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0 Introduction

X is a projective 3-fold with canonical singularities, k = C; the terminology
will be explained in 0.8 below.

Theorem 0.0 (on projective morphisms) Let D ∈ PicX be nef, and
suppose that aD − KX is nef and big for some a ∈ Z with a ≥ 1. Then
|mD| is free for every m � 0; equivalently, there exists a morphism to a
projective variety ϕ : X → Z such that ϕ∗OX = OZ, and an ample H ∈ PicZ
such that D = ϕ∗H.

0.1 Properties of ϕ

(a) Vanishing: Riϕ∗OX = 0 for i > 0, and in particular χ(OX) = χ(OZ);
furthermore, H i(Z,H⊗m) = 0 for all m ≥ a and i > 0.

(b) Relative anticanonical model: ϕ factors as X
g→ X

h→ Z where g is
birational, X has canonical singularities, KX = g∗KX , and −KX is
relatively ample for h.

(c) Cases according to dimZ = κnum(D) = κ(D):

dimZ = 3. Then ϕ : X → Z is birational, and Z has rational
singularities.

dimZ = 2. Then ϕ : X → Z is a weak conic bundle: Z is a normal
surface with rational singularities, and the general fibre of ϕ is P1.

dimZ = 1. Then ϕ : X → Z is a weak del Pezzo fibre space: Z is
a nonsingular curve, and the general fibre A of ϕ is a surface with
at worst Du Val singularities, such that −KA is nef and big.
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2 Projective morphisms according to Kawamata

Z = pt. Then X is a weak Q-Fano 3-fold, that is, −KX is nef and
big; H i(OX) = 0 for all i > 0, and PicX is reduced1 and torsion
free; in this case D = 0 ∈ PicX.

Corollary 0.2 (finite generation) If KX is nef and big, that is, X is a
minimal model of a 3-fold of general type) then |mrKX | is free for every
m � 0, where r = index of X; in particular, the canonical ring is finitely
generated.

Proof Theorem 0.0 applies at once to D = rKX . The final part comes
from Zariski’s projective normalisation: if m is such that |mKX | is free, then
the canonical ring of X is a finite module over the subring generated by
H0(mKX).

0.3

The second corollary requires some setting up: write

N1
Q
X =

{
Cartier divisors⊗Q

}
/

num∼ , N1X = N1
Q
X ⊗ R;

and N1X =
{

1-cycles⊗ R
}
/

num∼ ;

by definition of numerical equivalence N1X and N1X are dual finite dimen-
sional vector spaces. Let NE = NE(X) ⊂ N1X be the Kleiman–Mori closed
cone of effective 1-cycles.

Corollary (contraction theorem) Let F be a face of NE(X) entirely
contained in the half-space NE− =

{
z
∣∣ KXz < 0}, and suppose that there

exists a nef class d ∈ N1
Q
X such that d⊥ ∩ NE = F . Then there exists a

morphism ϕ = contF : X → Y with ϕ∗OX = OZ and such that for every
curve C ⊂ X,

ϕ(C) = pt ∈ Y ⇐⇒ C ∈ F.

Proof Write
NE+ =

{
z ∈ NE

∣∣ KXz ≥ 0},
and let Σ be the intersection of NE+ with the unit sphere in N1X. Then d
is positive on Σ, and since Σ is compact, d is bounded away from zero; also
KX , considered as a linear form on N1X, is bounded on Σ, so that for any
sufficiently large a ∈ R, ad−KX is positive on Σ, and then obviously positive
on the whole of NE. If a is chosen so that in addition ad is represented by a
divisior D ∈ PicX then D −KX is ample on X by Kleiman’s criterion, and
Theorem 0.0 applies.

1Reduced and discrete is intended, because H1(OX) = 0; see the proof in 1.7.
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Remark In §5 I prove that under certain restrictions on the singularities of
X, if KX is not nef, then there always exists a face F satisfying the hypotheses
of Corollary 0.3, and in fact F can be taken to be a ray R. This is a weak
form of the conjectured “Theorem on the Cone” for singular 3-folds.

In [9], 4.18, I outlined a program in five steps for constructing minimal
models of 3-folds. The results of this paper cover Steps 2 and 3 of this program
in a fairly satisfactory way.

0.4

The following is an effective statement that can be obtained by the method
of proof of Theorem 0.0:

Corollary Let X,D, a be as in Theorem 0.0.

(i) If m ≥ 2a+2 then the general element of M = |mD| is reduced and has
only ordinary double curves along 1-dimensional components of SingX.

(ii) If m ≥ 3a + 3 the general element of M has only double curves, and
only ordinary double curves if m ≥ 6a+ 6.

0.5

The following result is proved in §4, using the notation, and in one place the
method, of the proof of Theorem 0.0.

Theorem (Shokurov [12]) Suppose that −KX ∈ PicX is big and nef
(that is, X is a weak Fano 3-fold). Then the general element S ∈ |−KX |
is a K3 surface with at worst Du Val singularities.

It follows from the theory of linear systems on K3s, applied to the minimal
resolution of S, that if |−KX | is not free then its scheme theoretic base locus
is isomorphic to P1 or to a (reduced) point.

0.6 Discussion

Kawamata’s method is a higher dimensional analog of the Kodaira–Ramanu-
jam–Bombieri connectedness method for surfaces. The big drawback is that
the method as it stands is not effective: whereas the method for surfaces
allows us to choose a point P ∈ X, construct a divisor D with P ∈ SingD,
and conclude that P is not a base point of |D + KX |, the method proves
only that there is some base component B of |mD| of “maximal multiplicity”
(see 1.4), and that then there is a b0 such that for b ≥ b0, B is not a base
component of |bD|.
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Problems 0.7 (a) Make Theorem 0.0 effective; in particular, if the canon-
ical class KX ∈ PicX is nef and big, prove that |mKX | is free for m ≥
some reasonable bound (say 10).

(b) Does Theorem 0.0 hold for dimX ≥ 4 (assuming if necessary that
κ(D) ≥ 0)? The present proof fails to go through at one point, namely
Proposition 1.5, at which higher Chern classes turn up in the formula for
h0((bf ∗D + A)|B).

(c) The following statement would be very useful in many different contexts,
in particular in (b) above:

Conjecture If V is a nonsingular projective 3-fold and c2(V ) ·H < 0
for some ample H then the subsheaf E ⊂ Ω1

V breaking the stability of
Ω1
V is orthogonal to a foliation of V by rational subvarieties.

(d) If KX
num∼ 0 it follows from Theorem 0.0 that D is nef and big if and

only if |mD| is free for m � 0, and defines a birational morphism
ϕ : X → Z; then Z also has canonical singularities and KX = ϕ∗KZ .
What happens when D is nef but κnum(D) = 1 or 2? In this case it is
certainly possible that h0(mD) = 0 for all m > 0 (because D may be
numerically but not linearly equivalent to 0 on an Abelian factor of X).

Conjecture There exists an m > 0 and a free linear system |L| with
L

num∼ mD. Hence there is a morphism ϕ : X → Z such that ϕ contracts
precisely the curves C ⊂ X such that DC = 0.

(e) It would be interesting to know what kind of singularities the map
ϕ : X → Z can have in the cases dimZ = 3 or 2 of Proposition 0.1, (c).
In the birational case, Z has singularities that are more general than
canonical, but presumably much more restricted than general rational
singularities.

0.8 Preliminaries and terminology

a. Q-divisors Let X be a projective normal variety; a Q-divisor D ∈
DivX ⊗ Q is Q-Cartier if rD ∈ PicX for some r ∈ Z, r > 0. Intersection
numbers and cycles are defined for Q-Cartier divisors in the obvious way:

D1 · · ·Dk =def
1

r1 · · · rk
(r1D1) · · · (rkDk),

where the right-hand side is the intersection cycle of Cartier divisors defined
by any of the usual procedures.
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b. Nef D ∈ DivX ⊗Q is nef if it is Q-Cartier and for every curve C ⊂ X,

DC =def
1

r
(rD)C ≥ 0.

By Kleiman’s ampleness criterion, D is nef if and only if D is numerically
equivalent to a limit of ample Q-Cartier divisors; in particular, if D1, . . . , Dk

are nef and Z is an effective cycle of codimension l then D1 · · ·DkZ is a limit
of effective cycles of codimension k + l.

c. κnum(D) and big If D is nef then the characteristic dimension or the
numerical Kodaira dimension of D is defined to be

κnum(D) = max
{
k
∣∣ Dk

num

6∼ 0
}
.

Then max{0, κ(D)} ≤ κnum(D) ≤ n where n = dimX and κ(D) = κ(X,D)
is the Iitaka D-dimension of X, and it is easy to see (using vanishing, so only
in characteristic 0) that the following are equivalent:

(i) κnum(D) = n;

(ii) Dn > 0;

(iii) h0(X,mrD) ∼ mn as m→∞;

(iv) for every ample H ∈ PicX there is an m > 0 such that mrD
lin∼ H +M

where M ∈ PicX is effective;

(v) κ(D) = n.

If this happens, I say that D is big.

(d) Round-up d e For r ∈ R, write dre for the smallest integer ≥ r, the
round-up of r; (the Gauss symbol [ ] is “round-down”, and is related by
dre = −[−r]). If D =

∑
qiFi with Fi distinct prime divisors, and qi ∈ Q,

write dDe =
∑
dqieFi. Note that d e is a function on divisors, not on divisor

classes, although if D = D1+D2, with D2 ∈ DivX⊗Q, and D1 ∈ PicX (that
is, D1 defined only up to linear equivalence), then dDe = D1 + dD2e ∈ PicX
is well defined. Thus I will usually write “=” of Q-divisors to indicate that
the fractional parts are equal and the integer parts are linearly equivalent.

Note also that if f : Y → X is a birational morphism, and rKX ∈ PicX,
then the isomorphism of ω

[r]
X and ω

[r]
Y on the locus where f is an isomorphism

extends to a canonical isomorphism

f ∗ω
[r]
X ⊗OY (D)

'−→ ω
[r]
Y ,
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where D is a Weil divisor made up of exceptional divisors of f (effective if X
has canonical singularities). I write equality of Q-divisors KY = f ∗KX + ∆
where ∆ = 1

r
D to describe this.

Lemma 0.9 (i) If D is nef then κnum(D) ≥ κ(D);

(ii) if D is nef with κnum(D) ≥ k and H is nef and big then DkHn−k > 0;

(iii) if D is an effective Weil divisor which is nef and has κnum(D) ≥ 2 then
SuppD is connected in codimension 1, in the sense that if D = D1 +D2

with D1, D2 effective and with no common divisors, then the intersection
SuppD1 ∩ SuppD2 has at least one component of dimension n− 2.

Proof (i) If κ(D) = k then for a suitable m > 0 such that mD ∈ PicX,
|mD| defines a dominant rational map X 99K Z to a k-dimensional projective
variety. Resolving indeterminacy gives

Y
f ↙ ↘ϕ

X 99K Z,

where f, ϕ are morphisms, and |f ∗mD| = |L| + F , where |L| is free with
Lk > 0 and F is effective. Then

(mD)k = (f ∗mD)k = (L+ F )k ≥ Lk > 0,

which holds because for each i with 0 ≤ i < k,

(f ∗mD)i+1Lk−i−1 = (f ∗mD)i(L+ F )Lk−i−1 ≥ (f ∗mD)iLk−i,

using the fact that both L and f ∗mD are nef.
(ii) follows by a similar argument using the fact that some multiple of H

is of the form an ample divisor plus an effective divisor.
(iii) Assuming that SuppD1 ∩ SuppD2 has codimension ≥ 3 in X, it will

not meet a general surface sections S of X, so that both D1 and D2 are
Q-Cartier divisors in a neighbourhood of S. Writing S̃ → S for a resolu-
tion of S, and ′ for the pullback of a divisor of X to S̃, I have D′1D

′
2 = 0,

but (D′1)2, (D′2)2 ≥ 0 (because D is nef), and (D′1 + D′2)2 > 0 (because
κnum(D) > 2), and this contradicts the index theorem.

Index Theorem 0.10 Let D, A be Q-Cartier divisor on a normal projective

n-fold X with n ≥ 2, such that D is nef, D
num

6∼ 0. Then
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(i) for ample Q-divisors H1, . . . , Hn−2,

DAH1 · · ·Hn−2 = 0 =⇒ −A2H1 · · ·Hn−2 ≥ 0;

in particular, if n ≥ 3 and DAH1 · · ·Hn−3
num∼ 0 (as a 1-cycle) then

−A2H1 · · ·Hn−3 ∈ NE(X).

(ii) If for some ample H1, . . . , Hn−2,

DAH1 · · ·Hn−2 = A2H1 · · ·Hn−2 = 0

then A
num∼ qD for some q ∈ Q, and if q 6= 0 then D2 num∼ 0, that is,

κnum(D) = 1.

Proof Let S = L1 ∩ · · · ∩ Ln−2 be a reduced irreducible surface complete
intersection, with Li ∈ |miHi| (where miHi ∈ PicX); let f : S̃ → S be a

resolution, and let ′ denote the pullback of Q-Cartier divisors of X to S̃.

Now D′ is nef on S̃ and D′
num

6∼ 0; also D′A′ = mDAH1 · · ·Hn−2 and
(A′)2 = mA2H1 · · ·Hn−2 (where m =

∏
mi), so that (i) is just a restatement

of the usual index theorem. If (A′)2 = 0 then A′
num∼ qD′ on S̃; the value of q

can be determined by

A′H ′1 = mAH2
1H2 · · ·Hn−2 = qmDH2

1H2 · · ·Hn−2 = qD′H ′1,

since D′H ′1 6= 0, and so q does not depend on the choice of mi and Li ∈ |miHi|.
I now claim that for every curve C ⊂ X, (A−qD)C = 0. To see this, note

that for mi � 0 such that miHi ∈ PicX, IC · OX(miHi) is generated by its
H0, where IC is the ideal defining C, so that choosing Li ∈ |miHi| to contain
C, but otherwise general, the intersection S = L1 ∩ · · · ∩Ln−2 is reduced and
irreducible. Now let f : S̃ → S be its resolution, and C̃ ⊂ S̃ any irreducible
curve such that f |C̃ : C̃ → C is generically finite, of degree d say. Then

0 = (A′ − qD′)C̃ = d(A− qD)C. Q.E.D.

0.11 Vanishing

The following result is the main technical tool of this paper.

Vanishing If Y is a nonsingular variety and N ∈ Div Y ⊗Q is nef and big,
and the fractional part of N is supported on a divisor with normal crossings,
then

H i(Y, dNe+KY ) = 0 for i > 0.

In Kawamata’s treatment [5] this is an easy formal consequence of Kodaira
vanishing.
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0.12 Acknowledgement

I am extremely grateful to Y. Kawamata for sending me his brilliant series
of preprints [2]–[3] from which the ideas in this article are mostly plagiarised.
Our immense debt to S. Mori’s work will be clear to the reader.2

1 Proof of Theorem 0.0 assuming κ(D) ≥ 0

Preliminary Lemma 1.1 H0(mD) = 0 for at most 3 values of m ≥ a.
(See also Lemma 1.8 below.)

Proof It follows easily from Riemann–Roch and vanishing (see Corollary 3.2
for the details) that h0(mD) is a polynomial in m of degree ≤ 3 for m ≥ a.
In §2 below it is shown that this polynomial is not identically zero, and hence
has at most 3 zeros. Q.E.D.

1.2 Construction

Let M ⊂ |mD| be any linear system with dimM ≥ 0, BsM 6= 0. Then
there exists a resolution f : Y → X, a divisor with normal crossings

∑
Fj

(for j ∈ J) on Y , and constants aj, rj, pj such that

(1) KY = f ∗KX +
∑
ajFj with aj ∈ Q, aj ≥ 0 and aj > 0 only if Fj is

exceptional for f ;

(2) f ∗M = L+
∑
rjFj where L is a free linear system, rj ∈ Z, rj ≥ 0, and

rj > 0 for at least one j ∈ J (if dimM = 0 then L = 0);

(3) f ∗(aD − KX) −
∑
pjFj is an ample Q-divisor on Y , where pj ∈ Q,

0 ≤ pj � 1.

Note for further use that a very slight increase in one of the pj does not
affect the truth of (3).

Remark (Shokurov [13], p. 436, see also 4.3 below) There is no loss
of generality in assuming that rj ≥ aj if f(Fj) is a curve.

2Essentially all the results of this paper have been generalised to all dimensions in 2
preprints by Shokurov [13] and Kawamata [4]. Shokurov’s paper also sidesteps the difficult
proof of §2. I believe that some form of the other main result (Theorem 5.3) is proved in
Shokurov [14]. (Note added in 1983–84.)



1. Proof of Theorem 0.0 assuming κ(D) ≥ 0 9

Proof Let H ∈ PicX be ample. Since aD−KX is big, for m large enough
h0(m(aD−KX)−H) 6= 0. Choosing D1 ∈ |m(aD−KX)−H| it follows that
for every ε1 ∈ Q, 0 < ε1 � 1, the Q-divisor aD−KX − ε1D1 is ample on X.

Now choose a composite of blowups f : Y → X which resolves the singu-
larities of X and the base locus of M , and such that the exceptional locus of
f and the inverse image of D1 form a divisor with normal crossing

∑
Fj. By

construction of f it is clear that there exists an effective divisor D2 =
∑
cjFj

such that −D2 is relatively ample for f ; hence choosing ε2 with 0 < ε2 � ε1,
and setting f ∗ε1D1 + ε2D2 =

∑
pjFj gives (3). Q.E.D.

1.3 The method

Fix the set-up of 1.2. For b ∈ Z, c ∈ Q with c ≥ 0 and b ≥ cm + a, the
Q-divisor

N = N(b, c) = bf ∗D +
∑

(−crj + aj − pj)Fj −KY

num∼ cL+ f ∗((b− cm)D −KX)−
∑

pjFj

is ample on Y , and has fractional part supported in
∑
Fj. Vanishing gives

H i(dNe+KY ) = 0 for i > 0, and I have

dNe+KY = bf ∗D + Σ,

where I can write

Σ =
∑
d−crj + aj − pjeFj = A−B,

with A,B effective divisors not having any common components. Since all
of c, rj, aj, pj ≥ 0, A consists of components Fj with aj > 0, and by 1.2, (1)
these must be exceptional for f . Hence

H0(X, bD) = H0(Y, bf ∗D) = H0(Y, bf ∗D + A).

Now H1(bf ∗D + A−B) = 0 implies that

H0(Y, bf ∗D + A)� H0(B, (bf ∗D + A)B).

In 1.4 below, it is shown how to adjust the parameter c and the pj so that B
is one of the irreducible components B = F0 of

∑
Fj, and −cr0 + a0 − p0 =

−1 ∈ Z. From now on, I write ′ to denote the pullback to B of a divisor on
X or Y . Then

bf ∗D + A = dNe+KY +B,



10 Projective morphisms according to Kawamata

so that
bD′ + A′ = (dNe)′ +KB.

Now B = F0 appears in N with integral coefficient, so that (see 0.8, (d) for
the abuse of notation)

(dNe)′ = dN ′e ,

and N is an ample Q-divisor on B with fractional part supported on the
divisor with normal crossing

∑
j 6=0 F

′
j . Hence vanishing applies again to give

H i(bD′ + A′) = 0 for i > 0, so that h0(bD′ + A′) = 0 is a polynomial in
b. The subtle part of the argument, Proposition 1.5, is to show that the
polynomial cannot be identically zero; this is the only point at which the
condition dimX = 3 is used. The method here is due to Xavier Benveniste
[1], and improves Kawamata’s original proof.

1.4 Selecting a base component of maximal
multiplicity

Set c = min(aj + 1− pj)/rj, taken over j ∈ J with rj > 0; since pj � 1 and
aj ≥ 0, it follows that c > 0. Suppose that 0 ∈ J is one of the indices for
which the minimum value occurs; on increasing the corresponding p0 slightly,
c decreases, so that the minimum occurs only for this one component F0.
Then by definition of c,

−cr0 + a0 − p0 = −1 and − crj + aj − pj > −1 for j ∈ J , j 6= 0;

hence B = F0.

Proposition 1.5 (i) If D′
num∼ 0 then h0(bD′ + A′) = 1 for every b ∈ Z;

(ii) if D′
num

6∼ 0 then h0(bD′ + A′) > 0 for every b ≥ cm+ a+ 1.

Proof (i) Assume D′
num∼ 0; then for every b ∈ Z, the Q-divisor

N ′ = bD′ +
∑

j 6=0
(−crj + aj − pj)F ′j −KB

is ample on B, so that H i(dN ′e+KB) = 0 for i > 0, and

h0(bD′ + A′) = χ(bD′ + A′) = const.;

for b = 0, h0(A′) ≥ 1 since A′ is effective. However, h0(bD′ + A′) ≤ 1 for
b ≥ cm+ a, in view of the fact that

H0(Y, bf ∗D) = H0(Y, bf ∗D + A)� h0(bD′ + A′).
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(ii) Set

p(b) =
1

2
(D′)2b2 +

1

2
D′(2A′ −KB)b+

1

2
((A′)2 − A′KB) + χ(OB),

so that
0 ≤ h0(bD′ + A′) = p(b) for b ≥ cm+ a.

Then

p(b+ 1)− p(b) =
1

2

(
(D′)2(b+ 1) +D′A′ +D′(bD′ + A′ −KB)

)
.

The right-hand side is strictly positive for b ≥ cm+ a. Indeed, D′ is nef and
A′ is effective. so that the first two terms are ≥ 0; furthermore,

bD′ + A′ −KB = (dNe)′ = N ′ + (dNe −N)′ =

(
ample
Q-divisor

)
+

(
effective
Q-divisor

)
so that D′

num

6∼ 0 implies that the third term is strictly positive. Hence p(b) is
a strictly increasing function from cm+ a onwards. Q.E.D.

1.6 End of the proof

If h0(mD) 6= 0 and Bs |mD| 6= ∅ then I claim that for every a � 0,
Bs |amD| ( Bs |mD|; Theorem 0.0 then follows by an easy Noetherian in-
duction. For the claim, set M = |mD| in 1.2. The argument of 1.3–1.5 shows
that there is a component F0 of the base locus of f ∗|mD| for which

H0(Y, bf ∗D) = H0(Y, bf ∗D + A)� H0(F0, (bf
∗D + A)F0) 6= 0

for every b � 0, so that F0 6⊂ Bs |bf ∗D|, and hence f(F0) 6⊂ Bs |bD|. In
particular, taking b = am with a� 0,

Bs |amD| ( Bs |mD|. Q.E.D.

1.7 Proof of Proposition 0.1

(a) is “relative vanishing”. Let H ∈ PicZ be an ample divisor such that
D = ϕ∗H; consider the Leray spectral sequence for H i(X,OX(mD)), using
Riϕ∗OX(mD) ∼= Riϕ∗OX ⊗OZ(mH):

Ep,q
2 = Hp(Z,Rqϕ∗OX ⊗OZ(mH)) =⇒ H i(X,OX(mD)).

Since H is ample on Z, Serre vanishing gives that for m� 0, Ep,q
2 = 0 if p 6= 0,

and hence H0(Rqϕ∗OX ⊗ OZ(mH)) = Hq(X,OX(mD)). But by vanishing,



12 Projective morphisms according to Kawamata

Hq(X,OX(mD)) = 0 for m ≥ a (see Proposition 3.1), and hence Rqϕ∗OX = 0
for q > 0. Finally, for every m ≥ a, Hp(Z,OZ(mH)) = Hp(X,OX(mD)) = 0
for p > 0.

For (b), set r = index of X, and choose m ≥ a(r + 1); then D′ =
mD − rKX ∈ PicX, and both D′ and D′ − KX are nef and big. Apply-
ing Theorem 0.0 to D′ gives the morphism g; it contracts exactly the curves
C ⊂ X with DC = KXC = 0, so ϕ factors through g.

There are only 2 nontrivial assertions in (c): when dimZ = 2, X → Z is
birational to a standard conic bundle by Sarkisov [11]: I have

X̃
f1→ X

ϕ−→ Z

g ↘ ↑ f2

Y
h−→ S

where f1 and f2 are resolutions, g is a birational morphism and h is a standard
conic bundle. Then by (a) above,

χ(OZ) = χ(OX);

since X has rational singularities, and g is a birational morphism of smooth
varieties, χ(OX) = χ(OX̃ = χ(OY ); and h is a standard conic bundle, so that
χ(OY ) = χ(OS).

Hence χ(OZ) = χ(OS), proving that Z has rational singularities.
Finally, if Z = pt, then PicX is reduced because H1(OX) = 0; if D ∈

PicX is a torsion element then Theorem 0.0 applies to D to give D = 0,
hence PicX is torsion free. Q.E.D.

1.8

The rest of this section is concerned with the proof of Corollary 0.4; the reader
who is more interested in the rest of the proof of Theorem 0.0 should proceed
to §2.

Lemma h0(mD) > 0 for m ≥ 2a+ 2.

Proof As seen in Lemma 1.1, h0(mD) = p(m) is a polynomial in m of
degree ≤ 3 for m ≥ a; if deg p ≤ 1 then obviously h0(mD) > 0 for m ≥ a+ 1.
If deg p = 2 or 3 then p has at most 2 integer zeros ≥ a + 1, since if p is
cubic, p(a) ≥ 0 implies that one real root of p is ≤ a; furthermore if there
are 2 integer zeros ≥ a+ 1 these must be consecutive, since p(x) < 0 between
them.

Now the set
{
m
∣∣ h0(mD) 6= 0

}
is a semigroup, and if p has no zeros in

[a+ 1, . . . , 2a] is certainly contains every integer ≥ 2a+ 2. The alternative is
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that some b ≤ 2a is a zero, and then possibly b+1 is also a zero, but p(m) > 0
for m ≥ 2a+ 2. Q.E.D.

1.9 Proof of Corollary 0.4

Let m ≥ 2a + 2; if Γ ⊂ X is a prime divisor appearing as base component
of multiplicity ≥ 2 of M = |mD|, then making the construction of 1.2, the
proper transform of Γ is an Fj with aj = 0, rj ≥ 2. Then by definition of c (in
1.4), c ≤ 1

2
. Now the argument of 1.3–1.5 shows that the base component F0

of |mf ∗D| of maximal multiplicity in the sense of 1.4 is not a base component
of |bf ∗D for b ≥ cm+ a+ 1. But m itself satisfies m ≥ cm+ a+ 1, which is
a contradiction.

The argument for the other statements of Corollary 0.4 is similar, and I
only sketch it: if C ⊂ SingX is a 1-dimensional component then by [8], Theo-
rem 1.14, X has a Du Val singularity at the generic point η ∈ C. Above η, the
resolution f : Y → X dominates the minimal resolution, and so contains a
number of components Fj with aj = 0, which by the argument just given must
have rj ≤ 1. Using easy facts about the resolution of Du Val singularities
(see Lemma 4.3, (iii)), it is then easy to see that X has an An point at η, and
M an ordinary double point.

If C ⊂ X is a curve with C 6⊂ SingX appearing in the general element of
M with multiplicity ≥ 3, the blowup of C gives an Fj with aj = 1, rj ≥ 3,
so that c ≤ 2

3
, which by the same argument is impossible if m ≥ 3a + 3.

Finally, if the general element of M has a non-ordinary double locus along C,
then after 3 blowups I get a component Fj with aj = 4, rj ≥ 6: for example,
a curve of ordinary cusps gives the embedded resolution of Figure 1. Then

�

a = 1
r = 2

�
HHH

HH

a = 2
r = 3

�

A
A
A
A
A
A

��

��
�

a = 4
r = 6

Figure 1: Embedded resolution of cuspidal curve y2 = x3

c ≤ 5
6

and by the same argument this is impossible if m ≥ 6a+ 6. Q.E.D.

The following result is exactly similar to Corollary 0.4, and will be used
in the proof of Theorem 0.5 in §4.

Lemma 1.10 Let X be a weak Fano 3-fold; then the general element D ∈
|−KX | is reduced and has only ordinary double curves.
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Proof As in 1.2, there exists a resolution f : Y → X, a divisor with normal
crossings

∑
Fj and constrants aj, rj, pj and q such that

(1) KY = f ∗KX +
∑
ajFj, where aj ∈ Z, aj ≥ 0 and aj > 0 only if Fj is

exceptional for f ;

(2) f ∗|−KX | = L+
∑
rjFj with |L| a free linear system, rj ∈ Z and rj ≥ 0;

(3) qf ∗(−KX)−
∑
pjFj is an ample Q-divisor, where pj, q ∈ Q, 0 ≤ pj � 1

and 0 < q < min{1/rj}, the minimum being taken over j with rj > 0.

Claim For every j, rj ≤ aj + 1.

As in the proof of Corollary 0.4, this implies that the general element D ∈
|−KX | is reduced, with ordinary double curves, proving Lemma 1.10.

To prove the claim, suppose that rj ≥ aj + 2 for some j. Then setting

c = min

{
aj + 1− pj

rj

}
,

it follows that c ≤ 1− 1/rj, and hence 1− c ≥ q. As in Method 1.3, set

N = N(b, c) = bf ∗(−KX) +
∑

(−crj + aj − pj)Fj −KY

num∼ cL+ (b+ 1− c)f ∗(−KX)−
∑

pjFj;

by (3) and the fact that 1 − c ≥ q, this is an ample Q-divisor for b ≥ 0.
The argument of Method 1.3 and Proposition 1.5 now gives a contradiction:
the component B = F0 which is the base component of f ∗|−KX | of maximal
multiplicity is not a base component of |bf ∗(−KX)| for b ≥ 1. This proves
the claim, and hence Lemma 1.10.

2 Proof of κ(D) ≥ 0

2.1

Let X, D and a be as in Theorem 0.0, and f : Y → X any resolution for
which the exceptional locus is a divisor with normal crossings; then for any
m ≥ a and any Dm ∈ PicX, with Dm

num∼ mD,

h0(Dm) =
1

6
D3m3 − 1

4
D2KXm

2 +
1

12
(DK2

X + f ∗Dc2(Y ))m+ χ(OX). (∗)

This is proved in Corollary 3.2 below. The right-hand side is a polynomial in
m, and the purpose of this section is to prove that it is not identically zero.
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Note first that this is trivial if κnum(D) 6= 1. Indeed, if κnum = 3 then D3 > 0;
if κnum = 2 then by Lemma 0.9, −D2KX = D2(aD − KX) > 0; finally, if
D

num∼ 0 then I can take Dm = 0 for every m, and h0(Dm) = 1.
Note then that Theorem 0.0 is proved in case κnum(D) ≥ 2, and I’m

entitled to use it in the proof for κnum(D) = 1.

Remark By Lemma 0.9, DK2
X = D(aD − KX)2 > 0 in case κnum(D) =

1, and as conjectured in Problem 0.7, (c), we have a right to expect that
f ∗Dc2(Y ) < 0 should lead to some very strong restriction on Y ; unfortunately,
I don’t know how to exploit this, so I don’t get any pleasure out of the linear
term in h0(Dm). A posteori, if ϕ : X → Z is a weak fibre space of del Pezzo
surfaces of degree d (as defined in Proposition 0.1), and if D = ϕ∗H then
f ∗Dc2(Y ) = (12− d) degH with 1 ≤ d ≤ 9, so that in fact f ∗Dc2(Y ) > 0.

Proposition 2.2 If κnum(D) = 1 then κ(X) = −∞, and in particular pg =
0. Hence if χ(OX) = 0 then q = h1(OX) > 0.

Proof aD −KX is nef and big, so that by Lemma 0.9, (ii)

(−KX)(aD −KX)D = (aD −KX)2D > 0;

hence H0(mKX) = 0 for all m > 0. Q.E.D.

Proposition 2.3 Let X be a normal variety having a resolution f : Y → X
such that R1f∗OY = 0. Then f ∗ : Pic0 X

'−→ Pic0 Y is an isomorphism, and
the Albanese map of Y factors through X. In particular if h1(OX) 6= 0 (and
char k = 0, of course), then there is a nontrivial morphism α : X → AlbX
from X to an Abelian variety.

Proof This is general nonsense. R1f∗OY = 0 implies that f ∗ : H1(OX)
'−→

H1(OY ), and hence that f ∗ Pic0 X → Pic0 Y is etale. Now the morphism
α : X → (Pic0 X)∨ is defined by the universal property of Pic: if P is the
(Poincaré) universal line bundle over X × Pic0 X then α : X → (Pic0 X)∨ is
defined on the level of points by taking x ∈ X to PX , the restriction of P to
x × Pic0 X, considered as a point of (Pic0 X)∨. Functoriality of Pic gives a
commutative diagram

Y
αY−→ (Pic0 Y )∨ = AlbY

f ↓ ↗ ↓ f∨

X
αX−→ (Pic0 X)∨,
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where f is birational and f∨ an isogeny of Abelian varieties. It is then obvious
that any curve contracted by f is also contracted by αY , so that using the
Zariski Main Theorem, the diagram splits as indicated by the oblique arrow,
and f∨ is an isomorphism. Q.E.D.

2.4

If κnum(D) = 1 and κ(D) = −∞ then by (∗) in 2.1, χ(OX) = 0, and q(X) 6= 0
by Proposition 2.2, so that by Proposition 2.3, X has a nontrivial morphism
α : X → AlbX to an Abelian variety. Since κ(X) = −∞, dimα(X) ≤ 2.
I prove later (Key Lemma 2.6) that even in the case that α(X) = F is a
surface, X has a surjective morphism h : X → C to a curve of genus ≥ 1.
First of all, I show how to complete the proof from this.

Proposition 2.5 Let X, D and a be as in Theorem 0.0. Suppose that
κnum(D) = 1, and that X has a surjective morphism h : X → C to a curve of
genus g ≥ 1. Then there exists an m ≥ a and an effective divisor Dm with
Dm

num∼ mD; hence by (∗) in 2.1, h0(mD) 6= 0 for every m� 0.

Proof Let A be a general fibre of X → C. The easy case is when D|A
num∼ 0;

then D2 num∼ DA
num∼ A2 num∼ 0, so that by the Index Theorem 0.10, D is

numerically equivalent to qA for q ∈ Q. Proposition 2.5 is then obvious.

In the other case D|A
num

6∼ 0, the proof proceeds by reducing to a similar

looking problem over a surface.

Step 1 h factors as

X
h−→ C

ϕ↘ ↗ g

S

where

(i) S is a surface with rational singularities;

(ii) there exists L ∈ PicS which is relatively ample for g, and such that
D = ψ∗L with L2 = 0;

(iii) ϕ∗OX = OS, Riϕ∗OX = 0 for i > 0 and H i(S,mL) = 0 for all m ≥ a
and i > 0.
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Proof This is a relative form of Theorem 0.0, and comes by noting that for
i ≥ 1, D+ iA is a divisor on X satisfying the hypotheses of Theorem 0.0, and
with κnum(D + iA) = 2. The morphism ϕ contracts exactly the curves of X
with DC = AC = 0, so h factors through S.

Step 2 L is relatively ample for g, so for m � 0, R1g∗L
⊗m = 0 by Serre

vanishing. Thus for m � 0, g∗L
⊗m = Em is a vector bundle on C of rank

r > 0 with

0 ≤ h0(S, L⊗m) = χ(S, L⊗m) = χ(C, Em).

The following statement implies that for m � 0 and for suitable L ∈
Pic0 C,

0 6= H0(C, Em ⊗ L) = H0(S,L⊗m ⊗ g∗L) = H0(X,OX(mD)⊗ h∗L).

proving Proposition 2.5:

Easy Exercise Let E be a vector bundle of rank r > 0 over a curve C with
χ(C, E) ≥ 0. Then

either C ∼= P
1 and E ∼= OP1(−1)⊕r,

or for every P ∈ C there existsQ ∈ C such thatH0(E⊗OC(P−Q)) 6= 0.

Proposition 2.5 is proved. Q.E.D.

Now comes the hard part.

Key Lemma 2.6 Let X,D and a be as in Theorem 0.0, with κnum(D) = 1,
and assume that α(X) = F ⊂ AlbX is a surface. Then F is a fibre bundle
F → C over a curve C of genus g ≥ 1 (with fibre an elliptic curve); in
particular, there exists a surjective morphism h : X → C to a curve of genus
g ≥ 1.

Sublemma 2.7 (i) If S is any effective Weil divisor on X which is nef
and big, then one component of S maps surjectively to F .

(ii) If S0 ⊂ X is any surface for which α(S0) = F then for m > a, we have
(mD −KX)2S0 > 0.



18 Projective morphisms according to Kawamata

Proof Applying Lemma 0.9 to α∗M , where M is ample on F , (i) is trivial.
For (ii), setting r = index of X, r(mD − KX) ∈ PicX obviously satisfies
the hypotheses of Theorem 0.0, with κnum(mD − KX) = 3, so that there is
a birational morphism ϕ : X → Z such that mD − KX = ϕ∗H for H an
ample Q-divisor on Z. By Proposition 0.1, Z has only rational singularities,
so that using Proposition 2.3 above, I get that α factors through Z: that is,
α : X → Z → F ⊂ AlbX. Now S0 must map to a surface in Z, which gives
the result. Q.E.D.

Proof of Key Lemma 2.6 It is shown in Corollary 3.3 below that for
m� 0, h0(mD −KX) 6= 0; let f : Y → X be a resolution which induces the
minimal resolution along the Du Val locus, so that KY = f ∗KX + ∆, where
f(∆) is a finite set (f is 0-minimal in the sense of [8], §5). Now it follows
directly from the definition of canonical singularities that, for i ≥ 0, there
is a map f ′ : f−1ω

[i]
X → ω⊗iY (where f−1 is the sheaf theoretic inverse image),

defined by viewing s ∈ H0(U, ω
[i]
X ) as a rational i-fold canonical differential,

which then remains regular on f−1U . This gives a map (“proper transform”)

f ′ : H0(mD −KX) = H0(OX(mD − rKX)⊗ ω[r−1]
X )

−→ H0(OY (f ∗(mD − rKX) + (r − 1)KY )

= H0(OY (f ∗mD −KY + r∆).

Let S ∈ |mD − KX | and T = f ′S ∈ |mD − KY + r∆|; write T =
∑
aiTi.

By Sublemma 2.7 applied to S ⊂ X, there is a component T0 of T mapping
surjectively to F , and such that f ∗(mD −KX)2T0 > 0. Write g : T̃ → T0 for
the minimal resolution; since T0 is Gorenstein, KT̃ = g∗KT0 − Z, with Z an

effective divisor on T̃ . Now by adjunction

a0KT0 =
(
a0KY +mf ∗D −KY + r∆−

∑
i6=0

aiTi

)
|T0

=
(
a0mf

∗D − (a0 − 1)f ∗(mD −KX)−
∑
i6=0

aiTi + (r + a0 − 1)∆
)
|T0
,

so that, writing ′ for the pullback of a divisor on X or Y to T̃ , we get

a0mD
′ + (r + a0 − 1)∆′

= a0KT̃ + (a0 − 1)f ∗(mD −KX)′ + (a0Z +
∑

i6=0
aiTi)

′.

Now restricting f : Y → X to T0, f induces a birational map f̃ : T̃ → S0,
where S0 is a component of S, and ∆′ is contracted by f̃ . It follows that the
left-hand side of this formula is a Q-divisor with κ ≤ 1. On the other hand,
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if a0 6= 1, or if T̃ is a surface of general type, then the right-hand side has
κ = 2: indeed, h0(KT̃ ) > 0 because T̃ has a generically finite morphism to

F ⊂ AlbX, (mD−KX)′ is nef and big on T̃ , and the third term is effective.

Hence a0 = 1, and κ(T̃ ) = 0 or 1. The above adjunction formula simplifies to

mD′ + r∆′ = KT̃ + (Z +
∑

i6=0
aiTi)

′. (∗∗)

Case κ(T̃ ) = 1 This is the easy case: T̃ has a generically finite morphism

to F ⊂ AlbX, so that the elliptic structure of the minimal model of T̃ is a
fibre bundle; the image of any fibre is an elliptic curve E ⊂ AlbX such that
F is invariant under translations by E.

Case κ(T̃ ) = 0 Then T̃ is itself birational to an Abelian surface, and I have
the following set-up:

T ∈ |mf ∗D −KY + r∆|, T =
∑
aiTi

↓
S ∈ |mD −KX |

Y ⊃ T0
g←− T̃

f ↓ ↓ h
X ⊃ S0

ν←− S̃

↓ j
G

↓
AlbX = F

where ν : S̃ → S0 is the normalisation of S0, and in the left-hand column,

G = Alb T̃ = minimal model of T̃

is an etale cover of F . Now S̃ has rational singularities, and KS̃ is an effective
Weil divisor containing every exceptional curve of j with strictly positive
coefficient. (∗∗) gives

mν∗D = KS̃ + h∗((Z +
∑

aiTi)
′). (∗∗∗)

Subcase ν∗D
num∼ 0 The right-hand side of (∗∗∗) is an effective Q-divisor,

so that h∗((
∑

i6=0 aiTi)
′) = 0; it is clear that this implies that S0 does not

meet S − S0 in curves, and then by the connectivity result Lemma 0.9, (iii),
that S = S0. Then ν∗D

num∼ 0 is impossible: by Lemma 0.9, (i)

0 < (mD −KX)2D = ν∗(mD −KX)ν∗D.
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Subcase ν∗D
num

6∼ 0 In this case ν∗D is nef and (ν∗D)2 = 0, so that (∗∗∗)
gives (ν∗D)Γi = 0 for every exceptional curve Γi of j; using j∗OS = O, it
follows that ν∗D = j∗DG, where DG is an effectiveQ-divisor on G; (ν∗D)2 = 0
implies D2

G = 0, so that G is not a simple Aelian variety, hence F has a
surjective morphism to an elliptic curve. Q.E.D.

3 Computing h0(mD) and h0(mD −KX)

Write r = index of X; for q ∈ Z, write q = pr + i with 0 ≤ i ≤ r − 1. Let
f : Y → X be a resolution which coincides with the minimal resolution above
the Du Val locus, and such that the exceptional locus of f is a divisor with
normal crossings.

Proposition 3.1 (i) Suppose that A ∈ PicX is such that A −KX is nef
and big. Then Hk(X,A) = 0 for k > 0, and

h0(X,A) = χ(X,A) = χ(Y, f ∗A)

=
1

6
A3 − 1

4
A2KX +

1

12
(AK2

X + f ∗Ac2(Y )) + χ(OX).

(ii) Suppose that A ∈ PicX and q ∈ Z are such that A + (q − 1)KX is nef
and big; then

h0(X,A+ qKX) ≥ h0(f ∗(A+ prKX) + iKY + d−(i− 1)∆e)
= χ(f ∗(A+ prKX) + iKY + d−(i− 1)∆e);

if we set Ri = i∆ + d−(i− 1)∆e, this is equal to

=
1

6
(A+ qKX)3 − 1

4
(A+ qKX)2KX

+
1

12

(
(A+ qKX)K2

X + f ∗(A+ qKX)c2(Y )
)

+
1

6
R3
i −

1

4
R2
iKY +

1

12
Ri(K

2
Y + c2(Y )) + χ(OX).

Proof The Q-divisor

N = f ∗(A+ prKX) + (i− 1)KY − (i− 1)∆

= f ∗(A+ (q − 1)KX)

is nef and big on Y , so that vanishing gives Hk(dNe + KY ) = 0 for k > 0;
now

dNe+KY = f ∗(A+ prKX) + iKY + d−(i− 1)∆e .
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For (i), p = i = 0, so that dNe + KY = f ∗A + d∆e. Now from the exact
sequence

0→ OY (f ∗A)→ OY (f ∗A+ d∆e)→ Od∆e(d∆e)→ 0,

we get

Hk(Od∆e(d∆e)) = Hk+1(OY (f ∗A)) for k ≥ 0.

Since Rkf∗OY = 0 for k > 0,

Hk(Od∆e(d∆e)) = Hk+1(OX(A)) for k ≥ 0.

The left-hand side does not depend on the particular A ∈ PicX, and by
taking A to be a large multiple of an ample divisor the right-hand side is zero
by Serre vanishing. Hence Hk(Od∆e(d∆e)) = 0, and

Hk(X,A) = Hk(Y, f ∗A) = Hk(Y, f ∗A+ d∆e) for k ≥ 0.

This proves (i).

For (ii), I can assume that i ≥ 1, so that d−(i− 1)∆e is minus an effective
divisor, and

H0(N +KY ) = H0(f ∗(A+ prKX) + iKY + d−(i− 1)∆e)
⊂ H0(f ∗(A+ prKX) + iKY ).

Since by definition of canonical singularities f∗ω
⊗i
Y = ω

[i]
X , the final group is

equal to H0(X,A+ qKX). Finally,

h0(dNe+KY ) = χ(dNe+KY );

substitute

dNe+KY = f ∗(A+ qKX) +Ri

in the Riemann–Roch polynomial; using the fact that f(Supp ∆) is a finite
set, all terms involving f ∗(A + qKX) ·∆ or f ∗(A + qKX) · Ri vanish, giving
the formula in (ii). Q.E.D.

Corollary 3.2 Let X,D and a be as in Theorem 0.0; then for any m ≥ a,
and any Dm ∈ PicX with Dm

num∼ mD,

h0(Dm) =
1

6
D3m3 − 1

4
D2KXm

2 +
1

12
(DK2

X + f ∗Dc2(Y ))m+ χ(OX).
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Proof Substitute A = Dm in (i).

Note also that the hypothesis in Proposition 3.1 that f coincides with the
minimal resolution above the Du Val locus is a posteori not necessary, since
f ∗Dc2(Y ) is independent of the model f : Y → X.

Corollary 3.3 Let X,D and a be as in Theorem 0.0; then if D
num

6∼ 0,
h0(mD −KX) tends to infinity with m.

Proof For m ≥ 2a, mD − 2KX is nef and big, so that Proposition 3.1, (ii)
applies:

h0(mD −KX) ≥ 1

6
(mD −KX)3 − 1

4
(mD −KX)2KX+

+
1

12

(
(D −KX)K2

X + f ∗(mD −KX)c2Y
)

+ const. in m.

If D2
num

6∼ 0, this grows at least like m2. If D2 num∼ 0, the linear term in m is(
DK2

X +
1

12
(DK2

X + f ∗Dc2(Y )
)
m.

Now by Corollary 3.2, 1
12

(
DK2

X+f ∗Dc2(Y )
)

is the coefficient of m in h0(mD),
and therefore

1

12
(DK2

X + f ∗Dc2(Y ) ≥ 0;

also

DK2
X = D(D −KX)2 > 0

by Lemma 0.9. Q.E.D.

4 The base locus of |−KX| for a weak Fano

3-fold

In this section I prove Theorem 0.5 by polishing up Shokurov’s ingenious
proof [12]. The key points are Proposition 4.5 and 4.8–4.10 below, and the
reader may like to jump forward to these while I unburden myself of some
trivialities.
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4.1 Preliminaries: 0-minimal resolution

Let X be a 3-fold with canonical singularities and I ⊂ OX an ideal (in
application, I is the ideal defining the base locus of a linear system). If
C ⊂ X is any irreducible curve, P ∈ C a general point and P ∈ X ′ ⊂ X
a local general hyperplane section through P , P ∈ X ′ will be a Du Val
singularity or nonsingular point. Let I ′ ⊂ OX′,P be the ideal induced by
I. A good resolution f : Y → X of X and I is a resolution having a normal
crossing divisor

∑
Fj which includes the exceptional locus of f , and such that

I · OY = OY (−
∑

rjFj);

by Bertini’s theorem, f induces a good resolution f ′ of X ′ and I ′:

Gk ⊂ Y ′ ⊂ Y ⊃ Fj

↓ f ′ ↓ f

X ′ ⊂ X;

here each Gk is a connected component of some Fj ∩ Y ′ and rk = rj (that
is, r(Gk) = r(Fj)). Say that f is a 0-minimal good resolution if f ′ is the
minimal good resolution of X ′ and I ′ for all X ′. It is easy to construct this
by successively blowing up 1-dimensional components of SingX and of the
locus where I is not invertible, and then making an arbitrary resolution which
is an isomorphism except over a finite set of X.

Lemma 4.2 Let P ∈ X ′ be a Du Val singularity or nonsingular point, and
I ′ ⊂ OX′,P an ideal; suppose that f ′ : Y ′ → X ′ is a good resolution of P ∈ X ′
and I ′, and set

I · OY ′ = OY ′(−
∑

rkGk); KY ′ = f ′
∗
KX′ +

∑
akGk.

Then f ′ is the minimal good resolution of X ′ and I ′ if and only if there
does not exist a −1-curve Gk ⊂ f ′−1P ⊂ Y ′ which meets at most two other
components Gki such that rk =

∑
rki.

Lemma 4.3 Furthermore, if f ′ is the minimal good resolution, the following
hold:

(i) rj ≥ aj for all j.

(ii) Except for cases (a–b) below, rj > aj for all j.

(iii) rj ≤ 1 for all j is only possible in one of the cases (a–d) below.
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Here the exceptional cases are:

(a) P ∈ X ′ is nonsingular, I ′ = mP and f ′ is the blowup of P ;

(b) I ′ = OX′,P and f ′ is the minimal resolution of P ∈ X ′;

(c) P ∈ X ′ is nonsingular, I ′ = IH where H ⊂ X ′ is a curve with normal
crossing at P (either nonsingular or a node), and f ′ = idX′;

(d) P ∈ X ′ is an An point for n ≥ 1 and I ′ contains an element h defining
a curve H ⊂ X ′ having a node at P .

The proof is an easy exercise.

4.4

Now let X be a weak Fano 3-fold, that is, a projective 3-fold with canonical
singularities and −KX ∈ PicX nef and big. It follows from Riemann–Roch
and vanishing (as in Proposition 3.1) that h0(−KX) = g + 2, where g ∈ Z,
g ≥ 2 is defined by −K3

X = 2g−2. Let I ⊂ OX be the ideal defining the base
locus of |−KX |, that is, I · OX(−KX) is the OX-submodule of OX(−KX)
generated by the H0.

Let f : Y → X be a 0-minimal good resolution of X and I, and let
∑
Fj

be as usual; set

KY = f ∗KX +
∑

ajFj,

f ∗|−KX | = |L|+
∑

rjFj,

 (∗)

where aj, rj ∈ Z, aj, rj ≥ 0 and |L| is a free linear system. I start by prov-
ing Theorem 0.5 assuming that |L| is not composed of a pencil, that is,
by Bertini’s theorem, the general L ∈ |L| is irreducible, nonsingular and
κnum(L) ≥ 2.

Proposition 4.5 Under the hypotheses of 4.4, suppose that |L| is not com-
posed of a pencil. Then χ(OL) ≥ 2.

Proof L is a nonsingular surface, and f ∗(−KX)|L is nef and big by 0.9, (ii).

Thus vanishing gives

H i(L,OL(f ∗(−KX) +KL)) = 0 for i ≥ 0.

Using (∗),
KY + L+ f ∗(−KX) = L+

∑
ajFj;
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hence

g + 1 ≤ h0(L,OL(L)) ≤ h0(L,OL(L+
∑

ajFj))

= χ(OL) +
1

2
(L+

∑
ajFj)f

∗(−KX)L,

by Riemann–Roch on L. However,

2g − 2 = f ∗(−KX)3 ≥ f ∗(−KX)2L = f ∗(−KX)(L+
∑

rjFj)L

≥ f ∗(−KX)(L+
∑

ajFj)L,

using the fact that rj ≥ aj unless fFj = pt ∈ X (Lemma 4.3, (i)). Q.E.D.

4.6 Proof of Theorem 0.5

Using (∗) again,

KL =
(∑

(aj − rj)Fj
)
|L;

Lemma 4.3, (i) gives that rj ≥ aj unless fFj = pt ∈ X. Hence

KL = A−B,

with A ≥ 0 a divisor on L contracted by the birational map f |L, and B ≥ 0.

In addition, Proposition 4.5 says that pg(L) 6= 0; it follows that B = 0 and
that a minimal model of L has trivial canonical class. This also proves

aj ≥ rj if Fj ∩ L 6= ∅. (∗∗)

On the other hand, assuming that L is not composed with a pencil, L is
nef with κnum(L) ≥ 2; hence I can apply vanishing in the form Kawamata [5],
Corollary on p. 45, to the cohomology exact sequence of OY � OL to deduce
that H1(OL) = 0, and L is birational to a K3.

Pushing down (∗) in 4.4,

−KX = S +
∑

rjf∗Fj,

where S = fL, and f∗Fj is the cycle theoretic image, that is,

f∗Fj =

{
F j if Fj maps birationally to F j ⊂ X,

0 otherwise.

If Fj is not contracted by f then aj = 0, so that by (∗∗) either rj = 0 or
Fj ∩ L = ∅. But now I claim that S and

∑
rjf∗Fj do not intersect along
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curves of X; if S = fL intersects some F j in a mobile curve (as L moves in
|L|) then Fj ∩ L 6= ∅ and rj = 0 by (∗∗); on the other hand, if all S pass
through some fixed curve C ⊂ X then f−1C contains at least one component
Fj with Fj ∩ L 6= ∅, hence aj ≥ rj by (∗∗). Applying Lemma 4.3, (ii) gives
C 6⊂ SingX, and the general element of |−KX | has multiplicity 1 along C,
hence C ⊂ S, C 6⊂

∑
rjf∗Fj.

It follows from what I have just proved and from the connectedness lemma
0.9, (iii) that

∑
rjf∗Fj = 0 and that S ∈ |−KX |; hence the irreducible surface

S has KS = 0. Since the resolution f |L : L→ S has KL ≥ 0, S has canonical

singularities, that is, Du Val singularities. This proves Theorem 0.5 in this
case.

4.7

The next result is the first step in proving that |L| cannot be composed of a
pencil.

Lemma If |−KX | is composed of a pencil then L = (g+1)E with |E| a free
pencil, in particular OE(E) ∼= OE; f ∗(−KX)2E = 1, and there is a unique
component F0 of

∑
Fj such that

f ∗(−KX)F0E = 1, r0 = 1, a0 = 0

and rjf
∗(−KX)FjE = 0 for j 6= 0.

Proof
2g − 2 = f ∗(−KX)3 ≥ (g + 1)f ∗(−KX)2E,

and by Lemma 0.9, (ii), f ∗(−KX)2E > 0. This proves f ∗(−KX)2E = 1. For
the rest, set

D = f ∗(−KX)|E =
(∑

rjFj

)
|E;

D is nef and D2 = 1, so it has a component Γ with DΓ = 1, and all the others
have DΓ = 0.

To prove that a0 = 0, note that by Lemma 4.3, (i), a0 ≤ r0 = 1; on the
other hand, a0 is even, since

KE +D =
(∑

ajFj

)
|E

and

(KE +D)D =
(∑

ajFj

)
|ED = f ∗(−KX)

(∑
ajFj

)
E = a0. Q.E.D.
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4.8

For the remainder of the proof, I want to work on a different model: using
Theorem 0.0 and Proposition 0.1, (b), there is no loss of generality in assuming
that −KX is ample; now let X1 be the normalised graph of the rational map
ϕ−KX : X 99K P1. Then there is a diagram

Y
f ↙ ↓h ↘ϕE

X
p← X1

q→ P
1

in which p and q are the projections, f : Y → X is as in 4.4, ϕE is the
morphism defined by |E|, and h the diagonal morphism.

Claim (i) −KX1 = p∗(−KX), so that X1 has canonical singularities,
−KX1 ∈ PicX1, and −KX1 is relatively ample for q;

(ii) |−KX1| = |(g + 1)E1| + F1, where F1 is an irreducible surface, |E1| a
free pencil, and for every E1 ∈ |E1|, E1 is a reduced irreducible surface
and F1 ∩ E1 a reduced irreducible curve.

Proof Every curve C ⊂ X1 contracted by p maps isomorphically to P1; it
follows that if p contracts any surface F ⊂ X1, this has to meet every fibre of
q in a curve, and hence F corresponds birationally to F0 ⊂ Y , the component
of Lemma 4.7; then a0 = 0, and hence −KX1 = p∗(−KX). (ii) follows because
as in Lemma 4.7,

(−KX1)2E1 = (−KX1)F1E1 = 1. Q.E.D.

4.9

Now F1 is a Gorenstein surface, having a free pencil |E ′| every fibre of which
is reduced and irreducible, and such that

KF1 = −(g + 1)E ′; paE
′ = 1.

The long exact cohomology sequence of

0→ OF1(−(g + 1)E ′)→ OF1 → O(g+1)E′ → 0

implies at once that h1(OF1) ≥ g.
On the other hand, Lemma 1.10 applied to X1 gives that F1 has at worst

ordinary double curves in codimension 1. I can now appeal to the following
result to deduce a contradiction.
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Lemma 4.10 Let F be an irreducible projective Cohen–Macaulay surface
having a morphism q : F → P

1 with reduced irreducible fibres of arithmetic
genus 1; suppose that F has at worst ordinary double curves in codimension
1; then h1(OF ) ≤ 1.

Proof If F has isolated singularities and f : G → F is a resolution, then
h1(OG) ≤ 1 from the classification of surfaces, and h1(OF ) ≤ h1(OG) follows
from the Leray spectral sequence for f :

0→ H1(OF )→ H1(OG)→ R1f∗OG →
→ H2(OF )→ H2(OG)→ 0.

Suppose then that F has a double curve; the hypothesis implies that
F is not singular along a fibre, so that there is just one double curve C,
and the general fibre of q : F → P

1 is a rational curve with a node at its
intersection with C. Obviously q|C : C → P

1 is an isomorphism. Let π : G→
F be the normalisation; then by the classification of surfaces, H1(OG) =
0. If C is the conductor ideal of the normalisation then C ⊂ OG defines a
reduced curve D ⊂ G with D → C a double cover. It follows that there
is an isomorphism π∗OG/OF ∼= π∗OD/OC , and that H0(π∗OG/OF ) is 0- or
1-dimensional depending on whether D has 1 or 2 connected components.
The lemma follows from the exact sequence

0→ H0(π∗OG/OF )→ H1(OF )→ H1(OG).

This completes the proof of Theorem 0.5.

Counterexample 4.11 Lemma 4.10 is false without the hypothesis of ordi-
nary double curves: let Fn be the standard rational scroll with a section B
having B2 = −n; the divisor 2B is naturally a subscheme of Fn and has a
morphism π : 2B → P

1 induced by the projection of Fn. Take F to be the
surface obtained by pinching Fn along π; that is, F has the same underlying
space as Fn, but has sheaf of rings in such a way that OFn/OF ∼= π∗O2B/OP1 ;
in other words, replace coordinate neighbourhoods Spec k[X,Y ] of Fn, where
X = 0 defines B, by Spec k[X2, X3, Y ].

Then it is immediate that F has a morphism F → P
1 with every fibre a

cuspidal rational curve, and KF = −(n+ 2)E, H1(OF ) = n+ 1.

5 Weak Theorem on the Cone

Definition 5.1 A normal variety X is Q-factorial if every Weil divisor of X
is Q-Cartier.
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Remarks (a) This is a local condition: every Weil divisor near P ∈ X is
the restriction of a global one, and the condition for a Weil divisor to
be Cartier or Q-Cartier is local.

(b) The condition is not invariant under local analytic equivalence. For
example, an ordinary double point of a 3-fold is analytically (xy = zt),
which is the typical example of a nonfactorial variety. However, it is
easy to show that a hypersurface Xd ⊂ P4 of degree d ≥ 3 having an
ordinary double point P ∈ X as its only singularity has class group
ClX ∼= Z, with the hyperplane section as generator. (Proof: Blowing

up P ∈ X ⊂ P4 leads to a smooth very ample divisor X̃ ⊂ P̃; we know
the divisors of P̃, and the result follows from the Lefschetz theorem.)

(c) If X is Q-factorial and nonsingular in codimension 2, and D ⊂ X is
a prime divisor, then D is Gorenstein in codimension 1, so that the
Q-divisor KD is well defined and equal to (KX +D)|D.

5.2

Throughout this section X is a projective 3-fold with isolated Q-factorial
canonical singularities. The notation is as in 0.3; I make the following defini-
tions: a ray R of NE is an extremal ray if it’s extremal in the sense of convexity
(that is, R 6⊂ convex hull of NE \R). An extremal ray R is good if KXR < 0,
and there exists an H ∈ N1

Q
X which is nef and such that H⊥ ∩NE = R. Let

{Ri}i∈I be the set of good extremal rays; using Corollary 0.3 it is clear that
each Ri is of the form Ri = R+Ci for some curve Ci ⊂ X. In particular each
ray is rational in N1(X), and there are at most countably many.

Theorem 5.3 Under the stated hypotheses,

NE(X) =
(

NEKX +
∑
i∈I

Ri

)−
,

where − denotes closure in the usual real topology of N1X, and for D ∈ N1X,
NED =

{
z ∈ NE

∣∣ Dz ≥ 0
}

. In particular if KX is not nef then X has a
good extremal ray.

Remarks This is a weak version of the conjectured Theorem on the Cone;
it is conjectured (and proved by Mori in the nonsingular case) that

(i) the rays Ri are discrete in the open halfspace (KXz < 0) of N1X (so
that there is no need to take closure in the theorem);

(ii) each ray Ri is spanned by a rational curve Ci;
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(iii) the Ci can be chosen so that −4 ≤ KXCi < 0.

It is possible that these could be proved a posteori using Corollary 0.3
and Proposition 0.1; for example, (ii) can be checked in all cases except for
that of a Q-Fano 3-fold X, when it is required to prove that X contains a
rational curve (conjecturally it is uniruled). Similarly, (iii) might be attacked
on a case-by-case basis.3 Part of (i) is implied by (iii), since assuming (iii) it
is easy to see that the rays Rj are discrete in a neighbourhood of any fixed
ray Ri.

I believe the hypotheses on the singularities of X can be weakened to
allow any canonical singularities, using the methods of [9].

The next two results are the main steps in the proof of Theorem 5.3.

Kawamata’s version 5.4 ([4], §2) Let D be an effective Q-divisor, and H
an ample Q-Cartier divisor. Then there exists a finite number of curves
lj ⊂ X such that

NE(X) = NEKX+H + NED +
∑

R+lj.

Key rationality lemma 5.5 Suppose that H is an ample Q-divisor, and
that KX is not nef. Write Ht = tH +KX , and set

b = inf
{
t ∈ Q

∣∣ Ht is ample
}

;

(that is b ∈ R, and for t ∈ Q, Ht is ample if t > b, and not nef if t < b).
Then b ∈ Q.

I start by deducing Theorem 5.3 from the key rationality lemma 5.5 and
its relative form Lemma 5.11 below.

Definition 5.6 A good supporting function of NE is an element L ∈ N1
Q
X

such that L is nef and FL = L⊥∩NE is a nonzero face of NE entirely contained
in the open halfspace (KXz < 0) ⊂ N1X; then FL is a good face of NE. (Note
that 0 is good if and only if −KX is ample, in which case NE is itself a good
face.)

By the argument given in 0.3, for suitable a � 0, aL −KX is ample, so
that any such L is given by the construction of Lemma 5.5. Note also that
a good extremal ray of NE (as defined in 5.2) is the same thing as a good
1-face of NE.

3(iii) =⇒ (i) is standard in Mori theory: for all ample H and ε ≥ 0 the irreducible curves
C ⊂ X such that HC < −(1/ε)KXC ≤ 4/ε belong to a finite number of algebraic equiva-
lence classes; hence (iii), together with Theorem 5.3 would imply NE = NEKX+εH +

∑
Ri,

where the sum takes place over a finite number of rays representing these classes. (Note
added in 1983–84.)
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Lemma 5.7 (i) NE = (NEKX +
∑

L FL)−;

(ii) NE∩(KXz < 0) =
⋂
L(Lz ≥ 0) ∩ (KXz < 0).

Here the sum and the intersection on the right-hand sides are taken over all
good supporting functions L ∈ N1

Q
X.

Proof Write B for the right-hand side of (i); then B∩ (KXz ≥ 0) = NEKX ,
and the inclusion NE ⊃ B is trivial. The next statement, together with
Kleiman’s criterion, gives the opposite inclusion.

Claim Let M ∈ N1
Q
X be such that M > 0 on B; then M is ample.

To see this, note that NEKX is the closed convex cone defined by the
inequalities Hz ≥ 0 for ample H and KXz ≥ 0. By convexity, M > 0 on
NEKX implies that M is a finite positive linear combination

M =
∑

miHi +m0KX , with mi ∈ R, mi ≥ 0

where the Hi are ample. Since by 5.4 NE has at least one face FL in the
(KXz < 0) halfspace, at least one mi > 0, which implies that M −m0KX is
ample for some m0 ≥ 0, and I can clearly take m0 ∈ Q. Now applying 5.4 to
H = M −m0KX , it follows that L = M +aKX is a good supporting function
for some a ∈ Q, a > −m0. Since FL ⊂ B and KX < 0 on FL, necessarily
a > 0. I’ve got M−m0KX ample with m0 ≥ 0, and M+aKX nef with a > 0,
which implies that M is ample.

This proves (i); (ii) is left as an easy exercise.

5.8

Lemma 5.7 shows that NE is the closed convex hull of its good faces, together
with NEKX . The strategy from now on is to prove that each good face FL of
dimension≥ 2 is in turn the closed convex hull of its proper faces (Lemma 5.12
below); Theorem 5.3 then follows by induction on the dimension.

Fix then a good face FL of NE; by Lemma 0.3 there is a morphism ϕ : X →
Z contracting exactly the curves C ∈ FL; by construction −KX is relatively
ample for ϕ. To carry out my strategy I need relative versions of the work
so far, starting with the terminology (compare Kleiman [6], Chap. IV, §4).
There are dual sequences (which will turn out to be exact in my case)

N1(X/Z) ↪→ N1X
ϕ∗
� N1Z,

N1(X/Z) � N1X
ϕ∗

←↩ N1Z.

(∗)
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Here N1(X/Z) ⊂ N1X is the subspace generated by curves C contracted
by ϕ, and N1(X/Z) is its dual; the surjectivity of N1X → N1(X/Z) is
standard in the theory of vector spaces. ϕ∗ and ϕ∗ are dual maps so that
kerϕ∗ = (imϕ∗)⊥. Note also that

NE(X) ∩ L⊥ = NE(X) ∩N1(X/Z) = NE(X/Z) ⊂ N1(X/Z)

is the cone of effective 1-cycles contracted by ϕ.

5.9

It follows from the relative version of Kleiman’s criterion that

FL = NE(X) ∩N1(X/Z) = (NE(X/Z))−. (∗)

To see this, note that the inclusion ⊃ is trivial; on the other hand, if H ∈
N1
Q

(X/Z) is strictly positive on (NE(X/Z))− then by [6], p. 336, H is rel-

atively ample for ϕ. Hence H comes from some ample H̃ ∈ N1X, and so
H > 0 on NE(X) ∩N1(X/Z).

Proposition 5.10 Let ϕ : X → Z be the contraction of a good face FL of
NE.

(i) If D ∈ N1X is relatively nef for ϕ then there exists H ∈ N1Z such that
D + ϕ∗H is nef;

(ii) the dual sequences (∗) are exact.

(Note that although both statements here look formal, the proofs given below
are ad hoc; probably the statements are false for general ϕ.)

Proof (i) If Z = pt there is nothing to prove. Suppose without loss of
generality that D ∈ PicX.

Claim Outside a finite number of fibres of ϕ, OX(D) is relatively generated
by its H0, that is, ϕ∗ϕ∗OX(D)→ OX(D) is surjective.

This proves (i), since for any sufficiently ample H ∈ PicZ, the linear system
|D+ϕ∗H| is free outside a finite number of fibres of ϕ, and then (D+ϕ∗H)C ≥
0 for every curve C ⊂ X.

I prove the claim assuming dimZ = 2; then since −KX is relatively
ample, all but a finite number of fibres of ϕ are isomorphic to conics. A nef
invertible sheaf on a conic is generated by its H0, and ϕ∗ϕ∗OX(D)� OX(D)
in a neighbourhood of such a fibre follows by an easy use of coherent base
change.
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The cases dimZ = 1 or 3 are no harder, and are left to the reader.

(ii) follows from (i) and from Theorem 0.0: if D ∈ N1X maps to 0 in
N1(X/Z) then by (i), for sufficiently ample H ∈ N1X, D + ϕ∗H satisfies
the hypotheses of Theorem 0.0; the morphism corresponding to D + ϕ∗H
contracts the curves with (D + ϕ∗H)C = 0, and hence coincides with ϕ, so
that D + ϕ∗H

num∼ ϕ∗M for some M ∈ N1Z. Q.E.D.

Lemma 5.11 Suppose that H ∈ N1
Q
X is relatively ample; write Ht = tH +

KX , and set

b = inf
{
t ∈ Q

∣∣ Ht is relatively ample for ϕ
}
.

Then b ∈ Q.

This is a relative version of the rationality lemma 5.5, and will be proved
together with it (see 5.14).

Lemma 5.12 If dimN1(X/Z) ≥ 2 then NE(X/Z) is the closed convex hull
of its proper good faces. In other words, defining a good supporting function
M ∈ N1

Q
X in the obvious way,

NE(X/Z) =
(∑

M 6=0
(M⊥ ∩ NE(X/Z)

)−
,

where the sum on the right-hand side is over all nonzero good supporting
functions M .

Proof As before, write B for the right-hand side; the inclusion ⊃ is trivial.
If z ∈ NE(X/Z) \ B with z 6= 0 then there exists a separating function
M ∈ N1(X/Z) such that Mz < 0 but M > 0 on B; by the compactness
of B ∩ (unit sphere), I can shift M very slightly if necessary to ensure that
M ∈ N1

Q
X and that M is not a rational multiple of KX (since dim ≥ 2).

Now Lemma 5.11 gives that M +aKX is a nonzero good supporting func-
tion of NE(X/Z) for some a ∈ Q. I now have a contradiction, since on the
one hand Mz < 0 and (M + aK)z ≥ 0 implies that a < 0, and on the other,
since M is positive on the good face (M + aKX)⊥ ∩ NE(X/Z), I get a > 0.
This proves Lemma 5.12.

It is clear from Proposition 5.10, (i) that a good face of NE(X/Z) is a
good face of NE(X); this proves Theorem 5.3.
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5.13 Proof of Key Rationality Lemma 5.5

Step 1 Suppose that Ht is an effective Q-divisor for some t ∈ Q with t ≤ b;
then by Kawamata’s theorem 5.4 there are finitely many curves lj ⊂ X such
that

NE(X) = NEHt +
∑

R+lj.

Then clearly,

b = max
{
t,
−KX li
Hli

}
∈ Q.

Step 2 Let t be an indeterminate, and consider the cubic polynomial

p(t) = H3
t = (tH +KX)3 ∈ Q[t].

Then since p′(t) = 3H(tH +KX)2,

H2
b

num∼ 0 ⇐⇒ b is a repeated root of p =⇒ b ∈ Q.

Thus I need only treat the case H2
b

num

6∼ 0.

Step 3 If H3
b > 0 then there exists q,m ∈ Z, q,m > 0 such that m/q ≤ b

and H0(mH + qKX) 6= 0, hence by Step 1, b ∈ Q.

Proof For m ∈ Z, m > 0, set q = dm/be; then

q ≥ m

b
> q − 1;

by definition of b,
mH + (q − 1)KX

is an ample Q-divisor, so that by Proposition 3.1, (ii),

h0(mH + qKX) =
1

6
(mH + qKX)3 − 1

4
(mH + qKX)2KX +O(m), (1)

where O(m) denotes terms bounded by a linear function of m. Write

mH + qKX =
m

b
(bH +KX) +

(
q − m

b

)
KX

=
m

b
Hb +

{−m
b

}
KX ,

(2)

where { } denotes “fractional part” of a real number. Then

h0(mH + qKX) =
1

6
H3
b

(m
b

)3

+O(m2),

and tends to infinity with m. This proves this case.
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Step 4 If H3
b = 0 but H2

b

num

6∼ 0 then 2/b ∈ Z.

Proof Substituting (2) into (1) and evaluating gives

0 ≤ h0(mH + qKX) =
(1

2

{−m
b

}
− 1

4

)
H2
bKX

(m
b

)2

+O(m). (3)

Now H3
b = 0, H2

bH > 0 implies that H2
bKX < 0. Furthermore, if b is

irrational, or if 1/b is rational with denominator ≥ 3 then for infinitely many
values of m, I have {−m/b} ≥ 2/3. The right-hand side of (3) is then negative
for large m, which is a contradiction. This completes the proof of Rationality
Lemma 5.5.

5.14 Proof of Lemma 5.11

If Z = pt then Lemma 5.11 is contained in 5.5. If dimZ = 1 or 2, let

b′ = inf
{
t ∈ Q

∣∣ Ht|A is ample for a general fibre A of ϕ
}
.

The obviously b′ ≤ b, and by the statement of Rationality Lemma 5.5 in
dimension 1 or 2 (the proof of which I leave to the reader), b′ ∈ Q. If b′ < b
then there is some t < b such that Ht is relatively ample on the general fibre
of ϕ; then for some sufficiently ample D ∈ PicZ, Ht + ϕ∗D is effective, and
then b ∈ Q follows from Kawamata’s Theorem 5.4 as in Step 1 above.

If ϕ is birational, then Ht +ϕ∗D is effective for any t ∈ Q and sufficiently
ample D ∈ PicZ, so that I conclude in the same way.
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