Projective morphisms according to Kawamata

Miles Reid

0 Introduction

X is a projective 3 -fold with canonical singularities, $k=\mathbb{C}$; the terminology will be explained in 0.8 below.

Theorem 0.0 (on projective morphisms) Let $D \in \operatorname{Pic} X$ be nef, and suppose that $a D-K_{X}$ is nef and big for some $a \in \mathbb{Z}$ with $a \geq 1$. Then $|m D|$ is free for every $m \gg 0$; equivalently, there exists a morphism to a projective variety $\varphi: X \rightarrow Z$ such that $\varphi_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$, and an ample $H \in \operatorname{Pic} Z$ such that $D=\varphi^{*} H$.

0.1 Properties of φ

(a) Vanishing: $R^{i} \varphi_{*} \mathcal{O}_{X}=0$ for $i>0$, and in particular $\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{Z}\right)$; furthermore, $H^{i}\left(Z, H^{\otimes m}\right)=0$ for all $m \geq a$ and $i>0$.
(b) Relative anticanonical model: φ factors as $X \xrightarrow{g} \bar{X} \xrightarrow{h} Z$ where g is birational, \bar{X} has canonical singularities, $K_{X}=g^{*} K_{\bar{X}}$, and $-K_{\bar{X}}$ is relatively ample for h.
(c) Cases according to $\operatorname{dim} Z=\kappa_{\text {num }}(D)=\kappa(D)$:
$\operatorname{dim} Z=3$. Then $\varphi: X \rightarrow Z$ is birational, and Z has rational singularities.
$\operatorname{dim} Z=2$. Then $\varphi: X \rightarrow Z$ is a weak conic bundle: Z is a normal surface with rational singularities, and the general fibre of φ is \mathbb{P}^{1}.
$\operatorname{dim} Z=1$. Then $\varphi: X \rightarrow Z$ is a weak del Pezzo fibre space: Z is a nonsingular curve, and the general fibre A of φ is a surface with at worst Du Val singularities, such that $-K_{A}$ is nef and big.
$Z=\mathrm{pt}$. Then X is a weak \mathbb{Q}-Fano 3 -fold, that is, $-K_{X}$ is nef and big; $H^{i}\left(\mathcal{O}_{X}\right)=0$ for all $i>0$, and Pic X is reduced ${ }^{1}$ and torsion free; in this case $D=0 \in \operatorname{Pic} X$.

Corollary 0.2 (finite generation) If K_{X} is nef and big, that is, X is a minimal model of a 3-fold of general type) then $\left|m r K_{X}\right|$ is free for every $m \gg 0$, where $r=$ index of X; in particular, the canonical ring is finitely generated.

Proof Theorem 0.0 applies at once to $D=r K_{X}$. The final part comes from Zariski's projective normalisation: if m is such that $\left|m K_{X}\right|$ is free, then the canonical ring of X is a finite module over the subring generated by $H^{0}\left(m K_{X}\right)$.

0.3

The second corollary requires some setting up: write

$$
\begin{gathered}
N_{\mathbb{Q}}^{1} X=\{\text { Cartier divisors } \otimes \mathbb{Q}\} / \stackrel{\text { num }}{\sim}, \quad N^{1} X=N_{\mathbb{Q}}^{1} X \otimes \mathbb{R} ; \\
\text { and } N_{1} X=\{1 \text {-cycles } \otimes \mathbb{R}\} / \stackrel{\text { num }}{\sim} ;
\end{gathered}
$$

by definition of numerical equivalence $N^{1} X$ and $N_{1} X$ are dual finite dimensional vector spaces. Let $\overline{\mathrm{NE}}=\overline{\mathrm{NE}}(X) \subset N_{1} X$ be the Kleiman-Mori closed cone of effective 1-cycles.

Corollary (contraction theorem) Let F be a face of $\overline{\mathrm{NE}}(X)$ entirely contained in the half-space $\overline{\mathrm{NE}}_{-}=\left\{z \mid K_{X} z<0\right\}$, and suppose that there exists a nef class $d \in N_{\mathbb{Q}}^{1} X$ such that $d^{\perp} \cap \overline{\mathrm{NE}}=F$. Then there exists a morphism $\varphi=\operatorname{cont}_{F}: X \rightarrow Y$ with $\varphi_{*} \mathcal{O}_{X}=\mathcal{O}_{Z}$ and such that for every curve $C \subset X$,

$$
\varphi(C)=\mathrm{pt} \in Y \Longleftrightarrow C \in F
$$

Proof Write

$$
\overline{\mathrm{NE}}_{+}=\left\{z \in \overline{\mathrm{NE}} \mid K_{X} z \geq 0\right\}
$$

and let Σ be the intersection of $\overline{\mathrm{NE}}_{+}$with the unit sphere in $N_{1} X$. Then d is positive on Σ, and since Σ is compact, d is bounded away from zero; also K_{X}, considered as a linear form on $N_{1} X$, is bounded on Σ, so that for any sufficiently large $a \in \mathbb{R}, a d-K_{X}$ is positive on Σ, and then obviously positive on the whole of $\overline{\mathrm{NE}}$. If a is chosen so that in addition $a d$ is represented by a divisior $D \in \operatorname{Pic} X$ then $D-K_{X}$ is ample on X by Kleiman's criterion, and Theorem 0.0 applies.

[^0]Remark In $\S 5$ I prove that under certain restrictions on the singularities of X, if K_{X} is not nef, then there always exists a face F satisfying the hypotheses of Corollary 0.3 , and in fact F can be taken to be a ray R. This is a weak form of the conjectured "Theorem on the Cone" for singular 3-folds.

In [9], 4.18, I outlined a program in five steps for constructing minimal models of 3 -folds. The results of this paper cover Steps 2 and 3 of this program in a fairly satisfactory way.

0.4

The following is an effective statement that can be obtained by the method of proof of Theorem 0.0:

Corollary Let X, D, a be as in Theorem 0.0.
(i) If $m \geq 2 a+2$ then the general element of $M=|m D|$ is reduced and has only ordinary double curves along 1-dimensional components of $\operatorname{Sing} X$.
(ii) If $m \geq 3 a+3$ the general element of M has only double curves, and only ordinary double curves if $m \geq 6 a+6$.

0.5

The following result is proved in $\S 4$, using the notation, and in one place the method, of the proof of Theorem 0.0.

Theorem (Shokurov [12]) Suppose that $-K_{X} \in \operatorname{Pic} X$ is big and nef (that is, X is a weak Fano 3-fold). Then the general element $S \in\left|-K_{X}\right|$ is a K3 surface with at worst Du Val singularities.

It follows from the theory of linear systems on K3s, applied to the minimal resolution of S, that if $\left|-K_{X}\right|$ is not free then its scheme theoretic base locus is isomorphic to \mathbb{P}^{1} or to a (reduced) point.

0.6 Discussion

Kawamata's method is a higher dimensional analog of the Kodaira-Ramanu-jam-Bombieri connectedness method for surfaces. The big drawback is that the method as it stands is not effective: whereas the method for surfaces allows us to choose a point $P \in X$, construct a divisor D with $P \in \operatorname{Sing} D$, and conclude that P is not a base point of $\left|D+K_{X}\right|$, the method proves only that there is some base component B of $|m D|$ of "maximal multiplicity" (see 1.4), and that then there is a b_{0} such that for $b \geq b_{0}, B$ is not a base component of $|b D|$.

Problems 0.7 (a) Make Theorem 0.0 effective; in particular, if the canonical class $K_{X} \in \operatorname{Pic} X$ is nef and big, prove that $\left|m K_{X}\right|$ is free for $m \geq$ some reasonable bound (say 10).
(b) Does Theorem 0.0 hold for $\operatorname{dim} X \geq 4$ (assuming if necessary that $\kappa(D) \geq 0)$? The present proof fails to go through at one point, namely Proposition 1.5, at which higher Chern classes turn up in the formula for $h^{0}\left(\left.\left(b f^{*} D+A\right)\right|_{B}\right)$.
(c) The following statement would be very useful in many different contexts, in particular in (b) above:

Conjecture If V is a nonsingular projective 3-fold and $c_{2}(V) \cdot H<0$ for some ample H then the subsheaf $E \subset \Omega_{V}^{1}$ breaking the stability of Ω_{V}^{1} is orthogonal to a foliation of V by rational subvarieties.
(d) If $K_{X} \stackrel{\text { num }}{\sim} 0$ it follows from Theorem 0.0 that D is nef and big if and only if $|m D|$ is free for $m \gg 0$, and defines a birational morphism $\varphi: X \rightarrow Z$; then Z also has canonical singularities and $K_{X}=\varphi^{*} K_{Z}$. What happens when D is nef but $\kappa_{\text {num }}(D)=1$ or 2 ? In this case it is certainly possible that $h^{0}(m D)=0$ for all $m>0$ (because D may be numerically but not linearly equivalent to 0 on an Abelian factor of X).

Conjecture There exists an $m>0$ and a free linear system $|L|$ with $L \stackrel{\text { num }}{\sim} m D$. Hence there is a morphism $\varphi: X \rightarrow Z$ such that φ contracts precisely the curves $C \subset X$ such that $D C=0$.
(e) It would be interesting to know what kind of singularities the map $\varphi: X \rightarrow Z$ can have in the cases $\operatorname{dim} Z=3$ or 2 of Proposition 0.1, (c). In the birational case, Z has singularities that are more general than canonical, but presumably much more restricted than general rational singularities.

0.8 Preliminaries and terminology

a. \mathbb{Q}-divisors Let X be a projective normal variety; a \mathbb{Q}-divisor $D \in$ $\operatorname{Div} X \otimes \mathbb{Q}$ is \mathbb{Q}-Cartier if $r D \in \operatorname{Pic} X$ for some $r \in \mathbb{Z}, r>0$. Intersection numbers and cycles are defined for \mathbb{Q}-Cartier divisors in the obvious way:

$$
D_{1} \cdots D_{k}={ }_{\operatorname{def}} \frac{1}{r_{1} \cdots r_{k}}\left(r_{1} D_{1}\right) \cdots\left(r_{k} D_{k}\right)
$$

where the right-hand side is the intersection cycle of Cartier divisors defined by any of the usual procedures.
b. Nef $D \in \operatorname{Div} X \otimes \mathbb{Q}$ is nef if it is \mathbb{Q}-Cartier and for every curve $C \subset X$,

$$
D C==_{\operatorname{def}} \frac{1}{r}(r D) C \geq 0
$$

By Kleiman's ampleness criterion, D is nef if and only if D is numerically equivalent to a limit of ample \mathbb{Q}-Cartier divisors; in particular, if D_{1}, \ldots, D_{k} are nef and Z is an effective cycle of codimension l then $D_{1} \cdots D_{k} Z$ is a limit of effective cycles of codimension $k+l$.
c. $\kappa_{\text {num }}(D)$ and big If D is nef then the characteristic dimension or the numerical Kodaira dimension of D is defined to be

$$
\kappa_{\text {num }}(D)=\max \left\{k \mid D^{k} \stackrel{\text { num }}{\nsim} 0\right\} .
$$

Then $\max \{0, \kappa(D)\} \leq \kappa_{\text {num }}(D) \leq n$ where $n=\operatorname{dim} X$ and $\kappa(D)=\kappa(X, D)$ is the Iitaka D-dimension of X, and it is easy to see (using vanishing, so only in characteristic 0) that the following are equivalent:
(i) $\kappa_{\text {num }}(D)=n$;
(ii) $D^{n}>0$;
(iii) $h^{0}(X, m r D) \sim m^{n}$ as $m \rightarrow \infty$;
(iv) for every ample $H \in \operatorname{Pic} X$ there is an $m>0$ such that $m r D \stackrel{\text { lin }}{\sim} H+M$ where $M \in \operatorname{Pic} X$ is effective;
(v) $\kappa(D)=n$.

If this happens, I say that D is $b i g$.
(d) Round-up \rceil For $r \in \mathbb{R}$, write $\lceil r\rceil$ for the smallest integer $\geq r$, the round-up of r; (the Gauss symbol [] is "round-down", and is related by $\lceil r\rceil=-[-r])$. If $D=\sum q_{i} F_{i}$ with F_{i} distinct prime divisors, and $q_{i} \in \mathbb{Q}$, write $\lceil D\rceil=\sum\left\lceil q_{i}\right\rceil F_{i}$. Note that \rceil is a function on divisors, not on divisor classes, although if $D=D_{1}+D_{2}$, with $D_{2} \in \operatorname{Div} X \otimes \mathbb{Q}$, and $D_{1} \in \operatorname{Pic} X$ (that is, D_{1} defined only up to linear equivalence), then $\lceil D\rceil=D_{1}+\left\lceil D_{2}\right\rceil \in \operatorname{Pic} X$ is well defined. Thus I will usually write "=" of \mathbb{Q}-divisors to indicate that the fractional parts are equal and the integer parts are linearly equivalent.

Note also that if $f: Y \rightarrow X$ is a birational morphism, and $r K_{X} \in \operatorname{Pic} X$, then the isomorphism of $\omega_{X}^{[r]}$ and $\omega_{Y}^{[r]}$ on the locus where f is an isomorphism extends to a canonical isomorphism

$$
f^{*} \omega_{X}^{[r]} \otimes \mathcal{O}_{Y}(D) \xrightarrow{\simeq} \omega_{Y}^{[r]},
$$

where D is a Weil divisor made up of exceptional divisors of f (effective if X has canonical singularities). I write equality of \mathbb{Q}-divisors $K_{Y}=f^{*} K_{X}+\Delta$ where $\Delta=\frac{1}{r} D$ to describe this.

Lemma 0.9 (i) If D is nef then $\kappa_{\text {num }}(D) \geq \kappa(D)$;
(ii) if D is nef with $\kappa_{\text {num }}(D) \geq k$ and H is nef and big then $D^{k} H^{n-k}>0$;
(iii) if D is an effective Weil divisor which is nef and has $\kappa_{\text {num }}(D) \geq 2$ then Supp D is connected in codimension 1 , in the sense that if $D=D_{1}+D_{2}$ with D_{1}, D_{2} effective and with no common divisors, then the intersection Supp $D_{1} \cap \operatorname{Supp} D_{2}$ has at least one component of dimension $n-2$.

Proof (i) If $\kappa(D)=k$ then for a suitable $m>0$ such that $m D \in \operatorname{Pic} X$, $|m D|$ defines a dominant rational map $X \rightarrow Z$ to a k-dimensional projective variety. Resolving indeterminacy gives

where f, φ are morphisms, and $\left|f^{*} m D\right|=|L|+F$, where $|L|$ is free with $L^{k}>0$ and F is effective. Then

$$
(m D)^{k}=\left(f^{*} m D\right)^{k}=(L+F)^{k} \geq L^{k}>0,
$$

which holds because for each i with $0 \leq i<k$,

$$
\left(f^{*} m D\right)^{i+1} L^{k-i-1}=\left(f^{*} m D\right)^{i}(L+F) L^{k-i-1} \geq\left(f^{*} m D\right)^{i} L^{k-i}
$$

using the fact that both L and $f^{*} m D$ are nef.
(ii) follows by a similar argument using the fact that some multiple of H is of the form an ample divisor plus an effective divisor.
(iii) Assuming that $\operatorname{Supp} D_{1} \cap \operatorname{Supp} D_{2}$ has codimension ≥ 3 in X, it will not meet a general surface sections S of X, so that both D_{1} and D_{2} are \mathbb{Q}-Cartier divisors in a neighbourhood of S. Writing $\underset{\widetilde{S}}{\widetilde{S}} \rightarrow S$ for a resolution of S, and ' for the pullback of a divisor of X to \widetilde{S}, I have $D_{1}^{\prime} D_{2}^{\prime}=0$, but $\left(D_{1}^{\prime}\right)^{2},\left(D_{2}^{\prime}\right)^{2} \geq 0$ (because D is nef), and $\left(D_{1}^{\prime}+D_{2}^{\prime}\right)^{2}>0$ (because $\kappa_{\text {num }}(D)>2$), and this contradicts the index theorem.

Index Theorem 0.10 Let D, A be \mathbb{Q}-Cartier divisor on a normal projective n-fold X with $n \geq 2$, such that D is nef, $D \stackrel{\text { num }}{\nsim} 0$. Then
(i) for ample \mathbb{Q}-divisors H_{1}, \ldots, H_{n-2},

$$
D A H_{1} \cdots H_{n-2}=0 \Longrightarrow-A^{2} H_{1} \cdots H_{n-2} \geq 0
$$

in particular, if $n \geq 3$ and $D A H_{1} \cdots H_{n-3} \stackrel{\text { num }}{\sim} 0$ (as a 1-cycle) then $-A^{2} H_{1} \cdots H_{n-3} \in \overline{\mathrm{NE}}(X)$.
(ii) If for some ample H_{1}, \ldots, H_{n-2},

$$
D A H_{1} \cdots H_{n-2}=A^{2} H_{1} \cdots H_{n-2}=0
$$

then $A \stackrel{\text { num }}{\sim} q D$ for some $q \in \mathbb{Q}$, and if $q \neq 0$ then $D^{2} \stackrel{\text { num }}{\sim} 0$, that is, $\kappa_{\text {num }}(D)=1$.

Proof Let $S=L_{1} \cap \cdots \cap L_{n-2}$ be a reduced irreducible surface complete intersection, with $L_{i} \in\left|m_{i} H_{i}\right|$ (where $m_{i} H_{i} \in \operatorname{Pic} X$); let $f: \widetilde{S} \rightarrow S$ be a resolution, and let ' denote the pullback of \mathbb{Q}-Cartier divisors of X to \widetilde{S}.

Now D^{\prime} is nef on \widetilde{S} and $D^{\prime} \not$ num $_{\not ㇒} 0$; also $D^{\prime} A^{\prime}=m D A H_{1} \cdots H_{n-2}$ and $\left(A^{\prime}\right)^{2}=m A^{2} H_{1} \cdots H_{n-2}$ (where $m=\prod m_{i}$), so that (i) is just a restatement of the usual index theorem. If $\left(A^{\prime}\right)^{2}=0$ then $A^{\prime \text { num }} \sim q D^{\prime}$ on \widetilde{S}; the value of q can be determined by

$$
A^{\prime} H_{1}^{\prime}=m A H_{1}^{2} H_{2} \cdots H_{n-2}=q m D H_{1}^{2} H_{2} \cdots H_{n-2}=q D^{\prime} H_{1}^{\prime}
$$

since $D^{\prime} H_{1}^{\prime} \neq 0$, and so q does not depend on the choice of m_{i} and $L_{i} \in\left|m_{i} H_{i}\right|$.
I now claim that for every curve $C \subset X,(A-q D) C=0$. To see this, note that for $m_{i} \gg 0$ such that $m_{i} H_{i} \in \operatorname{Pic} X, \mathcal{I}_{C} \cdot \mathcal{O}_{X}\left(m_{i} H_{i}\right)$ is generated by its H^{0}, where \mathcal{I}_{C} is the ideal defining C, so that choosing $L_{i} \in\left|m_{i} H_{i}\right|$ to contain C, but otherwise general, the intersection $S=L_{1} \cap \cdots \cap L_{n-2}$ is reduced and irreducible. Now let $f: \widetilde{S} \rightarrow S$ be its resolution, and $\widetilde{C} \subset \widetilde{S}$ any irreducible curve such that $f_{\mid \widetilde{C}}: \widetilde{C} \rightarrow C$ is generically finite, of degree d say. Then

$$
0=\left(A^{\prime}-q D^{\prime}\right) \widetilde{C}=d(A-q D) C . \quad \text { Q.E.D. }
$$

0.11 Vanishing

The following result is the main technical tool of this paper.
Vanishing If Y is a nonsingular variety and $N \in \operatorname{Div} Y \otimes \mathbb{Q}$ is nef and big, and the fractional part of N is supported on a divisor with normal crossings, then

$$
H^{i}\left(Y,\lceil N\rceil+K_{Y}\right)=0 \quad \text { for } i>0
$$

In Kawamata's treatment [5] this is an easy formal consequence of Kodaira vanishing.

0.12 Acknowledgement

I am extremely grateful to Y. Kawamata for sending me his brilliant series of preprints [2]-[3] from which the ideas in this article are mostly plagiarised. Our immense debt to S. Mori's work will be clear to the reader. ${ }^{2}$

1 Proof of Theorem 0.0 assuming $\kappa(D) \geq 0$

Preliminary Lemma $1.1 H^{0}(m D)=0$ for at most 3 values of $m \geq a$. (See also Lemma 1.8 below.)

Proof It follows easily from Riemann-Roch and vanishing (see Corollary 3.2 for the details) that $h^{0}(m D)$ is a polynomial in m of degree ≤ 3 for $m \geq a$. In $\S 2$ below it is shown that this polynomial is not identically zero, and hence has at most 3 zeros. Q.E.D.

1.2 Construction

Let $M \subset|m D|$ be any linear system with $\operatorname{dim} M \geq 0$, Bs $M \neq 0$. Then there exists a resolution $f: Y \rightarrow X$, a divisor with normal crossings $\sum F_{j}$ (for $j \in J$) on Y, and constants a_{j}, r_{j}, p_{j} such that
(1) $K_{Y}=f^{*} K_{X}+\sum a_{j} F_{j}$ with $a_{j} \in \mathbb{Q}, a_{j} \geq 0$ and $a_{j}>0$ only if F_{j} is exceptional for f;
(2) $f^{*} M=L+\sum r_{j} F_{j}$ where L is a free linear system, $r_{j} \in \mathbb{Z}, r_{j} \geq 0$, and $r_{j}>0$ for at least one $j \in J$ (if $\operatorname{dim} M=0$ then $L=0$);
(3) $f^{*}\left(a D-K_{X}\right)-\sum p_{j} F_{j}$ is an ample \mathbb{Q}-divisor on Y, where $p_{j} \in \mathbb{Q}$, $0 \leq p_{j} \ll 1$.

Note for further use that a very slight increase in one of the p_{j} does not affect the truth of (3).

Remark (Shokurov [13], p. 436, see also 4.3 below) There is no loss of generality in assuming that $r_{j} \geq a_{j}$ if $f\left(F_{j}\right)$ is a curve.

[^1]Proof Let $H \in \operatorname{Pic} X$ be ample. Since $a D-K_{X}$ is big, for m large enough $h^{0}\left(m\left(a D-K_{X}\right)-H\right) \neq 0$. Choosing $D_{1} \in\left|m\left(a D-K_{X}\right)-H\right|$ it follows that for every $\varepsilon_{1} \in \mathbb{Q}, 0<\varepsilon_{1} \ll 1$, the \mathbb{Q}-divisor $a D-K_{X}-\varepsilon_{1} D_{1}$ is ample on X.

Now choose a composite of blowups $f: Y \rightarrow X$ which resolves the singularities of X and the base locus of M, and such that the exceptional locus of f and the inverse image of D_{1} form a divisor with normal crossing $\sum F_{j}$. By construction of f it is clear that there exists an effective divisor $D_{2}=\sum c_{j} F_{j}$ such that $-D_{2}$ is relatively ample for f; hence choosing ε_{2} with $0<\varepsilon_{2} \ll \varepsilon_{1}$, and setting $f^{*} \varepsilon_{1} D_{1}+\varepsilon_{2} D_{2}=\sum p_{j} F_{j}$ gives (3). Q.E.D.

1.3 The method

Fix the set-up of 1.2 . For $b \in \mathbb{Z}, c \in \mathbb{Q}$ with $c \geq 0$ and $b \geq c m+a$, the \mathbb{Q}-divisor

$$
\begin{aligned}
N=N(b, c) & =b f^{*} D+\sum\left(-c r_{j}+a_{j}-p_{j}\right) F_{j}-K_{Y} \\
& \stackrel{\text { num }}{\sim} c L+f^{*}\left((b-c m) D-K_{X}\right)-\sum p_{j} F_{j}
\end{aligned}
$$

is ample on Y, and has fractional part supported in $\sum F_{j}$. Vanishing gives $H^{i}\left(\lceil N\rceil+K_{Y}\right)=0$ for $i>0$, and I have

$$
\lceil N\rceil+K_{Y}=b f^{*} D+\Sigma,
$$

where I can write

$$
\Sigma=\sum\left\lceil-c r_{j}+a_{j}-p_{j}\right\rceil F_{j}=A-B,
$$

with A, B effective divisors not having any common components. Since all of $c, r_{j}, a_{j}, p_{j} \geq 0, A$ consists of components F_{j} with $a_{j}>0$, and by 1.2, (1) these must be exceptional for f. Hence

$$
H^{0}(X, b D)=H^{0}\left(Y, b f^{*} D\right)=H^{0}\left(Y, b f^{*} D+A\right)
$$

Now $H^{1}\left(b f^{*} D+A-B\right)=0$ implies that

$$
H^{0}\left(Y, b f^{*} D+A\right) \rightarrow H^{0}\left(B,\left(b f^{*} D+A\right)_{B}\right)
$$

In 1.4 below, it is shown how to adjust the parameter c and the p_{j} so that B is one of the irreducible components $B=F_{0}$ of $\sum F_{j}$, and $-c r_{0}+a_{0}-p_{0}=$ $-1 \in \mathbb{Z}$. From now on, I write ' to denote the pullback to B of a divisor on X or Y. Then

$$
b f^{*} D+A=\lceil N\rceil+K_{Y}+B
$$

so that

$$
b D^{\prime}+A^{\prime}=(\lceil N\rceil)^{\prime}+K_{B} .
$$

Now $B=F_{0}$ appears in N with integral coefficient, so that (see 0.8 , (d) for the abuse of notation)

$$
(\lceil N\rceil)^{\prime}=\left\lceil N^{\prime}\right\rceil,
$$

and N is an ample \mathbb{Q}-divisor on B with fractional part supported on the divisor with normal crossing $\sum_{j \neq 0} F_{j}^{\prime}$. Hence vanishing applies again to give $H^{i}\left(b D^{\prime}+A^{\prime}\right)=0$ for $i>0$, so that $h^{0}\left(b D^{\prime}+A^{\prime}\right)=0$ is a polynomial in b. The subtle part of the argument, Proposition 1.5, is to show that the polynomial cannot be identically zero; this is the only point at which the condition $\operatorname{dim} X=3$ is used. The method here is due to Xavier Benveniste [1], and improves Kawamata's original proof.

1.4 Selecting a base component of maximal multiplicity

Set $c=\min \left(a_{j}+1-p_{j}\right) / r_{j}$, taken over $j \in J$ with $r_{j}>0$; since $p_{j} \ll 1$ and $a_{j} \geq 0$, it follows that $c>0$. Suppose that $0 \in J$ is one of the indices for which the minimum value occurs; on increasing the corresponding p_{0} slightly, c decreases, so that the minimum occurs only for this one component F_{0}. Then by definition of c,

$$
-c r_{0}+a_{0}-p_{0}=-1 \quad \text { and } \quad-c r_{j}+a_{j}-p_{j}>-1 \quad \text { for } j \in J, j \neq 0 ;
$$

hence $B=F_{0}$.
Proposition 1.5 (i) If $D^{\prime} \stackrel{\text { num }}{\sim} 0$ then $h^{0}\left(b D^{\prime}+A^{\prime}\right)=1$ for every $b \in \mathbb{Z}$;
(ii) if $D^{\prime} \stackrel{\text { num }}{\nsim} 0$ then $h^{0}\left(b D^{\prime}+A^{\prime}\right)>0$ for every $b \geq c m+a+1$.

Proof (i) Assume $D^{\prime} \stackrel{\text { num }}{\sim} 0$; then for every $b \in \mathbb{Z}$, the \mathbb{Q}-divisor

$$
N^{\prime}=b D^{\prime}+\sum_{j \neq 0}\left(-c r_{j}+a_{j}-p_{j}\right) F_{j}^{\prime}-K_{B}
$$

is ample on B, so that $H^{i}\left(\left\lceil N^{\prime}\right\rceil+K_{B}\right)=0$ for $i>0$, and

$$
h^{0}\left(b D^{\prime}+A^{\prime}\right)=\chi\left(b D^{\prime}+A^{\prime}\right)=\text { const. } ;
$$

for $b=0, h^{0}\left(A^{\prime}\right) \geq 1$ since A^{\prime} is effective. However, $h^{0}\left(b D^{\prime}+A^{\prime}\right) \leq 1$ for $b \geq c m+a$, in view of the fact that

$$
H^{0}\left(Y, b f^{*} D\right)=H^{0}\left(Y, b f^{*} D+A\right) \rightarrow h^{0}\left(b D^{\prime}+A^{\prime}\right) .
$$

$$
\text { 1. Proof of Theorem } 0.0 \text { assuming } \kappa(D) \geq 0
$$

(ii) Set

$$
p(b)=\frac{1}{2}\left(D^{\prime}\right)^{2} b^{2}+\frac{1}{2} D^{\prime}\left(2 A^{\prime}-K_{B}\right) b+\frac{1}{2}\left(\left(A^{\prime}\right)^{2}-A^{\prime} K_{B}\right)+\chi\left(\mathcal{O}_{B}\right),
$$

so that

$$
0 \leq h^{0}\left(b D^{\prime}+A^{\prime}\right)=p(b) \quad \text { for } b \geq c m+a .
$$

Then

$$
p(b+1)-p(b)=\frac{1}{2}\left(\left(D^{\prime}\right)^{2}(b+1)+D^{\prime} A^{\prime}+D^{\prime}\left(b D^{\prime}+A^{\prime}-K_{B}\right)\right) .
$$

The right-hand side is strictly positive for $b \geq c m+a$. Indeed, D^{\prime} is nef and A^{\prime} is effective. so that the first two terms are ≥ 0; furthermore,
$b D^{\prime}+A^{\prime}-K_{B}=(\lceil N\rceil)^{\prime}=N^{\prime}+(\lceil N\rceil-N)^{\prime}=\binom{$ ample }{\mathbb{Q}-divisor }$+\binom{$ effective }{\mathbb{Q}-divisor }
so that $D^{\prime} \stackrel{\text { num }}{\nsim} 0$ implies that the third term is strictly positive. Hence $p(b)$ is a strictly increasing function from $c m+a$ onwards. Q.E.D.

1.6 End of the proof

If $h^{0}(m D) \neq 0$ and $\mathrm{Bs}|m D| \neq \emptyset$ then I claim that for every $a \gg 0$, $\mathrm{Bs}|a m D| \subsetneq \mathrm{Bs}|m D|$; Theorem 0.0 then follows by an easy Noetherian induction. For the claim, set $M=|m D|$ in 1.2. The argument of 1.3-1.5 shows that there is a component F_{0} of the base locus of $f^{*}|m D|$ for which

$$
H^{0}\left(Y, b f^{*} D\right)=H^{0}\left(Y, b f^{*} D+A\right) \rightarrow H^{0}\left(F_{0},\left(b f^{*} D+A\right)_{F_{0}}\right) \neq 0
$$

for every $b \gg 0$, so that $F_{0} \not \subset \mathrm{Bs}\left|b f^{*} D\right|$, and hence $f\left(F_{0}\right) \not \subset \mathrm{Bs}|b D|$. In particular, taking $b=a m$ with $a \gg 0$,

$$
\mathrm{Bs}|a m D| \subsetneq \mathrm{Bs}|m D| \text {. Q.E.D. }
$$

1.7 Proof of Proposition 0.1

(a) is "relative vanishing". Let $H \in \operatorname{Pic} \mathbb{Z}$ be an ample divisor such that $D=\varphi^{*} H$; consider the Leray spectral sequence for $H^{i}\left(X, \mathcal{O}_{X}(m D)\right)$, using $R^{i} \varphi_{*} \mathcal{O}_{X}(m D) \cong R^{i} \varphi_{*} \mathcal{O}_{X} \otimes \mathcal{O}_{Z}(m H):$

$$
E_{2}^{p, q}=H^{p}\left(Z, R^{q} \varphi_{*} \mathcal{O}_{X} \otimes \mathcal{O}_{Z}(m H)\right) \Longrightarrow H^{i}\left(X, \mathcal{O}_{X}(m D)\right)
$$

Since H is ample on Z, Serre vanishing gives that for $m \gg 0, E_{2}^{p, q}=0$ if $p \neq 0$, and hence $H^{0}\left(R^{q} \varphi_{*} \mathcal{O}_{X} \otimes \mathcal{O}_{Z}(m H)\right)=H^{q}\left(X, \mathcal{O}_{X}(m D)\right)$. But by vanishing,
$H^{q}\left(X, \mathcal{O}_{X}(m D)\right)=0$ for $m \geq a\left(\right.$ see Proposition 3.1), and hence $R^{q} \varphi_{*} \mathcal{O}_{X}=0$ for $q>0$. Finally, for every $m \geq a, H^{p}\left(Z, \mathcal{O}_{Z}(m H)\right)=H^{p}\left(X, \mathcal{O}_{X}(m D)\right)=0$ for $p>0$.

For (b), set $r=$ index of X, and choose $m \geq a(r+1)$; then $D^{\prime}=$ $m D-r K_{X} \in \operatorname{Pic} X$, and both D^{\prime} and $D^{\prime}-K_{X}$ are nef and big. Applying Theorem 0.0 to D^{\prime} gives the morphism g; it contracts exactly the curves $C \subset X$ with $D C=K_{X} C=0$, so φ factors through g.

There are only 2 nontrivial assertions in (c): when $\operatorname{dim} Z=2, X \rightarrow Z$ is birational to a standard conic bundle by Sarkisov [11]: I have

where f_{1} and f_{2} are resolutions, g is a birational morphism and h is a standard conic bundle. Then by (a) above,

$$
\chi\left(\mathcal{O}_{Z}\right)=\chi\left(\mathcal{O}_{X}\right)
$$

since X has rational singularities, and g is a birational morphism of smooth varieties, $\chi\left(\mathcal{O}_{X}\right)=\chi\left(\mathcal{O}_{\tilde{X}}=\chi\left(\mathcal{O}_{Y}\right)\right.$; and h is a standard conic bundle, so that $\chi\left(\mathcal{O}_{Y}\right)=\chi\left(\mathcal{O}_{S}\right)$.

Hence $\chi\left(\mathcal{O}_{Z}\right)=\chi\left(\mathcal{O}_{S}\right)$, proving that Z has rational singularities.
Finally, if $Z=\mathrm{pt}$, then $\operatorname{Pic} X$ is reduced because $H^{1}\left(\mathcal{O}_{X}\right)=0$; if $D \in$ Pic X is a torsion element then Theorem 0.0 applies to D to give $D=0$, hence $\operatorname{Pic} X$ is torsion free. Q.E.D.

1.8

The rest of this section is concerned with the proof of Corollary 0.4 ; the reader who is more interested in the rest of the proof of Theorem 0.0 should proceed to $\S 2$.

Lemma $\quad h^{0}(m D)>0$ for $m \geq 2 a+2$.

Proof As seen in Lemma 1.1, $h^{0}(m D)=p(m)$ is a polynomial in m of degree ≤ 3 for $m \geq a$; if $\operatorname{deg} p \leq 1$ then obviously $h^{0}(m D)>0$ for $m \geq a+1$. If $\operatorname{deg} p=2$ or 3 then p has at most 2 integer zeros $\geq a+1$, since if p is cubic, $p(a) \geq 0$ implies that one real root of p is $\leq a$; furthermore if there are 2 integer zeros $\geq a+1$ these must be consecutive, since $p(x)<0$ between them.

Now the set $\left\{m \mid h^{0}(m D) \neq 0\right\}$ is a semigroup, and if p has no zeros in $[a+1, \ldots, 2 a]$ is certainly contains every integer $\geq 2 a+2$. The alternative is
that some $b \leq 2 a$ is a zero, and then possibly $b+1$ is also a zero, but $p(m)>0$ for $m \geq 2 a+2$. Q.E.D.

1.9 Proof of Corollary 0.4

Let $m \geq 2 a+2$; if $\Gamma \subset X$ is a prime divisor appearing as base component of multiplicity ≥ 2 of $M=|m D|$, then making the construction of 1.2 , the proper transform of Γ is an F_{j} with $a_{j}=0, r_{j} \geq 2$. Then by definition of c (in 1.4), $c \leq \frac{1}{2}$. Now the argument of 1.3-1.5 shows that the base component F_{0} of $\left|m f^{*} D\right|$ of maximal multiplicity in the sense of 1.4 is not a base component of $\mid b f^{*} D$ for $b \geq c m+a+1$. But m itself satisfies $m \geq c m+a+1$, which is a contradiction.

The argument for the other statements of Corollary 0.4 is similar, and I only sketch it: if $C \subset \operatorname{Sing} X$ is a 1-dimensional component then by [8], Theorem 1.14, X has a Du Val singularity at the generic point $\eta \in C$. Above η, the resolution $f: Y \rightarrow X$ dominates the minimal resolution, and so contains a number of components F_{j} with $a_{j}=0$, which by the argument just given must have $r_{j} \leq 1$. Using easy facts about the resolution of Du Val singularities (see Lemma 4.3, (iii)), it is then easy to see that X has an A_{n} point at η, and M an ordinary double point.

If $C \subset X$ is a curve with $C \not \subset \operatorname{Sing} X$ appearing in the general element of M with multiplicity ≥ 3, the blowup of C gives an F_{j} with $a_{j}=1, r_{j} \geq 3$, so that $c \leq \frac{2}{3}$, which by the same argument is impossible if $m \geq 3 a+3$. Finally, if the general element of M has a non-ordinary double locus along C, then after 3 blowups I get a component F_{j} with $a_{j}=4, r_{j} \geq 6$: for example, a curve of ordinary cusps gives the embedded resolution of Figure 1. Then

Figure 1: Embedded resolution of cuspidal curve $y^{2}=x^{3}$
$c \leq \frac{5}{6}$ and by the same argument this is impossible if $m \geq 6 a+6$. Q.E.D.
The following result is exactly similar to Corollary 0.4 , and will be used in the proof of Theorem 0.5 in $\S 4$.

Lemma 1.10 Let X be a weak Fano 3-fold; then the general element $D \in$ $\left|-K_{X}\right|$ is reduced and has only ordinary double curves.

Proof As in 1.2, there exists a resolution $f: Y \rightarrow X$, a divisor with normal crossings $\sum F_{j}$ and constrants a_{j}, r_{j}, p_{j} and q such that
(1) $K_{Y}=f^{*} K_{X}+\sum a_{j} F_{j}$, where $a_{j} \in \mathbb{Z}, a_{j} \geq 0$ and $a_{j}>0$ only if F_{j} is exceptional for f;
(2) $f^{*}\left|-K_{X}\right|=L+\sum r_{j} F_{j}$ with $|L|$ a free linear system, $r_{j} \in \mathbb{Z}$ and $r_{j} \geq 0$;
(3) $q f^{*}\left(-K_{X}\right)-\sum p_{j} F_{j}$ is an ample \mathbb{Q}-divisor, where $p_{j}, q \in \mathbb{Q}, 0 \leq p_{j} \ll 1$ and $0<q<\min \left\{1 / r_{j}\right\}$, the minimum being taken over j with $r_{j}>0$.

Claim For every j, $r_{j} \leq a_{j}+1$.
As in the proof of Corollary 0.4, this implies that the general element $D \in$ $\left|-K_{X}\right|$ is reduced, with ordinary double curves, proving Lemma 1.10.

To prove the claim, suppose that $r_{j} \geq a_{j}+2$ for some j. Then setting

$$
c=\min \left\{\frac{a_{j}+1-p_{j}}{r_{j}}\right\},
$$

it follows that $c \leq 1-1 / r_{j}$, and hence $1-c \geq q$. As in Method 1.3, set

$$
\begin{aligned}
N=N(b, c) & =b f^{*}\left(-K_{X}\right)+\sum\left(-c r_{j}+a_{j}-p_{j}\right) F_{j}-K_{Y} \\
& \stackrel{\text { num }}{\sim} c L+(b+1-c) f^{*}\left(-K_{X}\right)-\sum p_{j} F_{j}
\end{aligned}
$$

by (3) and the fact that $1-c \geq q$, this is an ample \mathbb{Q}-divisor for $b \geq 0$. The argument of Method 1.3 and Proposition 1.5 now gives a contradiction: the component $B=F_{0}$ which is the base component of $f^{*}\left|-K_{X}\right|$ of maximal multiplicity is not a base component of $\left|b f^{*}\left(-K_{X}\right)\right|$ for $b \geq 1$. This proves the claim, and hence Lemma 1.10.

2 Proof of $\kappa(D) \geq 0$

2.1

Let X, D and a be as in Theorem 0.0 , and $f: Y \rightarrow X$ any resolution for which the exceptional locus is a divisor with normal crossings; then for any $m \geq a$ and any $D_{m} \in \operatorname{Pic} X$, with $D_{m} \stackrel{\text { num }}{\sim} m D$,

$$
\begin{equation*}
h^{0}\left(D_{m}\right)=\frac{1}{6} D^{3} m^{3}-\frac{1}{4} D^{2} K_{X} m^{2}+\frac{1}{12}\left(D K_{X}^{2}+f^{*} D c_{2}(Y)\right) m+\chi\left(\mathcal{O}_{X}\right) \tag{*}
\end{equation*}
$$

This is proved in Corollary 3.2 below. The right-hand side is a polynomial in m, and the purpose of this section is to prove that it is not identically zero.

Note first that this is trivial if $\kappa_{\text {num }}(D) \neq 1$. Indeed, if $\kappa_{\text {num }}=3$ then $D^{3}>0$; if $\kappa_{\text {num }}=2$ then by Lemma $0.9,-D^{2} K_{X}=D^{2}\left(a D-K_{X}\right)>0$; finally, if $D \stackrel{\text { num }}{\sim} 0$ then I can take $D_{m}=0$ for every m, and $h^{0}\left(D_{m}\right)=1$.

Note then that Theorem 0.0 is proved in case $\kappa_{\text {num }}(D) \geq 2$, and I'm entitled to use it in the proof for $\kappa_{\text {num }}(D)=1$.

Remark By Lemma $0.9, D K_{X}^{2}=D\left(a D-K_{X}\right)^{2}>0$ in case $\kappa_{\text {num }}(D)=$ 1, and as conjectured in Problem 0.7, (c), we have a right to expect that $f^{*} D c_{2}(Y)<0$ should lead to some very strong restriction on Y; unfortunately, I don't know how to exploit this, so I don't get any pleasure out of the linear term in $h^{0}\left(D_{m}\right)$. A posteori, if $\varphi: X \rightarrow Z$ is a weak fibre space of del Pezzo surfaces of degree d (as defined in Proposition 0.1), and if $D=\varphi^{*} H$ then $f^{*} D c_{2}(Y)=(12-d) \operatorname{deg} H$ with $1 \leq d \leq 9$, so that in fact $f^{*} D c_{2}(Y)>0$.

Proposition 2.2 If $\kappa_{\text {num }}(D)=1$ then $\kappa(X)=-\infty$, and in particular $p_{g}=$ 0 . Hence if $\chi\left(\mathcal{O}_{X}\right)=0$ then $q=h^{1}\left(\mathcal{O}_{X}\right)>0$.

Proof $a D-K_{X}$ is nef and big, so that by Lemma 0.9, (ii)

$$
\left(-K_{X}\right)\left(a D-K_{X}\right) D=\left(a D-K_{X}\right)^{2} D>0 ;
$$

hence $H^{0}\left(m K_{X}\right)=0$ for all $m>0$. Q.E.D.

Proposition 2.3 Let X be a normal variety having a resolution $f: Y \rightarrow X$ such that $R^{1} f_{*} \mathcal{O}_{Y}=0$. Then $f^{*}: \operatorname{Pic}^{0} X \xrightarrow{\simeq} \operatorname{Pic}^{0} Y$ is an isomorphism, and the Albanese map of Y factors through X. In particular if $h^{1}\left(\mathcal{O}_{X}\right) \neq 0$ (and char $k=0$, of course), then there is a nontrivial morphism $\alpha: X \rightarrow \operatorname{Alb} X$ from X to an Abelian variety.

Proof This is general nonsense. $R^{1} f_{*} \mathcal{O}_{Y}=0$ implies that $f^{*}: H^{1}\left(\mathcal{O}_{X}\right) \xrightarrow{\simeq}$ $H^{1}\left(\mathcal{O}_{Y}\right)$, and hence that $f^{*} \operatorname{Pic}^{0} X \rightarrow \operatorname{Pic}^{0} Y$ is etale. Now the morphism $\alpha: X \rightarrow\left(\operatorname{Pic}^{0} X\right)^{\vee}$ is defined by the universal property of Pic: if P is the (Poincaré) universal line bundle over $X \times \operatorname{Pic}^{0} X$ then $\alpha: X \rightarrow\left(\operatorname{Pic}^{0} X\right)^{\vee}$ is defined on the level of points by taking $x \in X$ to P_{X}, the restriction of P to $x \times \operatorname{Pic}^{0} X$, considered as a point of $\left(\operatorname{Pic}^{0} X\right)^{\vee}$. Functoriality of Pic gives a commutative diagram

$$
\begin{array}{rll}
Y & \xrightarrow{\alpha_{Y}} & \left(\operatorname{Pic}^{0} Y\right)^{\vee}=\operatorname{Alb} Y \\
f \downarrow & \nearrow & \downarrow f^{\vee} \\
X & \xrightarrow{\alpha_{X}} & \left(\operatorname{Pic}^{0} X\right)^{\vee},
\end{array}
$$

where f is birational and f^{\vee} an isogeny of Abelian varieties. It is then obvious that any curve contracted by f is also contracted by α_{Y}, so that using the Zariski Main Theorem, the diagram splits as indicated by the oblique arrow, and f^{\vee} is an isomorphism. Q.E.D.

2.4

If $\kappa_{\text {num }}(D)=1$ and $\kappa(D)=-\infty$ then by $(*)$ in $2.1, \chi\left(\mathcal{O}_{X}\right)=0$, and $q(X) \neq 0$ by Proposition 2.2, so that by Proposition 2.3, X has a nontrivial morphism $\alpha: X \rightarrow \operatorname{Alb} X$ to an Abelian variety. Since $\kappa(X)=-\infty, \operatorname{dim} \alpha(X) \leq 2$. I prove later (Key Lemma 2.6) that even in the case that $\alpha(X)=F$ is a surface, X has a surjective morphism $h: X \rightarrow C$ to a curve of genus ≥ 1. First of all, I show how to complete the proof from this.

Proposition 2.5 Let X, D and a be as in Theorem 0.0. Suppose that $\kappa_{\text {num }}(D)=1$, and that X has a surjective morphism $h: X \rightarrow C$ to a curve of genus $g \geq 1$. Then there exists an $m \geq a$ and an effective divisor D_{m} with $D_{m} \stackrel{\text { num }}{\sim} m D$; hence by ($*$) in 2.1, $h^{0}(m D) \neq 0$ for every $m \gg 0$.

Proof Let A be a general fibre of $X \rightarrow C$. The easy case is when $D_{\mid A} \stackrel{\text { num }}{\sim} 0$; then $D^{2} \stackrel{\text { num }}{\sim} D A \stackrel{\text { num }}{\sim} A^{2} \stackrel{\text { num }}{\sim} 0$, so that by the Index Theorem $0.10, D$ is numerically equivalent to $q A$ for $q \in \mathbb{Q}$. Proposition 2.5 is then obvious.

In the other case $D_{\left.\right|_{A}} \stackrel{\text { num }}{\nsim} 0$, the proof proceeds by reducing to a similar looking problem over a surface.

Step $1 h$ factors as

where
(i) S is a surface with rational singularities;
(ii) there exists $L \in \operatorname{Pic} S$ which is relatively ample for g, and such that $D=\psi^{*} L$ with $L^{2}=0 ;$
(iii) $\varphi_{*} \mathcal{O}_{X}=\mathcal{O}_{S}, R^{i} \varphi_{*} \mathcal{O}_{X}=0$ for $i>0$ and $H^{i}(S, m L)=0$ for all $m \geq a$ and $i>0$.

Proof This is a relative form of Theorem 0.0, and comes by noting that for $i \geq 1, D+i A$ is a divisor on X satisfying the hypotheses of Theorem 0.0 , and with $\kappa_{\text {num }}(D+i A)=2$. The morphism φ contracts exactly the curves of X with $D C=A C=0$, so h factors through S.

STEP $2 L$ is relatively ample for g, so for $m \gg 0, R^{1} g_{*} L^{\otimes m}=0$ by Serre vanishing. Thus for $m \gg 0, g_{*} L^{\otimes m}=\mathcal{E}_{m}$ is a vector bundle on C of rank $r>0$ with

$$
0 \leq h^{0}\left(S, L^{\otimes m}\right)=\chi\left(S, L^{\otimes m}\right)=\chi\left(C, \mathcal{E}_{m}\right) .
$$

The following statement implies that for $m \gg 0$ and for suitable $\mathcal{L} \in$ $\operatorname{Pic}^{0} C$,

$$
0 \neq H^{0}\left(C, \mathcal{E}_{m} \otimes \mathcal{L}\right)=H^{0}\left(S, \mathcal{L}^{\otimes m} \otimes g^{*} \mathcal{L}\right)=H^{0}\left(X, \mathcal{O}_{X}(m D) \otimes h^{*} \mathcal{L}\right)
$$

proving Proposition 2.5:

Easy Exercise Let \mathcal{E} be a vector bundle of rank $r>0$ over a curve C with $\chi(C, \mathcal{E}) \geq 0$. Then
either $C \cong \mathbb{P}^{1}$ and $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^{1}}(-1)^{\oplus r}$,
or for every $P \in C$ there exists $Q \in C$ such that $H^{0}\left(\mathcal{E} \otimes \mathcal{O}_{C}(P-Q)\right) \neq 0$.

Proposition 2.5 is proved. Q.E.D.
Now comes the hard part.

Key Lemma 2.6 Let X, D and a be as in Theorem 0.0, with $\kappa_{\text {num }}(D)=1$, and assume that $\alpha(X)=F \subset \operatorname{Alb} X$ is a surface. Then F is a fibre bundle $F \rightarrow C$ over a curve C of genus $g \geq 1$ (with fibre an elliptic curve); in particular, there exists a surjective morphism $h: X \rightarrow C$ to a curve of genus $g \geq 1$.

Sublemma 2.7 (i) If S is any effective Weil divisor on X which is nef and big, then one component of S maps surjectively to F.
(ii) If $S_{0} \subset X$ is any surface for which $\alpha\left(S_{0}\right)=F$ then for $m>a$, we have $\left(m D-K_{X}\right)^{2} S_{0}>0$.

Proof Applying Lemma 0.9 to $\alpha^{*} M$, where M is ample on F, (i) is trivial. For (ii), setting $r=$ index of $X, r\left(m D-K_{X}\right) \in \operatorname{Pic} X$ obviously satisfies the hypotheses of Theorem 0.0 , with $\kappa_{\text {num }}\left(m D-K_{X}\right)=3$, so that there is a birational morphism $\varphi: X \rightarrow Z$ such that $m D-K_{X}=\varphi^{*} H$ for H an ample \mathbb{Q}-divisor on Z. By Proposition $0.1, Z$ has only rational singularities, so that using Proposition 2.3 above, I get that α factors through Z : that is, $\alpha: X \rightarrow Z \rightarrow F \subset \operatorname{Alb} X$. Now S_{0} must map to a surface in Z, which gives the result. Q.E.D.

Proof of Key Lemma 2.6 It is shown in Corollary 3.3 below that for $m \gg 0, h^{0}\left(m D-K_{X}\right) \neq 0$; let $f: Y \rightarrow X$ be a resolution which induces the minimal resolution along the Du Val locus, so that $K_{Y}=f^{*} K_{X}+\Delta$, where $f(\Delta)$ is a finite set (f is 0 -minimal in the sense of $[8], \S 5$). Now it follows directly from the definition of canonical singularities that, for $i \geq 0$, there is a map $f^{\prime}: f^{-1} \omega_{X}^{[i]} \rightarrow \omega_{Y}^{\otimes i}$ (where f^{-1} is the sheaf theoretic inverse image), defined by viewing $s \in H^{0}\left(U, \omega_{X}^{[i]}\right)$ as a rational i-fold canonical differential, which then remains regular on $f^{-1} U$. This gives a map ("proper transform")

$$
\begin{aligned}
& f^{\prime}: H^{0}\left(m D-K_{X}\right)=H^{0}\left(\mathcal{O}_{X}\left(m D-r K_{X}\right) \otimes \omega_{X}^{[r-1]}\right) \\
& \longrightarrow H^{0}\left(\mathcal{O}_{Y}\left(f^{*}\left(m D-r K_{X}\right)+(r-1) K_{Y}\right)\right. \\
&=H^{0}\left(\mathcal{O}_{Y}\left(f^{*} m D-K_{Y}+r \Delta\right) .\right.
\end{aligned}
$$

Let $S \in\left|m D-K_{X}\right|$ and $T=f^{\prime} S \in\left|m D-K_{Y}+r \Delta\right|$; write $T=\sum a_{i} T_{i}$. By Sublemma 2.7 applied to $S \subset X$, there is a component T_{0} of T mapping surjectively to F, and such that $f^{*}\left(m D-K_{X}\right)^{2} T_{0}>0$. Write $g: \widetilde{T} \rightarrow T_{0}$ for the minimal resolution; since T_{0} is Gorenstein, $K_{\tilde{T}}=g^{*} K_{T_{0}}-Z$, with Z an effective divisor on \widetilde{T}. Now by adjunction

$$
\begin{aligned}
& a_{0} K_{T_{0}}=\left(a_{0} K_{Y}+m f^{*} D-K_{Y}+r \Delta-\sum_{i \neq 0} a_{i} T_{i}\right)_{T_{0}} \\
& \quad=\left(a_{0} m f^{*} D-\left(a_{0}-1\right) f^{*}\left(m D-K_{X}\right)-\sum_{i \neq 0} a_{i} T_{i}+\left(r+a_{0}-1\right) \Delta\right)_{T_{0}},
\end{aligned}
$$

so that, writing ' for the pullback of a divisor on X or Y to \widetilde{T}, we get

$$
\begin{aligned}
& a_{0} m D^{\prime}+\left(r+a_{0}-1\right) \Delta^{\prime} \\
& \quad=a_{0} K_{\tilde{T}}+\left(a_{0}-1\right) f^{*}\left(m D-K_{X}\right)^{\prime}+\left(a_{0} Z+\sum_{i \neq 0} a_{i} T_{i}\right)^{\prime}
\end{aligned}
$$

Now restricting $f: Y \rightarrow X$ to T_{0}, f induces a birational map $\widetilde{f}: \widetilde{T} \rightarrow S_{0}$, where S_{0} is a component of S, and Δ^{\prime} is contracted by \widetilde{f}. It follows that the left-hand side of this formula is a \mathbb{Q}-divisor with $\kappa \leq 1$. On the other hand,
if $a_{0} \neq 1$, or if \widetilde{T} is a surface of general type, then the right-hand side has $\kappa=2$: indeed, $h^{0}\left(K_{\tilde{T}}\right)>0$ because \widetilde{T} has a generically finite morphism to $F \subset \operatorname{Alb} X,\left(m D-K_{X}\right)^{\prime}$ is nef and big on \widetilde{T}, and the third term is effective. Hence $a_{0}=1$, and $\kappa(\widetilde{T})=0$ or 1 . The above adjunction formula simplifies to

$$
\begin{equation*}
m D^{\prime}+r \Delta^{\prime}=K_{\tilde{T}}+\left(Z+\sum_{i \neq 0} a_{i} T_{i}\right)^{\prime} \tag{**}
\end{equation*}
$$

CASE $\kappa(\widetilde{T})=1 \quad$ This is the easy case: \widetilde{T} has a generically finite morphism to $F \subset \operatorname{Alb} X$, so that the elliptic structure of the minimal model of \widetilde{T} is a fibre bundle; the image of any fibre is an elliptic curve $E \subset \operatorname{Alb} X$ such that F is invariant under translations by E.

Case $\kappa(\widetilde{T})=0 \quad$ Then \widetilde{T} is itself birational to an Abelian surface, and I have the following set-up:

$$
\begin{aligned}
& \begin{array}{llrll}
& & Y & \supset T_{0} \stackrel{g}{\longleftarrow} \widetilde{T} \\
T \in\left|m f^{*} D-K_{Y}+r \Delta\right|, \quad T=\sum a_{i} T_{i} & f \downarrow & & \\
\downarrow & X & \supset S_{0} \stackrel{\nu}{\longleftarrow} & \widetilde{S}
\end{array} \\
& S \in\left|m D-K_{X}\right| \quad \quad \downarrow_{j} \\
& \text { G } \\
& \downarrow \\
& \operatorname{Alb} X=F
\end{aligned}
$$

where $\nu: \widetilde{S} \rightarrow S_{0}$ is the normalisation of S_{0}, and in the left-hand column,

$$
G=\operatorname{Alb} \widetilde{T}=\text { minimal model of } \widetilde{T}
$$

is an etale cover of F. Now \widetilde{S} has rational singularities, and $K_{\tilde{S}}$ is an effective Weil divisor containing every exceptional curve of j with strictly positive coefficient. (**) gives

$$
\begin{equation*}
m \nu^{*} D=K_{\tilde{S}}+h_{*}\left(\left(Z+\sum a_{i} T_{i}\right)^{\prime}\right) . \tag{***}
\end{equation*}
$$

Subcase $\nu^{*} D \stackrel{\text { num }}{\sim} 0$ The right-hand side of $(* * *)$ is an effective \mathbb{Q}-divisor, so that $h_{*}\left(\left(\sum_{i \neq 0} a_{i} T_{i}\right)^{\prime}\right)=0$; it is clear that this implies that S_{0} does not meet $S-S_{0}$ in curves, and then by the connectivity result Lemma 0.9 , (iii), that $S=S_{0}$. Then $\nu^{*} D \stackrel{\text { num }}{\sim} 0$ is impossible: by Lemma 0.9 , (i)

$$
0<\left(m D-K_{X}\right)^{2} D=\nu^{*}\left(m D-K_{X}\right) \nu^{*} D .
$$

Subcase $\nu^{*} D \stackrel{\text { num }}{\nsim} 0$ In this case $\nu^{*} D$ is nef and $\left(\nu^{*} D\right)^{2}=0$, so that $(* * *)$ gives $\left(\nu^{*} D\right) \Gamma_{i}=0$ for every exceptional curve Γ_{i} of j; using $j_{*} \mathcal{O}_{S}=\mathcal{O}$, it follows that $\nu^{*} D=j^{*} D_{G}$, where D_{G} is an effective \mathbb{Q}-divisor on $G ;\left(\nu^{*} D\right)^{2}=0$ implies $D_{G}^{2}=0$, so that G is not a simple Aelian variety, hence F has a surjective morphism to an elliptic curve. Q.E.D.

3 Computing $h^{0}(m D)$ and $h^{0}\left(m D-K_{X}\right)$

Write $r=$ index of X; for $q \in \mathbb{Z}$, write $q=p r+i$ with $0 \leq i \leq r-1$. Let $f: Y \rightarrow X$ be a resolution which coincides with the minimal resolution above the Du Val locus, and such that the exceptional locus of f is a divisor with normal crossings.

Proposition 3.1 (i) Suppose that $A \in \operatorname{Pic} X$ is such that $A-K_{X}$ is nef and big. Then $H^{k}(X, A)=0$ for $k>0$, and

$$
\begin{aligned}
h^{0}(X, A) & =\chi(X, A)=\chi\left(Y, f^{*} A\right) \\
& =\frac{1}{6} A^{3}-\frac{1}{4} A^{2} K_{X}+\frac{1}{12}\left(A K_{X}^{2}+f^{*} A c_{2}(Y)\right)+\chi\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

(ii) Suppose that $A \in \operatorname{Pic} X$ and $q \in \mathbb{Z}$ are such that $A+(q-1) K_{X}$ is nef and big; then

$$
\begin{aligned}
h^{0}\left(X, A+q K_{X}\right) & \geq h^{0}\left(f^{*}\left(A+\operatorname{pr} K_{X}\right)+i K_{Y}+\lceil-(i-1) \Delta\rceil\right) \\
& =\chi\left(f^{*}\left(A+\operatorname{pr} K_{X}\right)+i K_{Y}+\lceil-(i-1) \Delta\rceil\right) ;
\end{aligned}
$$

if we set $R_{i}=i \Delta+\lceil-(i-1) \Delta\rceil$, this is equal to

$$
\begin{aligned}
&=\frac{1}{6}\left(A+q K_{X}\right)^{3}-\frac{1}{4}\left(A+q K_{X}\right)^{2} K_{X} \\
&+\frac{1}{12}\left(\left(A+q K_{X}\right) K_{X}^{2}+f^{*}\left(A+q K_{X}\right) c_{2}(Y)\right) \\
&+\frac{1}{6} R_{i}^{3}-\frac{1}{4} R_{i}^{2} K_{Y}+\frac{1}{12} R_{i}\left(K_{Y}^{2}+c_{2}(Y)\right)+\chi\left(\mathcal{O}_{X}\right) .
\end{aligned}
$$

Proof The \mathbb{Q}-divisor

$$
\begin{aligned}
N & =f^{*}\left(A+p r K_{X}\right)+(i-1) K_{Y}-(i-1) \Delta \\
& =f^{*}\left(A+(q-1) K_{X}\right)
\end{aligned}
$$

is nef and big on Y, so that vanishing gives $H^{k}\left(\lceil N\rceil+K_{Y}\right)=0$ for $k>0$; now

$$
\lceil N\rceil+K_{Y}=f^{*}\left(A+\operatorname{pr} K_{X}\right)+i K_{Y}+\lceil-(i-1) \Delta\rceil .
$$

For (i), $p=i=0$, so that $\lceil N\rceil+K_{Y}=f^{*} A+\lceil\Delta\rceil$. Now from the exact sequence

$$
0 \rightarrow \mathcal{O}_{Y}\left(f^{*} A\right) \rightarrow \mathcal{O}_{Y}\left(f^{*} A+\lceil\Delta\rceil\right) \rightarrow \mathcal{O}_{\lceil\Delta\rceil}(\lceil\Delta\rceil) \rightarrow 0
$$

we get

$$
H^{k}\left(\mathcal{O}_{\lceil\Delta\rceil}(\lceil\Delta\rceil)\right)=H^{k+1}\left(\mathcal{O}_{Y}\left(f^{*} A\right)\right) \quad \text { for } k \geq 0
$$

Since $R^{k} f_{*} \mathcal{O}_{Y}=0$ for $k>0$,

$$
H^{k}\left(\mathcal{O}_{\lceil\Delta\rceil}(\lceil\Delta\rceil)\right)=H^{k+1}\left(\mathcal{O}_{X}(A)\right) \quad \text { for } k \geq 0
$$

The left-hand side does not depend on the particular $A \in \operatorname{Pic} X$, and by taking A to be a large multiple of an ample divisor the right-hand side is zero by Serre vanishing. Hence $H^{k}\left(\mathcal{O}_{\lceil\Delta\rceil}(\lceil\Delta\rceil)\right)=0$, and

$$
H^{k}(X, A)=H^{k}\left(Y, f^{*} A\right)=H^{k}\left(Y, f^{*} A+\lceil\Delta\rceil\right) \quad \text { for } k \geq 0
$$

This proves (i).
For (ii), I can assume that $i \geq 1$, so that $\lceil-(i-1) \Delta\rceil$ is minus an effective divisor, and

$$
\begin{aligned}
H^{0}\left(N+K_{Y}\right)=H^{0}\left(f^{*}\left(A+p r K_{X}\right)+i K_{Y}+\right. & \lceil-(i-1) \Delta\rceil) \\
& \subset H^{0}\left(f^{*}\left(A+p r K_{X}\right)+i K_{Y}\right) .
\end{aligned}
$$

Since by definition of canonical singularities $f_{*} \omega_{Y}^{\otimes i}=\omega_{X}^{[i]}$, the final group is equal to $H^{0}\left(X, A+q K_{X}\right)$. Finally,

$$
h^{0}\left(\lceil N\rceil+K_{Y}\right)=\chi\left(\lceil N\rceil+K_{Y}\right) ;
$$

substitute

$$
\lceil N\rceil+K_{Y}=f^{*}\left(A+q K_{X}\right)+R_{i}
$$

in the Riemann-Roch polynomial; using the fact that $f(\operatorname{Supp} \Delta)$ is a finite set, all terms involving $f^{*}\left(A+q K_{X}\right) \cdot \Delta$ or $f^{*}\left(A+q K_{X}\right) \cdot R_{i}$ vanish, giving the formula in (ii). Q.E.D.

Corollary 3.2 Let X, D and a be as in Theorem 0.0; then for any $m \geq a$, and any $D_{m} \in \operatorname{Pic} X$ with $D_{m} \stackrel{\text { num }}{\sim} m D$,

$$
h^{0}\left(D_{m}\right)=\frac{1}{6} D^{3} m^{3}-\frac{1}{4} D^{2} K_{X} m^{2}+\frac{1}{12}\left(D K_{X}^{2}+f^{*} D c_{2}(Y)\right) m+\chi\left(\mathcal{O}_{X}\right) .
$$

Proof Substitute $A=D_{m}$ in (i).
Note also that the hypothesis in Proposition 3.1 that f coincides with the minimal resolution above the Du Val locus is a posteori not necessary, since $f^{*} D c_{2}(Y)$ is independent of the model $f: Y \rightarrow X$.

Corollary 3.3 Let X, D and a be as in Theorem 0.0; then if $D \stackrel{\text { num }}{\nsim} 0$, $h^{0}\left(m D-K_{X}\right)$ tends to infinity with m.

Proof For $m \geq 2 a, m D-2 K_{X}$ is nef and big, so that Proposition 3.1, (ii) applies:

$$
\begin{aligned}
h^{0}\left(m D-K_{X}\right) & \geq \frac{1}{6}\left(m D-K_{X}\right)^{3}-\frac{1}{4}\left(m D-K_{X}\right)^{2} K_{X}+ \\
& +\frac{1}{12}\left(\left(D-K_{X}\right) K_{X}^{2}+f^{*}\left(m D-K_{X}\right) c_{2} Y\right)+\text { const. in } m .
\end{aligned}
$$

If $D^{2} \stackrel{\text { num }}{\nsim} 0$, this grows at least like m^{2}. If $D^{2} \stackrel{\text { num }}{\sim} 0$, the linear term in m is

$$
\left(D K_{X}^{2}+\frac{1}{12}\left(D K_{X}^{2}+f^{*} D c_{2}(Y)\right) m\right.
$$

Now by Corollary 3.2, $\frac{1}{12}\left(D K_{X}^{2}+f^{*} D c_{2}(Y)\right)$ is the coefficient of m in $h^{0}(m D)$, and therefore

$$
\frac{1}{12}\left(D K_{X}^{2}+f^{*} D c_{2}(Y) \geq 0\right.
$$

also

$$
D K_{X}^{2}=D\left(D-K_{X}\right)^{2}>0
$$

by Lemma 0.9. Q.E.D.

4 The base locus of $\left|-K_{X}\right|$ for a weak Fano 3 -fold

In this section I prove Theorem 0.5 by polishing up Shokurov's ingenious proof [12]. The key points are Proposition 4.5 and $4.8-4.10$ below, and the reader may like to jump forward to these while I unburden myself of some trivialities.

4.1 Preliminaries: 0-minimal resolution

Let X be a 3 -fold with canonical singularities and $\mathcal{I} \subset \mathcal{O}_{X}$ an ideal (in application, \mathcal{I} is the ideal defining the base locus of a linear system). If $C \subset X$ is any irreducible curve, $P \in C$ a general point and $P \in X^{\prime} \subset X$ a local general hyperplane section through $P, P \in X^{\prime}$ will be a Du Val singularity or nonsingular point. Let $\mathcal{I}^{\prime} \subset \mathcal{O}_{X^{\prime}, P}$ be the ideal induced by \mathcal{I}. A good resolution $f: Y \rightarrow X$ of X and \mathcal{I} is a resolution having a normal crossing divisor $\sum F_{j}$ which includes the exceptional locus of f, and such that

$$
\mathcal{I} \cdot \mathcal{O}_{Y}=\mathcal{O}_{Y}\left(-\sum r_{j} F_{j}\right) ;
$$

by Bertini's theorem, f induces a good resolution f^{\prime} of X^{\prime} and \mathcal{I}^{\prime} :

here each G_{k} is a connected component of some $F_{j} \cap Y^{\prime}$ and $r_{k}=r_{j}$ (that is, $\left.r\left(G_{k}\right)=r\left(F_{j}\right)\right)$. Say that f is a 0-minimal good resolution if f^{\prime} is the minimal good resolution of X^{\prime} and \mathcal{I}^{\prime} for all X^{\prime}. It is easy to construct this by successively blowing up 1-dimensional components of $\operatorname{Sing} X$ and of the locus where \mathcal{I} is not invertible, and then making an arbitrary resolution which is an isomorphism except over a finite set of X.

Lemma 4.2 Let $P \in X^{\prime}$ be a Du Val singularity or nonsingular point, and $\mathcal{I}^{\prime} \subset \mathcal{O}_{X^{\prime}, P}$ an ideal; suppose that $f^{\prime}: Y^{\prime} \rightarrow X^{\prime}$ is a good resolution of $P \in X^{\prime}$ and \mathcal{I}^{\prime}, and set

$$
\mathcal{I} \cdot \mathcal{O}_{Y^{\prime}}=\mathcal{O}_{Y^{\prime}}\left(-\sum r_{k} G_{k}\right) ; \quad K_{Y^{\prime}}=f^{\prime *} K_{X^{\prime}}+\sum a_{k} G_{k} .
$$

Then f^{\prime} is the minimal good resolution of X^{\prime} and \mathcal{I}^{\prime} if and only if there does not exist $a-1$-curve $G_{k} \subset f^{\prime-1} P \subset Y^{\prime}$ which meets at most two other components $G_{k_{i}}$ such that $r_{k}=\sum r_{k_{i}}$.

Lemma 4.3 Furthermore, if f^{\prime} is the minimal good resolution, the following hold:
(i) $r_{j} \geq a_{j}$ for all j.
(ii) Except for cases ($a-b$) below, $r_{j}>a_{j}$ for all j.
(iii) $r_{j} \leq 1$ for all j is only possible in one of the cases ($a-d$) below.

Here the exceptional cases are:
(a) $P \in X^{\prime}$ is nonsingular, $\mathcal{I}^{\prime}=m_{P}$ and f^{\prime} is the blowup of P;
(b) $\mathcal{I}^{\prime}=\mathcal{O}_{X^{\prime}, P}$ and f^{\prime} is the minimal resolution of $P \in X^{\prime}$;
(c) $P \in X^{\prime}$ is nonsingular, $\mathcal{I}^{\prime}=\mathcal{I}_{H}$ where $H \subset X^{\prime}$ is a curve with normal crossing at P (either nonsingular or a node), and $f^{\prime}=\mathrm{id}_{X^{\prime}}$;
(d) $P \in X^{\prime}$ is an A_{n} point for $n \geq 1$ and \mathcal{I}^{\prime} contains an element h defining a curve $H \subset X^{\prime}$ having a node at P.

The proof is an easy exercise.

4.4

Now let X be a weak Fano 3 -fold, that is, a projective 3 -fold with canonical singularities and $-K_{X} \in \operatorname{Pic} X$ nef and big. It follows from Riemann-Roch and vanishing (as in Proposition 3.1) that $h^{0}\left(-K_{X}\right)=g+2$, where $g \in \mathbb{Z}$, $g \geq 2$ is defined by $-K_{X}^{3}=2 g-2$. Let $\mathcal{I} \subset \mathcal{O}_{X}$ be the ideal defining the base locus of $\left|-K_{X}\right|$, that is, $\mathcal{I} \cdot \mathcal{O}_{X}\left(-K_{X}\right)$ is the \mathcal{O}_{X}-submodule of $\mathcal{O}_{X}\left(-K_{X}\right)$ generated by the H^{0}.

Let $f: Y \rightarrow X$ be a 0 -minimal good resolution of X and \mathcal{I}, and let $\sum F_{j}$ be as usual; set

$$
\left.\begin{array}{rl}
K_{Y} & =f^{*} K_{X}+\sum a_{j} F_{j}, \tag{*}\\
f^{*}\left|-K_{X}\right| & =|L|+\sum r_{j} F_{j},
\end{array}\right\}
$$

where $a_{j}, r_{j} \in \mathbb{Z}, a_{j}, r_{j} \geq 0$ and $|L|$ is a free linear system. I start by proving Theorem 0.5 assuming that $|L|$ is not composed of a pencil, that is, by Bertini's theorem, the general $L \in|L|$ is irreducible, nonsingular and $\kappa_{\text {num }}(L) \geq 2$.

Proposition 4.5 Under the hypotheses of 4.4, suppose that $|L|$ is not composed of a pencil. Then $\chi\left(\mathcal{O}_{L}\right) \geq 2$.

Proof L is a nonsingular surface, and $f^{*}\left(-K_{X}\right)_{\left.\right|_{L}}$ is nef and big by 0.9 , (ii). Thus vanishing gives

$$
H^{i}\left(L, \mathcal{O}_{L}\left(f^{*}\left(-K_{X}\right)+K_{L}\right)\right)=0 \quad \text { for } i \geq 0
$$

Using (*),

$$
K_{Y}+L+f^{*}\left(-K_{X}\right)=L+\sum a_{j} F_{j} ;
$$

hence

$$
\begin{aligned}
g+1 & \leq h^{0}\left(L, \mathcal{O}_{L}(L)\right) \leq h^{0}\left(L, \mathcal{O}_{L}\left(L+\sum a_{j} F_{j}\right)\right) \\
& =\chi\left(\mathcal{O}_{L}\right)+\frac{1}{2}\left(L+\sum a_{j} F_{j}\right) f^{*}\left(-K_{X}\right) L
\end{aligned}
$$

by Riemann-Roch on L. However,

$$
\begin{gathered}
2 g-2=f^{*}\left(-K_{X}\right)^{3} \geq f^{*}\left(-K_{X}\right)^{2} L=f^{*}\left(-K_{X}\right)\left(L+\sum r_{j} F_{j}\right) L \\
\geq f^{*}\left(-K_{X}\right)\left(L+\sum a_{j} F_{j}\right) L,
\end{gathered}
$$

using the fact that $r_{j} \geq a_{j}$ unless $f F_{j}=\mathrm{pt} \in X$ (Lemma 4.3, (i)). Q.E.D.

4.6 Proof of Theorem 0.5

Using (*) again,

$$
K_{L}=\left(\sum\left(a_{j}-r_{j}\right) F_{j}\right)_{\left.\right|_{L}}
$$

Lemma 4.3, (i) gives that $r_{j} \geq a_{j}$ unless $f F_{j}=\mathrm{pt} \in X$. Hence

$$
K_{L}=A-B,
$$

with $A \geq 0$ a divisor on L contracted by the birational map $f_{\left.\right|_{L}}$, and $B \geq 0$. In addition, Proposition 4.5 says that $p_{g}(L) \neq 0$; it follows that $B=0$ and that a minimal model of L has trivial canonical class. This also proves

$$
\begin{equation*}
a_{j} \geq r_{j} \quad \text { if } F_{j} \cap L \neq \emptyset . \tag{**}
\end{equation*}
$$

On the other hand, assuming that L is not composed with a pencil, L is nef with $\kappa_{\text {num }}(L) \geq 2$; hence I can apply vanishing in the form Kawamata [5], Corollary on p. 45, to the cohomology exact sequence of $\mathcal{O}_{Y} \rightarrow \mathcal{O}_{L}$ to deduce that $H^{1}\left(\mathcal{O}_{L}\right)=0$, and L is birational to a K3.

Pushing down (*) in 4.4,

$$
-K_{X}=S+\sum r_{j} f_{*} F_{j}
$$

where $S=f L$, and $f_{*} F_{j}$ is the cycle theoretic image, that is,

$$
f_{*} F_{j}= \begin{cases}\bar{F}_{j} & \text { if } F_{j} \text { maps birationally to } \bar{F}_{j} \subset X \\ 0 & \text { otherwise }\end{cases}
$$

If F_{j} is not contracted by f then $a_{j}=0$, so that by $(* *)$ either $r_{j}=0$ or $F_{j} \cap L=\emptyset$. But now I claim that S and $\sum r_{j} f_{*} F_{j}$ do not intersect along
curves of X; if $S=f L$ intersects some \bar{F}_{j} in a mobile curve (as L moves in $|L|)$ then $F_{j} \cap L \neq \emptyset$ and $r_{j}=0$ by $(* *)$; on the other hand, if all S pass through some fixed curve $C \subset X$ then $f^{-1} C$ contains at least one component F_{j} with $F_{j} \cap L \neq \emptyset$, hence $a_{j} \geq r_{j}$ by ($* *$). Applying Lemma 4.3, (ii) gives $C \not \subset \operatorname{Sing} X$, and the general element of $\left|-K_{X}\right|$ has multiplicity 1 along C, hence $C \subset S, C \not \subset \sum r_{j} f_{*} F_{j}$.

It follows from what I have just proved and from the connectedness lemma 0.9 , (iii) that $\sum r_{j} f_{*} F_{j}=0$ and that $S \in\left|-K_{X}\right|$; hence the irreducible surface S has $K_{S}=0$. Since the resolution $f_{\left.\right|_{L}}: L \rightarrow S$ has $K_{L} \geq 0, S$ has canonical singularities, that is, Du Val singularities. This proves Theorem 0.5 in this case.

4.7

The next result is the first step in proving that $|L|$ cannot be composed of a pencil.

Lemma If $\left|-K_{X}\right|$ is composed of a pencil then $L=(g+1) E$ with $|E|$ a free pencil, in particular $\mathcal{O}_{E}(E) \cong \mathcal{O}_{E} ; f^{*}\left(-K_{X}\right)^{2} E=1$, and there is a unique component F_{0} of $\sum F_{j}$ such that

$$
\begin{aligned}
& f^{*}\left(-K_{X}\right) F_{0} E=1, \quad r_{0}=1, \quad a_{0}=0 \\
& \text { and } \quad r_{j} f^{*}\left(-K_{X}\right) F_{j} E=0 \quad \text { for } j \neq 0 .
\end{aligned}
$$

Proof

$$
2 g-2=f^{*}\left(-K_{X}\right)^{3} \geq(g+1) f^{*}\left(-K_{X}\right)^{2} E,
$$

and by Lemma 0.9 , (ii), $f^{*}\left(-K_{X}\right)^{2} E>0$. This proves $f^{*}\left(-K_{X}\right)^{2} E=1$. For the rest, set

$$
D=f^{*}\left(-K_{X}\right)_{\left.\right|_{E}}=\left(\sum r_{j} F_{j}\right)_{\left.\right|_{E}} ;
$$

D is nef and $D^{2}=1$, so it has a component Γ with $D \Gamma=1$, and all the others have $D \Gamma=0$.

To prove that $a_{0}=0$, note that by Lemma 4.3, (i), $a_{0} \leq r_{0}=1$; on the other hand, a_{0} is even, since

$$
K_{E}+D=\left(\sum a_{j} F_{j}\right)_{\left.\right|_{E}}
$$

and

$$
\left(K_{E}+D\right) D=\left(\sum a_{j} F_{j}\right)_{\mid E} D=f^{*}\left(-K_{X}\right)\left(\sum a_{j} F_{j}\right) E=a_{0} . \quad \text { Q.E.D. }
$$

4.8

For the remainder of the proof, I want to work on a different model: using Theorem 0.0 and Proposition 0.1, (b), there is no loss of generality in assuming that $-K_{X}$ is ample; now let X_{1} be the normalised graph of the rational map $\varphi_{-K_{X}}: X \xrightarrow{ } \mathbb{P}^{1}$. Then there is a diagram

$$
\begin{aligned}
& \text { Y } \\
& { }^{f} \swarrow \quad \downarrow_{h} \searrow^{\varphi_{E}} \\
& X \stackrel{p}{\rightleftarrows} X_{1} \xrightarrow{q} \mathbb{P}^{1}
\end{aligned}
$$

in which p and q are the projections, $f: Y \rightarrow X$ is as in 4.4, φ_{E} is the morphism defined by $|E|$, and h the diagonal morphism.

Claim (i) $-K_{X_{1}}=p^{*}\left(-K_{X}\right)$, so that X_{1} has canonical singularities, $-K_{X_{1}} \in \operatorname{Pic} X_{1}$, and $-K_{X_{1}}$ is relatively ample for q;
(ii) $\left|-K_{X_{1}}\right|=\left|(g+1) E_{1}\right|+F_{1}$, where F_{1} is an irreducible surface, $\left|E_{1}\right| a$ free pencil, and for every $E_{1} \in\left|E_{1}\right|, E_{1}$ is a reduced irreducible surface and $F_{1} \cap E_{1}$ a reduced irreducible curve.

Proof Every curve $C \subset X_{1}$ contracted by p maps isomorphically to \mathbb{P}^{1}; it follows that if p contracts any surface $F \subset X_{1}$, this has to meet every fibre of q in a curve, and hence F corresponds birationally to $F_{0} \subset Y$, the component of Lemma 4.7; then $a_{0}=0$, and hence $-K_{X_{1}}=p^{*}\left(-K_{X}\right)$. (ii) follows because as in Lemma 4.7,

$$
\left(-K_{X_{1}}\right)^{2} E_{1}=\left(-K_{X_{1}}\right) F_{1} E_{1}=1 . \quad \text { Q.E.D. }
$$

4.9

Now F_{1} is a Gorenstein surface, having a free pencil $\left|E^{\prime}\right|$ every fibre of which is reduced and irreducible, and such that

$$
K_{F_{1}}=-(g+1) E^{\prime} ; \quad p_{a} E^{\prime}=1 .
$$

The long exact cohomology sequence of

$$
0 \rightarrow \mathcal{O}_{F_{1}}\left(-(g+1) E^{\prime}\right) \rightarrow \mathcal{O}_{F_{1}} \rightarrow \mathcal{O}_{(g+1) E^{\prime}} \rightarrow 0
$$

implies at once that $h^{1}\left(\mathcal{O}_{F_{1}}\right) \geq g$.
On the other hand, Lemma 1.10 applied to X_{1} gives that F_{1} has at worst ordinary double curves in codimension 1. I can now appeal to the following result to deduce a contradiction.

Lemma 4.10 Let F be an irreducible projective Cohen-Macaulay surface having a morphism $q: F \rightarrow \mathbb{P}^{1}$ with reduced irreducible fibres of arithmetic genus 1; suppose that F has at worst ordinary double curves in codimension 1 ; then $h^{1}\left(\mathcal{O}_{F}\right) \leq 1$.

Proof If F has isolated singularities and $f: G \rightarrow F$ is a resolution, then $h^{1}\left(\mathcal{O}_{G}\right) \leq 1$ from the classification of surfaces, and $h^{1}\left(\mathcal{O}_{F}\right) \leq h^{1}\left(\mathcal{O}_{G}\right)$ follows from the Leray spectral sequence for f :

$$
\begin{aligned}
& 0 \rightarrow H^{1}\left(\mathcal{O}_{F}\right) \\
& \rightarrow H^{1}\left(\mathcal{O}_{G}\right) \rightarrow R^{1} f_{*} \mathcal{O}_{G} \rightarrow \\
& \rightarrow H^{2}\left(\mathcal{O}_{F}\right)
\end{aligned} \rightarrow H^{2}\left(\mathcal{O}_{G}\right) \rightarrow 0 .
$$

Suppose then that F has a double curve; the hypothesis implies that F is not singular along a fibre, so that there is just one double curve C, and the general fibre of $q: F \rightarrow \mathbb{P}^{1}$ is a rational curve with a node at its intersection with C. Obviously $q_{\left.\right|_{C}}: C \rightarrow \mathbb{P}^{1}$ is an isomorphism. Let $\pi: G \rightarrow$ F be the normalisation; then by the classification of surfaces, $H^{1}\left(\mathcal{O}_{G}\right)=$ 0 . If \mathcal{C} is the conductor ideal of the normalisation then $\mathcal{C} \subset \mathcal{O}_{G}$ defines a reduced curve $D \subset G$ with $D \rightarrow C$ a double cover. It follows that there is an isomorphism $\pi_{*} \mathcal{O}_{G} / \mathcal{O}_{F} \cong \pi_{*} \mathcal{O}_{D} / \mathcal{O}_{C}$, and that $H^{0}\left(\pi_{*} \mathcal{O}_{G} / \mathcal{O}_{F}\right)$ is 0 - or 1 -dimensional depending on whether D has 1 or 2 connected components. The lemma follows from the exact sequence

$$
0 \rightarrow H^{0}\left(\pi_{*} \mathcal{O}_{G} / \mathcal{O}_{F}\right) \rightarrow H^{1}\left(\mathcal{O}_{F}\right) \rightarrow H^{1}\left(\mathcal{O}_{G}\right)
$$

This completes the proof of Theorem 0.5.

Counterexample 4.11 Lemma 4.10 is false without the hypothesis of ordinary double curves: let \mathbb{F}_{n} be the standard rational scroll with a section B having $B^{2}=-n$; the divisor $2 B$ is naturally a subscheme of \mathbb{F}_{n} and has a morphism $\pi: 2 B \rightarrow \mathbb{P}^{1}$ induced by the projection of \mathbb{F}_{n}. Take F to be the surface obtained by pinching \mathbb{F}_{n} along π; that is, F has the same underlying space as \mathbb{F}_{n}, but has sheaf of rings in such a way that $\mathcal{O}_{\mathbb{F}_{n}} / \mathcal{O}_{F} \cong \pi_{*} \mathcal{O}_{2 B} / \mathcal{O}_{\mathbb{P}^{1}}$; in other words, replace coordinate neighbourhoods Spec $k[X, Y]$ of \mathbb{F}_{n}, where $X=0$ defines B, by $\operatorname{Spec} k\left[X^{2}, X^{3}, Y\right]$.

Then it is immediate that F has a morphism $F \rightarrow \mathbb{P}^{1}$ with every fibre a cuspidal rational curve, and $K_{F}=-(n+2) E, H^{1}\left(\mathcal{O}_{F}\right)=n+1$.

5 Weak Theorem on the Cone

Definition 5.1 A normal variety X is \mathbb{Q}-factorial if every Weil divisor of X is \mathbb{Q}-Cartier.

Remarks (a) This is a local condition: every Weil divisor near $P \in X$ is the restriction of a global one, and the condition for a Weil divisor to be Cartier or \mathbb{Q}-Cartier is local.
(b) The condition is not invariant under local analytic equivalence. For example, an ordinary double point of a 3 -fold is analytically ($x y=z t$), which is the typical example of a nonfactorial variety. However, it is easy to show that a hypersurface $X_{d} \subset \mathbb{P}^{4}$ of degree $d \geq 3$ having an ordinary double point $P \in X$ as its only singularity has class group $\mathrm{Cl} X \cong \mathbb{Z}$, with the hyperplane section as generator. (Proof: Blowing up $P \in X \subset \mathbb{P}^{4}$ leads to a smooth very ample divisor $\widetilde{X} \subset \widetilde{\mathbb{P}}$; we know the divisors of $\widetilde{\mathbb{P}}$, and the result follows from the Lefschetz theorem.)
(c) If X is \mathbb{Q}-factorial and nonsingular in codimension 2 , and $D \subset X$ is a prime divisor, then D is Gorenstein in codimension 1, so that the \mathbb{Q}-divisor K_{D} is well defined and equal to $\left.\left(K_{X}+D\right)\right|_{D}$.

5.2

Throughout this section X is a projective 3-fold with isolated \mathbb{Q}-factorial canonical singularities. The notation is as in 0.3 ; I make the following definitions: a ray R of $\overline{\mathrm{NE}}$ is an extremal ray if it's extremal in the sense of convexity (that is, $R \not \subset$ convex hull of $\overline{\mathrm{NE}} \backslash R$). An extremal ray R is good if $K_{X} R<0$, and there exists an $H \in N_{\mathbb{Q}}^{1} X$ which is nef and such that $H^{\perp} \cap \overline{\mathrm{NE}}=R$. Let $\left\{R_{i}\right\}_{i \in I}$ be the set of good extremal rays; using Corollary 0.3 it is clear that each R_{i} is of the form $R_{i}=\mathbb{R}_{+} C_{i}$ for some curve $C_{i} \subset X$. In particular each ray is rational in $N_{1}(X)$, and there are at most countably many.

Theorem 5.3 Under the stated hypotheses,

$$
\overline{\mathrm{NE}}(X)=\left(\overline{\mathrm{NE}}_{K_{X}}+\sum_{i \in I} R_{i}\right)^{-},
$$

where - denotes closure in the usual real topology of $N_{1} X$, and for $D \in N^{1} X$, $\overline{\mathrm{NE}}_{D}=\{z \in \overline{\mathrm{NE}} \mid D z \geq 0\}$. In particular if K_{X} is not nef then X has a good extremal ray.

Remarks This is a weak version of the conjectured Theorem on the Cone; it is conjectured (and proved by Mori in the nonsingular case) that
(i) the rays R_{i} are discrete in the open halfspace $\left(K_{X} z<0\right)$ of $N_{1} X$ (so that there is no need to take closure in the theorem);
(ii) each ray R_{i} is spanned by a rational curve C_{i};
(iii) the C_{i} can be chosen so that $-4 \leq K_{X} C_{i}<0$.

It is possible that these could be proved a posteori using Corollary 0.3 and Proposition 0.1; for example, (ii) can be checked in all cases except for that of a \mathbb{Q}-Fano 3 -fold X, when it is required to prove that X contains a rational curve (conjecturally it is uniruled). Similarly, (iii) might be attacked on a case-by-case basis. ${ }^{3}$ Part of (i) is implied by (iii), since assuming (iii) it is easy to see that the rays R_{j} are discrete in a neighbourhood of any fixed ray R_{i}.

I believe the hypotheses on the singularities of X can be weakened to allow any canonical singularities, using the methods of [9].

The next two results are the main steps in the proof of Theorem 5.3.
Kawamata's version 5.4 ([4], §2) Let D be an effective \mathbb{Q}-divisor, and H an ample \mathbb{Q}-Cartier divisor. Then there exists a finite number of curves $l_{j} \subset X$ such that

$$
\overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}_{K_{X}+H}+\overline{\mathrm{NE}}_{D}+\sum R_{+} l_{j} .
$$

Key rationality lemma 5.5 Suppose that H is an ample \mathbb{Q}-divisor, and that K_{X} is not nef. Write $H_{t}=t H+K_{X}$, and set

$$
b=\inf \left\{t \in \mathbb{Q} \mid H_{t} \text { is ample }\right\}
$$

(that is $b \in \mathbb{R}$, and for $t \in \mathbb{Q}, H_{t}$ is ample if $t>b$, and not nef if $t<b$). Then $b \in \mathbb{Q}$.

I start by deducing Theorem 5.3 from the key rationality lemma 5.5 and its relative form Lemma 5.11 below.

Definition 5.6 A good supporting function of $\overline{\mathrm{NE}}$ is an element $L \in N_{\mathbb{Q}}^{1} X$ such that L is nef and $F_{L}=L^{\perp} \cap \overline{\mathrm{NE}}$ is a nonzero face of $\overline{\mathrm{NE}}$ entirely contained in the open halfspace $\left(K_{X} z<0\right) \subset N_{1} X$; then F_{L} is a good face of NE. (Note that 0 is good if and only if $-K_{X}$ is ample, in which case $\overline{\mathrm{NE}}$ is itself a good face.)

By the argument given in 0.3 , for suitable $a \gg 0, a L-K_{X}$ is ample, so that any such L is given by the construction of Lemma 5.5. Note also that a good extremal ray of $\overline{\mathrm{NE}}$ (as defined in 5.2) is the same thing as a good 1 -face of $\overline{\mathrm{NE}}$.

[^2]Lemma 5.7 (i) $\overline{\mathrm{NE}}=\left(\overline{\mathrm{NE}}_{K_{X}}+\sum_{L} F_{L}\right)^{-}$;
(ii) $\overline{\mathrm{NE}} \cap\left(K_{X} z<0\right)=\bigcap_{L}(L z \geq 0) \cap\left(K_{X} z<0\right)$.

Here the sum and the intersection on the right-hand sides are taken over all good supporting functions $L \in N_{\mathbb{Q}}^{1} X$.

Proof Write B for the right-hand side of (i); then $B \cap\left(K_{X} z \geq 0\right)=\overline{\mathrm{NE}}_{K_{X}}$, and the inclusion $\overline{\mathrm{NE}} \supset B$ is trivial. The next statement, together with Kleiman's criterion, gives the opposite inclusion.

Claim Let $M \in N_{\mathbb{Q}}^{1} X$ be such that $M>0$ on B; then M is ample.
To see this, note that $\overline{\mathrm{NE}}_{K_{X}}$ is the closed convex cone defined by the inequalities $H z \geq 0$ for ample H and $K_{X} z \geq 0$. By convexity, $M>0$ on $\overline{\mathrm{NE}}_{K_{X}}$ implies that M is a finite positive linear combination

$$
M=\sum m_{i} H_{i}+m_{0} K_{X}, \quad \text { with } m_{i} \in \mathbb{R}, m_{i} \geq 0
$$

where the H_{i} are ample. Since by $5.4 \overline{\mathrm{NE}}$ has at least one face F_{L} in the $\left(K_{X} z<0\right)$ halfspace, at least one $m_{i}>0$, which implies that $M-m_{0} K_{X}$ is ample for some $m_{0} \geq 0$, and I can clearly take $m_{0} \in \mathbb{Q}$. Now applying 5.4 to $H=M-m_{0} K_{X}$, it follows that $L=M+a K_{X}$ is a good supporting function for some $a \in \mathbb{Q}, a>-m_{0}$. Since $F_{L} \subset B$ and $K_{X}<0$ on F_{L}, necessarily $a>0$. I've got $M-m_{0} K_{X}$ ample with $m_{0} \geq 0$, and $M+a K_{X}$ nef with $a>0$, which implies that M is ample.

This proves (i); (ii) is left as an easy exercise.

5.8

Lemma 5.7 shows that $\overline{\mathrm{NE}}$ is the closed convex hull of its good faces, together with $\overline{\mathrm{NE}}_{K_{X}}$. The strategy from now on is to prove that each good face F_{L} of dimension ≥ 2 is in turn the closed convex hull of its proper faces (Lemma 5.12 below); Theorem 5.3 then follows by induction on the dimension.

Fix then a good face F_{L} of $\overline{\mathrm{NE}}$; by Lemma 0.3 there is a morphism $\varphi: X \rightarrow$ Z contracting exactly the curves $C \in F_{L}$; by construction $-K_{X}$ is relatively ample for φ. To carry out my strategy I need relative versions of the work so far, starting with the terminology (compare Kleiman [6], Chap. IV, §4). There are dual sequences (which will turn out to be exact in my case)

$$
\begin{array}{lllll}
N_{1}(X / Z) & \hookrightarrow & N_{1} X & \stackrel{\varphi_{*}}{\rightarrow} & N_{1} Z, \\
N^{1}(X / Z) & \leftarrow & N^{1} X & \stackrel{\varphi^{*}}{\longleftrightarrow} & N^{1} Z . \tag{*}
\end{array}
$$

Here $N_{1}(X / Z) \subset N_{1} X$ is the subspace generated by curves C contracted by φ, and $N^{1}(X / Z)$ is its dual; the surjectivity of $N^{1} X \rightarrow N^{1}(X / Z)$ is standard in the theory of vector spaces. φ^{*} and φ_{*} are dual maps so that $\operatorname{ker} \varphi_{*}=\left(\operatorname{im} \varphi^{*}\right)^{\perp}$. Note also that

$$
\mathrm{NE}(X) \cap L^{\perp}=\mathrm{NE}(X) \cap N_{1}(X / Z)=\mathrm{NE}(X / Z) \subset N_{1}(X / Z)
$$

is the cone of effective 1-cycles contracted by φ.

5.9

It follows from the relative version of Kleiman's criterion that

$$
\begin{equation*}
F_{L}=\overline{\mathrm{NE}}(X) \cap N_{1}(X / Z)=(\mathrm{NE}(X / Z))^{-} . \tag{*}
\end{equation*}
$$

To see this, note that the inclusion \supset is trivial; on the other hand, if $H \in$ $N_{\mathbb{Q}}^{1}(X / Z)$ is strictly positive on $(\mathrm{NE}(X / Z))^{-}$then by [6], p. 336, H is relatively ample for φ. Hence H comes from some ample $\widetilde{H} \in N^{1} X$, and so $H>0$ on $\overline{\mathrm{NE}}(X) \cap N_{1}(X / Z)$.

Proposition 5.10 Let $\varphi: X \rightarrow Z$ be the contraction of a good face F_{L} of $\overline{\mathrm{NE}}$.
(i) If $D \in N^{1} X$ is relatively nef for φ then there exists $H \in N^{1} Z$ such that $D+\varphi^{*} H$ is nef;
(ii) the dual sequences (*) are exact.
(Note that although both statements here look formal, the proofs given below are ad hoc; probably the statements are false for general φ.)

Proof (i) If $Z=\mathrm{pt}$ there is nothing to prove. Suppose without loss of generality that $D \in \operatorname{Pic} X$.

Claim Outside a finite number of fibres of $\varphi, \mathcal{O}_{X}(D)$ is relatively generated by its H^{0}, that is, $\varphi^{*} \varphi_{*} \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}(D)$ is surjective.

This proves (i), since for any sufficiently ample $H \in \operatorname{Pic} Z$, the linear system $\left|D+\varphi^{*} H\right|$ is free outside a finite number of fibres of φ, and then $\left(D+\varphi^{*} H\right) C \geq$ 0 for every curve $C \subset X$.

I prove the claim assuming $\operatorname{dim} Z=2$; then since $-K_{X}$ is relatively ample, all but a finite number of fibres of φ are isomorphic to conics. A nef invertible sheaf on a conic is generated by its H^{0}, and $\varphi^{*} \varphi_{*} \mathcal{O}_{X}(D) \rightarrow \mathcal{O}_{X}(D)$ in a neighbourhood of such a fibre follows by an easy use of coherent base change.

The cases $\operatorname{dim} Z=1$ or 3 are no harder, and are left to the reader.
(ii) follows from (i) and from Theorem 0.0: if $D \in N^{1} X$ maps to 0 in $N^{1}(X / Z)$ then by (i), for sufficiently ample $H \in N^{1} X, D+\varphi^{*} H$ satisfies the hypotheses of Theorem 0.0 ; the morphism corresponding to $D+\varphi^{*} H$ contracts the curves with $\left(D+\varphi^{*} H\right) C=0$, and hence coincides with φ, so that $D+\varphi^{*} H \stackrel{\text { num }}{\sim} \varphi^{*} M$ for some $M \in N^{1} Z$. Q.E.D.

Lemma 5.11 Suppose that $H \in N_{\mathbb{Q}}^{1} X$ is relatively ample; write $H_{t}=t H+$ K_{X}, and set

$$
b=\inf \left\{t \in \mathbb{Q} \mid H_{t} \text { is relatively ample for } \varphi\right\} .
$$

Then $b \in \mathbb{Q}$.
This is a relative version of the rationality lemma 5.5 , and will be proved together with it (see 5.14).

Lemma 5.12 If $\operatorname{dim} N^{1}(X / Z) \geq 2$ then $\overline{\mathrm{NE}}(X / Z)$ is the closed convex hull of its proper good faces. In other words, defining a good supporting function $M \in N_{\mathbb{Q}}^{1} X$ in the obvious way,

$$
\overline{\mathrm{NE}}(X / Z)=\left(\sum_{M \neq 0}\left(M^{\perp} \cap \overline{\mathrm{NE}}(X / Z)\right)^{-}\right.
$$

where the sum on the right-hand side is over all nonzero good supporting functions M.

Proof As before, write B for the right-hand side; the inclusion \supset is trivial. If $z \in \overline{\mathrm{NE}}(X / Z) \backslash B$ with $z \neq 0$ then there exists a separating function $M \in N^{1}(X / Z)$ such that $M z<0$ but $M>0$ on B; by the compactness of $B \cap$ (unit sphere), I can shift M very slightly if necessary to ensure that $M \in N_{\mathbb{Q}}^{1} X$ and that M is not a rational multiple of $K_{X}($ since $\operatorname{dim} \geq 2)$.

Now Lemma 5.11 gives that $M+a K_{X}$ is a nonzero good supporting function of $\overline{\mathrm{NE}}(X / Z)$ for some $a \in \mathbb{Q}$. I now have a contradiction, since on the one hand $M z<0$ and $(M+a K) z \geq 0$ implies that $a<0$, and on the other, since M is positive on the good face $\left(M+a K_{X}\right)^{\perp} \cap \overline{\mathrm{NE}}(X / Z)$, I get $a>0$. This proves Lemma 5.12.

It is clear from Proposition 5.10, (i) that a good face of $\overline{\mathrm{NE}}(X / Z)$ is a good face of $\overline{\mathrm{NE}}(X)$; this proves Theorem 5.3.

5.13 Proof of Key Rationality Lemma 5.5

Step 1 Suppose that H_{t} is an effective \mathbb{Q}-divisor for some $t \in \mathbb{Q}$ with $t \leq b$; then by Kawamata's theorem 5.4 there are finitely many curves $l_{j} \subset X$ such that

$$
\overline{\mathrm{NE}}(X)=\overline{\mathrm{NE}}_{H_{t}}+\sum \mathbb{R}_{+} l_{j}
$$

Then clearly,

$$
b=\max \left\{t, \frac{-K_{X} l_{i}}{H l_{i}}\right\} \in \mathbb{Q}
$$

STEP 2 Let t be an indeterminate, and consider the cubic polynomial

$$
p(t)=H_{t}^{3}=\left(t H+K_{X}\right)^{3} \in \mathbb{Q}[t] .
$$

Then since $p^{\prime}(t)=3 H\left(t H+K_{X}\right)^{2}$,

$$
H_{b}^{2} \stackrel{\text { num }}{\sim} 0 \Longleftrightarrow b \text { is a repeated root of } p \Longrightarrow b \in \mathbb{Q} .
$$

Thus I need only treat the case $H_{b}^{2} \stackrel{\text { num }}{\nsim} 0$.
Step 3 If $H_{b}^{3}>0$ then there exists $q, m \in \mathbb{Z}, q, m>0$ such that $m / q \leq b$ and $H^{0}\left(m H+q K_{X}\right) \neq 0$, hence by Step $1, b \in \mathbb{Q}$.

Proof For $m \in \mathbb{Z}, m>0$, set $q=\lceil m / b\rceil$; then

$$
q \geq \frac{m}{b}>q-1
$$

by definition of b,

$$
m H+(q-1) K_{X}
$$

is an ample \mathbb{Q}-divisor, so that by Proposition 3.1, (ii),

$$
\begin{equation*}
h^{0}\left(m H+q K_{X}\right)=\frac{1}{6}\left(m H+q K_{X}\right)^{3}-\frac{1}{4}\left(m H+q K_{X}\right)^{2} K_{X}+O(m) \tag{1}
\end{equation*}
$$

where $O(m)$ denotes terms bounded by a linear function of m. Write

$$
\begin{align*}
m H+q K_{X} & =\frac{m}{b}\left(b H+K_{X}\right)+\left(q-\frac{m}{b}\right) K_{X} \\
& =\frac{m}{b} H_{b}+\left\{\frac{-m}{b}\right\} K_{X}, \tag{2}
\end{align*}
$$

where $\}$ denotes "fractional part" of a real number. Then

$$
h^{0}\left(m H+q K_{X}\right)=\frac{1}{6} H_{b}^{3}\left(\frac{m}{b}\right)^{3}+O\left(m^{2}\right)
$$

and tends to infinity with m. This proves this case.

STEP 4 If $H_{b}^{3}=0$ but $H_{b}^{2} \stackrel{\text { num }}{\nsim} 0$ then $2 / b \in \mathbb{Z}$.
Proof Substituting (2) into (1) and evaluating gives

$$
\begin{equation*}
0 \leq h^{0}\left(m H+q K_{X}\right)=\left(\frac{1}{2}\left\{\frac{-m}{b}\right\}-\frac{1}{4}\right) H_{b}^{2} K_{X}\left(\frac{m}{b}\right)^{2}+O(m) . \tag{3}
\end{equation*}
$$

Now $H_{b}^{3}=0, H_{b}^{2} H>0$ implies that $H_{b}^{2} K_{X}<0$. Furthermore, if b is irrational, or if $1 / b$ is rational with denominator ≥ 3 then for infinitely many values of m, I have $\{-m / b\} \geq 2 / 3$. The right-hand side of (3) is then negative for large m, which is a contradiction. This completes the proof of Rationality Lemma 5.5.

5.14 Proof of Lemma 5.11

If $Z=\mathrm{pt}$ then Lemma 5.11 is contained in 5.5. If $\operatorname{dim} Z=1$ or 2 , let

$$
b^{\prime}=\inf \left\{t \in \mathbb{Q}\left|H_{t}\right|_{A} \text { is ample for a general fibre } A \text { of } \varphi\right\} .
$$

The obviously $b^{\prime} \leq b$, and by the statement of Rationality Lemma 5.5 in dimension 1 or 2 (the proof of which I leave to the reader), $b^{\prime} \in \mathbb{Q}$. If $b^{\prime}<b$ then there is some $t<b$ such that H_{t} is relatively ample on the general fibre of φ; then for some sufficiently ample $D \in \operatorname{Pic} Z, H_{t}+\varphi^{*} D$ is effective, and then $b \in \mathbb{Q}$ follows from Kawamata's Theorem 5.4 as in Step 1 above.

If φ is birational, then $H_{t}+\varphi^{*} D$ is effective for any $t \in \mathbb{Q}$ and sufficiently ample $D \in \operatorname{Pic} Z$, so that I conclude in the same way.

References

[1] X. Benveniste, Sur l'anneau canonique de certaines variétés de dimension 3, Invent. Math. 73 (1983), 157-164
[2] Y. Kawamata, On the finiteness of generators of a pluricanonical ring for a 3-fold of general type, Amer. J. Math. 106 (1984), 1503-1512
[3] Y. Kawamata, Elementary contractions of algebraic 3-folds. Ann. of Math. 119 (1984), 95-110.
[4] Y. Kawamata, The cone of curves of algebraic varieties. Ann. of Math. 119 (1984), 603-633
[5] Y. Kawamata, A generalisation of Kodaira-Ramanujam's vanishing theorem, Math. Ann. 261 (1982), 43-46
[6] S. Kleiman, Towards a numerical theory of ampleness, Ann. of Math. 84 (1966), 293-344
[7] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133-176
[8] M. Reid, Canonical 3-folds, in Journées de géométrie algébrique d'Angers, A. Beauville (ed.), Sijthoff and Noordhoff, Alphen (1980), 273-310
[9] M. Reid, Minimal models of canonical 3-folds, in Algebraic varieties and analytic varieties (Tokyo, 1981), Advanced stud. in pure math 1, S. Iitaka and H. Morikawa (eds.) Kinokuniya, and North-Holland 1982, 131-180
[10] M. Reid, Decomposition of toric morphisms, in Arithemetic and Geometry, papers dedicated to I.R. Shafarevich, M. Artin and J. Tate (eds.) Birkhäuser, 1983, vol. 2, 395-418
[11] V.G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR, Ser. Math. 46 (1982), 371-408 = Math USSR Izvestiya 20 (1983), 355-390
[12] V.V. Shokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430-441 = Math USSS Izvestiya 14 (1980)
[13] V.V. Shokurov, The nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), 635-651 = Math USSS Izvestiya 26 (1986), 591-604
[14] V.V. Shokurov, The closed cone of curves of algebraic 3-folds, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 203-208 = Math USSR Izv. 24 (1985), 193-198

[^0]: ${ }^{1}$ Reduced and discrete is intended, because $H^{1}\left(\mathcal{O}_{X}\right)=0$; see the proof in 1.7.

[^1]: ${ }^{2}$ Essentially all the results of this paper have been generalised to all dimensions in 2 preprints by Shokurov [13] and Kawamata [4]. Shokurov's paper also sidesteps the difficult proof of $\S 2$. I believe that some form of the other main result (Theorem 5.3) is proved in Shokurov [14]. (Note added in 1983-84.)

[^2]: ${ }^{3}($ iii $) \Longrightarrow(\mathrm{i})$ is standard in Mori theory: for all ample H and $\varepsilon \geq 0$ the irreducible curves $C \subset X$ such that $H C<-(1 / \varepsilon) K_{X} C \leq 4 / \varepsilon$ belong to a finite number of algebraic equivalence classes; hence (iii), together with Theorem 5.3 would imply $\overline{\mathrm{NE}}=\overline{\mathrm{NE}}_{K_{X}+\varepsilon H}+\sum R_{i}$, where the sum takes place over a finite number of rays representing these classes. (Note added in 1983-84.)

