
TWIST-SPUN KNOTS

1. Knots and links

2. Racks and quandles

3. Classifying spaces and cohomology

4. Twist-spun knots in R4
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A (REALLY) QUICK TRIP THROUGH KNOT THEORY

A knot: an embedding S1 ↪→ S3.

A link: an embedding
∐
S1 ↪→ S3.

Depict knots and links by diagrams:

Don’t allow triple points:

or non-transverse intersections:
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An isotopy: a homotopy of homeomorphisms.

regular isotopy: Don’t allow arbitrary untwisting.

ambient isotopy: Do.

Reidemeister moves: Allowable alterations of diagrams. . .

Ω1 Ω2 Ω3

THEOREM (Reidemeister 1932){
ambient isotopy
classes of links

}
⇐⇒

{
classes of diagrams
modulo Ω1,Ω2,Ω3

}
{

regular isotopy
classes of links

}
⇐⇒

{
classes of diagrams

modulo Ω2,Ω3

}
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KNOTTED SURFACES IN S4

Can’t knot a circle in 4-space, but can knot surfaces.

Study isotopy classes of embeddings S2 ↪→ S4.

4-dimensional analogues of Reidemeister moves are the
Roseman moves. . .
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RACKS AND QUANDLES

A rack is a set X, equipped with an asymmetric binary op-
eration (usually written as exponentiation), such that:

R1 For any a, b ∈ X there is a unique c ∈ X such that
a = cb.

R2 abc = acb
c

for any a, b, c ∈ X.

A quandle is a rack which satisfies:

Q aa = a for all a ∈ X.

Originally studied by Conway and Wraith, later by Joyce, and
recently by Fenn, Rourke and Sanderson.
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EXAMPLES

The trivial rack Tn: rack structure defined on {0, . . . , n−1}
by setting ab := a.

The cyclic rack Cn: rack structure defined on
{0, . . . , n− 1} by setting ab := a+ 1( mod n).

The core rack CoreG of a group G:
Define gh := hg−1h.

The conjugation rack ConjG of a group G:
Define gh := hgh−1.

The dihedral rack Dn = {0, . . . , n− 1}, with pq := 2q − p.
Generated by reflections in the dihedral group Dn.

Alexander quandles are modules over Λ = Z[t, t−1] with
rack structure given by ab := ta+ (1− t)b.
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THE FUNDAMENTAL RACK Γ

Given a (n− 2)-manifold L embedded in an n-manifold M ,
we can define the fundamental rack Γ(L).

Say L is framed if there is a cross-section λ : L→ ∂N(L)

of the normal circle bundle.
Then L+ = im(λ) is the parallel manifold to L.

Now let Γ(L) consist of homotopy classes of paths in
M0 = M \N(L), from a point in L+ to the basepoint ∗,
where the initial point of the path is allowed to wander over
L+.

A point p ∈ L+ lies in a unique meridional circle of N(L) —
define mp to be the loop formed by following this circle in a
positive direction.

Now, given two elements a, b ∈ Γ(L), represented by paths
α, β, respectively, we define

ab := [α ◦ β ◦mβ(0) ◦ β]
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THE FUNDAMENTAL QUANDLE Γq
The corresponding invariant of unframed codimension-2
embeddings is the fundamental quandle Γq(L), in which
the initial point of the path is allowed to wander all over
∂N(L).

A PRESENTATION FOR Γ(L)

Attach a different label to each arc of a diagram for L. Each
crossing point gives a relation as follows:

ab

a

bb

Then Γ(L) is the free rack generated by all the labels,
modulo all the crossing relations.

. . . AND Γq(L)

Do the same, but add in the relations aa = a for all a ∈ X.

COLOURING

A colouring of a link L with a rackX is a consistent labelling
of the arcs of L with elements of X, such that the required
condition holds at each crossing.
In other words, a homomorphism c : Γ(L)→ X.

8



REIDEMEISTER RETURNS

The point of the definition of Γ and Γq is that the rack (and
quandle) axioms correspond to the Reidemeister moves.

Γ can’t see Ω2 and Ω3, and Γq can’t see Ω1 either.

a
a

a a  a R1: aa = a

b

b c

c

b

b

c

c

a=c
b

R2: a = cb

a
c a

c

b
c

b
c

a ab

cc

a
bc

cc

b

a
cb
c

R3: abc = acb
c

This works in higher dimensions, too.
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THE RACK SPACE BX
We can construct a classifying space BX for a rackX, anal-
ogous to the classifying space BG for a group G.

Briefly:

Take a 0-cell ∗.

Attach 1-cells [x] for each element x ∈ X.

Then glue in 2-cells [x, y] around the edges [y][xy][y][x].

Proceed by induction, gluing in n-cells [x1, . . . , xn] consis-
tently.
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CLASSIFYING SPACES AND (CO)HOMOLOGY

Can define cohomology (and homology) of racks
(and quandles), analogous to (co)homology of groups.

Given a rack X, and an abelian group A (written multiplica-
tively), form a cochain complex C∗(X;A) as follows:

Cn(X;A) = Hom(FA(Xn), A)

(δf)(x0, . . . , xn) =
n∏
i=0

f(xxi0 , . . . , x
xi
i−1, xi+1, . . . , xn)(−1)i

×
n∏
i=0

f(x0, . . . , xi−1, xi+1, . . . , xn)−(−1)i

· · · δ
n−1
−→ Cn(X;A)

δn−→ Cn+1(X;A)
δn+1
−→ · · ·

A tedious calculation shows that δn ◦ δn−1 is the trivial map,
so this is a cochain complex.

Define Zn(X;A) = ker(δn) and Bn(X;A) = im(δn−1)

(the groups of n-cocycles and n-coboundaries).
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The cohomologyHn(X;A) = Zn(X;A)/Bn(X;A) is de-
fined as per usual, and agrees with the (topological) coho-
mology of the rack space BX:

Hn(C∗(X;A)) ∼= Hn(BX;A)

QUANDLE COHOMOLOGY

We are primarily interested in the cases where X is a quan-
dle.
Consider a quotient H∗Q(X;A) of the rack cohomology:

Pn(X;A) =

{f ∈ Cn(X;A) | f(~x) = 1

for all ~x where xi = xi+1 for some i}

Define the groups of quandle n-cocycles,
quandle n-coboundaries, and the quandle cohomology
groups as follows:

ZnQ(X;A) = Zn(X;A) ∩ Pn(X;A)

BnQ(X;A) = Bn(X;A) ∩ Pn(X;A)

Hn
Q(X;A) = ZnQ(X;A)/BnQ(X;A)
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CHARACTERISTIC FUNCTIONS

The cohomology groups Hn(X;A) and Hn
Q(X;A) (with

coefficients in Z,Zn, or Q) are generated by characteristic
functions:

χ~x(~y) =

{
t if ~x = ~y
0 otherwise

Here, t is the generator of the coefficient group, and ~x, ~y ∈
Xn.
This can be generalised to non-cyclic groups, but not today.

EXAMPLES

H2
Q(T2;Z) ∼= Z2, generated by χ(0,1) and χ(1,0).

H2
Q(D3;Z) is trivial.

H3
Q(D3;Z) is trivial, but H3

Q(D3;Z3) ∼= Z3, generated by:

η = χ−1
(0,1,0)χ(0,2,0)χ

−1
(0,2,1)

χ(1,0,1)χ(1,0,2)χ(2,0,2)χ(2,1,2)

where η3 = 1.
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THE STATE SUM INVARIANT

Take a link diagram, and colour it with a given quandle X.
That is, label each arc of the diagram consistently with ele-
ments of X.

Now take a cocycle φ ∈ H2
Q(X;A). This may be applied to

a crossing τ of the diagram by allowing it to act on the labels
of the incoming arcs:

(x,y)φ

xy

yx

(Similarly, we can apply 3-cocycles to triple-points of knotted
2-spheres.)

Write the coefficient group A multiplicatively and then define
the state sum Φφ(L) corresponding to this cocycle as:∑

C

∏
τ
φ(x, y)ε(τ)

where ε(τ) is the sign of the crossing τ .

Note that this sum is taken over all colourings
C : Γ(L)→ X, and all crossings τ .
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The definition of a 2-cocycle says that

φ(p, r)φ(pr, qr) = φ(p, q)φ(pq, r)

This is equivalent to invariance of Φφ under Ω3:
rqp

qr

φ (p,q)

φ (p,r)
φ (q,r)

φ (q,r)

p
q

p
qφ ( ,r)

rqp

qr

p
r

p
r
qrφ ( , )

r pqr r p
rq
r

For a 3-cocycle,

φ(p, q, r)φ(pr, qr, s)φ(p, r, s) =

φ(pq, r, s)φ(p, q, s)φ(ps, qs, rs)

which is equivalent to the tetrahedral Roseman move.

The weird definition of quandle cocycles assures invariance
under Ω1, making Φφ an ambient isotopy invariant.
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AN EXAMPLE

We can colour any knot or link with the two-element trivial
quandle T2 – the colour of an under-arc is unchanged at
crossings.

Let φ = χ(0,1) ∈ H2
Q(T2;Z) to define a cocycle invariant

Φ for classical links.

If K is a knot then Φ(K) = 2.
If L = K1 ∪K2 is a two-component link, then

Φ(L) = 2(1 + tlk(L))

If L = K1 ∪K2 ∪K3 is a three-component link then

Φ(L) = 2(1 +
∑

16i<j63

tlk(L)−lk(Ki,Kj))

So cocycle invariants derived from trivial quandles would
seem to give linking information.

16



SPUN KNOTS

Can create a class of (possibly knotted) embedded 2-spheres
in S4 by spinning:

TWIST-SPUN KNOTS

Rotate the knot (an integral number of times) during the
spinning process.
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THE TWICE TWIST-SPUN TREFOIL

Spin the trefoil, twisting it 720◦ as you do so.
This gives an orientable embedded 2-sphere S in 4-space.

Orient S and calculate the state sum invariant corresponding
to the cocycle

η = χ−1
(0,1,0)χ(0,2,0)χ

−1
(0,2,1)

χ(1,0,1)χ(1,0,2)χ(2,0,2)χ(2,1,2)

in H3
Q(D3;Z3).

Let S+ be S with the positive orientation, and S− be S with
the negative orientation.

Then

Φη(S+) = 3 + 6t

but

Φη(S−) = 3 + 6t2

So

S+ 6≈ S−

That is, the twice twist-spun trefoil is not ambient isotopic to
its inverse.
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