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Abstract. Let n ≥ 3. This paper is concerned with the equation a3 + b3 =
cn, which we attack using a combination of the modular approach (via Frey
curves and Galois representations) with obstructions to the solutions that are
of Brauer–Manin type. We shall show that there are no solutions in coprime,
non-zero integers a, b, c, for a set of prime exponents n having Dirichlet density
28219
44928

≈ 0.628, and for a set of exponents n having natural density 1.

1. Introduction

Let p, q, r ∈ Z≥2. The equation

(1) ap + bq = cr

is known as the Fermat–Catalan equation with signature (p, q, r). As in Fermat’s
Last Theorem, one is interested in integer solutions a, b, c. Such a solution is called
non-trivial if abc 6= 0, and primitive if a, b, c are coprime. Let χ = p−1 + q−1 + r−1.
The parametrization of non-trivial primitive solutions for (p, q, r) with χ ≥ 1 has
now been completed ([5], [19]). The Generalized Fermat Conjecture [15], [17] is
concerned with the case χ < 1. It states that the only non-trivial primitive solutions
to (1) with χ < 1 are

1 + 23 = 32, 25 + 72 = 34, 73 + 132 = 29, 27 + 173 = 712,

35 + 114 = 1222, 177 + 762713 = 210639282, 14143 + 22134592 = 657,

92623 + 153122832 = 1137, 438 + 962223 = 300429072, 338 + 15490342 = 156133.

The Generalized Fermat Conjecture has been established for many signatures (p, q, r),
including for several infinite families of signatures: Fermat’s Last Theorem (p, p, p)
by Wiles and Taylor [31], [30]; (p, p, 2) and (p, p, 3) by Darmon and Merel [18];
(2, 4, p) by Ellenberg [20] and Bennett, Ellenberg and Ng [3]; (2p, 2p, 5) by Bennett
[2]. For an exhaustive survey see [5]. An older but still very useful survey is [24].
All these infinite cases have been established through the same steps as Wiles’ proof
of Fermat’s Last Theorem, or some strengthening of this approach. We call this
approach via the modularity of Galois representations of elliptic curves and Ribet’s
Level-Lowering Theorem, the modular approach. In [16], Darmon suggests that
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the Generalized Fermat Conjecture might be approached through a highly ambi-
tious extension of the modular approach where Hilbert modular forms and certain
abelian varieties of higher dimension respectively play the rôle of elliptic modular
forms and elliptic curves. However, for now it seems that the way forward is to
combine the modular approach with other techniques, as in the beautiful paper
of Poonen, Schaefer and Stoll [26] where they solve equation (1) with signature
(2, 3, 7).

In this paper we shall be concerned with the following special case of the Gen-
eralized Fermat Conjecture.

Conjecture. Let n ≥ 3. The equation

(2) a3 + b3 = cn

does not have any non-trivial primitive solutions.

We shall attack the conjecture (with only partial success) using a combination
of the modular approach, together with an obstruction to solutions that is of the
Brauer–Manin type.

Equation (2) has been studied by Kraus [23], Bruin [10] and Dahmen [14]. In-
deed, Kraus studies this equation using Frey curves and Galois representations and
deduces a practical criterion for proving the conjecture for a particular prime ex-
ponent n ≥ 17. Kraus also used a computer program to check his criterion for
prime exponents 17 ≤ n < 104. Bruin [10] proved the conjecture for n = 4, 5, using
descent and Chabauty. Dahmen [14, Section 3.3.2] strengthens Kraus’ argument
to prove the conjecture for n = 5, 7, 11, 13. Of course, for n = 3, the result is
classical (a special case of Fermat’s Last Theorem). Thus combined, the results
of Kraus, Bruin and Dahmen show that equation (2) does not have non-trivial
primitive solutions for 3 ≤ n ≤ 104.

In this paper we prove the following theorem.

Theorem 1. Let n ≥ 3. Suppose n is divisible by some positive integer d satisfying
any of the following congruences,

(I) d ≡ 2, 3 (mod 5),
(II) d ≡ 17, 61 (mod 78),

(III) d ≡ 51, 103, 105 (mod 106),
(IV) d ≡ 43, 49, 61, 79, 97, 151, 157, 169, 187, 205, 259, 265, 277, 295, 313,

367, 373, 385, 403, 421, 475, 481, 493, 511, 529, 583, 589, 601, 619, 637,
691, 697, 709, 727, 745, 799, 805, 817, 835, 853, 907, 913, 925, 943, 961,
1015, 1021, 1033, 1051, 1069, 1123, 1129, 1141, 1159, 1177, 1231, 1237,
1249, 1267, 1285 (mod 1296).

Then equation (2) has no non-trivial primitive solutions.

We will show (Section 10) that the set of prime exponents n that satisfy the
conditions of the theorem has Dirichlet density 28219

44928 ≈ 0.628. However, as we also
show in Section 10, the set of positive integers n satisfying the conditions of the
theorem has natural density 1.

The proof of Theorem 1 relies in part on Kraus’ earlier work. Roughly speaking,
for any prime ` 6= 2, 3, Kraus’ method gives congruences modulo ` for unknowns a,
b in (2). The proof also uses ideas from the work of Bright and Siksek [8]. Indeed
we shall show how the non-trivial primitive solutions to (2) give rise to rational
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points on the hyperelliptic curve

(3) δ2 +
1
27

= 4εn.

For odd exponent n, the function f = ε−1 on this hyperelliptic curve has a divisor
which is a norm 1 from the quadratic extension Q(

√
321). In [8] (see also [28])

it is shown how a function on a curve whose divisor is a norm from an abelian
extension can give rise to an obstruction to weak approximation (that is of Brauer–
Manin type). In layman’s terms, this merely means that we obtain congruence
restrictions on the rational points of the curve. The congruence restrictions are
obtained through an application of the Law of Quadratic Reciprocity. Combining
these congruence restrictions with with the congruences for a, b obtained via Kraus’
modular approach shows that equation (2) has no non-trivial primitive solutions if
the exponent n is divisible by some positive integer d ≡ 51, 103, 105 (mod 106).
This a part of Theorem 1.

To obtain the remaining results of Theorem 1 we need to consider two other
hyperelliptic curves associated to (2) defined over K = Q(ω) where ω is a primitive
cube root of 1. The functions we employ are defined over Q(ζ) and K(ζ) for various
roots of unity ζ, and we employ the Law of Quadratic Reciprocity over number
fields. Again the congruences obtained here are combined with the congruences
from the modular approach and this is used to deduce the remainder of Theorem 1.

Whilst [8] is an important motivation in our proof of Theorem 1, we shall not
require the high-brow machinery involved in that paper, and will need nothing more
than the Law of Quadratic Reciprocity over number fields. The use of quadratic
reciprocity is in the spirit of the less conceptual, but more concrete, earlier paper
[27], which uses quadratic reciprocity to obtain congruence restrictions for solutions
of hyperelliptic curves.

We shall also give a refinement of Kraus’ criterion for the non-existence of non-
trivial primitive solutions for a given prime exponent n. We shall use our refined
criterion to prove the following.

Theorem 2. Equation (2) has no solutions for exponents 3 ≤ n ≤ 109.

All computations in this paper were performed using the computer packages
MAGMA [7] and pari/gp [1].

We would like to thank the referee for his careful reading of the paper and for
pointing out several corrections.

2. Kraus’ Modular Approach

In this section we summarise what we need from Kraus’ paper [23]. For a basic
tutorial on the modular approach, see [13, Chapter 15] or [29]. For a somewhat more
conceptual introduction, we recommend Sander Dahmen’s recent Ph.D. thesis [14].

Let n ≥ 17 be prime and let (a, b, c) be a non-trivial primitive solution to equa-
tion (2). Kraus associates the solution (a, b, c) to the Frey curve

(4) Ea,b : Y 2 = X3 + 3abX + b3 − a3,

1For odd n, the function f = ε − 1 has divisor P + P ′ − 2∞ where P = (1,
√

321/9) and

P ′ = (1,−
√

321/9). In other words, the divisor of f is the norm (or trace) of the divisor P −∞
which is defined over Q(

√
321).
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and studies the Galois representation on its n-torsion

%a,b : Gal(Q/Q) → Aut(Ea,b[n]).

Kraus uses results of Mazur to show that this representation is irreducible. He
shows that the Serre weight is 2, and computes the Serre conductor Na,b, which
depends on various modulo 2 and modulo 3 congruence conditions on the triple
(a, b, c). Next, Ribet’s Level-Lowering Theorem is invoked to show that %a,b arises
from a cuspidal newform of weight 2 and level Na,b. For all but one of the possible
values of the Serre conductor Na,b, Kraus obtains a contradiction, either by using a
deep result of Darmon and Merel [18], or by a careful study of size of the image of
the inertia subgroup at 3 under %a,b. The exceptional value of Na,b is 72, and the
exceptional newform that has not yet been eliminated corresponds to the elliptic
curve

(5) E : Y 2 = X3 + 6X − 7,

of conductor 72 (this curve is 72A in the Antwerp tables [6], and curve 72A1 in
Cremona’s tables [12]). The following proposition collects some facts from Kraus’
paper.

Proposition 2.1. Suppose (a, b, c) is a primitive, non-trivial solution to the equa-
tion (2) with exponent n ≥ 17 prime. Without loss of generality, suppose that ac is
even. Then

(i) c is odd,
(ii) ord2(a) = 1,
(iii) ord3(c) ≥ 1.

Moreover, let Ea,b and E be the elliptic curves given in (4) and (5). Then, for any
prime ` 6= 2, 3, {

a`(Ea,b) ≡ a`(E) (mod n) if ` - c,
`+ 1± a`(E) ≡ 0 (mod n) if ` | c.

Proof. The first part of the proposition is Théorème 6.1 of Kraus’ [23]. Proposition
6.3 of the same paper asserts that %a,b is isomorphic to the Galois representation
% on the n-torsion of E. It turns out that ` 6= 2, 3 is a prime of good reduction if
` - c, and is of multiplicative reduction if ` | c (see Lemma 4.1 of the same paper).
The second part of the proposition follows. �

We shall also need a refined version of the last part of Proposition 2.1.

Corollary 2.2. Suppose (a, b, c) is a primitive, non-trivial solution to the equation
(2) with exponent n ≥ 17 prime. In view of Proposition 2.1 suppose, without loss of
generality, that a is even. Let ` 6= 2, 3 be a prime satisfying n > (

√
`+ 1)2. Then

` - c and a`(Ea,b) = a`(E).

Proof. Suppose ` | c. By the last part of Proposition 2.1, n divides ` + 1 ± a`(E).
However, by the Hasse–Weil bounds,

0 < `+ 1± a`(E) ≤ (
√
`+ 1)2.

This contradicts the assumption that n > (
√
`+ 1)2. Thus ` - c.

Applying again the last part of Proposition 2.1, we see that n divides the differ-
ence a`(Ea,b)− a`(E). Suppose a`(Ea,b) 6= a`(E). Then

n ≤ |a`(Ea,b)− a`(E)| ≤ 4
√
` ≤ (

√
`+ 1)2,
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where we have again used the Hasse–Weil bounds. This contradiction completes
the proof. �

We shall also need the following lemma which appears in Kraus’ paper, but for
convenience we give the proof.

Lemma 2.3. Let (a, b, c) be a primitive, non-trivial solution to equation (2), and
in view of Proposition 2.1, suppose that a is even. Then,

(6) a+ b =
cn1
3
, a2 − ab+ b2 = 3cn2

where c1, c2 are coprime integers, with 3 | c1, and c = c1c2.

Proof. In view of the earlier results on (2) cited in the introduction, n must be
divisible by some prime p > 104. Proposition 2.1 holds with p in place of n and
cn/p in place of c. In particular 3 | c, and so one of a+ b and a2−ab+ b2 is divisible
by 3. From the identity

(7) 4(a2 − ab+ b2) = 3(a− b)2 + (a+ b)2,

we see that both a + b and a2 − ab + b2 are divisible by 3, and the coprimality of
a, b ensures that 9 - (a2 − ab+ b2). This proves the lemma. �

3. The First Hyperelliptic Curve

We shall henceforth suppose that n is odd and that (a, b, c) is a primitive, non-
trivial solution to (2). In view of Proposition 2.1 we suppose, without loss of
generality, that a is even.

Let c1 and c2 be as in Lemma 2.3 and write

(8) x = 9(a− b), ε =
c2
c21
, δ =

x

9cn1
.

From the identity (7), we obtain

(9) x2 + 3c2n
1 = 324cn2 .

Dividing by 81c2n
1 we obtain the rational point (ε, δ) on the hyperelliptic curve (3)

mentioned in the introduction. We have included the hyperelliptic curve (3) as a
motivational link between the current paper and the ideas in [8]. However, for what
follows, it is more convenient to work with “projective model”(9).

Remark. Equation (9) is a ternary equation of signature (n, n, 2). For this class
of ternary equation, a Frey curve is given by Bennett and Skinner [4], and two Frey
curves by Ivorra and Kraus [22]. However, up to isogenies and twisting, all these
Frey curves are the same as Kraus’ original Frey curve Ea,b, and they do not give
any additional information.

We will need the following lemma.

Lemma 3.1. Suppose the exponent n in (2) is odd. Then
(c2

3

)
= 1.

Proof. By equation (9), and the facts x = 9(a− b) and 3 | c1 we see that

4cn2 ≡ (a− b)2 (mod 32n−3).

�
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4. Proof of a Special Case of Theorem 1

The proof of Theorem 1 requires a rather complicated combination of quadratic
reciprocity over number fields with new information at several primes given by
the modular approach. By ‘new’ we mean over and above the 2-adic and 3-adic
information given in Proposition 2.1. In order to motivate this and help the reader
follow the proof, we will in this section prove the following special case which
involves only quadratic reciprocity over the rationals, and new information given
by the modular approach at only one prime.

Special Case of Theorem 1. If n is divisible by a positive integer d ≡ 51, 103
or 105 (mod 106) then equation (2) does not have non-trivial primitive solutions.

Lemma 4.1.
(
c2 − c21

107

)
= 0 or 1.

Proof. Subtracting 324c2n
1 from both sides of equation (9) we obtain

x2 − 321c2n
1 = 324(cn2 − c2n

1 ) = 324(c2 − c21)(c
n−1
2 + · · · ).

Suppose q is an odd prime dividing c2− c21. Since c1, c2 are coprime, if follows that
q - c1. Thus 321 is a square modulo q; in symbols(

321
q

)
= 0 or 1.

By the Law of Quadratic Reciprocity,( q

321

)
= 0 or 1.

However
(
−1
321

)
=
(

2
321

)
= 1. Hence

(
c2 − c21

321

)
= 0 or 1. Since 321 = 3 × 107,

the lemma follows from Lemma 3.1 and the fact that 3 | c1 stated in Lemma 2.3. �

We will suppose without loss of generality that a is even, and in view of the
partial results stated in the introduction that the exponent n is odd and divisible
by some prime p > 104. Applying Corollary 2.2 with n replaced by p and c by cn/p

immediately shows that

107 - (a3 + b3) and a107(Ea,b) = a107(E) = 12,

where Ea,b and E are given by (4) and (5).
Now let ε be given by (8). From (6) we have that

εn =
a2 − ab+ b2

27(a+ b)2
.

From the above, 107 divides neither the numerator nor the denominator of ε. Denote
the reduction of ε in F107 by ε. Then εn belongs to the set

E =
{
α2 − αβ + β2

27(α+ β)2
: α, β ∈ F107, α3 + β3 6= 0, a107(Eα,β) = 12

}
.

A short MAGMA computation shows that

E = {13, 14, 36, 37, 48, 57, 62} ⊂ F107.

The following lemma clearly completes the proof of the special case of Theorem 1
that we are concerned with.
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Lemma 4.2. With notation and assumptions as above, if n ≡ 51, 103, 105 (mod 106),
then (2) has no primitive, non-trivial solutions.

Proof. For now we merely suppose that n is odd, and write n = 106Q+R∗ where
1 ≤ R∗ ≤ 105. We know by the previous results of Kraus that 53 - n, and so
gcd(R∗, 106) = 1. Denote by R the least positive integer such that RR∗ ≡ 1
(mod 106). Thus nR ≡ 1 (mod 106), and so

(εn)R = ε (in F107).

Recall that εn ∈ E . Let
SR = {αR : α ∈ E} ⊂ F107;

it is clear from the above that ε ∈ SR. Finally, let

S′R =
{
β ∈ SR :

(
β − 1
107

)
= 0 or 1

}
.

By Lemma 4.1 and the fact that ε = c2/c
2
1, we see that ε ∈ S′R. We wrote a short

MAGMA script which for each 1 ≤ R∗ ≤ 106 with gcd(R∗, 106) = 1 computed R, SR

and S′R; the result of this computation is given in Table 1. Note that S′R is empty
for R∗ = 51, 103, 105 (and non-empty for all other values of R∗), hence we have a
contradiction for n ≡ 51, 103, 105 (mod 106). �

5. Law of Quadratic Reciprocity over Number Fields

We shall need some version of the Law of Quadratic Reciprocity over arbitrary
number fields. Useful references here are the “Brighton Book” [9, pages 348–353]
and Hecke’s classic [21, Chapter VIII]. We first define quadratic residue symbols
over number fields. Let K be a number field with integer ring O. An integer or
ideal of O is said to be odd if it is coprime to 2O. If P is an odd prime ideal and
α ∈ O then we define(

α

P

)
K

=


0 if P | α,
1 if the image of α in (O/P)× is a square,
−1 otherwise.

If N is an odd ideal, we write N = P1 · · ·Pn as a product of odd prime ideals, and
we extend the definition of the quadratic residue symbol by( α

N

)
K

=
(
α

P1

)
K
. . .

(
α

Pn

)
K
.

The symbol satisfies the following familiar properties(α1α2

N

)
K

=
(α1

N

)
K

(α2

N

)
K
,

(
α

N1N2

)
K

=
(
α

N1

)
K

(
α

N2

)
K
,

and (α1

N

)
K

=
(α2

N

)
K

if α1 ≡ α2 (mod N).

If β is an odd integer in O then we define(
α

β

)
K

=
(
α

βO

)
K
.

There are several versions of the Law of Quadratic Reciprocity over number fields.
The following is the most useful to us.
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Table 1. The table gives the computational results for Lemma 4.2.

R∗ R SR S′R
1 1 {36, 37, 57, 62, 13, 14, 48} {36, 37, 57, 62, 13, 14, 48}
3 71 {13, 40, 30, 41, 86, 10, 76} {13, 40, 30, 41, 86, 10, 76}
5 85 {33, 44, 12, 34, 36, 40, 10} {12, 34, 36, 40, 10}
7 91 {99, 100, 90, 47, 4, 16, 64} {100, 90, 4}
9 59 {23, 16, 39, 83, 52, 41, 53} {41, 53}
11 29 {89, 35, 57, 3, 69, 16, 53} {35, 57, 53}
13 49 {11, 14, 102, 36, 81, 40, 86} {11, 14, 102, 36, 40, 86}
15 99 {44, 47, 61, 52, 30, 53, 42} {30, 53, 42}
17 25 {100, 92, 29, 41, 53, 87, 10} {100, 41, 53, 87, 10}
19 67 {35, 90, 4, 48, 49, 75, 76} {35, 90, 4, 48, 49, 76}
21 101 {11, 12, 79, 36, 4, 105, 29} {11, 12, 36, 4}
23 83 {102, 87, 25, 76, 10, 79, 83} {102, 87, 76, 10}
25 17 {33, 90, 69, 61, 19, 53, 64} {90, 53}
27 55 {99, 12, 89, 57, 39, 62, 85} {12, 57, 62}
29 11 {100, 12, 102, 37, 19, 86, 10} {100, 12, 102, 37, 86, 10}
31 65 {23, 101, 27, 29, 41, 42, 76} {101, 41, 42, 76}
33 45 {34, 102, 89, 25, 12, 13, 14} {34, 12, 13, 102, 14}
35 103 {11, 100, 79, 92, 27, 49, 76} {11, 100, 49, 76}
37 43 {12, 35, 14, 92, 37, 4, 16} {12, 35, 14, 37, 4}
39 87 {27, 83, 40, 30, 19, 75, 53} {40, 30, 53}
41 75 {100, 13, 25, 37, 49, 40, 85} {100, 13, 37, 49, 40}
43 37 {89, 90, 3, 25, 37, 62, 86} {90, 37, 62, 86}
45 33 {11, 89, 37, 48, 16, 85, 42} {11, 37, 48, 42}
47 97 {56, 90, 102, 47, 49, 62, 85} {90, 102, 49, 62}
49 13 {56, 57, 14, 3, 52, 85, 42} {57, 14, 42}
51 79 {33, 89, 56, 39, 29, 52, 9} ∅
55 27 {11, 12, 101, 13, 35, 48, 86} {11, 12, 101, 13, 35, 48, 86}
57 93 {23, 34, 35, 79, 36, 92, 86} {34, 35, 36, 86}
59 9 {44, 34, 83, 41, 19, 64, 86} {34, 41, 86}
61 73 {34, 101, 79, 81, 39, 29, 87} {34, 101, 87}
63 69 {44, 56, 101, 36, 81, 19, 30} {101, 36, 30}
65 31 {99, 33, 34, 81, 83, 61, 30} {34, 30}
67 19 {99, 25, 4, 49, 105, 62, 10} {4, 49, 62, 10}
69 63 {23, 57, 81, 27, 52, 9, 87} {57, 87}
71 3 {57, 69, 4, 83, 39, 61, 42} {57, 4, 42}
73 61 {33, 23, 101, 85, 30, 64, 9} {101, 30}
75 41 {69, 89, 4, 79, 47, 14, 48} {14, 4, 48}
77 95 {56, 81, 61, 62, 64, 75, 9} {62}
79 51 {11, 34, 101, 92, 40, 19, 9} {11, 34, 101, 40}
81 89 {44, 100, 13, 102, 105, 62, 76} {100, 13, 102, 62, 76}
83 23 {69, 75, 42, 30, 64, 49, 16} {49, 30, 42}
85 5 {3, 48, 27, 39, 9, 42, 53} {48, 42, 53}
87 39 {44, 69, 27, 83, 29, 52, 10} {10}
89 81 {57, 47, 48, 16, 105, 61, 75} {57, 48}
91 7 {100, 90, 35, 79, 25, 105, 41} {100, 90, 35, 41}
93 57 {99, 56, 23, 3, 37, 39, 64} {37}
95 77 {101, 36, 92, 105, 52, 87, 76} {101, 36, 87, 76}
97 47 {11, 35, 47, 14, 49, 105, 87} {11, 35, 14, 49, 87}
99 15 {44, 102, 27, 61, 40, 41, 87} {102, 40, 41, 87}
101 21 {99, 13, 90, 3, 85, 9, 75} {13, 90}
103 35 {69, 56, 75, 25, 47, 99, 33} ∅
105 105 {33, 23, 3, 81, 92, 29, 19} ∅
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Theorem 3. With the above notation, suppose K has r real embeddings. For α ∈ K
we write sgni(α) for the sign of the image of α under the i-th real embedding. Let
α, λ be coprime integers with α odd. Decompose λO = LR where R is an odd ideal.
Suppose α is a quadratic residue modulo 4L. Then(

λ

α

)
K

( α
R

)
K

= (−1)σ

where

σ =
r∑

i=1

sgni(α)− 1
2

· sgni(λ)− 1
2

.

Proof. This is Theorem 167 of [21]. �

Corollary 5.1. Let α, λ be integers in number field K with α odd. Suppose that
α ≡ ε2 (mod 4λ) for some integer ε. Suppose also that α is positive in every real
embedding of K (this would be vacuously true if K is totally complex). Then(

λ

α

)
K
6= −1.

Proof. If α and λ are not coprime, then
(
λ

α

)
K

= 0. Otherwise we apply Theorem 3

with L = λO and R = (1). �

If ε = α/β where α, β are integers, with β, N coprime, then we extend the
definition of the quadratic residue symbol by letting( ε

N

)
K

=
( α

N

)
K

(
β

N

)
K
.

We shall later on deal with quadratic reciprocity in several fields, and it is appropri-
ate to emphasize the field dependence of the quadratic residue symbol. Although
we shall not need it, it is useful to note that if α, β ∈ K and L contains K then(

α

β

)
L

=
(
α

β

)
K

[L:K]

.

6. Two More Hyperelliptic Curves

We shall continue with the notation of Section 3. Let ω = (−1 +
√
−3)/2; that

is, ω is a primitive cube root of unity. Let K = Q(ω) and OK be its ring of integers.
We can extend the earlier factorization (6) to

(10) a+ b =
cn1
3
, a+ ωb =

√
−3γn, a+ ωb = −

√
−3γn

where γ ∈ OK and γγ = c2. We employ the identity

3(a− ωb)2 + (a+ ωb)2 = 4(a+ b)(a+ ωb).

We ease notation a little by letting

A = 3(a− ωb), B = c1γ.

Using the identity we obtain our second hyperelliptic equation,

(11) A2 − 9γ2n = 4
√
−3Bn.
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Conjugating we obtain our third,

(12) A
2 − 9γ2n = −4

√
−3 B

n
.

Now let

(13) µ =
B

γ2 , ν =
A

γn .

The our second and third hyperelliptic equations can be written in the form

ν2 − 9 = 4
√
−3µn, ν2 − 9 = −4

√
−3µn.

Remark. There are “associated” Q-curves to the equations (11) and (12) but they
turn out to be isogenous over Q to the standard Frey elliptic curve over Q used in
Kraus so no new modular information is obtained (cf. also the remark in Section
3). This is consistent with the classification of Frey representations for the equation
x3 + y3 = zp in [16].

7. Reciprocity

We continue with the notation of the previous section. In particular K = Q(ω),
where ω is a primitive cube root of unity. Now let r be a positive integer coprime
to n, and let ζr be a primitive r-th root of unity. Let

L = Q(ζr), M = K(ζr) = Q(ω, ζr).

Let n′ be a positive integer satisfying nn′ ≡ 1 (mod r), and let ζ ′r = ζr
n′

. Thus
ζr = ζ ′r

n.

Proposition 7.1. With notation as above, let p be the largest prime dividing n,
where n is the exponent appearing in equation (2).

(I) Suppose that p > (
√
`+ 1)2 for all primes ` | NormL/Q(108ζr − 1). Let ε be

given by (8). Then 108ζr − 1 is coprime with the denominator of ε and(
ε− ζ ′r

108ζr − 1

)
L
6= −1.

(II) Suppose that p > (
√
` + 1)2 for all primes ` | NormM/Q(4ζr − 3

√
−3). Let

µ be given by (13). Then 4ζr − 3
√
−3 is coprime with the denominator of

µ and(
µ− ζ ′r

4ζr − 3
√
−3

)
M

(
−ζ ′r√
−3

)
M
6= −1, and

(
µ+ ζ ′r

4ζr − 3
√
−3

)
M

(
ζ ′r√
−3

)
M
6= −1.

Proof. We first prove the coprimality statements. The denominator of ε is c21.
Suppose that is not coprime with 108ζr − 1. Then there is some rational prime `
dividing both NormL/Q(108ζr − 1) and c = c1c2. Clearly ` 6= 2, 3. Now applying
Corollary 2.2 with p instead of n gives an immediate contradiction. This proves
the coprimality statement in (I). For (II) the proof of the coprimality statement
is identical since c = c1γγ and the denominator of µ is γ2. The proposition now
follows at once from Lemmas 7.2 and 7.3 below and the definitions of ε and µ in
(8) and (13). �

Lemma 7.2. (
c2 − c21ζ

′
r

108ζr − 1

)
L
6= −1.
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Proof. Subtracting 324c2n
1 ζr from both sides of equation (9) we obtain

x2 + (3− 324ζr)c2n
1 = 4× 81(cn2 − c2n

1 ζr).

Recall however that ζr = ζ ′r
n. Hence

x2 − (324ζr − 3)c2n
1 = 4(c2 − c21ζ

′
r)× 81(cn−1

2 + · · · ).

Now, by Lemma 2.3, c1, c2 are coprime, 3 | c1 and 3 - c2. Thus c2−c21ζ ′r and c2n
1 are

coprime. Moreover, by Proposition 2.1, c = c1c2 is odd. It follows that 324ζr − 3 is
a square modulo 4(c2 − c21ζ

′
r). Applying Corollary 5.1 we see that(

c2 − c21ζ
′
r

324ζr − 3

)
L
6= −1.

However, from the proof of Lemma 3.1 we find that c2 is a quadratic residue modulo
every prime ideal dividing 3OL (recall our assumption that n is odd). Hence(

c2 − c21ζ
′
r

3

)
L

= 1.

The lemma follows since 324ζr − 3 = 3(108ζr − 1). �

Lemma 7.3. (
B − ζ ′rγ

2

4ζr − 3
√
−3

)
M

(
−ζ ′r√
−3

)
M
6= −1,

and (
B + ζ ′rγ

2

4ζr − 3
√
−3

)
M

(
ζ ′r√
−3

)
M
6= −1.

Proof. The proof if very similar to that of Lemma 7.2. Subtracting 4
√
−3γ2nζr =

4
√
−3γ2nζ ′r

n from both sides of (11) we obtain

A2 − (9 + 4
√
−3ζr)γ2n = 4

√
−3(B − ζ ′rγ

2)(Bn−1 + · · · ).

Also subtracting 4
√
−3γ2nζr from both sides we of (12) gives

A
2 − (9 + 4

√
−3ζr)γ2n = −4

√
−3(B + ζ ′rγ

2)(B
n−1

+ · · · ).

We shall only prove the first part of the lemma; the proof of the second part is
almost identical. Corollary 5.1 gives(

B − ζ ′rγ
2

9 + 4
√
−3ζr

)
M
6= −1.

Note that (
B − ζ ′rγ

2

9 + 4
√
−3ζr

)
M

=
(

B − ζ ′rγ
2

4ζr − 3
√
−3

)
M

(
B − ζ ′rγ

2

√
−3

)
M
.

However,
√
−3 | B. Further γ and

√
−3 are coprime as 3 - c2 = γγ. Hence(

B − ζ ′rγ
2

√
−3

)
M

=
(
−ζ ′r√
−3

)
M
.

This completes the proof. �
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8. Combination of Reciprocity and Modularity

In this section we state our main result, Proposition 8.1, which combines reci-
procity with the information given by the modular approach.

We shall need a way of storing information given by the modular approach
employing several auxiliary primes `. Let ` 6= 2, 3 be a prime. Fix a quadratic
non-residue q` modulo ` and let

A′` = {(0, 1), (0, q`)} ∪ {(α, β) : α = 1, q`, β = 0, 1, . . . , (`− 1)}.
Let

A` = {(α, β) ∈ A′` : α3 + β3 6≡ 0 (mod `) and a`(Eα,β) = a`(E)}.
Now let S = {`1, . . . , `t} be a set of distinct primes, all 6= 2, 3, and write LS =∏t

i=1 `i. Let AS be the set of (α, β) with 0 ≤ α, β < LS , such that, for all i, (α, β)
reduces to an element of A`i modulo `i.

For α, β ∈ AS , let

(14) f(α, β) =
α2 − αβ + β2

27(α+ β)2
, g(α, β) =

3
√
−3(α+ β)(α+ βω)

(α+ βω)2
.

For (α, β) ∈ AS , r-th root of unity ζr, and integer R we define

θζr
(α, β,R) =

(
f(α, β)R − ζR

r

108ζr − 1

)
L
,(15)

φζr (α, β,R) =
(
g(α, β)R − ζR

r

4ζr − 3
√
−3

)
M

(
−ζR

r√
−3

)
M
,(16)

ψζr (α, β,R) =

(
g(α, β)

R
+ ζR

r

4ζr − 3
√
−3

)
M

(
ζR
r√
−3

)
M
.(17)

We associate to θζr , φζr , ψζr the following positive integers

N(θζr ) = lcm
(
#(OL/(108ζr − 1))×, r

)
,

N(φζr ) = N(ψζr ) = lcm
(
#(OM/(4ζr − 3

√
−3))×, r

)
.

We say that θζr is a S-admissible if (108ζr − 1) | LS . We say that φζr , ψζr are
S-admissible if (4ζr − 3

√
−3) | LS .

Proposition 8.1. Let S = {`1, . . . , `t} be a set of distinct primes, all 6= 2, 3. Let
Ξ = {ξ1, . . . , ξs} be a set of S-admissible functions of the form (15), (16), (17), and
let

N = lcms
i=1N(ξi).

Let 0 ≤ R, R∗ < N be a positive integer coprime to N , such that RR∗ ≡ 1
(mod N). Define

AS,R = {(α, β) ∈ AS : ξi(α, β,R) 6= −1 for i = 1, . . . , s}.
Suppose (a, b, c) is a non-trivial primitive solution to equation (2) with exponent n
having some prime divisor p satisfying p > (

√
` + 1)2 for all ` ∈ S. If n ≡ R∗

(mod N) then AS,R 6= ∅.

The proposition will allow us to exclude certain residue classes for the value of
the exponent n in (2) modulo certain integers N . This is how we prove Theorem 1
below. Before we prove the proposition we need some lemmas.
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Lemma 8.2. Let S = {`1, . . . , `t} be a set of distinct primes, all 6= 2, 3. Suppose
(a, b, c) is a non-trivial primitive solution to equation (2). In view of Proposition 2.1
suppose, without loss of generality, that a is even. Suppose that the exponent n is
divisible by some prime p satisfying p > (

√
`i + 1)2, for all i. Then there is some

integer λ not divisible by any `i, and (α, β) ∈ AS such that

a ≡ λ2α, b ≡ λ2β (mod LS).

Proof. By the Chinese Remainder Theorem, it is clearly sufficient to prove the
following statement: if ` 6= 2, 3 is a prime such that p > (

√
` + 1)2 then there is

some integer λ not divisible by `, and (α, β) ∈ A` such that

a ≡ λ2α, b ≡ λ2β (mod `).

Let us prove this. Clearly there is some λ 6≡ 0 (mod `), and (α, β) ∈ A′` such
that a ≡ λ2α and b ≡ λ2β (mod `). By Corollary 2.2, ` - cp = a3 + b3 and
a`(Ea,b) = a`(E). Note that the elliptic curves Eα,β and Ea,b are isomorphic
modulo `. Thus a`(Ea,b) = a`(Eα,β), which shows that (α, β) ∈ A`. This completes
the proof. �

Lemma 8.3. Let S = {`1, . . . , `t} be a set of distinct primes, all 6= 2, 3. Write
LS =

∏n
i=1 `i. Suppose (a, b, c) is a non-trivial primitive solution to equation (2).

Without loss of generality, suppose that ac is even. Let ε and µ be given by (8)
and (13). Suppose that the exponent n is divisible by some prime p satisfying
p > (

√
`i + 1)2, for all i. Then there is some (α, β) ∈ AS such that

(18) εn ≡ f(α, β) (mod LS), µn ≡ g(α, β) (mod LSOK).

Proof. A little manipulation using (8) and (6) shows that εn = f(a, b). Likewise,
using (13) and (10), we have that µn = g(a, b). The lemma now follows from
Lemma 8.2. �

8.1. Proof of Proposition 8.1. Suppose that n ≡ R∗ (mod N). Thus nR ≡ 1
(mod N). We would like to show that AS,R 6= ∅. We work with the notation
of Lemma 8.3. From that lemma we know that there is some pair (α, β) ∈ AS

satisfying (18). It is sufficient to show that ξi(α, β,R) 6= −1 for i = 1, . . . , s.
Suppose first that ξi = θζr

for some r. Since θζr
is S-admissible, (108ζr − 1) | LS .

Thus by (18),
f(α, β)R ≡ εnR (mod (108ζr − 1)).

However, nR ≡ 1 (mod N) and N is divisible by the order of the multiplicative
group (OL/(108ζr − 1))×. Thus

f(α, β)R ≡ ε (mod (108ζr − 1)).

Also, N is divisible by r, so nR ≡ 1 (mod r) which shows that R ≡ n′ (mod r) in
the notation of Section 7. Hence ζR

r = ζn′

r = ζ ′r. Thus

θζr (α, β,R) =
(

ε− ζ ′r
108ζr − 1

)
L
.

Appealing to the first part of Proposition 7.1 shows that θζr (α, β,R) 6= −1, com-
pleting the proof for ξi = θζr .

Suppose now that ξi is one of φζr , ψζr . By (18)

g(α, β)R ≡ µnR (mod LSOM).
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As LS is a rational integer, we see that

g(α, β)
R
≡ µnR (mod LSOM),

as well. Now ξi is S-admissible, so (4ζr−3
√
−3) | LS . Moreover, nR ≡ 1 (mod N)

and N is divisible by the order of the multiplicative group (OM/(4ζr − 3
√
−3))×.

Thus

g(α, β)R ≡ µ, g(α, β)
R
≡ µ (mod (4ζr − 3

√
−3)).

As above, ζR
r = ζ ′r. From (16) and (17),

φζr
(α, β,R) =

(
µ− ζ ′r

4ζr − 3
√
−3

)
M

(
−ζ ′r√
−3

)
M
,

ψζr (α, β,R) =
(

µ+ ζ ′r
4ζr − 3

√
−3

)
M

(
ζ ′r√
−3

)
M
.

Finally, appealing to the second part of Proposition 7.1, shows that ξi(α, β,R) 6= −1
as desired. This completes the proof.

9. Proof of Theorem 1

The theorem is proved by applying Proposition 8.1 and using the fact that we
can assume without loss of generality that n ≡ R∗ (mod N) for gcd(R∗, N) = 1 in
the cases considered. First we shall take S = {11}. We may assume that n is odd
and by previous results of Kraus and others we know that n must be divisible by
some prime p > 104, and this is certainly greater than (

√
11 + 1)2.

We shall work with Ξ = {φ√−1, ψ
√
−1}. Note that 11 = −(4

√
−1−3

√
−3)(4

√
−1+

3
√
−3), hence the two functions in Ξ are S-admissible. Using a short MAGMA script

we determined

AS = A11 = {(2, 1), (2, 4)}.

It is easy to see that N = 120. For the 32 values of R∗ satisfying 0 ≤ R∗ < 120
and gcd(R∗, 120) = 1 we computed R and AS,R. We found that AS,R is empty
precisely when

R∗ ≡ 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 77, 83, 97, 103, 107, 113 (mod 120).

Appealing to Proposition 8.1, we deduce that there can be no non-trivial primitive
solutions to (2) when n is congruent to one of these values of R∗ modulo 120. Note
that these are precisely the values of R∗ modulo 120 that reduce to 2, 3 modulo 5.
This shows that there are no non-trivial primitive solutions when n ≡ 2, 3 (mod 5),
and so proves part (I) of Theorem 1.

The proof of the remaining parts is similar. We quickly indicate our choices
of S, Ξ. For part (II) we took S = {79}, ζ6 = −ω a sixth-root of unity, and
Ξ = {φζ6 , ψζ6}.

Part (III) was dealt with in Section 4, but in our new notation we point out the
choices S = {107}, ζ1 = 1, and Ξ = {θ1}.

Finally, for part (IV) we took S = {13, 109}, and

Ξ = {θ−1, φ√−1ω, ψ
√
−1ω, φ

√
−1ω2 , ψ√−1ω2}.
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9.1. A Remark on the Proof of Theorem 1. The reader is probably wondering
if other sets of primes S will give further results. Our experiments suggest otherwise
for the reasons we now explain.

The primes belonging to S must include the primes ` dividing Norm(108ζr − 1)
or Norm(4ζr− 3

√
−3) depending on whether we would like to admit θζr or φζr and

ψζr . As r grows, these norms grow very rapidly. We see no reason why these norms
should only be divisible by primes ` such that A` is small. As a result, the AS

are typically large once we admit functions θζr or φζr and ψζr with large r. Each
‘distinct’ admissible function can be expected to ‘cut out’ roughly one half of any
AS,R. If AS is small then with a few choices of admissible functions we can hope
that for some R we have AS,R = ∅. However if AS is large then one needs more
admissible functions and this leads to an enlargement of S and so on.

We used the following strategy to find good candidates for sets of admissible
functions. We performed the search on r as a product of primes ≤ 61 so that
φ(r) ≤ 60 for θζ and φ(3r) ≤ 60 for φζ and ψζ . As the norms Norm(108ζr − 1) and
Norm(4ζr − 3

√
−3) were difficult to factor, we used the following method.

We made a list T of all primes ` less than 15, 000 such that #A` ≤ 50. In
order to speed up the creation of T , it was faster to simply give an upper bound
on #A` by picking a random point on Eα,β(F`) and checking that it is annihilated
by `+ 1− a`(E). If that was the case for 10 tries, we added the pair (α, β) to A`.

Next, we only factored Norm(108ζr−1) and Norm(4ζr−3
√
−3) using the primes

in T . If the norms were divisible by some prime ` not in T , it was omitted on the
basis that the resulting #A` would probably be larger than 50.

The following table summarizes the list of candidates found. In the table, ζ = ζk
r

where ζr = e2πi/r. No new sets of admissible functions which yield results were
found.

k/r S for θζ S for φζ , ψζ

1 {107} {43}
1/2 {109} {43}
{1, 3}/4 {5, 2333} {11}
{1, 3, 5, 7}/8 {5, 197}
1/3 {61, 193} {7}
2/3 {61, 193} {79}
1/6 {7, 13, 127} {7}
5/6 {7, 13, 127} {79}
{1, 5, 7, 11}/12 {13, 109}

10. Density Results

In this section we prove the density assertions made in the introduction regarding
exponents n for which satisfy the conditions of Theorem 1. Suppose first that n
is prime. Then we need to evaluate the Dirichlet density of primes satisfying any
of the congruences in Theorem 1. The least common multiple of the moduli 5,
78, 106 and 1296 appearing in the theorem is 4464720. Let S be the set of d in
0 ≤ d < 4464720 satisfying gcd(d, 4464720) = 1 and at least one of the congruence
conditions of the theorem. We computed S using a short MAGMA script and found
that #S = 677256. Thus the Dirichlet density of prime exponents n satisfying the
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conditions of Theorem 1 is
#S

φ(4464720)
=

28219
44928

.

This proves the assertion made in the introduction about the density for prime
exponents n.

We would now like to prove that the set of positive integers n satisfying the
conditions of Theorem 1 has natural density 1. For this it is sufficient to show that
the set of positive integers n divisible by some prime p ≡ 2 (mod 5) has natural
density 1. Let A be a set of positive integers. For x positive, define

A(x) = #{m ∈ A : m ≤ x}.
The natural density of A is defined as the limit (if it exists)

δ(A) = lim
x→∞

A(x)
x

.

For a given prime p, define

Ap = {m ∈ A : p | m and p2 - m}.
We shall need the following result of Niven [25, Corollary 1].

Theorem (I. Niven). Let {pi} be a set of primes such that δ(Api
) = 0 and∑

p−1
i = ∞. Then δ(A) = 0.

Now we shall let A be the set of positive integers n not divisible by any prime
p ≡ 2 (mod 5). It is enough for us to prove that δ(A) = 0. To show this, let {pi}
be the set of primes p ≡ 2 (mod 5). It follows from the usual proof of Dirichlet’s
Theorem that

∑
p−1

i = ∞. Moreover, all Api are empty and so have density 0.
Thus by Niven’s result above, δ(A) = 0.

11. A Refinement of Kraus’ Criterion

As mentioned in the introduction, Kraus [23] gives a criterion which likely to
allow one to prove that equation (2) does not have non-trivial primitive solution,
for a given prime exponent n. By checking his criterion on a computer, Kraus was
able prove that the equation (2) has no non-trivial primitive solution for prime
exponents 17 ≤ n < 104. In this section we explain a refinement of Kraus’ criterion
which is much faster in practice. The refinement is inspired by [11, Proposition
8.2].

It is perhaps helpful if we explain the idea behind Kraus’ criterion briefly. For
a given prime exponent n we choose a small integer k such that ` = kn + 1 is
prime. Now cn1 and cn2 are either 0 or k-th roots of unity modulo `. In either case
they belong to a small set modulo `. By equation (6), a, b also belong to a small
set modulo `. For these pairs of a, b, it is unlikely that the congruences given in
Proposition 2.1 are satisfied. This idea forms the basis of Kraus’ criterion.

First we seek a convenient model of the Frey curve Ea,b. ReplacingX byX+a−b
in the model given in (4) we obtain

Y 2 = X3 + 3(a− b)X2 + 3(a2 − ab+ b2)X.

Recalling our earlier notation, this is the same as the model

Y 2 = X3 +
x

3
X2 + 9cn2X.
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Twisting by 3cn1 we obtain the model

(19) Eε,δ : Y 2 = X3 + δX2 + εnX,

where ε and δ are given by (8). Let k be an integer such that ` = kn+ 1 is prime.
Define

µk(F`) = {ζ ∈ F∗` : ζk = 1} and A(k, `) = {ζ ∈ µk(F`) : (4ζ − 1/27) ∈ F2
`}.

For each ζ ∈ A(k, `), let δζ be some element of F` satisfying δ2ζ = 4ζ − 1/27, and
let

Eζ/F` : Y 2 = X3 + δζX
2 + ζX.

Proposition 11.1. Let n ≥ 17 be a prime. Suppose there exists an integer k
satisfying the following conditions:

(a) the integer ` = kn+ 1 is prime with ` ≤ n2/4,
(b) a`(E) 6= ±2,
(c) for all ζ ∈ A(k, `) we have a`(Eζ) 6= ±a`(E).

Then equation (2) does not have any non-trivial primitive solutions.

Proof. Note first that Ea,b and E respectively have the points (a− b, 0) and (1, 0)
of order 2. Thus if ` is any odd prime of good reduction then a`(Ea,b) and a`(E)
are even.

Suppose now that ` satisfies the conditions of the proposition, and that equation
(2) has a non-trivial primitive solution (a, b, c). We shall suppose first that l | c. In
this case, Proposition 2.1 gives

`+ 1 ≡ ±a`(E) (mod n).

However, ` ≡ 1 (mod n) by assumption (a) of the proposition. Hence, a`(E) ≡ ±2
(mod n) and since a`(E) is even, a`(E) ≡ ±2 (mod 2n). However, by the Hasse–
Weil bounds and the assumption ` ≤ n2/4 in (a) we have

|a`(E)∓ 2| ≤ 2
√
`+ 2 ≤ n+ 2 < 2n.

This shows that a`(E) = ±2, contradicting (b). We therefore deduce that ` does
not divide c = c1c2.

We shall now denote the reduction modulo ` map by t 7→ t. Recall (equation (3))
that ε and δ are related by 4εn − 1/27 = δ2. Moreover, ε = c2/c

2
1. Hence (εn)k = 1

and so εn = ζ for some ζ ∈ A(k, `). Clearly δ = ±δζ . Hence Eζ/F` and Eε,δ/F` are
quadratic twists, and so a`(Eζ) = ±a`(Eε,δ). However, Eε,δ is a quadratic twist of
Ea,b, and by Proposition 2.1 we know that a`(Ea,b) ≡ a`(E) (mod n). We deduce
that a`(Eζ) ≡ ±a`(E) (mod n), and as both traces are even a`(Eζ) ≡ ±a`(E)
(mod 2n). Finally the assumption ` ≤ n2/4 combined with the Hasse–Weil bounds
shows that a`(Eζ) = ±a`(E), contradicting (c). This completes the proof. �

It remains to explain the difference between our Proposition 11.1 and Kraus’ cor-
responding [23, Théorème 3.1]. Kraus in fact gives the same result with conditions
(a), (b), (c) replaced by the following:

(a′) the integer ` = kn+ 1 is prime,
(b′) a`(E) 6≡ ±2 (mod n),
(c′) for all ζ ∈ A(k, `) we have a`(Eζ) 6≡ ±a`(E) (mod n).
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To test condition (c′) we must compute a`(E) and a`(Eζ) for each ζ ∈ A(k, `).
The set A(k, `) can be somewhat large (it has an average size of about k/2), and
for large ` this step is time consuming. However, condition (c) can be verified by
computing a`(E) only: we simply choose a random point on Eζ for each ζ ∈ A(k, `)
and check that it is not annihilated by either of `+ 1± a`(E). If this holds then so
does (c). In practice, for primes n ≈ 109, we found that this brings a 10-fold speed
up in the program run time.

12. Proof of Theorem 2

It is now clearly sufficient to prove that (2) has no non-trivial primitive solutions
for prime exponents n in the range 104 < n < 109. We wrote a simple program
using the package pari/gp [1] to test whether a given prime n satisfies conditions
(a), (b), (c) of Proposition 11.1, by finding a suitable integer k. Using this program
we verified that (2) has no non-trivial primitive solutions for all prime exponents
104 < n < 109. This computation took about 50 hours on a 2.8 GHz Dual-Core
AMD Opteron.
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