a non-constant morphism of curves

$$j: X_H \to X(1),$$

defined over L_H . The **cusps of** X_H is set $j^{-1}(\infty)$, and $Y_H := X_H \setminus j^{-1}(\infty)$.

On complex points it factors through the earlier j-map

$$\mathsf{SL}_2(\mathbb{Z}) \backslash \mathbb{H}^* \to X(1)(\mathbb{C}).$$

Assumption: Henceforth suppose $\det(H) = (\mathbb{Z}/N\mathbb{Z})^*$. X_H is defined over \mathbb{Q} (in fact defined over $\mathbb{Q}(\mathbb{Z}[1/N])$) and so is $j: X_H \to X(1)$.

K be a perfect field, char(K) = 0, or $char(K) \nmid N$.

- A point $Q \in Y_H(\overline{K})$ represents class $[(E, \alpha)]_H$ where E/\overline{K} , α a mod N level structure;
- we identify $Q = [(E, \alpha)]_H$.

Lemma

Let $Q = [(E, \alpha)]_H \in Y_H(\overline{K})$. Let E'/\overline{K} be an elliptic curve that is isomorphic to E. Then there is some isomorphism $\alpha' : E'[N] \to (\mathbb{Z}/N\mathbb{Z})^2$ such that $Q = [(E', \alpha')]_H$.

i.e. I can replace E by any isomorphic E' and obtain the same point $Q \in Y_H$ provided I suitably choose the mod N level structure on E'.

Lemma

Let $Q = [(E, \alpha)]_H \in Y_H(\overline{K})$. Let E'/\overline{K} be an elliptic curve that is isomorphic to E. Then there is some isomorphism $\alpha' : E'[N] \to (\mathbb{Z}/N\mathbb{Z})^2$ such that $Q = [(E', \alpha')]_H$.

i.e. I can replace E by any isomorphic E' and obtain the same point $Q \in Y_H$ provided I suitably choose the mod N level structure on E'.

Proof.

Recall $[(E, \alpha)]_H = [(E', \alpha')_H \text{ iff } \exists \phi : E \to E' \text{ (isom) and } h \in H \text{ such that } \alpha = h \circ \alpha' \circ \phi.$

Let $\phi: E \to E'$ be an isomorphism. Let $\alpha' = \alpha \circ \phi^{-1}$. Observe that $\alpha = I \circ \alpha' \circ \phi$ where I = identity of H.

$$\therefore [(E,\alpha)]_H = [(E',\alpha')_H.$$

Galois action and rationality

$$G_K$$
 acts on pairs (E, α) $(E, \alpha)^{\sigma} := (E^{\sigma}, \alpha \circ \sigma^{-1}).$

Action is compatible with action of G_K on $Y_H(\overline{K})$:

$$Q = [(E, \alpha)]_H \implies Q^{\sigma} = [(E^{\sigma}, \alpha \circ \sigma^{-1})]_H.$$

Lemma

Let $Q \in Y_H(\overline{K})$. Then $Q \in Y_H(K)$ iff $Q = [(E, \alpha)]_H$ for some E/K, $\alpha : E[N] \xrightarrow{\cong} (\mathbb{Z}/N\mathbb{Z})^2$ such that for all $\sigma \in G_K$, there is an $\phi_{\sigma} \in \operatorname{Aut}_{\overline{K}}(E)$ and $h_{\sigma} \in H$ satisfying

$$\alpha = h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma}. \tag{1}$$

Proof. \Leftarrow Condition (2) implies $(E, \alpha) \sim_H (E, \alpha \circ \sigma^{-1})$. Thus $Q^{\sigma} = Q$ for all $\sigma \in G_K$ and so $Q \in Y_H(K)$.

 G_K acts on pairs (E, α) $(E, \alpha)^{\sigma} := (E^{\sigma}, \alpha \circ \sigma^{-1}).$

Action is compatible with action of G_K on $Y_H(\overline{K})$:

$$Q = [(E, \alpha)]_H \implies Q^{\sigma} = [(E^{\sigma}, \alpha \circ \sigma^{-1})]_H.$$

Lemma

Let $Q \in Y_H(\overline{K})$. Then $Q \in Y_H(K)$ iff $Q = [(E, \alpha)]_H$ for some E/K, $\alpha : E[N] \xrightarrow{\cong} (\mathbb{Z}/N\mathbb{Z})^2$ such that for all $\sigma \in G_K$, there is an $\phi_{\sigma} \in \operatorname{Aut}_{\overline{K}}(E)$ and $h_{\sigma} \in H$ satisfying

$$\alpha = h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma}.$$

Proof. \Longrightarrow Suppose $Q = [(E', \alpha')]_H \in Y_H(K)$.

Note $E' \cong E'^{\sigma}$ for all $\sigma \in G_K$. $\therefore j(E') \in K$. $\therefore E' \cong E$ where E/K.

By previous lemma $Q = [(E, \alpha)]_H$ for some α .

(2) follows
$$[(E, \alpha \circ \sigma^{-1})] = Q^{\sigma} = Q = [(E, \alpha)].$$

The case $-I \notin H$

Theorem

Suppose $det(H) = (\mathbb{Z}/N\mathbb{Z})^*$ and $-I \in H$.

- (i) Every $Q \in Y_H(K)$ is supported on some E/K (i.e. $\exists E/K$ and $\alpha : E[N] \xrightarrow{\cong} (\mathbb{Z}/N\mathbb{Z})^2$ such that $Q = [(E, \alpha)]_H$. (ii) If $Q \in Y_U(K)$ and $i(Q) \neq 0$. 1728, then $Q = [(E, \alpha)]_U$ such that E is
- (ii) If $Q \in Y_H(K)$ and $j(Q) \neq 0$, 1728, then $Q = [(E, \alpha)]_H$ such that E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation)
- then $[(E,\alpha)] \in Y_H(K)$ for a suitable α . (iii) If $Q \in Y_H(K)$ and $j(Q) \neq 0$, 1728, and $Q = [(E,\alpha)]_H$ as above, then
 - (iii) If $Q \in Y_H(K)$ and $J(Q) \neq 0$, 1728, and $Q = [(E, \alpha)]_H$ as above, then $Q = [(E', \alpha')]$ for any quadratic twist E'/K defined over K, and for suitable α' .

Theorem

Suppose $\det(H) = (\mathbb{Z}/N\mathbb{Z})^*$ and $-I \in H$.

(ii) If $Q \in Y_H(K)$ and $j(Q) \neq 0$, 1728, then $Q = [(E, \alpha)]_H$ such that E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_H(K)$ for a suitable α .

Some details for (ii). Note that j(Q)=j(E). As this $\neq 0$, 1728, the automorphism group $\operatorname{Aut}(E)=\{1,-1\}$. Thus $\phi_{\sigma}=\pm 1$ and in particular commutes with all other maps. But

$$\alpha = h_{\sigma} \circ \alpha \circ \sigma^{-1} \circ \phi_{\sigma} \implies \alpha \circ \sigma = (\phi_{\sigma} h_{\sigma}) \circ \alpha.$$

This can be rewritten as

$$\overline{\rho}_{E,N}(\sigma) = \phi_{\sigma} h_{\sigma}$$

once we have taken $\alpha^{-1}(1,0)$, $\alpha^{-1}(0,1)$ as basis for E[N]. Note that $\phi_{\sigma}h_{\sigma}=\pm h_{\sigma}\in H$. Thus $\overline{\rho}_{E,N}(G_K)\subseteq H$ as required.

The case $-I \notin H$

Theorem

Suppose $det(H) = (\mathbb{Z}/N\mathbb{Z})^*$ and $-I \notin H$.

- (i) Every $Q \in Y_H(K)$ is supported on some E/K (i.e. $\exists E/K$ and $\alpha : E[N] \xrightarrow{\cong} (\mathbb{Z}/N\mathbb{Z})^2$ such that $Q = [(E, \alpha)]_H$.
- (ii) If $Q \in Y_H(K)$ and $j(Q) \neq 0$, 1728, then $Q = [(E, \alpha)]_H$ such that E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_H(K)$ for a suitable α .
- (iii) If $Q \in Y_H(K)$ and $j(Q) \neq 0$, 1728, and $Q = [(E, \alpha)]_H$ as above, then E is unique.

Theorem

Suppose $det(H) = (\mathbb{Z}/N\mathbb{Z})^*$ and $-I \notin H$.

- (ii) If $Q \in Y_H(K)$ and $j(Q) \neq 0$, 1728, then $Q = [(E, \alpha)]_H$ such that E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation). Conversely, if there is E is defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$ (up to conjugation) then $[(E, \alpha)] \in Y_H(K)$ for a suitable α .
- (iii) If $Q \in Y_H(K)$ and $j(Q) \neq 0$, 1728, and $Q = [(E, \alpha)]_H$ as above, then E is unique.

Some details. As before $\phi_{\sigma} \in \{\pm 1\}$ and $\overline{\rho}_{E,N}(\sigma) = \phi_{\sigma}h_{\sigma}$. The map $\psi : \sigma \mapsto \phi_{\sigma}$ is a quadratic character.

If ψ is trivial then $\overline{\rho}_{E,N}(G_K) \subset H$. Otherwise ψ is a quadratic character, and by Galois theory its kernel fixes a quadratic extension $K(\sqrt{d})$ of K.

Now $\overline{\rho}_{E_d,N} = \psi \cdot \overline{\rho}_{E,N}$, and thus $\overline{\rho}_{E_d,N}(\sigma) = h_{\sigma} \in H$.

Replacing E by E_d and adjusting the level structure α gives $Q = [(E, \alpha)]_H$ with E defined over K and $\overline{\rho}_{E,N}(G_K) \subset H$.