Projective morphisms according to Kawamata

Miles Reid

0 Introduction

X is a projective 3-fold with canonical singularities, $k = \mathbb{C}$; the terminology will be explained in 0.8 below.

Theorem 0.0 (on projective morphisms) Let $D \in \operatorname{Pic} X$ be nef, and suppose that $aD - K_X$ is nef and big for some $a \in \mathbb{Z}$ with $a \ge 1$. Then |mD| is free for every $m \gg 0$; equivalently, there exists a morphism to a projective variety $\varphi \colon X \to Z$ such that $\varphi_* \mathcal{O}_X = \mathcal{O}_Z$, and an ample $H \in \operatorname{Pic} Z$ such that $D = \varphi^* H$.

0.1 Properties of φ

- (a) Vanishing: $R^i \varphi_* \mathcal{O}_X = 0$ for i > 0, and in particular $\chi(\mathcal{O}_X) = \chi(\mathcal{O}_Z)$; furthermore, $H^i(Z, H^{\otimes m}) = 0$ for all $m \ge a$ and i > 0.
- (b) Relative anticanonical model: φ factors as $X \xrightarrow{g} \overline{X} \xrightarrow{h} Z$ where g is birational, \overline{X} has canonical singularities, $K_X = g^* K_{\overline{X}}$, and $-K_{\overline{X}}$ is relatively ample for h.
- (c) Cases according to dim $Z = \kappa_{\text{num}}(D) = \kappa(D)$:

dim Z = 3. Then $\varphi \colon X \to Z$ is birational, and Z has rational singularities.

dim Z = 2. Then $\varphi \colon X \to Z$ is a *weak conic bundle*: Z is a normal surface with rational singularities, and the general fibre of φ is \mathbb{P}^1 .

dim Z = 1. Then $\varphi: X \to Z$ is a weak del Pezzo fibre space: Z is a nonsingular curve, and the general fibre A of φ is a surface with at worst Du Val singularities, such that $-K_A$ is nef and big.

2 Projective morphisms according to Kawamata

Z = pt. Then X is a weak \mathbb{Q} -Fano 3-fold, that is, $-K_X$ is nef and big; $H^i(\mathcal{O}_X) = 0$ for all i > 0, and Pic X is reduced¹ and torsion free; in this case $D = 0 \in \text{Pic } X$.

Corollary 0.2 (finite generation) If K_X is nef and big, that is, X is a minimal model of a 3-fold of general type) then $|mrK_X|$ is free for every $m \gg 0$, where r = index of X; in particular, the canonical ring is finitely generated.

Proof Theorem 0.0 applies at once to $D = rK_X$. The final part comes from Zariski's projective normalisation: if m is such that $|mK_X|$ is free, then the canonical ring of X is a finite module over the subring generated by $H^0(mK_X)$.

0.3

The second corollary requires some setting up: write

$$N^{1}_{\mathbb{Q}}X = \{ \text{Cartier divisors} \otimes \mathbb{Q} \} / \overset{\text{num}}{\sim}, \quad N^{1}X = N^{1}_{\mathbb{Q}}X \otimes \mathbb{R}; \\ \text{and} \quad N_{1}X = \{ 1\text{-cycles} \otimes \mathbb{R} \} / \overset{\text{num}}{\sim};$$

by definition of numerical equivalence N^1X and N_1X are dual finite dimensional vector spaces. Let $\overline{NE} = \overline{NE}(X) \subset N_1X$ be the Kleiman–Mori closed cone of effective 1-cycles.

Corollary (contraction theorem) Let F be a face of $\overline{NE}(X)$ entirely contained in the half-space $\overline{NE}_{-} = \{z \mid K_X z < 0\}$, and suppose that there exists a nef class $d \in N^1_{\mathbb{Q}}X$ such that $d^{\perp} \cap \overline{NE} = F$. Then there exists a morphism $\varphi = \operatorname{cont}_F \colon X \to Y$ with $\varphi_* \mathcal{O}_X = \mathcal{O}_Z$ and such that for every curve $C \subset X$,

$$\varphi(C) = \operatorname{pt} \in Y \iff C \in F.$$

Proof Write

$$\overline{\mathrm{NE}}_{+} = \{ z \in \overline{\mathrm{NE}} \mid K_X z \ge 0 \},\$$

and let Σ be the intersection of NE₊ with the unit sphere in N_1X . Then d is positive on Σ , and since Σ is compact, d is bounded away from zero; also K_X , considered as a linear form on N_1X , is bounded on Σ , so that for any sufficiently large $a \in \mathbb{R}$, $ad - K_X$ is positive on Σ , and then obviously positive on the whole of NE. If a is chosen so that in addition ad is represented by a divisior $D \in \text{Pic } X$ then $D - K_X$ is ample on X by Kleiman's criterion, and Theorem 0.0 applies.

¹Reduced and discrete is intended, because $H^1(\mathcal{O}_X) = 0$; see the proof in 1.7.

Remark In §5 I prove that under certain restrictions on the singularities of X, if K_X is not nef, then there always exists a face F satisfying the hypotheses of Corollary 0.3, and in fact F can be taken to be a ray R. This is a weak form of the conjectured "Theorem on the Cone" for singular 3-folds.

In [9], 4.18, I outlined a program in five steps for constructing minimal models of 3-folds. The results of this paper cover Steps 2 and 3 of this program in a fairly satisfactory way.

0.4

The following is an effective statement that can be obtained by the method of proof of Theorem 0.0:

Corollary Let X, D, a be as in Theorem 0.0.

- (i) If $m \ge 2a+2$ then the general element of M = |mD| is reduced and has only ordinary double curves along 1-dimensional components of Sing X.
- (ii) If $m \ge 3a + 3$ the general element of M has only double curves, and only ordinary double curves if $m \ge 6a + 6$.

0.5

The following result is proved in §4, using the notation, and in one place the method, of the proof of Theorem 0.0.

Theorem (Shokurov [12]) Suppose that $-K_X \in \text{Pic } X$ is big and nef (that is, X is a weak Fano 3-fold). Then the general element $S \in |-K_X|$ is a K3 surface with at worst Du Val singularities.

It follows from the theory of linear systems on K3s, applied to the minimal resolution of S, that if $|-K_X|$ is not free then its scheme theoretic base locus is isomorphic to \mathbb{P}^1 or to a (reduced) point.

0.6 Discussion

Kawamata's method is a higher dimensional analog of the Kodaira–Ramanujam–Bombieri connectedness method for surfaces. The big drawback is that the method as it stands is not effective: whereas the method for surfaces allows us to choose a point $P \in X$, construct a divisor D with $P \in \text{Sing } D$, and conclude that P is not a base point of $|D + K_X|$, the method proves only that there is *some* base component B of |mD| of "maximal multiplicity" (see 1.4), and that then there is a b_0 such that for $b \geq b_0$, B is not a base component of |bD|.

- 4 Projective morphisms according to Kawamata
- **Problems 0.7** (a) Make Theorem 0.0 effective; in particular, if the canonical class $K_X \in \operatorname{Pic} X$ is nef and big, prove that $|mK_X|$ is free for $m \geq$ some reasonable bound (say 10).
 - (b) Does Theorem 0.0 hold for dim $X \ge 4$ (assuming if necessary that $\kappa(D) \ge 0$)? The present proof fails to go through at one point, namely Proposition 1.5, at which higher Chern classes turn up in the formula for $h^0((bf^*D + A)|_B)$.
 - (c) The following statement would be very useful in many different contexts, in particular in (b) above:

Conjecture If V is a nonsingular projective 3-fold and $c_2(V) \cdot H < 0$ for some ample H then the subsheaf $E \subset \Omega^1_V$ breaking the stability of Ω^1_V is orthogonal to a foliation of V by rational subvarieties.

(d) If $K_X \stackrel{\text{num}}{\sim} 0$ it follows from Theorem 0.0 that D is nef and big if and only if |mD| is free for $m \gg 0$, and defines a birational morphism $\varphi: X \to Z$; then Z also has canonical singularities and $K_X = \varphi^* K_Z$. What happens when D is nef but $\kappa_{\text{num}}(D) = 1$ or 2? In this case it is certainly possible that $h^0(mD) = 0$ for all m > 0 (because D may be numerically but not linearly equivalent to 0 on an Abelian factor of X).

Conjecture There exists an m > 0 and a free linear system |L| with $L \stackrel{\text{num}}{\sim} mD$. Hence there is a morphism $\varphi \colon X \to Z$ such that φ contracts precisely the curves $C \subset X$ such that DC = 0.

(e) It would be interesting to know what kind of singularities the map $\varphi: X \to Z$ can have in the cases dim Z = 3 or 2 of Proposition 0.1, (c). In the birational case, Z has singularities that are more general than canonical, but presumably much more restricted than general rational singularities.

0.8 Preliminaries and terminology

a. \mathbb{Q} -divisors Let X be a projective normal variety; a \mathbb{Q} -divisor $D \in$ Div $X \otimes \mathbb{Q}$ is \mathbb{Q} -Cartier if $rD \in$ Pic X for some $r \in \mathbb{Z}$, r > 0. Intersection numbers and cycles are defined for \mathbb{Q} -Cartier divisors in the obvious way:

$$D_1 \cdots D_k =_{\mathrm{def}} \frac{1}{r_1 \cdots r_k} (r_1 D_1) \cdots (r_k D_k),$$

where the right-hand side is the intersection cycle of Cartier divisors defined by any of the usual procedures. **b.** Nef $D \in \text{Div } X \otimes \mathbb{Q}$ is *nef* if it is \mathbb{Q} -Cartier and for every curve $C \subset X$,

$$DC =_{\text{def}} \frac{1}{r} (rD)C \ge 0.$$

By Kleiman's ampleness criterion, D is nef if and only if D is numerically equivalent to a limit of ample Q-Cartier divisors; in particular, if D_1, \ldots, D_k are nef and Z is an effective cycle of codimension l then $D_1 \cdots D_k Z$ is a limit of effective cycles of codimension k + l.

c. $\kappa_{\text{num}}(D)$ and big If D is nef then the *characteristic dimension* or the *numerical Kodaira dimension* of D is defined to be

$$\kappa_{\text{num}}(D) = \max\{k \mid D^k \not\sim^{\text{num}} 0\}.$$

Then $\max\{0, \kappa(D)\} \leq \kappa_{\text{num}}(D) \leq n$ where $n = \dim X$ and $\kappa(D) = \kappa(X, D)$ is the Iitaka *D*-dimension of *X*, and it is easy to see (using vanishing, so only in characteristic 0) that the following are equivalent:

- (i) $\kappa_{\text{num}}(D) = n;$
- (ii) $D^n > 0;$
- (iii) $h^0(X, mrD) \sim m^n \text{ as } m \to \infty;$
- (iv) for every ample $H \in \operatorname{Pic} X$ there is an m > 0 such that $mrD \stackrel{\text{lin}}{\sim} H + M$ where $M \in \operatorname{Pic} X$ is effective;
- (v) $\kappa(D) = n$.

If this happens, I say that D is *big*.

(d) Round-up [] For $r \in \mathbb{R}$, write [r] for the smallest integer $\geq r$, the round-up of r; (the Gauss symbol [] is "round-down", and is related by [r] = -[-r]). If $D = \sum q_i F_i$ with F_i distinct prime divisors, and $q_i \in \mathbb{Q}$, write $[D] = \sum [q_i] F_i$. Note that [] is a function on divisors, not on divisor classes, although if $D = D_1 + D_2$, with $D_2 \in \text{Div } X \otimes \mathbb{Q}$, and $D_1 \in \text{Pic } X$ (that is, D_1 defined only up to linear equivalence), then $[D] = D_1 + [D_2] \in \text{Pic } X$ is well defined. Thus I will usually write "=" of \mathbb{Q} -divisors to indicate that the fractional parts are equal and the integer parts are linearly equivalent.

Note also that if $f: Y \to X$ is a birational morphism, and $rK_X \in \operatorname{Pic} X$, then the isomorphism of $\omega_X^{[r]}$ and $\omega_Y^{[r]}$ on the locus where f is an isomorphism extends to a canonical isomorphism

$$f^*\omega_X^{[r]} \otimes \mathcal{O}_Y(D) \xrightarrow{\simeq} \omega_Y^{[r]},$$

where D is a Weil divisor made up of exceptional divisors of f (effective if X has canonical singularities). I write equality of \mathbb{Q} -divisors $K_Y = f^*K_X + \Delta$ where $\Delta = \frac{1}{r}D$ to describe this.

Lemma 0.9 (i) If D is nef then $\kappa_{\text{num}}(D) \ge \kappa(D)$;

- (ii) if D is nef with $\kappa_{\text{num}}(D) \ge k$ and H is nef and big then $D^k H^{n-k} > 0$;
- (iii) if D is an effective Weil divisor which is nef and has $\kappa_{num}(D) \ge 2$ then Supp D is connected in codimension 1, in the sense that if $D = D_1 + D_2$ with D_1, D_2 effective and with no common divisors, then the intersection Supp $D_1 \cap \text{Supp } D_2$ has at least one component of dimension n - 2.

Proof (i) If $\kappa(D) = k$ then for a suitable m > 0 such that $mD \in \operatorname{Pic} X$, |mD| defines a dominant rational map $X \dashrightarrow Z$ to a k-dimensional projective variety. Resolving indeterminacy gives

where f, φ are morphisms, and $|f^*mD| = |L| + F$, where |L| is free with $L^k > 0$ and F is effective. Then

$$(mD)^k = (f^*mD)^k = (L+F)^k \ge L^k > 0,$$

which holds because for each i with $0 \le i < k$,

$$(f^*mD)^{i+1}L^{k-i-1} = (f^*mD)^i(L+F)L^{k-i-1} \ge (f^*mD)^iL^{k-i}$$

using the fact that both L and f^*mD are nef.

(ii) follows by a similar argument using the fact that some multiple of H is of the form an ample divisor plus an effective divisor.

(iii) Assuming that $\operatorname{Supp} D_1 \cap \operatorname{Supp} D_2$ has codimension ≥ 3 in X, it will not meet a general surface sections S of X, so that both D_1 and D_2 are \mathbb{Q} -Cartier divisors in a neighbourhood of S. Writing $\widetilde{S} \to S$ for a resolution of S, and ' for the pullback of a divisor of X to \widetilde{S} , I have $D'_1D'_2 = 0$, but $(D'_1)^2, (D'_2)^2 \geq 0$ (because D is nef), and $(D'_1 + D'_2)^2 > 0$ (because $\kappa_{\operatorname{num}}(D) > 2$), and this contradicts the index theorem.

Index Theorem 0.10 Let D, A be \mathbb{Q} -Cartier divisor on a normal projective n-fold X with $n \geq 2$, such that D is nef, $D \not\sim 0$. Then

(i) for ample \mathbb{Q} -divisors H_1, \ldots, H_{n-2} ,

$$DAH_1 \cdots H_{n-2} = 0 \implies -A^2 H_1 \cdots H_{n-2} \ge 0;$$

in particular, if $n \geq 3$ and $DAH_1 \cdots H_{n-3} \stackrel{\text{num}}{\sim} 0$ (as a 1-cycle) then $-A^2H_1 \cdots H_{n-3} \in \overline{NE}(X)$.

(ii) If for some ample H_1, \ldots, H_{n-2} ,

$$DAH_1 \cdots H_{n-2} = A^2 H_1 \cdots H_{n-2} = 0$$

then $A \stackrel{\text{num}}{\sim} qD$ for some $q \in \mathbb{Q}$, and if $q \neq 0$ then $D^2 \stackrel{\text{num}}{\sim} 0$, that is, $\kappa_{\text{num}}(D) = 1$.

Proof Let $S = L_1 \cap \cdots \cap L_{n-2}$ be a reduced irreducible surface complete intersection, with $L_i \in |m_iH_i|$ (where $m_iH_i \in \operatorname{Pic} X$); let $f: \widetilde{S} \to S$ be a resolution, and let ' denote the pullback of Q-Cartier divisors of X to \widetilde{S} .

Now D' is nef on \widetilde{S} and $D' \not\sim 0$; also $D'A' = mDAH_1 \cdots H_{n-2}$ and $(A')^2 = mA^2H_1 \cdots H_{n-2}$ (where $m = \prod m_i$), so that (i) is just a restatement of the usual index theorem. If $(A')^2 = 0$ then $A' \sim qD'$ on \widetilde{S} ; the value of q can be determined by

$$A'H_1' = mAH_1^2H_2\cdots H_{n-2} = qmDH_1^2H_2\cdots H_{n-2} = qD'H_1',$$

since $D'H'_1 \neq 0$, and so q does not depend on the choice of m_i and $L_i \in [m_i H_i]$.

I now claim that for every curve $C \subset X$, (A-qD)C = 0. To see this, note that for $m_i \gg 0$ such that $m_iH_i \in \operatorname{Pic} X$, $\mathcal{I}_C \cdot \mathcal{O}_X(m_iH_i)$ is generated by its H^0 , where \mathcal{I}_C is the ideal defining C, so that choosing $L_i \in |m_iH_i|$ to contain C, but otherwise general, the intersection $S = L_1 \cap \cdots \cap L_{n-2}$ is reduced and irreducible. Now let $f: \widetilde{S} \to S$ be its resolution, and $\widetilde{C} \subset \widetilde{S}$ any irreducible curve such that $f|_{\widetilde{C}} \colon \widetilde{C} \to C$ is generically finite, of degree d say. Then

$$0 = (A' - qD')\widetilde{C} = d(A - qD)C.$$
 Q.E.D.

0.11 Vanishing

The following result is the main technical tool of this paper.

Vanishing If Y is a nonsingular variety and $N \in \text{Div } Y \otimes \mathbb{Q}$ is nef and big, and the fractional part of N is supported on a divisor with normal crossings, then

$$H^{i}(Y, \lceil N \rceil + K_{Y}) = 0 \quad for \ i > 0.$$

In Kawamata's treatment [5] this is an easy formal consequence of Kodaira vanishing.

0.12 Acknowledgement

I am extremely grateful to Y. Kawamata for sending me his brilliant series of preprints [2]–[3] from which the ideas in this article are mostly plagiarised. Our immense debt to S. Mori's work will be clear to the reader.²

1 Proof of Theorem 0.0 assuming $\kappa(D) \ge 0$

Preliminary Lemma 1.1 $H^0(mD) = 0$ for at most 3 values of $m \ge a$. (See also Lemma 1.8 below.)

Proof It follows easily from Riemann–Roch and vanishing (see Corollary 3.2 for the details) that $h^0(mD)$ is a polynomial in m of degree ≤ 3 for $m \geq a$. In §2 below it is shown that this polynomial is not identically zero, and hence has at most 3 zeros. Q.E.D.

1.2 Construction

Let $M \subset |mD|$ be any linear system with dim $M \geq 0$, Bs $M \neq 0$. Then there exists a resolution $f: Y \to X$, a divisor with normal crossings $\sum F_j$ (for $j \in J$) on Y, and constants a_j, r_j, p_j such that

- (1) $K_Y = f^*K_X + \sum_{j \in \mathbb{Z}} a_j F_j$ with $a_j \in \mathbb{Q}$, $a_j \ge 0$ and $a_j > 0$ only if F_j is exceptional for f;
- (2) $f^*M = L + \sum r_j F_j$ where L is a free linear system, $r_j \in \mathbb{Z}$, $r_j \ge 0$, and $r_j > 0$ for at least one $j \in J$ (if dim M = 0 then L = 0);
- (3) $f^*(aD K_X) \sum p_j F_j$ is an ample \mathbb{Q} -divisor on Y, where $p_j \in \mathbb{Q}$, $0 \le p_j \ll 1$.

Note for further use that a very slight increase in one of the p_j does not affect the truth of (3).

Remark (Shokurov [13], p. 436, see also 4.3 below) There is no loss of generality in assuming that $r_j \ge a_j$ if $f(F_j)$ is a curve.

²Essentially all the results of this paper have been generalised to all dimensions in 2 preprints by Shokurov [13] and Kawamata [4]. Shokurov's paper also sidesteps the difficult proof of §2. I believe that some form of the other main result (Theorem 5.3) is proved in Shokurov [14]. (Note added in 1983–84.)

Proof Let $H \in \text{Pic } X$ be ample. Since $aD - K_X$ is big, for m large enough $h^0(m(aD - K_X) - H) \neq 0$. Choosing $D_1 \in |m(aD - K_X) - H|$ it follows that for every $\varepsilon_1 \in \mathbb{Q}, 0 < \varepsilon_1 \ll 1$, the Q-divisor $aD - K_X - \varepsilon_1 D_1$ is ample on X.

Now choose a composite of blowups $f: Y \to X$ which resolves the singularities of X and the base locus of M, and such that the exceptional locus of f and the inverse image of D_1 form a divisor with normal crossing $\sum F_j$. By construction of f it is clear that there exists an effective divisor $D_2 = \sum c_j F_j$ such that $-D_2$ is relatively ample for f; hence choosing ε_2 with $0 < \varepsilon_2 \ll \varepsilon_1$, and setting $f^* \varepsilon_1 D_1 + \varepsilon_2 D_2 = \sum p_j F_j$ gives (3). Q.E.D.

1.3 The method

Fix the set-up of 1.2. For $b \in \mathbb{Z}$, $c \in \mathbb{Q}$ with $c \ge 0$ and $b \ge cm + a$, the \mathbb{Q} -divisor

$$N = N(b,c) = bf^*D + \sum_{i=1}^{num} (-cr_j + a_j - p_j)F_j - K_Y$$

$$\stackrel{num}{\sim} cL + f^*((b - cm)D - K_X) - \sum_{i=1}^{num} p_jF_j$$

is ample on Y, and has fractional part supported in $\sum F_j$. Vanishing gives $H^i(\lceil N \rceil + K_Y) = 0$ for i > 0, and I have

$$[N] + K_Y = bf^*D + \Sigma,$$

where I can write

$$\Sigma = \sum \left[-cr_j + a_j - p_j \right] F_j = A - B,$$

with A, B effective divisors not having any common components. Since all of $c, r_j, a_j, p_j \ge 0$, A consists of components F_j with $a_j > 0$, and by 1.2, (1) these must be exceptional for f. Hence

$$H^0(X, bD) = H^0(Y, bf^*D) = H^0(Y, bf^*D + A).$$

Now $H^1(bf^*D + A - B) = 0$ implies that

$$H^0(Y, bf^*D + A) \twoheadrightarrow H^0(B, (bf^*D + A)_B).$$

In 1.4 below, it is shown how to adjust the parameter c and the p_j so that B is one of the irreducible components $B = F_0$ of $\sum F_j$, and $-cr_0 + a_0 - p_0 = -1 \in \mathbb{Z}$. From now on, I write ' to denote the pullback to B of a divisor on X or Y. Then

$$bf^*D + A = \lceil N \rceil + K_Y + B,$$

so that

$$bD' + A' = (\lceil N \rceil)' + K_B.$$

Now $B = F_0$ appears in N with integral coefficient, so that (see 0.8, (d) for the abuse of notation)

$$\left(\left\lceil N\right\rceil\right)' = \left\lceil N'\right\rceil,$$

and N is an ample Q-divisor on B with fractional part supported on the divisor with normal crossing $\sum_{j\neq 0} F'_j$. Hence vanishing applies again to give $H^i(bD' + A') = 0$ for i > 0, so that $h^0(bD' + A') = 0$ is a polynomial in b. The subtle part of the argument, Proposition 1.5, is to show that the polynomial cannot be identically zero; this is the only point at which the condition dim X = 3 is used. The method here is due to Xavier Benveniste [1], and improves Kawamata's original proof.

1.4 Selecting a base component of maximal multiplicity

Set $c = \min(a_j + 1 - p_j)/r_j$, taken over $j \in J$ with $r_j > 0$; since $p_j \ll 1$ and $a_j \ge 0$, it follows that c > 0. Suppose that $0 \in J$ is one of the indices for which the minimum value occurs; on increasing the corresponding p_0 slightly, c decreases, so that the minimum occurs only for this one component F_0 . Then by definition of c,

 $-cr_0 + a_0 - p_0 = -1$ and $-cr_j + a_j - p_j > -1$ for $j \in J, j \neq 0$;

hence $B = F_0$.

Proposition 1.5 (i) If $D' \stackrel{\text{num}}{\sim} 0$ then $h^0(bD' + A') = 1$ for every $b \in \mathbb{Z}$; (ii) if $D' \stackrel{\text{num}}{\not\sim} 0$ then $h^0(bD' + A') > 0$ for every $b \ge cm + a + 1$.

Proof (i) Assume $D' \stackrel{\text{num}}{\sim} 0$; then for every $b \in \mathbb{Z}$, the Q-divisor

$$N' = bD' + \sum_{j \neq 0} (-cr_j + a_j - p_j)F'_j - K_B$$

is ample on B, so that $H^i([N'] + K_B) = 0$ for i > 0, and

$$h^{0}(bD' + A') = \chi(bD' + A') = \text{const.};$$

for b = 0, $h^0(A') \ge 1$ since A' is effective. However, $h^0(bD' + A') \le 1$ for $b \ge cm + a$, in view of the fact that

$$H^0(Y, bf^*D) = H^0(Y, bf^*D + A) \twoheadrightarrow h^0(bD' + A').$$

1. Proof of Theorem 0.0 assuming $\kappa(D) \ge 0$ 11

(ii) Set

$$p(b) = \frac{1}{2}(D')^2 b^2 + \frac{1}{2}D'(2A' - K_B)b + \frac{1}{2}((A')^2 - A'K_B) + \chi(\mathcal{O}_B),$$

so that

$$0 \le h^0(bD' + A') = p(b) \quad \text{for } b \ge cm + a.$$

Then

$$p(b+1) - p(b) = \frac{1}{2} \Big((D')^2(b+1) + D'A' + D'(bD' + A' - K_B) \Big).$$

The right-hand side is strictly positive for $b \ge cm + a$. Indeed, D' is nef and A' is effective. so that the first two terms are ≥ 0 ; furthermore,

$$bD' + A' - K_B = (\lceil N \rceil)' = N' + (\lceil N \rceil - N)' = \begin{pmatrix} \text{ample} \\ \mathbb{Q}\text{-divisor} \end{pmatrix} + \begin{pmatrix} \text{effective} \\ \mathbb{Q}\text{-divisor} \end{pmatrix}$$

so that $D' \stackrel{\text{num}}{\sim} 0$ implies that the third term is strictly positive. Hence p(b) is a strictly increasing function from cm + a onwards. Q.E.D.

1.6 End of the proof

If $h^0(mD) \neq 0$ and Bs $|mD| \neq \emptyset$ then I claim that for every $a \gg 0$, Bs $|amD| \subseteq$ Bs |mD|; Theorem 0.0 then follows by an easy Noetherian induction. For the claim, set M = |mD| in 1.2. The argument of 1.3–1.5 shows that there is a component F_0 of the base locus of $f^*|mD|$ for which

$$H^{0}(Y, bf^{*}D) = H^{0}(Y, bf^{*}D + A) \twoheadrightarrow H^{0}(F_{0}, (bf^{*}D + A)_{F_{0}}) \neq 0$$

for every $b \gg 0$, so that $F_0 \not\subset Bs |bf^*D|$, and hence $f(F_0) \not\subset Bs |bD|$. In particular, taking b = am with $a \gg 0$,

$$\operatorname{Bs}|amD| \subsetneq \operatorname{Bs}|mD|.$$
 Q.E.D.

1.7 Proof of Proposition 0.1

(a) is "relative vanishing". Let $H \in \operatorname{Pic} \mathbb{Z}$ be an ample divisor such that $D = \varphi^* H$; consider the Leray spectral sequence for $H^i(X, \mathcal{O}_X(mD))$, using $R^i \varphi_* \mathcal{O}_X(mD) \cong R^i \varphi_* \mathcal{O}_X \otimes \mathcal{O}_Z(mH)$:

$$E_2^{p,q} = H^p(Z, R^q \varphi_* \mathcal{O}_X \otimes \mathcal{O}_Z(mH)) \implies H^i(X, \mathcal{O}_X(mD)).$$

Since *H* is ample on *Z*, Serre vanishing gives that for $m \gg 0$, $E_2^{p,q} = 0$ if $p \neq 0$, and hence $H^0(R^q\varphi_*\mathcal{O}_X \otimes \mathcal{O}_Z(mH)) = H^q(X, \mathcal{O}_X(mD))$. But by vanishing,

12 Projective morphisms according to Kawamata

 $H^q(X, \mathcal{O}_X(mD)) = 0$ for $m \ge a$ (see Proposition 3.1), and hence $R^q \varphi_* \mathcal{O}_X = 0$ for q > 0. Finally, for every $m \ge a$, $H^p(Z, \mathcal{O}_Z(mH)) = H^p(X, \mathcal{O}_X(mD)) = 0$ for p > 0.

For (b), set r = index of X, and choose $m \ge a(r+1)$; then $D' = mD - rK_X \in \text{Pic } X$, and both D' and $D' - K_X$ are nef and big. Applying Theorem 0.0 to D' gives the morphism g; it contracts exactly the curves $C \subset X$ with $DC = K_X C = 0$, so φ factors through g.

There are only 2 nontrivial assertions in (c): when dim $Z = 2, X \rightarrow Z$ is birational to a standard conic bundle by Sarkisov [11]: I have

$$\begin{array}{cccc} \widetilde{X} & \stackrel{f_1}{\to} & X & \stackrel{\varphi}{\longrightarrow} & Z \\ g \searrow & & \uparrow & f_2 \\ & Y & \stackrel{h}{\longrightarrow} & S \end{array}$$

where f_1 and f_2 are resolutions, g is a birational morphism and h is a standard conic bundle. Then by (a) above,

$$\chi(\mathcal{O}_Z) = \chi(\mathcal{O}_X);$$

since X has rational singularities, and g is a birational morphism of smooth varieties, $\chi(\mathcal{O}_X) = \chi(\mathcal{O}_{\tilde{X}} = \chi(\mathcal{O}_Y))$; and h is a standard conic bundle, so that $\chi(\mathcal{O}_Y) = \chi(\mathcal{O}_S)$.

Hence $\chi(\mathcal{O}_Z) = \chi(\mathcal{O}_S)$, proving that Z has rational singularities.

Finally, if Z = pt, then Pic X is reduced because $H^1(\mathcal{O}_X) = 0$; if $D \in \text{Pic } X$ is a torsion element then Theorem 0.0 applies to D to give D = 0, hence Pic X is torsion free. Q.E.D.

1.8

The rest of this section is concerned with the proof of Corollary 0.4; the reader who is more interested in the rest of the proof of Theorem 0.0 should proceed to $\S2$.

Lemma $h^0(mD) > 0$ for $m \ge 2a + 2$.

Proof As seen in Lemma 1.1, $h^0(mD) = p(m)$ is a polynomial in m of degree ≤ 3 for $m \geq a$; if deg $p \leq 1$ then obviously $h^0(mD) > 0$ for $m \geq a+1$. If deg p = 2 or 3 then p has at most 2 integer zeros $\geq a + 1$, since if p is cubic, $p(a) \geq 0$ implies that one real root of p is $\leq a$; furthermore if there are 2 integer zeros $\geq a + 1$ these must be consecutive, since p(x) < 0 between them.

Now the set $\{m \mid h^0(mD) \neq 0\}$ is a semigroup, and if p has no zeros in $[a+1,\ldots,2a]$ is certainly contains every integer $\geq 2a+2$. The alternative is

that some $b \leq 2a$ is a zero, and then possibly b+1 is also a zero, but p(m) > 0 for $m \geq 2a+2$. Q.E.D.

1.9 Proof of Corollary 0.4

Let $m \ge 2a + 2$; if $\Gamma \subset X$ is a prime divisor appearing as base component of multiplicity ≥ 2 of M = |mD|, then making the construction of 1.2, the proper transform of Γ is an F_j with $a_j = 0$, $r_j \ge 2$. Then by definition of c (in 1.4), $c \le \frac{1}{2}$. Now the argument of 1.3–1.5 shows that the base component F_0 of $|mf^*D|$ of maximal multiplicity in the sense of 1.4 is not a base component of $|bf^*D$ for $b \ge cm + a + 1$. But m itself satisfies $m \ge cm + a + 1$, which is a contradiction.

The argument for the other statements of Corollary 0.4 is similar, and I only sketch it: if $C \subset \text{Sing } X$ is a 1-dimensional component then by [8], Theorem 1.14, X has a Du Val singularity at the generic point $\eta \in C$. Above η , the resolution $f: Y \to X$ dominates the minimal resolution, and so contains a number of components F_j with $a_j = 0$, which by the argument just given must have $r_j \leq 1$. Using easy facts about the resolution of Du Val singularities (see Lemma 4.3, (iii)), it is then easy to see that X has an A_n point at η , and M an ordinary double point.

If $C \subset X$ is a curve with $C \not\subset \text{Sing } X$ appearing in the general element of M with multiplicity ≥ 3 , the blowup of C gives an F_j with $a_j = 1, r_j \geq 3$, so that $c \leq \frac{2}{3}$, which by the same argument is impossible if $m \geq 3a + 3$. Finally, if the general element of M has a non-ordinary double locus along C, then after 3 blowups I get a component F_j with $a_j = 4, r_j \geq 6$: for example, a curve of ordinary cusps gives the embedded resolution of Figure 1. Then

Figure 1: Embedded resolution of cuspidal curve $y^2 = x^3$

 $c \leq \frac{5}{6}$ and by the same argument this is impossible if $m \geq 6a + 6$. Q.E.D.

The following result is exactly similar to Corollary 0.4, and will be used in the proof of Theorem 0.5 in §4.

Lemma 1.10 Let X be a weak Fano 3-fold; then the general element $D \in |-K_X|$ is reduced and has only ordinary double curves.

14 Projective morphisms according to Kawamata

Proof As in 1.2, there exists a resolution $f: Y \to X$, a divisor with normal crossings $\sum F_i$ and constraints a_i, r_i, p_i and q such that

- (1) $K_Y = f^*K_X + \sum_{j=1}^{\infty} a_j F_j$, where $a_j \in \mathbb{Z}$, $a_j \ge 0$ and $a_j > 0$ only if F_j is exceptional for f;
- (2) $f^*|-K_X| = L + \sum r_j F_j$ with |L| a free linear system, $r_j \in \mathbb{Z}$ and $r_j \ge 0$;
- (3) $qf^*(-K_X) \sum p_j F_j$ is an ample \mathbb{Q} -divisor, where $p_j, q \in \mathbb{Q}, 0 \le p_j \ll 1$ and $0 < q < \min\{1/r_j\}$, the minimum being taken over j with $r_j > 0$.

Claim For every $j, r_j \leq a_j + 1$.

As in the proof of Corollary 0.4, this implies that the general element $D \in |-K_X|$ is reduced, with ordinary double curves, proving Lemma 1.10.

To prove the claim, suppose that $r_j \ge a_j + 2$ for some j. Then setting

$$c = \min\left\{\frac{a_j + 1 - p_j}{r_j}\right\},\,$$

it follows that $c \leq 1 - 1/r_j$, and hence $1 - c \geq q$. As in Method 1.3, set

$$N = N(b,c) = bf^{*}(-K_{X}) + \sum_{i=1}^{num} (-cr_{j} + a_{j} - p_{j})F_{j} - K_{Y}$$

$$\sim cL + (b+1-c)f^{*}(-K_{X}) - \sum_{i=1}^{num} p_{j}F_{j};$$

by (3) and the fact that $1 - c \ge q$, this is an ample Q-divisor for $b \ge 0$. The argument of Method 1.3 and Proposition 1.5 now gives a contradiction: the component $B = F_0$ which is the base component of $f^*|-K_X|$ of maximal multiplicity is not a base component of $|bf^*(-K_X)|$ for $b \ge 1$. This proves the claim, and hence Lemma 1.10.

2 Proof of $\kappa(D) \ge 0$

$\mathbf{2.1}$

Let X, D and a be as in Theorem 0.0, and $f: Y \to X$ any resolution for which the exceptional locus is a divisor with normal crossings; then for any $m \ge a$ and any $D_m \in \operatorname{Pic} X$, with $D_m \stackrel{\text{num}}{\sim} mD$,

$$h^{0}(D_{m}) = \frac{1}{6}D^{3}m^{3} - \frac{1}{4}D^{2}K_{X}m^{2} + \frac{1}{12}(DK_{X}^{2} + f^{*}Dc_{2}(Y))m + \chi(\mathcal{O}_{X}). \quad (*)$$

This is proved in Corollary 3.2 below. The right-hand side is a polynomial in m, and the purpose of this section is to prove that it is not identically zero.

2. Proof of $\kappa(D) \ge 0$ 15

Note first that this is trivial if $\kappa_{\text{num}}(D) \neq 1$. Indeed, if $\kappa_{\text{num}} = 3$ then $D^3 > 0$; if $\kappa_{\text{num}} = 2$ then by Lemma 0.9, $-D^2 K_X = D^2 (aD - K_X) > 0$; finally, if $D \sim 0$ then I can take $D_m = 0$ for every m, and $h^0(D_m) = 1$.

Note than that Theorem 0.0 is proved in case $\kappa_{\text{num}}(D) \geq 2$, and I'm entitled to use it in the proof for $\kappa_{\text{num}}(D) = 1$.

Remark By Lemma 0.9, $DK_X^2 = D(aD - K_X)^2 > 0$ in case $\kappa_{num}(D) = 1$, and as conjectured in Problem 0.7, (c), we have a right to expect that $f^*Dc_2(Y) < 0$ should lead to some very strong restriction on Y; unfortunately, I don't know how to exploit this, so I don't get any pleasure out of the linear term in $h^0(D_m)$. A posteori, if $\varphi: X \to Z$ is a weak fibre space of del Pezzo surfaces of degree d (as defined in Proposition 0.1), and if $D = \varphi^* H$ then $f^*Dc_2(Y) = (12 - d) \deg H$ with $1 \le d \le 9$, so that in fact $f^*Dc_2(Y) > 0$.

Proposition 2.2 If $\kappa_{\text{num}}(D) = 1$ then $\kappa(X) = -\infty$, and in particular $p_g = 0$. Hence if $\chi(\mathcal{O}_X) = 0$ then $q = h^1(\mathcal{O}_X) > 0$.

Proof $aD - K_X$ is nef and big, so that by Lemma 0.9, (ii)

$$(-K_X)(aD - K_X)D = (aD - K_X)^2D > 0;$$

hence $H^0(mK_X) = 0$ for all m > 0. Q.E.D.

Proposition 2.3 Let X be a normal variety having a resolution $f: Y \to X$ such that $R^1 f_* \mathcal{O}_Y = 0$. Then $f^*: \operatorname{Pic}^0 X \xrightarrow{\simeq} \operatorname{Pic}^0 Y$ is an isomorphism, and the Albanese map of Y factors through X. In particular if $h^1(\mathcal{O}_X) \neq 0$ (and char k = 0, of course), then there is a nontrivial morphism $\alpha: X \to \operatorname{Alb} X$ from X to an Abelian variety.

Proof This is general nonsense. $R^1 f_* \mathcal{O}_Y = 0$ implies that $f^* \colon H^1(\mathcal{O}_X) \xrightarrow{\simeq} H^1(\mathcal{O}_Y)$, and hence that $f^* \operatorname{Pic}^0 X \to \operatorname{Pic}^0 Y$ is etale. Now the morphism $\alpha \colon X \to (\operatorname{Pic}^0 X)^{\vee}$ is defined by the universal property of Pic: if P is the (Poincaré) universal line bundle over $X \times \operatorname{Pic}^0 X$ then $\alpha \colon X \to (\operatorname{Pic}^0 X)^{\vee}$ is defined on the level of points by taking $x \in X$ to P_X , the restriction of P to $x \times \operatorname{Pic}^0 X$, considered as a point of ($\operatorname{Pic}^0 X)^{\vee}$. Functoriality of Pic gives a commutative diagram

$$Y \xrightarrow{\alpha_Y} (\operatorname{Pic}^0 Y)^{\vee} = \operatorname{Alb} Y$$
$$f \downarrow \swarrow f \downarrow f^{\vee}$$
$$X \xrightarrow{\alpha_X} (\operatorname{Pic}^0 X)^{\vee},$$

where f is birational and f^{\vee} an isogeny of Abelian varieties. It is then obvious that any curve contracted by f is also contracted by α_Y , so that using the Zariski Main Theorem, the diagram splits as indicated by the oblique arrow, and f^{\vee} is an isomorphism. Q.E.D.

$\mathbf{2.4}$

If $\kappa_{\text{num}}(D) = 1$ and $\kappa(D) = -\infty$ then by (*) in 2.1, $\chi(\mathcal{O}_X) = 0$, and $q(X) \neq 0$ by Proposition 2.2, so that by Proposition 2.3, X has a nontrivial morphism $\alpha: X \to \text{Alb } X$ to an Abelian variety. Since $\kappa(X) = -\infty$, dim $\alpha(X) \leq 2$. I prove later (Key Lemma 2.6) that even in the case that $\alpha(X) = F$ is a surface, X has a surjective morphism $h: X \to C$ to a curve of genus ≥ 1 . First of all, I show how to complete the proof from this.

Proposition 2.5 Let X, D and a be as in Theorem 0.0. Suppose that $\kappa_{\text{num}}(D) = 1$, and that X has a surjective morphism $h: X \to C$ to a curve of genus $g \ge 1$. Then there exists an $m \ge a$ and an effective divisor D_m with $D_m \overset{\text{num}}{\sim} mD$; hence by (*) in 2.1, $h^0(mD) \ne 0$ for every $m \gg 0$.

Proof Let A be a general fibre of $X \to C$. The easy case is when $D_{|A} \stackrel{\text{num}}{\sim} 0$; then $D^2 \stackrel{\text{num}}{\sim} DA \stackrel{\text{num}}{\sim} A^2 \stackrel{\text{num}}{\sim} 0$, so that by the Index Theorem 0.10, D is numerically equivalent to qA for $q \in \mathbb{Q}$. Proposition 2.5 is then obvious.

In the other case $D_{|A} \not\sim 0$, the proof proceeds by reducing to a similar looking problem over a surface.

STEP 1 h factors as

where

- (i) S is a surface with rational singularities;
- (ii) there exists $L \in \operatorname{Pic} S$ which is relatively ample for g, and such that $D = \psi^* L$ with $L^2 = 0$;
- (iii) $\varphi_*\mathcal{O}_X = \mathcal{O}_S$, $R^i\varphi_*\mathcal{O}_X = 0$ for i > 0 and $H^i(S, mL) = 0$ for all $m \ge a$ and i > 0.

2. Proof of $\kappa(D) \ge 0$ 17

Proof This is a relative form of Theorem 0.0, and comes by noting that for $i \ge 1$, D+iA is a divisor on X satisfying the hypotheses of Theorem 0.0, and with $\kappa_{\text{num}}(D+iA) = 2$. The morphism φ contracts exactly the curves of X with DC = AC = 0, so h factors through S.

STEP 2 L is relatively ample for g, so for $m \gg 0$, $R^1g_*L^{\otimes m} = 0$ by Serre vanishing. Thus for $m \gg 0$, $g_*L^{\otimes m} = \mathcal{E}_m$ is a vector bundle on C of rank r > 0 with

$$0 \le h^0(S, L^{\otimes m}) = \chi(S, L^{\otimes m}) = \chi(C, \mathcal{E}_m).$$

The following statement implies that for $m \gg 0$ and for suitable $\mathcal{L} \in \operatorname{Pic}^0 C$,

$$0 \neq H^0(C, \mathcal{E}_m \otimes \mathcal{L}) = H^0(S, \mathcal{L}^{\otimes m} \otimes g^* \mathcal{L}) = H^0(X, \mathcal{O}_X(mD) \otimes h^* \mathcal{L}).$$

proving Proposition 2.5:

Easy Exercise Let \mathcal{E} be a vector bundle of rank r > 0 over a curve C with $\chi(C, \mathcal{E}) \ge 0$. Then

either
$$C \cong \mathbb{P}^1$$
 and $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^1}(-1)^{\oplus r}$,

or for every $P \in C$ there exists $Q \in C$ such that $H^0(\mathcal{E} \otimes \mathcal{O}_C(P-Q)) \neq 0$.

Proposition 2.5 is proved. Q.E.D.

Now comes the hard part.

Key Lemma 2.6 Let X, D and a be as in Theorem 0.0, with $\kappa_{num}(D) = 1$, and assume that $\alpha(X) = F \subset Alb X$ is a surface. Then F is a fibre bundle $F \to C$ over a curve C of genus $g \ge 1$ (with fibre an elliptic curve); in particular, there exists a surjective morphism $h: X \to C$ to a curve of genus $g \ge 1$.

Sublemma 2.7 (i) If S is any effective Weil divisor on X which is nef and big, then one component of S maps surjectively to F.

(ii) If $S_0 \subset X$ is any surface for which $\alpha(S_0) = F$ then for m > a, we have $(mD - K_X)^2 S_0 > 0$.

18 Projective morphisms according to Kawamata

Proof Applying Lemma 0.9 to $\alpha^* M$, where M is ample on F, (i) is trivial. For (ii), setting r = index of X, $r(mD - K_X) \in \text{Pic } X$ obviously satisfies the hypotheses of Theorem 0.0, with $\kappa_{\text{num}}(mD - K_X) = 3$, so that there is a birational morphism $\varphi \colon X \to Z$ such that $mD - K_X = \varphi^* H$ for H an ample Q-divisor on Z. By Proposition 0.1, Z has only rational singularities, so that using Proposition 2.3 above, I get that α factors through Z: that is, $\alpha \colon X \to Z \to F \subset \text{Alb } X$. Now S_0 must map to a surface in Z, which gives the result. Q.E.D.

Proof of Key Lemma 2.6 It is shown in Corollary 3.3 below that for $m \gg 0$, $h^0(mD - K_X) \neq 0$; let $f: Y \to X$ be a resolution which induces the minimal resolution along the Du Val locus, so that $K_Y = f^*K_X + \Delta$, where $f(\Delta)$ is a finite set (f is 0-minimal in the sense of [8], §5). Now it follows directly from the definition of canonical singularities that, for $i \geq 0$, there is a map $f': f^{-1}\omega_X^{[i]} \to \omega_Y^{\otimes i}$ (where f^{-1} is the sheaf theoretic inverse image), defined by viewing $s \in H^0(U, \omega_X^{[i]})$ as a rational *i*-fold canonical differential, which then remains regular on $f^{-1}U$. This gives a map ("proper transform")

$$f': H^0(mD - K_X) = H^0(\mathcal{O}_X(mD - rK_X) \otimes \omega_X^{[r-1]})$$
$$\longrightarrow H^0(\mathcal{O}_Y(f^*(mD - rK_X) + (r-1)K_Y))$$
$$= H^0(\mathcal{O}_Y(f^*mD - K_Y + r\Delta).$$

Let $S \in |mD - K_X|$ and $T = f'S \in |mD - K_Y + r\Delta|$; write $T = \sum a_i T_i$. By Sublemma 2.7 applied to $S \subset X$, there is a component T_0 of T mapping surjectively to F, and such that $f^*(mD - K_X)^2 T_0 > 0$. Write $g: \widetilde{T} \to T_0$ for the minimal resolution; since T_0 is Gorenstein, $K_{\widetilde{T}} = g^* K_{T_0} - Z$, with Z an effective divisor on \widetilde{T} . Now by adjunction

$$a_0 K_{T_0} = \left(a_0 K_Y + m f^* D - K_Y + r\Delta - \sum_{i \neq 0} a_i T_i\right)|_{T_0} \\ = \left(a_0 m f^* D - (a_0 - 1) f^* (m D - K_X) - \sum_{i \neq 0} a_i T_i + (r + a_0 - 1)\Delta\right)|_{T_0},$$

so that, writing ' for the pullback of a divisor on X or Y to \widetilde{T} , we get

$$a_0 m D' + (r + a_0 - 1) \Delta'$$

= $a_0 K_{\tilde{T}} + (a_0 - 1) f^* (m D - K_X)' + (a_0 Z + \sum_{i \neq 0} a_i T_i)'.$

Now restricting $f: Y \to X$ to T_0 , f induces a birational map $\tilde{f}: \tilde{T} \to S_0$, where S_0 is a component of S, and Δ' is contracted by \tilde{f} . It follows that the left-hand side of this formula is a \mathbb{Q} -divisor with $\kappa \leq 1$. On the other hand,

2. Proof of $\kappa(D) \ge 0$ 19

if $a_0 \neq 1$, or if \widetilde{T} is a surface of general type, then the right-hand side has $\kappa = 2$: indeed, $h^0(K_{\widetilde{T}}) > 0$ because \widetilde{T} has a generically finite morphism to $F \subset \text{Alb } X$, $(mD - K_X)'$ is nef and big on \widetilde{T} , and the third term is effective. Hence $a_0 = 1$, and $\kappa(\widetilde{T}) = 0$ or 1. The above adjunction formula simplifies to

$$mD' + r\Delta' = K_{\tilde{T}} + (Z + \sum_{i \neq 0} a_i T_i)'.$$
 (**)

CASE $\kappa(\widetilde{T}) = 1$ This is the easy case: \widetilde{T} has a generically finite morphism to $F \subset \operatorname{Alb} X$, so that the elliptic structure of the minimal model of \widetilde{T} is a fibre bundle; the image of any fibre is an elliptic curve $E \subset \operatorname{Alb} X$ such that F is invariant under translations by E.

CASE $\kappa(\widetilde{T}) = 0$ Then \widetilde{T} is itself birational to an Abelian surface, and I have the following set-up:

$$Y \supset T_{0} \xleftarrow{g} T$$

$$T \in |mf^{*}D - K_{Y} + r\Delta|, \quad T = \sum a_{i}T_{i} \qquad f \downarrow \qquad \qquad \downarrow h$$

$$\downarrow \qquad \qquad X \supset S_{0} \xleftarrow{\nu} \widetilde{S}$$

$$S \in |mD - K_{X}| \qquad \qquad \downarrow j$$

$$G$$

$$\downarrow Alb X = F$$

where $\nu \colon \widetilde{S} \to S_0$ is the normalisation of S_0 , and in the left-hand column,

 $G = \operatorname{Alb} \widetilde{T} = \operatorname{minimal model} \text{ of } \widetilde{T}$

is an etale cover of F. Now \tilde{S} has rational singularities, and $K_{\tilde{S}}$ is an effective Weil divisor containing every exceptional curve of j with strictly positive coefficient. (**) gives

$$m\nu^*D = K_{\tilde{S}} + h_*((Z + \sum a_i T_i)').$$
(***)

SUBCASE $\nu^* D \stackrel{\text{num}}{\sim} 0$ The right-hand side of (***) is an effective Q-divisor, so that $h_*((\sum_{i\neq 0} a_i T_i)') = 0$; it is clear that this implies that S_0 does not meet $S - S_0$ in curves, and then by the connectivity result Lemma 0.9, (iii), that $S = S_0$. Then $\nu^* D \stackrel{\text{num}}{\sim} 0$ is impossible: by Lemma 0.9, (i)

$$0 < (mD - K_X)^2 D = \nu^* (mD - K_X) \nu^* D.$$

SUBCASE $\nu^*D \not\sim D^{num} 0$ In this case ν^*D is nef and $(\nu^*D)^2 = 0$, so that (***) gives $(\nu^*D)\Gamma_i = 0$ for every exceptional curve Γ_i of j; using $j_*\mathcal{O}_S = \mathcal{O}$, it follows that $\nu^*D = j^*D_G$, where D_G is an effective \mathbb{Q} -divisor on G; $(\nu^*D)^2 = 0$ implies $D_G^2 = 0$, so that G is not a simple Aelian variety, hence F has a surjective morphism to an elliptic curve. Q.E.D.

3 Computing $h^0(mD)$ and $h^0(mD - K_X)$

Write r = index of X; for $q \in \mathbb{Z}$, write q = pr + i with $0 \le i \le r - 1$. Let $f: Y \to X$ be a resolution which coincides with the minimal resolution above the Du Val locus, and such that the exceptional locus of f is a divisor with normal crossings.

Proposition 3.1 (i) Suppose that $A \in \text{Pic } X$ is such that $A - K_X$ is nef and big. Then $H^k(X, A) = 0$ for k > 0, and

$$h^{0}(X, A) = \chi(X, A) = \chi(Y, f^{*}A)$$

= $\frac{1}{6}A^{3} - \frac{1}{4}A^{2}K_{X} + \frac{1}{12}(AK_{X}^{2} + f^{*}Ac_{2}(Y)) + \chi(\mathcal{O}_{X}).$

(ii) Suppose that $A \in \operatorname{Pic} X$ and $q \in \mathbb{Z}$ are such that $A + (q-1)K_X$ is nef and big; then

$$h^{0}(X, A + qK_{X}) \geq h^{0}(f^{*}(A + prK_{X}) + iK_{Y} + \lceil -(i-1)\Delta \rceil)$$

= $\chi(f^{*}(A + prK_{X}) + iK_{Y} + \lceil -(i-1)\Delta \rceil);$

if we set $R_i = i\Delta + \lfloor -(i-1)\Delta \rfloor$, this is equal to

$$= \frac{1}{6} (A + qK_X)^3 - \frac{1}{4} (A + qK_X)^2 K_X + \frac{1}{12} \Big((A + qK_X) K_X^2 + f^* (A + qK_X) c_2(Y) \Big) + \frac{1}{6} R_i^3 - \frac{1}{4} R_i^2 K_Y + \frac{1}{12} R_i (K_Y^2 + c_2(Y)) + \chi(\mathcal{O}_X) \Big)$$

Proof The \mathbb{Q} -divisor

$$N = f^*(A + prK_X) + (i - 1)K_Y - (i - 1)\Delta$$

= $f^*(A + (q - 1)K_X)$

is nef and big on Y, so that vanishing gives $H^k(\lceil N \rceil + K_Y) = 0$ for k > 0; now

$$\lceil N \rceil + K_Y = f^*(A + prK_X) + iK_Y + \lceil -(i-1)\Delta \rceil$$

For (i), p = i = 0, so that $\lceil N \rceil + K_Y = f^*A + \lceil \Delta \rceil$. Now from the exact sequence

$$0 \to \mathcal{O}_Y(f^*A) \to \mathcal{O}_Y(f^*A + \lceil \Delta \rceil) \to \mathcal{O}_{\lceil \Delta \rceil}(\lceil \Delta \rceil) \to 0,$$

we get

$$H^k(\mathcal{O}_{\lceil \Delta \rceil}(\lceil \Delta \rceil)) = H^{k+1}(\mathcal{O}_Y(f^*A)) \text{ for } k \ge 0.$$

Since $R^k f_* \mathcal{O}_Y = 0$ for k > 0,

$$H^k(\mathcal{O}_{\lceil \Delta \rceil}(\lceil \Delta \rceil)) = H^{k+1}(\mathcal{O}_X(A)) \text{ for } k \ge 0.$$

The left-hand side does not depend on the particular $A \in \operatorname{Pic} X$, and by taking A to be a large multiple of an ample divisor the right-hand side is zero by Serre vanishing. Hence $H^k(\mathcal{O}_{\lceil \Delta \rceil}(\lceil \Delta \rceil)) = 0$, and

$$H^k(X,A) = H^k(Y, f^*A) = H^k(Y, f^*A + \lceil \Delta \rceil) \quad \text{for } k \ge 0.$$

This proves (i).

For (ii), I can assume that $i \ge 1$, so that $\lceil -(i-1)\Delta \rceil$ is minus an effective divisor, and

$$H^{0}(N+K_{Y}) = H^{0}(f^{*}(A+prK_{X})+iK_{Y}+\lceil -(i-1)\Delta\rceil)$$

$$\subset H^{0}(f^{*}(A+prK_{X})+iK_{Y}).$$

Since by definition of canonical singularities $f_*\omega_Y^{\otimes i} = \omega_X^{[i]}$, the final group is equal to $H^0(X, A + qK_X)$. Finally,

$$h^0(\lceil N \rceil + K_Y) = \chi(\lceil N \rceil + K_Y);$$

substitute

$$\lceil N \rceil + K_Y = f^*(A + qK_X) + R_i$$

in the Riemann-Roch polynomial; using the fact that $f(\operatorname{Supp} \Delta)$ is a finite set, all terms involving $f^*(A + qK_X) \cdot \Delta$ or $f^*(A + qK_X) \cdot R_i$ vanish, giving the formula in (ii). Q.E.D.

Corollary 3.2 Let X, D and a be as in Theorem 0.0; then for any $m \ge a$, and any $D_m \in \operatorname{Pic} X$ with $D_m \stackrel{\text{num}}{\sim} mD$,

$$h^{0}(D_{m}) = \frac{1}{6}D^{3}m^{3} - \frac{1}{4}D^{2}K_{X}m^{2} + \frac{1}{12}(DK_{X}^{2} + f^{*}Dc_{2}(Y))m + \chi(\mathcal{O}_{X}).$$

22 Projective morphisms according to Kawamata

Proof Substitute $A = D_m$ in (i).

Note also that the hypothesis in Proposition 3.1 that f coincides with the minimal resolution above the Du Val locus is a posteori not necessary, since $f^*Dc_2(Y)$ is independent of the model $f: Y \to X$.

Corollary 3.3 Let X, D and a be as in Theorem 0.0; then if $D \not\sim 0$, $h^0(mD - K_X)$ tends to infinity with m.

Proof For $m \ge 2a$, $mD - 2K_X$ is nef and big, so that Proposition 3.1, (ii) applies:

$$h^{0}(mD - K_{X}) \geq \frac{1}{6}(mD - K_{X})^{3} - \frac{1}{4}(mD - K_{X})^{2}K_{X} + \frac{1}{12}\left((D - K_{X})K_{X}^{2} + f^{*}(mD - K_{X})c_{2}Y\right) + \text{const. in } m.$$

If $D^2 \stackrel{\text{num}}{\not\sim} 0$, this grows at least like m^2 . If $D^2 \stackrel{\text{num}}{\sim} 0$, the linear term in m is

$$\left(DK_X^2 + \frac{1}{12}(DK_X^2 + f^*Dc_2(Y))\right)m.$$

Now by Corollary 3.2, $\frac{1}{12} (DK_X^2 + f^*Dc_2(Y))$ is the coefficient of m in $h^0(mD)$, and therefore

$$\frac{1}{12}(DK_X^2 + f^*Dc_2(Y) \ge 0;$$

also

$$DK_X^2 = D(D - K_X)^2 > 0$$

by Lemma 0.9. Q.E.D.

4 The base locus of $|-K_X|$ for a weak Fano 3-fold

In this section I prove Theorem 0.5 by polishing up Shokurov's ingenious proof [12]. The key points are Proposition 4.5 and 4.8–4.10 below, and the reader may like to jump forward to these while I unburden myself of some trivialities.

4.1 Preliminaries: 0-minimal resolution

Let X be a 3-fold with canonical singularities and $\mathcal{I} \subset \mathcal{O}_X$ an ideal (in application, \mathcal{I} is the ideal defining the base locus of a linear system). If $C \subset X$ is any irreducible curve, $P \in C$ a general point and $P \in X' \subset X$ a local general hyperplane section through $P, P \in X'$ will be a Du Val singularity or nonsingular point. Let $\mathcal{I}' \subset \mathcal{O}_{X',P}$ be the ideal induced by \mathcal{I} . A good resolution $f: Y \to X$ of X and \mathcal{I} is a resolution having a normal crossing divisor $\sum F_j$ which includes the exceptional locus of f, and such that

$$\mathcal{I} \cdot \mathcal{O}_Y = \mathcal{O}_Y(-\sum r_j F_j);$$

by Bertini's theorem, f induces a good resolution f' of X' and \mathcal{I}' :

$$\begin{array}{rccccccc} G_k \ \subset \ Y' \ \subset \ Y \ \supset \ F_j \\ & \downarrow f' & \downarrow f \\ & X' \ \subset \ X; \end{array}$$

here each G_k is a connected component of some $F_j \cap Y'$ and $r_k = r_j$ (that is, $r(G_k) = r(F_j)$). Say that f is a 0-minimal good resolution if f' is the minimal good resolution of X' and \mathcal{I}' for all X'. It is easy to construct this by successively blowing up 1-dimensional components of Sing X and of the locus where \mathcal{I} is not invertible, and then making an arbitrary resolution which is an isomorphism except over a finite set of X.

Lemma 4.2 Let $P \in X'$ be a Du Val singularity or nonsingular point, and $\mathcal{I}' \subset \mathcal{O}_{X',P}$ an ideal; suppose that $f' \colon Y' \to X'$ is a good resolution of $P \in X'$ and \mathcal{I}' , and set

$$\mathcal{I} \cdot \mathcal{O}_{Y'} = \mathcal{O}_{Y'}(-\sum r_k G_k); \quad K_{Y'} = f'^* K_{X'} + \sum a_k G_k.$$

Then f' is the minimal good resolution of X' and \mathcal{I}' if and only if there does not exist a -1-curve $G_k \subset f'^{-1}P \subset Y'$ which meets at most two other components G_{k_i} such that $r_k = \sum r_{k_i}$.

Lemma 4.3 Furthermore, if f' is the minimal good resolution, the following hold:

- (i) $r_j \ge a_j$ for all j.
- (ii) Except for cases (a-b) below, $r_j > a_j$ for all j.
- (iii) $r_j \leq 1$ for all j is only possible in one of the cases (a-d) below.

Here the exceptional cases are:

- (a) $P \in X'$ is nonsingular, $\mathcal{I}' = m_P$ and f' is the blowup of P;
- (b) $\mathcal{I}' = \mathcal{O}_{X',P}$ and f' is the minimal resolution of $P \in X'$;
- (c) $P \in X'$ is nonsingular, $\mathcal{I}' = \mathcal{I}_H$ where $H \subset X'$ is a curve with normal crossing at P (either nonsingular or a node), and $f' = \operatorname{id}_{X'}$;
- (d) $P \in X'$ is an A_n point for $n \ge 1$ and \mathcal{I}' contains an element h defining a curve $H \subset X'$ having a node at P.

The proof is an easy exercise.

f

4.4

Now let X be a weak Fano 3-fold, that is, a projective 3-fold with canonical singularities and $-K_X \in \operatorname{Pic} X$ nef and big. It follows from Riemann–Roch and vanishing (as in Proposition 3.1) that $h^0(-K_X) = g + 2$, where $g \in \mathbb{Z}$, $g \geq 2$ is defined by $-K_X^3 = 2g - 2$. Let $\mathcal{I} \subset \mathcal{O}_X$ be the ideal defining the base locus of $|-K_X|$, that is, $\mathcal{I} \cdot \mathcal{O}_X(-K_X)$ is the \mathcal{O}_X -submodule of $\mathcal{O}_X(-K_X)$ generated by the H^0 .

Let $f: Y \to X$ be a 0-minimal good resolution of X and \mathcal{I} , and let $\sum F_j$ be as usual; set

$$K_{Y} = f^{*}K_{X} + \sum a_{j}F_{j}, \\ ^{*}|-K_{X}| = |L| + \sum r_{j}F_{j}, \end{cases}$$
(*)

where $a_j, r_j \in \mathbb{Z}$, $a_j, r_j \geq 0$ and |L| is a free linear system. I start by proving Theorem 0.5 assuming that |L| is not composed of a pencil, that is, by Bertini's theorem, the general $L \in |L|$ is irreducible, nonsingular and $\kappa_{\text{num}}(L) \geq 2$.

Proposition 4.5 Under the hypotheses of 4.4, suppose that |L| is not composed of a pencil. Then $\chi(\mathcal{O}_L) \geq 2$.

Proof L is a nonsingular surface, and $f^*(-K_X)|_L$ is nef and big by 0.9, (ii). Thus vanishing gives

$$H^i(L, \mathcal{O}_L(f^*(-K_X) + K_L)) = 0 \quad \text{for } i \ge 0.$$

Using (*),

$$K_Y + L + f^*(-K_X) = L + \sum a_j F_j;$$

4. The base locus of $|-K_X|$ for a weak Fano 3-fold 25

hence

$$g+1 \le h^0(L, \mathcal{O}_L(L)) \le h^0(L, \mathcal{O}_L(L+\sum a_j F_j))$$
$$= \chi(\mathcal{O}_L) + \frac{1}{2}(L+\sum a_j F_j)f^*(-K_X)L,$$

by Riemann–Roch on L. However,

$$2g - 2 = f^*(-K_X)^3 \ge f^*(-K_X)^2 L = f^*(-K_X)(L + \sum r_j F_j)L$$
$$\ge f^*(-K_X)(L + \sum a_j F_j)L,$$

using the fact that $r_j \ge a_j$ unless $fF_j = \text{pt} \in X$ (Lemma 4.3, (i)). Q.E.D.

4.6 Proof of Theorem 0.5

Using (*) again,

$$K_L = \left(\sum (a_j - r_j)F_j\right)_{\mid L};$$

Lemma 4.3, (i) gives that $r_j \ge a_j$ unless $fF_j = \text{pt} \in X$. Hence

$$K_L = A - B,$$

with $A \ge 0$ a divisor on L contracted by the birational map $f_{|L}$, and $B \ge 0$. In addition, Proposition 4.5 says that $p_g(L) \ne 0$; it follows that B = 0 and that a minimal model of L has trivial canonical class. This also proves

$$a_j \ge r_j \quad \text{if } F_j \cap L \ne \emptyset.$$
 (**)

On the other hand, assuming that L is not composed with a pencil, L is nef with $\kappa_{\text{num}}(L) \geq 2$; hence I can apply vanishing in the form Kawamata [5], Corollary on p. 45, to the cohomology exact sequence of $\mathcal{O}_Y \twoheadrightarrow \mathcal{O}_L$ to deduce that $H^1(\mathcal{O}_L) = 0$, and L is birational to a K3.

Pushing down (*) in 4.4,

$$-K_X = S + \sum r_j f_* F_j,$$

where S = fL, and f_*F_j is the cycle theoretic image, that is,

$$f_*F_j = \begin{cases} \overline{F}_j & \text{if } F_j \text{ maps birationally to } \overline{F}_j \subset X, \\ 0 & \text{otherwise.} \end{cases}$$

If F_j is not contracted by f then $a_j = 0$, so that by (**) either $r_j = 0$ or $F_j \cap L = \emptyset$. But now I claim that S and $\sum r_j f_* F_j$ do not intersect along

curves of X; if S = fL intersects some \overline{F}_j in a mobile curve (as L moves in |L|) then $F_j \cap L \neq \emptyset$ and $r_j = 0$ by (**); on the other hand, if all S pass through some fixed curve $C \subset X$ then $f^{-1}C$ contains at least one component F_j with $F_j \cap L \neq \emptyset$, hence $a_j \geq r_j$ by (**). Applying Lemma 4.3, (ii) gives $C \not\subset S$ ing X, and the general element of $|-K_X|$ has multiplicity 1 along C, hence $C \subset S$, $C \not\subset \sum r_j f_* F_j$.

It follows from what I have just proved and from the connectedness lemma 0.9, (iii) that $\sum r_j f_* F_j = 0$ and that $S \in |-K_X|$; hence the irreducible surface S has $K_S = 0$. Since the resolution $f_{|L}: L \to S$ has $K_L \ge 0$, S has canonical singularities, that is, Du Val singularities. This proves Theorem 0.5 in this case.

4.7

The next result is the first step in proving that |L| cannot be composed of a pencil.

Lemma If $|-K_X|$ is composed of a pencil then L = (g+1)E with |E| a free pencil, in particular $\mathcal{O}_E(E) \cong \mathcal{O}_E$; $f^*(-K_X)^2E = 1$, and there is a unique component F_0 of $\sum F_j$ such that

$$f^*(-K_X)F_0E = 1, \quad r_0 = 1, \quad a_0 = 0$$

and $r_jf^*(-K_X)F_jE = 0 \quad for \ j \neq 0.$

Proof

$$2g - 2 = f^*(-K_X)^3 \ge (g+1)f^*(-K_X)^2 E$$

and by Lemma 0.9, (ii), $f^*(-K_X)^2 E > 0$. This proves $f^*(-K_X)^2 E = 1$. For the rest, set

$$D = f^*(-K_X)|_E = \left(\sum r_j F_j\right)|_E;$$

D is nef and $D^2 = 1$, so it has a component Γ with $D\Gamma = 1$, and all the others have $D\Gamma = 0$.

To prove that $a_0 = 0$, note that by Lemma 4.3, (i), $a_0 \le r_0 = 1$; on the other hand, a_0 is even, since

$$K_E + D = \left(\sum a_j F_j\right)|_E$$

and

$$(K_E + D)D = \left(\sum a_j F_j\right)_{\mid E} D = f^*(-K_X) \left(\sum a_j F_j\right) E = a_0. \quad \text{Q.E.D.}$$

4.8

For the remainder of the proof, I want to work on a different model: using Theorem 0.0 and Proposition 0.1, (b), there is no loss of generality in assuming that $-K_X$ is ample; now let X_1 be the normalised graph of the rational map $\varphi_{-K_X} \colon X \dashrightarrow \mathbb{P}^1$. Then there is a diagram

$$Y$$

$$f \swarrow \qquad \downarrow_h \searrow^{\varphi_E}$$

$$X \stackrel{p}{\leftarrow} X_1 \stackrel{q}{\rightarrow} \mathbb{P}^1$$

in which p and q are the projections, $f: Y \to X$ is as in 4.4, φ_E is the morphism defined by |E|, and h the diagonal morphism.

- Claim (i) $-K_{X_1} = p^*(-K_X)$, so that X_1 has canonical singularities, $-K_{X_1} \in \operatorname{Pic} X_1$, and $-K_{X_1}$ is relatively ample for q;
 - (ii) $|-K_{X_1}| = |(g+1)E_1| + F_1$, where F_1 is an irreducible surface, $|E_1|$ a free pencil, and for every $E_1 \in |E_1|$, E_1 is a reduced irreducible surface and $F_1 \cap E_1$ a reduced irreducible curve.

Proof Every curve $C \subset X_1$ contracted by p maps isomorphically to \mathbb{P}^1 ; it follows that if p contracts any surface $F \subset X_1$, this has to meet every fibre of q in a curve, and hence F corresponds birationally to $F_0 \subset Y$, the component of Lemma 4.7; then $a_0 = 0$, and hence $-K_{X_1} = p^*(-K_X)$. (ii) follows because as in Lemma 4.7,

$$(-K_{X_1})^2 E_1 = (-K_{X_1})F_1 E_1 = 1.$$
 Q.E.D.

4.9

Now F_1 is a Gorenstein surface, having a free pencil |E'| every fibre of which is reduced and irreducible, and such that

$$K_{F_1} = -(g+1)E'; \quad p_a E' = 1.$$

The long exact cohomology sequence of

$$0 \to \mathcal{O}_{F_1}(-(g+1)E') \to \mathcal{O}_{F_1} \to \mathcal{O}_{(g+1)E'} \to 0$$

implies at once that $h^1(\mathcal{O}_{F_1}) \geq g$.

On the other hand, Lemma 1.10 applied to X_1 gives that F_1 has at worst ordinary double curves in codimension 1. I can now appeal to the following result to deduce a contradiction.

28 Projective morphisms according to Kawamata

Lemma 4.10 Let F be an irreducible projective Cohen–Macaulay surface having a morphism $q: F \to \mathbb{P}^1$ with reduced irreducible fibres of arithmetic genus 1; suppose that F has at worst ordinary double curves in codimension 1; then $h^1(\mathcal{O}_F) \leq 1$.

Proof If F has isolated singularities and $f: G \to F$ is a resolution, then $h^1(\mathcal{O}_G) \leq 1$ from the classification of surfaces, and $h^1(\mathcal{O}_F) \leq h^1(\mathcal{O}_G)$ follows from the Leray spectral sequence for f:

$$0 \to H^1(\mathcal{O}_F) \to H^1(\mathcal{O}_G) \to R^1 f_* \mathcal{O}_G \to \to H^2(\mathcal{O}_F) \to H^2(\mathcal{O}_G) \to 0.$$

Suppose then that F has a double curve; the hypothesis implies that F is not singular along a fibre, so that there is just one double curve C, and the general fibre of $q: F \to \mathbb{P}^1$ is a rational curve with a node at its intersection with C. Obviously $q_{|C}: C \to \mathbb{P}^1$ is an isomorphism. Let $\pi: G \to F$ be the normalisation; then by the classification of surfaces, $H^1(\mathcal{O}_G) = 0$. If \mathcal{C} is the conductor ideal of the normalisation then $\mathcal{C} \subset \mathcal{O}_G$ defines a reduced curve $D \subset G$ with $D \to C$ a double cover. It follows that there is an isomorphism $\pi_*\mathcal{O}_G/\mathcal{O}_F \cong \pi_*\mathcal{O}_D/\mathcal{O}_C$, and that $H^0(\pi_*\mathcal{O}_G/\mathcal{O}_F)$ is 0- or 1-dimensional depending on whether D has 1 or 2 connected components. The lemma follows from the exact sequence

$$0 \to H^0(\pi_*\mathcal{O}_G/\mathcal{O}_F) \to H^1(\mathcal{O}_F) \to H^1(\mathcal{O}_G).$$

This completes the proof of Theorem 0.5.

Counterexample 4.11 Lemma 4.10 is false without the hypothesis of ordinary double curves: let \mathbb{F}_n be the standard rational scroll with a section Bhaving $B^2 = -n$; the divisor 2B is naturally a subscheme of \mathbb{F}_n and has a morphism $\pi: 2B \to \mathbb{P}^1$ induced by the projection of \mathbb{F}_n . Take F to be the surface obtained by pinching \mathbb{F}_n along π ; that is, F has the same underlying space as \mathbb{F}_n , but has sheaf of rings in such a way that $\mathcal{O}_{\mathbb{F}_n}/\mathcal{O}_F \cong \pi_*\mathcal{O}_{2B}/\mathcal{O}_{\mathbb{P}^1}$; in other words, replace coordinate neighbourhoods $\operatorname{Spec} k[X, Y]$ of \mathbb{F}_n , where X = 0 defines B, by $\operatorname{Spec} k[X^2, X^3, Y]$.

Then it is immediate that F has a morphism $F \to \mathbb{P}^1$ with every fibre a cuspidal rational curve, and $K_F = -(n+2)E$, $H^1(\mathcal{O}_F) = n+1$.

5 Weak Theorem on the Cone

Definition 5.1 A normal variety X is \mathbb{Q} -factorial if every Weil divisor of X is \mathbb{Q} -Cartier.

- **Remarks** (a) This is a local condition: every Weil divisor near $P \in X$ is the restriction of a global one, and the condition for a Weil divisor to be Cartier or \mathbb{Q} -Cartier is local.
 - (b) The condition is not invariant under local analytic equivalence. For example, an ordinary double point of a 3-fold is analytically (xy = zt), which is the typical example of a nonfactorial variety. However, it is easy to show that a hypersurface $X_d \subset \mathbb{P}^4$ of degree $d \geq 3$ having an ordinary double point $P \in X$ as its only singularity has class group $\operatorname{Cl} X \cong \mathbb{Z}$, with the hyperplane section as generator. (Proof: Blowing up $P \in X \subset \mathbb{P}^4$ leads to a smooth very ample divisor $\widetilde{X} \subset \widetilde{\mathbb{P}}$; we know the divisors of $\widetilde{\mathbb{P}}$, and the result follows from the Lefschetz theorem.)
 - (c) If X is \mathbb{Q} -factorial and nonsingular in codimension 2, and $D \subset X$ is a prime divisor, then D is Gorenstein in codimension 1, so that the \mathbb{Q} -divisor K_D is well defined and equal to $(K_X + D)|_D$.

5.2

Throughout this section X is a projective 3-fold with isolated Q-factorial canonical singularities. The notation is as in 0.3; I make the following definitions: a ray R of $\overline{\text{NE}}$ is an *extremal ray* if it's extremal in the sense of convexity (that is, $R \not\subset \text{convex hull of } \overline{\text{NE}} \setminus R$). An extremal ray R is good if $K_X R < 0$, and there exists an $H \in N_{\mathbb{Q}}^1 X$ which is nef and such that $H^{\perp} \cap \overline{\text{NE}} = R$. Let $\{R_i\}_{i \in I}$ be the set of good extremal rays; using Corollary 0.3 it is clear that each R_i is of the form $R_i = \mathbb{R}_+ C_i$ for some curve $C_i \subset X$. In particular each ray is rational in $N_1(X)$, and there are at most countably many.

Theorem 5.3 Under the stated hypotheses,

$$\overline{\mathrm{NE}}(X) = \left(\overline{\mathrm{NE}}_{K_X} + \sum_{i \in I} R_i\right)^-,$$

where $\overline{}$ denotes closure in the usual real topology of N_1X , and for $D \in N^1X$, $\overline{NE}_D = \{z \in \overline{NE} \mid Dz \ge 0\}$. In particular if K_X is not nef then X has a good extremal ray.

Remarks This is a weak version of the conjectured Theorem on the Cone; it is conjectured (and proved by Mori in the nonsingular case) that

- (i) the rays R_i are discrete in the open halfspace $(K_X z < 0)$ of $N_1 X$ (so that there is no need to take closure in the theorem);
- (ii) each ray R_i is spanned by a rational curve C_i ;

(iii) the C_i can be chosen so that $-4 \leq K_X C_i < 0$.

It is possible that these could be proved a posteori using Corollary 0.3 and Proposition 0.1; for example, (ii) can be checked in all cases except for that of a Q-Fano 3-fold X, when it is required to prove that X contains a rational curve (conjecturally it is uniruled). Similarly, (iii) might be attacked on a case-by-case basis.³ Part of (i) is implied by (iii), since assuming (iii) it is easy to see that the rays R_j are discrete in a neighbourhood of any fixed ray R_i .

I believe the hypotheses on the singularities of X can be weakened to allow any canonical singularities, using the methods of [9].

The next two results are the main steps in the proof of Theorem 5.3.

Kawamata's version 5.4 ([4], §2) Let D be an effective \mathbb{Q} -divisor, and H an ample \mathbb{Q} -Cartier divisor. Then there exists a finite number of curves $l_j \subset X$ such that

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}_{K_X + H} + \overline{\mathrm{NE}}_D + \sum R_+ l_j.$$

Key rationality lemma 5.5 Suppose that H is an ample \mathbb{Q} -divisor, and that K_X is not nef. Write $H_t = tH + K_X$, and set

$$b = \inf\{t \in \mathbb{Q} \mid H_t \text{ is ample}\};$$

(that is $b \in \mathbb{R}$, and for $t \in \mathbb{Q}$, H_t is ample if t > b, and not nef if t < b). Then $b \in \mathbb{Q}$.

I start by deducing Theorem 5.3 from the key rationality lemma 5.5 and its relative form Lemma 5.11 below.

Definition 5.6 A good supporting function of $\overline{\text{NE}}$ is an element $L \in N^1_{\mathbb{Q}}X$ such that L is nef and $F_L = L^{\perp} \cap \overline{\text{NE}}$ is a nonzero face of $\overline{\text{NE}}$ entirely contained in the open halfspace $(K_X z < 0) \subset N_1 X$; then F_L is a good face of $\overline{\text{NE}}$. (Note that 0 is good if and only if $-K_X$ is ample, in which case $\overline{\text{NE}}$ is itself a good face.)

By the argument given in 0.3, for suitable $a \gg 0$, $aL - K_X$ is ample, so that any such L is given by the construction of Lemma 5.5. Note also that a good extremal ray of $\overline{\text{NE}}$ (as defined in 5.2) is the same thing as a good 1-face of $\overline{\text{NE}}$.

³(iii) \implies (i) is standard in Mori theory: for all ample H and $\varepsilon \ge 0$ the irreducible curves $C \subset X$ such that $HC < -(1/\varepsilon)K_XC \le 4/\varepsilon$ belong to a finite number of algebraic equivalence classes; hence (iii), together with Theorem 5.3 would imply $\overline{\text{NE}} = \overline{\text{NE}}_{K_X + \varepsilon H} + \sum R_i$, where the sum takes place over a finite number of rays representing these classes. (Note added in 1983–84.)

Lemma 5.7 (i) $\overline{\text{NE}} = (\overline{\text{NE}}_{K_X} + \sum_L F_L)^-;$

(*ii*) $\overline{\operatorname{NE}} \cap (K_X z < 0) = \bigcap_L (Lz \ge 0) \cap (K_X z < 0).$

Here the sum and the intersection on the right-hand sides are taken over all good supporting functions $L \in N_{\mathbb{O}}^1 X$.

Proof Write *B* for the right-hand side of (i); then $B \cap (K_X z \ge 0) = \overline{NE}_{K_X}$, and the inclusion $\overline{NE} \supset B$ is trivial. The next statement, together with Kleiman's criterion, gives the opposite inclusion.

Claim Let $M \in N^1_{\mathbb{Q}}X$ be such that M > 0 on B; then M is ample.

To see this, note that $\overline{\text{NE}}_{K_X}$ is the closed convex cone defined by the inequalities $Hz \ge 0$ for ample H and $K_Xz \ge 0$. By convexity, M > 0 on $\overline{\text{NE}}_{K_X}$ implies that M is a finite positive linear combination

$$M = \sum m_i H_i + m_0 K_X, \quad \text{with } m_i \in \mathbb{R}, \ m_i \ge 0$$

where the H_i are ample. Since by 5.4 $\overline{\text{NE}}$ has at least one face F_L in the $(K_X z < 0)$ halfspace, at least one $m_i > 0$, which implies that $M - m_0 K_X$ is ample for some $m_0 \ge 0$, and I can clearly take $m_0 \in \mathbb{Q}$. Now applying 5.4 to $H = M - m_0 K_X$, it follows that $L = M + aK_X$ is a good supporting function for some $a \in \mathbb{Q}$, $a > -m_0$. Since $F_L \subset B$ and $K_X < 0$ on F_L , necessarily a > 0. I've got $M - m_0 K_X$ ample with $m_0 \ge 0$, and $M + aK_X$ nef with a > 0, which implies that M is ample.

This proves (i); (ii) is left as an easy exercise.

5.8

Lemma 5.7 shows that $\overline{\text{NE}}$ is the closed convex hull of its good faces, together with $\overline{\text{NE}}_{K_X}$. The strategy from now on is to prove that each good face F_L of dimension ≥ 2 is in turn the closed convex hull of its proper faces (Lemma 5.12 below); Theorem 5.3 then follows by induction on the dimension.

Fix then a good face F_L of NE; by Lemma 0.3 there is a morphism $\varphi \colon X \to Z$ contracting exactly the curves $C \in F_L$; by construction $-K_X$ is relatively ample for φ . To carry out my strategy I need relative versions of the work so far, starting with the terminology (compare Kleiman [6], Chap. IV, §4). There are dual sequences (which will turn out to be exact in my case)

Here $N_1(X/Z) \subset N_1X$ is the subspace generated by curves C contracted by φ , and $N^1(X/Z)$ is its dual; the surjectivity of $N^1X \to N^1(X/Z)$ is standard in the theory of vector spaces. φ^* and φ_* are dual maps so that ker $\varphi_* = (\operatorname{im} \varphi^*)^{\perp}$. Note also that

$$\operatorname{NE}(X) \cap L^{\perp} = \operatorname{NE}(X) \cap N_1(X/Z) = \operatorname{NE}(X/Z) \subset N_1(X/Z)$$

is the cone of effective 1-cycles contracted by φ .

5.9

It follows from the relative version of Kleiman's criterion that

$$F_L = \overline{\operatorname{NE}}(X) \cap N_1(X/Z) = (\operatorname{NE}(X/Z))^-.$$
(*)

To see this, note that the inclusion \supset is trivial; on the other hand, if $H \in N^1_{\mathbb{Q}}(X/Z)$ is strictly positive on $(\operatorname{NE}(X/Z))^-$ then by [6], p. 336, H is relatively ample for φ . Hence H comes from some ample $\widetilde{H} \in N^1X$, and so H > 0 on $\overline{\operatorname{NE}}(X) \cap N_1(X/Z)$.

Proposition 5.10 Let $\varphi \colon X \to Z$ be the contraction of a good face F_L of $\overline{\text{NE}}$.

- (i) If $D \in N^1X$ is relatively nef for φ then there exists $H \in N^1Z$ such that $D + \varphi^*H$ is nef;
- (ii) the dual sequences (*) are exact.

(Note that although both statements here look formal, the proofs given below are ad hoc; probably the statements are false for general φ .)

Proof (i) If Z = pt there is nothing to prove. Suppose without loss of generality that $D \in Pic X$.

Claim Outside a finite number of fibres of φ , $\mathcal{O}_X(D)$ is relatively generated by its H^0 , that is, $\varphi^* \varphi_* \mathcal{O}_X(D) \to \mathcal{O}_X(D)$ is surjective.

This proves (i), since for any sufficiently ample $H \in \text{Pic } Z$, the linear system $|D+\varphi^*H|$ is free outside a finite number of fibres of φ , and then $(D+\varphi^*H)C \ge 0$ for every curve $C \subset X$.

I prove the claim assuming dim Z = 2; then since $-K_X$ is relatively ample, all but a finite number of fibres of φ are isomorphic to conics. A nef invertible sheaf on a conic is generated by its H^0 , and $\varphi^*\varphi_*\mathcal{O}_X(D) \twoheadrightarrow \mathcal{O}_X(D)$ in a neighbourhood of such a fibre follows by an easy use of coherent base change. The cases dim Z = 1 or 3 are no harder, and are left to the reader.

(ii) follows from (i) and from Theorem 0.0: if $D \in N^1X$ maps to 0 in $N^1(X/Z)$ then by (i), for sufficiently ample $H \in N^1X$, $D + \varphi^*H$ satisfies the hypotheses of Theorem 0.0; the morphism corresponding to $D + \varphi^*H$ contracts the curves with $(D + \varphi^*H)C = 0$, and hence coincides with φ , so that $D + \varphi^*H \sim \varphi^*M$ for some $M \in N^1Z$. Q.E.D.

Lemma 5.11 Suppose that $H \in N^1_{\mathbb{Q}}X$ is relatively ample; write $H_t = tH + K_X$, and set

$$b = \inf \{ t \in \mathbb{Q} \mid H_t \text{ is relatively ample for } \varphi \}.$$

Then $b \in \mathbb{Q}$.

This is a relative version of the rationality lemma 5.5, and will be proved together with it (see 5.14).

Lemma 5.12 If dim $N^1(X/Z) \ge 2$ then $\overline{NE}(X/Z)$ is the closed convex hull of its proper good faces. In other words, defining a good supporting function $M \in N_{\mathbb{Q}}^1 X$ in the obvious way,

$$\overline{\operatorname{NE}}(X/Z) = \left(\sum_{M \neq 0} (M^{\perp} \cap \overline{\operatorname{NE}}(X/Z)) \right)^{-},$$

where the sum on the right-hand side is over all nonzero good supporting functions M.

Proof As before, write B for the right-hand side; the inclusion \supset is trivial. If $z \in \overline{NE}(X/Z) \setminus B$ with $z \neq 0$ then there exists a separating function $M \in N^1(X/Z)$ such that Mz < 0 but M > 0 on B; by the compactness of $B \cap$ (unit sphere), I can shift M very slightly if necessary to ensure that $M \in N^1_{\mathbb{Q}}X$ and that M is not a rational multiple of K_X (since dim ≥ 2).

Now Lemma 5.11 gives that $M + aK_X$ is a nonzero good supporting function of $\overline{\operatorname{NE}}(X/Z)$ for some $a \in \mathbb{Q}$. I now have a contradiction, since on the one hand Mz < 0 and $(M + aK)z \ge 0$ implies that a < 0, and on the other, since M is positive on the good face $(M + aK_X)^{\perp} \cap \overline{\operatorname{NE}}(X/Z)$, I get a > 0. This proves Lemma 5.12.

It is clear from Proposition 5.10, (i) that a good face of $\overline{\text{NE}}(X/Z)$ is a good face of $\overline{\text{NE}}(X)$; this proves Theorem 5.3.

5.13 Proof of Key Rationality Lemma 5.5

STEP 1 Suppose that H_t is an effective \mathbb{Q} -divisor for some $t \in \mathbb{Q}$ with $t \leq b$; then by Kawamata's theorem 5.4 there are finitely many curves $l_j \subset X$ such that

$$\overline{\mathrm{NE}}(X) = \overline{\mathrm{NE}}_{H_t} + \sum \mathbb{R}_+ l_j$$

Then clearly,

$$b = \max\left\{t, \frac{-K_X l_i}{H l_i}\right\} \in \mathbb{Q}.$$

STEP 2 Let t be an indeterminate, and consider the cubic polynomial

$$p(t) = H_t^3 = (tH + K_X)^3 \in \mathbb{Q}[t].$$

Then since $p'(t) = 3H(tH + K_X)^2$,

$$H_b^2 \stackrel{\text{num}}{\sim} 0 \iff b \text{ is a repeated root of } p \implies b \in \mathbb{Q}.$$

Thus I need only treat the case $H_b^2 \stackrel{\text{num}}{\not\sim} 0$.

STEP 3 If $H_b^3 > 0$ then there exists $q, m \in \mathbb{Z}, q, m > 0$ such that $m/q \leq b$ and $H^0(mH + qK_X) \neq 0$, hence by Step 1, $b \in \mathbb{Q}$.

Proof For $m \in \mathbb{Z}$, m > 0, set $q = \lceil m/b \rceil$; then

$$q \ge \frac{m}{b} > q - 1;$$

by definition of b,

$$mH + (q-1)K_X$$

is an ample Q-divisor, so that by Proposition 3.1, (ii),

$$h^{0}(mH + qK_{X}) = \frac{1}{6}(mH + qK_{X})^{3} - \frac{1}{4}(mH + qK_{X})^{2}K_{X} + O(m), \quad (1)$$

where O(m) denotes terms bounded by a linear function of m. Write

$$mH + qK_X = \frac{m}{b}(bH + K_X) + \left(q - \frac{m}{b}\right)K_X$$

$$= \frac{m}{b}H_b + \left\{\frac{-m}{b}\right\}K_X,$$
 (2)

where {} denotes "fractional part" of a real number. Then

$$h^{0}(mH + qK_{X}) = \frac{1}{6}H_{b}^{3}\left(\frac{m}{b}\right)^{3} + O(m^{2}),$$

and tends to infinity with m. This proves this case.

STEP 4 If $H_b^3 = 0$ but $H_b^2 \stackrel{\text{num}}{\not\sim} 0$ then $2/b \in \mathbb{Z}$.

Proof Substituting (2) into (1) and evaluating gives

$$0 \le h^0(mH + qK_X) = \left(\frac{1}{2} \left\{\frac{-m}{b}\right\} - \frac{1}{4}\right) H_b^2 K_X\left(\frac{m}{b}\right)^2 + O(m).$$
(3)

Now $H_b^3 = 0$, $H_b^2 H > 0$ implies that $H_b^2 K_X < 0$. Furthermore, if *b* is irrational, or if 1/b is rational with denominator ≥ 3 then for infinitely many values of *m*, I have $\{-m/b\} \geq 2/3$. The right-hand side of (3) is then negative for large *m*, which is a contradiction. This completes the proof of Rationality Lemma 5.5.

5.14 Proof of Lemma 5.11

If Z = pt then Lemma 5.11 is contained in 5.5. If dim Z = 1 or 2, let

$$b' = \inf \left\{ t \in \mathbb{Q} \mid H_t|_A \text{ is ample for a general fibre } A \text{ of } \varphi \right\}$$

The obviously $b' \leq b$, and by the statement of Rationality Lemma 5.5 in dimension 1 or 2 (the proof of which I leave to the reader), $b' \in \mathbb{Q}$. If b' < bthen there is some t < b such that H_t is relatively ample on the general fibre of φ ; then for some sufficiently ample $D \in \text{Pic } Z$, $H_t + \varphi^* D$ is effective, and then $b \in \mathbb{Q}$ follows from Kawamata's Theorem 5.4 as in Step 1 above.

If φ is birational, then $H_t + \varphi^* D$ is effective for any $t \in \mathbb{Q}$ and sufficiently ample $D \in \operatorname{Pic} Z$, so that I conclude in the same way.

References

- X. Benveniste, Sur l'anneau canonique de certaines variétés de dimension 3, Invent. Math. 73 (1983), 157–164
- [2] Y. Kawamata, On the finiteness of generators of a pluricanonical ring for a 3-fold of general type, Amer. J. Math. 106 (1984), 1503–1512
- [3] Y. Kawamata, Elementary contractions of algebraic 3-folds. Ann. of Math. 119 (1984), 95–110.
- [4] Y. Kawamata, The cone of curves of algebraic varieties. Ann. of Math. 119 (1984), 603–633
- [5] Y. Kawamata, A generalisation of Kodaira–Ramanujam's vanishing theorem, Math. Ann. 261 (1982), 43–46

36 Projective morphisms according to Kawamata

- [6] S. Kleiman, Towards a numerical theory of ampleness, Ann. of Math. 84 (1966), 293–344
- [7] S. Mori, Threefolds whose canonical bundles are not numerically effective, Ann. of Math. 116 (1982), 133–176
- [8] M. Reid, Canonical 3-folds, in Journées de géométrie algébrique d'Angers, A. Beauville (ed.), Sijthoff and Noordhoff, Alphen (1980), 273–310
- [9] M. Reid, Minimal models of canonical 3-folds, in Algebraic varieties and analytic varieties (Tokyo, 1981), Advanced stud. in pure math 1, S. Iitaka and H. Morikawa (eds.) Kinokuniya, and North-Holland 1982, 131–180
- [10] M. Reid, Decomposition of toric morphisms, in Arithemetic and Geometry, papers dedicated to I.R. Shafarevich, M. Artin and J. Tate (eds.) Birkhäuser, 1983, vol. 2, 395–418
- [11] V.G. Sarkisov, On conic bundle structures, Izv. Akad. Nauk SSSR, Ser. Math. 46 (1982), 371–408 = Math USSR Izvestiya 20 (1983), 355–390
- [12] V.V. Shokurov, Smoothness of a general anticanonical divisor on a Fano variety, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), 430–441 = Math USSS Izvestiya 14 (1980)
- [13] V.V. Shokurov, The nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), 635–651 = Math USSS Izvestiya 26 (1986), 591–604
- [14] V.V. Shokurov, The closed cone of curves of algebraic 3-folds, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 203–208 = Math USSR Izv. 24 (1985), 193–198