
Modularity and the Fermat Equation
over Totally Real Fields

Samir Siksek (University of Warwick)

9 July 2014



What are the most important problems in number theory?

Possible answers:

(i) Distribution of primes.

(ii) Diophantine equations, e.g. xn + yn = zn.

(iii) Number fields, rings of integers, class groups, unit groups.

(iii) Understanding GQ = Gal(Q/Q).

Motivation GQ:

1 Take all the problems in algebraic number theory and Galois theory
that we can’t solve,

2 put them into one big object,

3 say “I want to understand that”.
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Algebraic Numbers

Definition

Let α ∈ C.

We say that α is an algebraic number if there is some non-zero
polynomial f ∈ Q[x ] such that f (α) = 0.

We say that α is algebraic integer if there is some monic polynomial
f ∈ Z[x ] such that f (α) = 0.

Example
√
−2 is an algebraic integer, because it is a root of x2 + 2.

1/
√
−2 is an algebraic number, but not an algebraic integer; it is a

root of 2x2 + 1.

π, e are not algebraic.



Definition

Field of algebraic numbers: Q = {α ∈ C : α is an algebraic number}.
Ring of algebraic integers: OQ = {α ∈ Q : α is an algebraic integer}.

Definition

A number field K is a finite extension of Q. (Note: K ⊂ Q). We define
its ring of integers by
OK = {α ∈ K : α is an algebraic integer} = K ∩ OQ.

Example

Q is a number field, and its ring of integers is OQ = Z.

Example

K = Q(
√

5) is a number field, and its ring of integers is

OK = Z +

(
1 +
√

5

2

)
Z.



GQ

Definition

Let K be a number field (thus K ⊂ Q). Define

GK := Gal(Q/K ) = {σ ∈ Aut(Q) : σ(α) = α for all α ∈ K}.

Fact:

1

GQ = lim
←

Gal(L/Q)

where L runs through the finite Galois extensions of Q.

2 If K is a number field, then GK ⊂ GQ.

3 If K is a Galois number field, then GK is normal in GQ and

GQ/GK = Gal(K/Q).



Ramification

Definition

Let K be a number field, and ` ∈ Z a prime number. We say that `
ramifies in K if `OK is not squarefree.

Example

Let K = Q(
√

2). The OK = Z + Z
√

2. Moreover,

2OK = (
√

2OK )2.

So 2 ramifies in Q(
√

2). All other primes are unramified.

For each prime ` there is a subgroup I` ⊂ GQ called the `-th ramification
group whose job is to detect ramification. If K is Galois, then

` is ramified in K ⇐⇒ πK (I`) 6= 1,

where
πK : GQ → GQ/GK

∼= Gal(K/Q).



Linear Representations of GK

Want to understand all continuous linear representations

ρ : GK → GLn(Fpr ).

We say that ρ is continuous if the kernel is a subgroup of finite index.

Question: Describe all continuous ρ with a given

1 K , n, pr ,

2 ramification data

R = {ρ(Iλ) : λ a prime of K}.

(ρ(Iλ) = 1 for all but finitely many λ)
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Partial Answers

Problem: Given K , n, pr , describe all continuous ρ : GK → GLn(Fpr ) with
a given ramification data R.

Theorem (Minkowski)

If K = Q, and R = {ρ(Iλ) = 1 for all λ} then ρ = 1. (Reformulation: The
only unramified continuous representation of GQ is 1.)

If n = 1, then class field theory gives an explicit answer, in terms of the
class group and unit group of K .
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Fermat’s Last Theorem

Let p ≥ 3 be a prime. The Fermat equation of degree p is

xp + yp + zp = 0.

Let (a, b, c) ∈ Z3 be a solution. If abc = 0 we say that (a, b, c) is a trivial
solution, otherwise we say that (a, b, c) is a non-trivial solution. If
(a, b, c) is a non-trivial solution, we may assume after appropriate scaling
that gcd(a, b, c) = 1. Such a solution is called primitive.

Fermat’s Last Theorem is the claim that the only non-trivial primitive
solutions to the Fermat equation are (1,−1, 0) and its permutations.
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Fermat’s Last Theorem and Kummer

Theorem (Kummer)

Let p ≥ 3 be a prime. Let ζp be a primitive p-th root of unity, and write
K = Q(ζp). Let (a, b, c) ∈ Z3 such that ap + bp + cp = 0,
gcd(a, b, c) = 1 and abc 6= 0. Define

ρ : GK → 〈ζp〉, σ 7→
σ( p
√

a + bζp)
p
√
a + bζp

.

Then ρ is non-trivial, continuous and unramified everywhere (i.e.
ρ(Iλ) = 1 for all primes λ of K ).

1 〈ζp〉 ≤ GL1(Fq) if q ≡ 1 (mod p).

2 Class Field Theory:{
non-trivial, continuous
unramified ρ : GK → Cp

}
←→ {elements of order p in Cl(K )}
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Regular Primes

{
non-trivial, continuous
unramified ρ : GK → Cp

}
←→ {elements of order p in Cl(K )}

Let hp = # Cl(Q(ζp)). We say that p is regular prime if p - hp.
Otherwise p is irregular.

Theorem (Kummer)

Fermat’s Last Theorem is true for exponent p, if p is regular.

1 The first few regular primes are 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
41, . . . .

2 The first few irregular primes are 37, 59, 67, 101, 103, 131, 149, . . . .
3 Theorem (Jensen): There are infinitely many irregular primes.
4 No one knows how to show that there are infinitely many regular

primes.
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Elliptic Curves
An elliptic curve over Q is an equation of the form

E : y2 = x3 + ax2 + bx + c (poly on the right must squarefree)

where a, b, c ∈ Q.

If K ⊃ Q is a field, then we define the set of K -points

E (K ) = {(x , y) ∈ K 2 : y2 = x3 + ax2 + bx + c} ∪ {O}.

Facts:
1 E (K ) is an abelian group.
2 E (C) ∼= R/Z× R/Z.
3 Let E [p] be the p-torsion subgroup in E (C). Then

E [p] ∼= Z/pZ× Z/pZ.

4 E [p] ⊂ E (Q) (the torsion points are alegebraic).
5 GQ acts on E [p]. We obtain a continuous representation

ρ : GQ → Aut(E [p]) ∼= GL2(Fp).
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The Hellegouarch–Frey Curve

Theorem (Frey, 1985)

Let (a, b, c) be a non-trivial primitive solution to the Fermat equation with
exponent p. Let

E : y2 = x(x − ap)(x + bp) (Hellegouarch–Frey curve).

Then ρ : GQ → Aut(E [p]) ∼= GL2(Fp) satisfies

1 ρ(I`) = 1 for ` 6= 2, p.

2 ρ(Ip) =
{

( a 0
0 1 ) : a ∈ F∗p

}
.

3 ρ(I2) ⊂
{(

a b
0 1

)
: a ∈ F∗p, b ∈ Fp

}
.
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Serre’s Modularity Conjecture

Theorem (Serre’s Modularity Conjecture, 1986
Khare and Wintenberger Theorem, 2008)

Let ρ : GQ → GL2(Fpr ) be a continuous, odd, irreducible representation,
with given ramification data R. Then there is a cuspidal eigenform f of
level NR and weight kR such that ρ ∼ ρf ,π.

Theorem (Serre)

Serre’s Modularity Conjecture =⇒ Fermat’s Last Theorem.

Proof.

Let (a, b, c) be a non-trivial primitive solution to the Fermat equation with
exponent p ≥ 5. Let E : y2 = x(x − ap)(x + bp) (Hellegouarch–Frey
curve). Let ρ : GQ → Aut(E [p]) ∼= GL2(Fp). This is irreducible (Mazur),
odd and continuous. Let R be the ramification data (computed by Frey).
Then NR = 2 and kR = 2. There are no cuspidal eigenforms of level 2 and
weight 2. Contradiction.
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Ribet and Wiles

Theorem (Ribet, 1987)

Let ρ : GQ → GL2(Fpr ) be odd, irreducible, continuous. If ρ ∼ ρg ,π for
some cuspidal eigenform g of any level and weight, then Serre’s modularity
conjecture holds for ρ.

Theorem (Wiles, 1994)

Let E be a semistable elliptic curve over Q. Then E is modular. In
particular, if ρ : GQ → Aut(E [p]) ∼= GL2(Fp) then ρ ∼ ρg ,π for some
cuspidal eigenform g . (Extended to all elliptic curves by Breuil, Conrad,
Diamond and Taylor.)

Ribet+Wiles =⇒ Serre’s Modularity Conjecture for ρ coming from
elliptic curves.

Theorem (Wiles, Fermat’s Last Theorem, 1994)

If n ≥ 3, then the only integer solutions to xn + yn = zn satisfy xyz = 0.
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Modularity over totally real fields

Definition

A number field K = Q(θ) is totally real, if θ is a root of a non-zero
polynomial f ∈ Q[x ], where all the roots of f are real.

Example

Let d > 1 be a squarefree integer. Then Q(
√
d) is totally real. In fact, it

is a real quadratic field.
Q(
√
−d) is an imaginary quadratic field.

Great progress on modularity over totally real fields over past 5 years, due
to Kisin, Gee, Barnet-Lamb, Geraghty, Breuil, Diamond, . . .

Theorem (Freitas–Le Hung–S., 2013)

Let K be a real quadratic field. Let E be an elliptic curve over K . Then E
is modular.
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Can we prove Fermat’s Last Theorem over Real Quadratic
Fields?

Theorem (Jarvis and Meekin, 2004)

The only solutions to the equation

ap + bp + cp = 0, p ≥ 5 prime

with a, b, c ∈ Q(
√

2) satisfy abc = 0.

“. . . the numerology required to generalise the work of Ribet and
Wiles directly continues to hold for Q(

√
2). . . there are no other

real quadratic fields for which this is true . . . ”(Jarvis and Meekin)

Explanation: Over Q and Q(
√

2), there are no eigenforms of the
predicted level and weight. For all other real quadratic fields this is not
true! This is similar to the irregular primes.
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Fermat Over Real Quadratic Fields

Theorem (Freitas–S., 2014)

If we assume a suitable “Eichler–Shimura” conjecture, then the asymptotic
FLT holds for almost all real quadratic fields:

for almost all squarefree
d > 1, there is some constant Bd such that if p > Bd , then the only
solutions to the Fermat equation xp + yp + zp = 0 satisfy xyz = 0.
Unconditionally, the asymptotic FLT holds for 5/6 of real quadratic fields.

Explanation: Many different sets of ramification data R lead to the same
level NR and weight kR. To make the proof work, throw away all the
eigenforms giving the wrong ramification data. If nothing is left, we have a
contradiction.

Thank You!
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