TWIST-SPUN KNOTS

1. Knots and links

2. Racks and quandles

3. Classifying spaces and cohomology

4. Twist-spun knots in R#



A (REALLY) QUICK TRIP THROUGH KNOT THEORY
A knot: an embedding S1 — S3.
A link: an embedding [1S1 — S3.

Depict knots and links by diagrams:
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or non-transverse intersections:
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An isotopy: a homotopy of homeomorphisms.
regular isotopy: Don’t allow arbitrary untwisting.
ambient isotopy: Do.

Reidemeister moves: Allowable alterations of diagrams. ..
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THEOREM (Reidemeister 1932)

ambient isotopy classes of diagrams
classes of links — | modulo 21,825,023

regular isotopy classes of diagrams
classes of links [ <~ modulo €25, 23



KNOTTED SURFACES IN S%
Can’t knot a circle in 4-space, but can knot surfaces.

Study isotopy classes of embeddings S2 — S4.

4-dimensional analogues of Reidemeister moves are the
Roseman moves. ..




RACKS AND QUANDLES
A rack is a set X, equipped with an asymmetric binary op-
eration (usually written as exponentiation), such that:

R1 For any a,b € X there is a unique ¢ € X such that

CL:Cb.

R2 ab¢ = % forany a,b,c € X.

A quandle is a rack which satisfies:

Qa®=qaforalla € X.

Originally studied by Conway and Wraith, later by Joyce, and
recently by Fenn, Rourke and Sanderson.



EXAMPLES
The trivial rack T},: rack structure defined on {0, ...,n—1}
by setting a® := a.

The cyclic rack C',: rack structure defined on
{0,...,n— 1} by setting a® := a + 1( mod n).

The core rack Core GG of a group G-
Define g/ := hg~—1h.

The conjugation rack Conj GG of a group G-
Define g/ := hgh~1.

The dihedral rack D,, = {0,...,n — 1}, with p? := 2q — p.
Generated by reflections in the dihedral group Dy,.

Alexander quandles are modules over A = Z[t, ¢ 1] with
rack structure given by a® := ta + (1 — ¢)b.



THE FUNDAMENTAL RACK I
Given a (n — 2)-manifold L embedded in an n-manifold M,
we can define the fundamental rack ' (L).

Say L is framed if there is a cross-section A : L — ON(L)
of the normal circle bundle.
Then LT = im()) is the parallel manifold to L.

Now let " (L) consist of homotopy classes of paths in
Mg = M \ N(L), from a point in LT to the basepoint =,

where the initial point of the path is allowed to wander over
LT

A point p € L7 lies in a unique meridional circle of N (L) —
define m,, to be the loop formed by following this circle in a
positive direction.

Now, given two elements a,b € "' (L), represented by paths
«, B, respectively, we define

a’ = [aoBomﬁ(o) o ]



THE FUNDAMENTAL QUANDLE 4

The corresponding invariant of unframed codimension-2
embeddings is the fundamental quandle ";(L), in which
the initial point of the path is allowed to wander all over
ON(L).

A PRESENTATION FOR ' (L)
Attach a different label to each arc of a diagram for L. Each

crossing point gives a relation as follows:

2D

d
Then I'(L) is the free rack generated by all the labels,
modulo all the crossing relations.

...AND M4(L)
Do the same, but add in the relations a® = a for all a € X.

COLOURING

A colouring of a link L with arack X is a consistent labelling
of the arcs of L with elements of X, such that the required
condition holds at each crossing.

In other words, a homomorphism e : (L) — X.



REIDEMEISTER RETURNS
The point of the definition of I and I is that the rack (and

guandle) axioms correspond to the Reidemeister moves.

[" can't see {25 and €23, and [, can't see €27 either.

~— ~a R1:a%=a

>c > R2 a—C

C

\
/ R

: abc — acbc

This works in higher dimensions, too.



THE RACK SPACE BX
We can construct a classifying space BX for arack X, anal-
ogous to the classifying space BG for a group G.

Briefly:

Take a 0-cell .

Attach 1-cells [x] for each element z € X.

Then glue in 2-cells [z, y] around the edges [y][zY][7y][Z].

Proceed by induction, gluing in n-cells [z1, ..., xn] consis-
tently.
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CLASSIFYING SPACES AND (CO)HOMOLOGY
Can define cohomology (and homology) of racks
(and quandles), analogous to (co)homology of groups.

Given a rack X, and an abelian group A (written multiplica-
tively), form a cochain complex C*(X; A) as follows:

C™(X: A) = Hom(FA(X"™), A)

(6f)(zo,...,zn) =
H f(xgla RN 733;171]_7 Li+4+15--- 75677/)(_1)1
=0

d .
X H f(xD, o« o ,CCZ_]_,;UZ_I_]J L. 7‘/'67/1,)_(_1)

n+1
"L on(x A) O ontlox 4y T

A tedious calculation shows that §” o 71 is the trivial map,
so this /s a cochain complex.

Define Z"(X; A) = ker(6™) and B*(X; A) = im(s"~ 1)
(the groups of n-cocycles and n-coboundaries).
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The cohomology H™(X; A) = Z"(X; A)/B"(X; A) is de-
fined as per usual, and agrees with the (topological) coho-
mology of the rack space BX:

H"(C*(X,;A)) = H"(BX, A)

QUANDLE COHOMOLOGY

We are primarily interested in the cases where X is a quan-
dle.
Consider a quotient HE}(X; A) of the rack cohomology:

P"(X; A =
{fec™(Xx;A) 1 f(@) =1
for all £ where xz; = x; 4, for some i}

Define the groups of quandle n-cocycles,
quandle n-coboundaries, and the quandle cohomology
groups as follows:

Zg)(X; A = Z'(X;ANP'(X;A)
Bg(X; A) = B"(X;ANP*"(X;A)
Ho(X;A) = Zo(X; A)/Bo(X; A)
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CHARACTERISTIC FUNCTIONS
The cohomology groups H"™(X; A) and H@(X;A) (with
coefficients in Z, Z, or Q) are generated by characteristic
functions:
N _ |t =y

xz(Y) = { 0 otherwise
Here, t is the generator of the coefficient group, and z, § €
X,
This can be generalised to non-cyclic groups, but not today.

EXAMPLES
H(%(TQ; 7) £ 7.2, generated by x (g 1) and x(1 o).

H%(D3; 7)) is trivial.
H%(D3; 7)) is trivial, but H%(D3; 7.3) = Z3, generated by:
_ -1 ~1
T = X(0,1,0)%X(0,2,0)X(0,2,1)

X(1,0,1)X(1,0,2)X(2,0,2)X(2,1,2)
where 13 =
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THE STATE SUM INVARIANT

Take a link diagram, and colour it with a given quandle X.
That is, label each arc of the diagram consistently with ele-
ments of X.

Now take a cocycle ¢ € Hé(X; A). This may be applied to
a crossing 7 of the diagram by allowing it to act on the labels
of the incoming arcs:

(Similarly, we can apply 3-cocycles to triple-points of knotted
2-spheres.)

Write the coefficient group A multiplicatively and then define
the state sum @, (L) corresponding to this cocycle as:

ST 6(z, y)et™

C T
where ¢(7) is the sign of the crossing .

Note that this sum is taken over all colourings
C: (L) — X, and all crossings .
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The definition of a 2-cocycle says that

¢(p,r)p(p",q") = o(p,q)p(p?, 1)

This is equivalent to invariance of &, under €23:

P q r P qQ r
¢ (p.q) L pl L ¢ (q.1)
N JAANYE
o @) \P
0 (q.1) - . o(pq")
\J 1 1 r
rogt pdf roqf P

For a 3-cocycle,

¢(p,q, 7)o", q",s)p(p,r,8) =
o(p?, 7, 8)p(p,q,s)p(p°, q°, r°)

which is equivalent to the tetrahedral Roseman move.

The weird definition of quandle cocycles assures invariance
under €21, making ® 4 an ambient isotopy invariant.
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AN EXAMPLE
We can colour any knot or link with the two-element trivial

quandle 7> — the colour of an under-arc is unchanged at
crossings.

Let ¢ = x(0,1) € HC%(TQ; Z) to define a cocycle invariant
& for classical links.

If K is a knotthen ®(K) = 2.
If L = K7 U K> is atwo-component link, then

d(L) = 2(1 4 1))
If L = K1 U K> U K3 is athree-component link then

d(L) =2(1+ Z tlk(L)_lk(KiaKj))
1<i<j<3
So cocycle invariants derived from trivial quandles would
seem to give linking information.
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SPUN KNOTS
Can create a class of (possibly knotted) embedded 2-spheres
in S* by spinning:

TWIST-SPUN KNOTS
Rotate the knot (an integral number of times) during the
spinning process.
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THE TWICE TWIST-SPUN TREFOIL
Spin the trefoil, twisting it 720° as you do so.
This gives an orientable embedded 2-sphere S in 4-space.

Orient S and calculate the state sum invariant corresponding
to the cocycle

_ -1 ~1
n = X(0,1,0)%X(0,2,0)X(0,2,1)
X(1,0,1)X(1,0,2)X(2,0,2)X(2,1,2)
in H%(Dg,; 73).

Let ST be S with the positive orientation, and S~ be S with
the negative orientation.

Then

®,(ST) = 3 + 6t
but

b, (S7) = 3 + 62
So

ST % S~

That is, the twice twist-spun trefoil is not ambient isotopic to
its inverse.
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