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We describe an efficient implementation of a hierarchy of algorithms for multiplication of dense

matrices over the field with two elements (F2). In particular we present our implementation – in
the M4RI library – of Strassen-Winograd matrix multiplication and the “Method of the Four Rus-

sians for Multiplication” (M4RM) and compare it against other available implementations. Good

performance is demonstrated on AMD’s Opteron processor and particulary good performance on
Intel’s Core 2 Duo processor. The open-source M4RI library is available as a stand-alone package

as well as part of the Sage mathematics system.

In machine terms, addition in F2 is logical-XOR, and multiplication is logical-AND, thus a
machine word of 64 bits allows one to operate on 64 elements of F2 in parallel: at most one CPU

cycle for 64 parallel additions or multiplications. As such, element-wise operations over F2 are
relatively cheap. In fact, in this paper, we conclude that the actual bottlenecks are memory reads

and writes and issues of data locality. We present our empirical findings in relation to minimizing

these and give an analysis thereof.

Categories and Subject Descriptors: G.4 [MATHEMATICAL SOFTWARE]:

General Terms: Algorithms, Experimentation

Additional Key Words and Phrases: GF(2), matrix, linear algebra, multiplication, Strassen, greas-
ing

1. INTRODUCTION

We describe an efficient implementation of a hierarchy of algorithms for multipli-
cation of dense matrices over the field with two elements (F2). Matrix-matrix mul-
tiplication is an important primitive in computational linear algebra and as such,
the fundamental algorithms we implement have been well known for some time.
Therefore this paper focuses on the numerous techniques employed for the special
case of F2 in the M4RI library (http://m4ri.sagemath.org) and the benefits so
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Architecture L1 L2 RAM

Intel Core 2 Duo T7600 32KB/3 cyc. 4MB/14 cyc. ≥ 1GB/∼ 200 cyc.
AMD Opteron 885 64KB/3 cyc. 1MB/16 cyc. ≥ 1GB/∼ 200 cyc.

Table I. Sizes and approximate cost of memory access on modern x86 64 CPUs

derived.
We note that even for problems that do not reduce to matrix-matrix multiplica-

tion many of the techniques presented in this paper are still applicable. For instance,
Gaussian Elimination can be achieved via the “Method of the Four Russians for
Inversion” (M4RI)(cf. [Bard 2007, Ch. 5] and [Bard 2008]) and borrows ideas from
the “Method of the Four Russians for Multiplication” (M4RM) [Arlazarov et al.
1970], [Aho et al. 1974] which we present here.

The M4RI library implements dense linear algebra over F2 and is used by Sage
[Stein et al. 2008] and PolyBoRi [Brickenstein and Dreyer 2007].

Our optimization efforts focus on 64-bit x86 architectures (x86 64), specifically
the Intel Core 2 Duo and the AMD Opteron. Thus, we assume in this paper that
each native CPU word has 64 bits (ws = 64). However it should be noted that our
code also runs on 32-bit CPUs and on non-x86 CPUs such as the PowerPC.

In machine terms, addition in F2 is logical-XOR, and multiplication is logical-
AND, thus a machine word of 64 bits allows one to operate on 64 elements of F2 in
parallel, i.e. at most one CPU cycle for 64 parallel additions or multiplications. As
such, element-wise operations over F2 are relatively cheap. In fact, in this paper,
we conclude that the actual bottlenecks are memory reads and writes and issues
of data locality. We present our empirical findings in relation to minimizing these
and give an analysis thereof.

The second author proposed, in [Bard 2006] and [Bard 2007, Ch. 5], to count
memory accesses rather than arithmetic operations to estimate the complexity of
such algorithms and the empirical results of this paper lend further support to this
model. However, this model is a simplification as memory access is not uniform, i.e.
an algorithm which randomly accesses memory will perform much worse than an
algorithm with better spatial and temporal locality. These differences only affect
the constant of a complexity estimation, if we assume that memory access is O(1).
However, in practice they make a very significant difference, as our empirical results
will demonstrate.

The paper is structured as follows. We proceed from basic arithmetic (Sec-
tion 2) via the classical cubic multiplication algorithm (Section 2.3), through a
detailed discussion of the Method of the Four Russians (Section 3) to the Strassen-
Winograd algorithm (Section 4). We start by introducing our basic data structures
and conclude by presenting timing experiments to show the validity of our approach
(Section 6) and a brief discussion of these timing experiments.

The main contribution of this work are variants of the M4RM algorithm which
make better use of the memory hierarchy found in modern x86 64 CPUs (cf. Ta-
ble 1). Particulary, we give a more cache friendly version of the M4RM algorithm, a
variant of the M4RM which uses more than one lookup table and tuning parameters
for the two architectures considered in this work.

Note that all timings in this paper time Strassen-Winograd multiplication (cf.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



Efficient Multiplication of Dense Matrices over GF(2) · 3

Section 4) but with different base cases.

2. BASIC ARITHMETIC

2.1 Our Matrix Data Structure

We use a “flat row-major representation” for our matrices. Thus 64 consecutive
entries in one row are packed into one machine word. Consequently, bulk operations
on whole rows are considerably cheaper than on whole columns and addressing
a single column is more expensive than addressing a single row. Additionally,
we maintain an array – called rowswap – containing the address in memory of
the first word for each row in the matrix. To represent in-place submatrices (i.e.
without copying out the data) we also use this rowswap array. We call these in-
place submatrices “matrix windows” and they consist of addresses of the first word
of each row and the number of columns each row contains. This approach is limited
to matrix windows which start and end at full word borders but this is sufficient for
our application. The advantages and disadvantages of the “flat row-major” data
structure are, for instance, analyzed in [Pernet 2001].

2.2 Row Additions

Since this basic operation – addition of two rows – is at the heart of every algorithm
in this paper, we should briefly mention the SSE2 instruction set [Fog 2008] which
is available on modern x86 64 architectures. This instruction set offers an XOR op-
eration for 128-bit wide registers, allowing one to handle two 64-bit machine words
in one instruction. The use of these instructions does provide a considerable speed
improvement on Intel CPUs. Table II shows that up to a 25% improvement is pos-
sible when enabling SSE2 instructions. However, in our experiments performance
declined on Opteron CPUs when using SSE2 instructions. The authors were unable
to identify a cause of this phenomenon. Note however that Magma also does not
use SSE2 instructions on the Opteron [Steel 2009] which seems to agree with our
findings (cf. Table III).

Matrix Dimensions Using 64-bit Using 128-bit (SSE2)

10, 000× 10, 000 1.981 1.504
16, 384× 16, 384 7.906 6.074
20, 000× 20, 000 14.076 10.721

32, 000× 32, 000 56.931 43.197

Table II. Strassen-Winograd multiplication on 64-bit Linux, 2.33Ghz Core 2 Duo

Matrix Dimensions Using 64-bit Using 128-bit (SSE2)

10, 000× 10, 000 2.565 2.738

16, 384× 16, 384 10.192 10.647
20, 000× 20, 000 17.744 19.308

32, 000× 32, 000 65.954 71.255

Table III. Strassen-Winograd multiplication on 64-bit Linux, 2.6Ghz Opteron

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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2.3 Cubic Multiplication

The simplest multiplication operation involving matrices is a matrix-vector product
which can easily be extended to classical cubic matrix-matrix multiplication. To
compute the matrix-vector product Av we have to compute the dot product of each
row i of A and the vector v. If the vector v is stored as a row rather than a column,
this calculation becomes equivalent to word-wise logical-AND and accumulation of
the result in a word p via logical-XOR. Finally, the parity of p needs to be computed.
However, as there is no native parity instruction in the x86 64 instruction set this
last step is quite expensive compared to the rest of the routine. To account for
this, 64 parity bits can be computed in parallel [Warren 2002, Ch. 5]. To extend
this matrix-vector multiplication to matrix-matrix multiplication B must be stored
transposed.

Alternatively, we may compute the matrix-matrix product as
∑

vB over all rows
v of A. This strategy avoids transposing a matrix and the expensive parity opera-
tion.

3. THE METHOD OF THE FOUR RUSSIANS

The Method of the Four Russians matrix multiplication algorithm can be derived
from the original algorithm published by Arlazarov, Dinic, Kronrod, and Faradzev
for computing one step in the transitive closure of a directed graph [Arlazarov et al.
1970], but does not directly appear there. It has appeared in books including [Aho
et al. 1974, Ch. 6].

Consider a product of two matrices C = AB where A is an m×` matrix and B is
an `×n matrix, yielding an m×n for C. A can be divided into `/k vertical “stripes”
A0 . . . A`/k−1 of k columns each, and B into `/k horizontal stripes B0 . . . B`/k−1 of
k rows each. For simplicity, assume k divides `. The product of two stripes, AiBi

requires an m× `/k by `/k × n matrix multiplication, and yields an m× n matrix
Ci. The sum of all k of these Ci equals C.

C = AB =
`/k−1∑

0

AiBi.

Example: Consider k = 1 and

A =
(

a0 a1

a2 a3

)
, B =

(
b0 b1

b2 b3

)
.

Then

A0 =
(

a0

a2

)
, A1 =

(
a1

a3

)
, B0 =

(
b0 b1

)
, and B1 =

(
b2 b3

)
and consequently

A0B0 =
(

a0b0 a0b1

a2b0 a2b1

)
and A1B1 =

(
a1b2 a1b3

a3b2 a3b3

)
.

Finally, we have

C = AB = A0B0 + A1B1 =
(

a0b0 + a1b2 a0b1 + a1b3

a2b0 + a3b2 a2b1 + a3b3

)
.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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The principal benefit of multiplying in narrow stripes is that the bits across
each row of a stripe of A determine which linear combination of rows of B will
contribute to the product, e.g. in the above example a0, . . . , a3 dictate which linear
combination of (b0, b2) and (b1, b3) must be written to the rows of C. However,
if the stripe is relatively narrow as in this example, there is only a small number
of binary values each row of the stripe can take, and thus only a small number
of possible linear combinations of the rows of B that will be “selected”. If we
precompute all possible linear combinations of rows of B that could be selected we
can create a lookup table into which the rows of the stripes of A can index.

Returning to our example, if a0 = a2 and a1 = a3 then the same linear combi-
nation would be written to the first and the second row of C. Precomputation of
all 24 − 1 non-zero linear combinations, (1 · b0 + 0 · b1, 0 · b0 + 1 · b1, 1 · b0 + 1 · b1),
ensures that the repeated linear combination has only been computed once. In our
trivial example this did not reduce the number of operations, but for much larger
matrices reuse of the precomputed combinations yields a reduction in the number
of operations. Precomputing a table in this fashion is also called “greasing”.

The technique just described gives rise to Algorithm 1. In Algorithm 1 the sub-
routine ReadBits(A, r, sc, k) reads k bits from row r starting at column sc and
returns the bit string interpreted as an integer. Meanwhile, AddRowFromTable(C,
r, T, x) adds the row x from table T to the row j of matrix C. The subroutine
MakeTable(B, r, c, k) in Algorithm 1 constructs a table T of all 2k−1 non-zero
linear combinations of the rows of B starting in row r and column c. The traditional
way of performing this calculation is to use the reflected binary code.

3.1 Gray Codes

The Gray code [Gray 1953], named after Frank Gray and also known as reflected
binary code, is a numbering system where two consecutive values differ in only one
digit. Examples of Gray codes for two, three and four bits are given in Figure 3.1.

Gray code tables for n-bits can be computed from n− 1-bit Gray code tables by
prepending each entry of the n − 1-bit Gray code table with 0. Then the order of
the entries is reversed and a 1 is prepended to each entry. These two half-tables
are then concatenated. Of course, there are other more direct ways of constructing
these tables, but since we precompute these tables in our code, we are not concerned
with optimizing their creation in this paper.

These tables can then be used to construct all 2k−1 non-zero linear combinations
of k rows where each new entry in the table costs one row addition as its index
differs in exactly one bit from that of the preceding row. Thus computing all 2k−1
non-zero linear combinations of k rows can be done in 2k − 1 row additions, rather
than (k/2 − 1)2k − 1 as would be expected if each vector were to be tabulated
separately.

Overall, the complexity of the algorithm for multiplying two n×n matrices is as
follows: The outer loop is repeated n/k times, the construction of the table costs
2k×n operations and adding the table to C costs n2 operations: n/k×(2k×n+n2).
If k = log n, this simplifies to O

(
n3/ log n

)
(cf. [Bard 2006]).

From this complexity analysis it seems one should always choose the parameter
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm 1 M4RM
function AddRowFromTable(C, r1, T, r2) begin

for 0 ≤ i < NumberOfColumns(C) do begin
Cr1,i ← Cr1,i + Tr2,i

end
end

function ReadBits(A, r, c, k) begin
return Ar,c × 2k−1 + Ar,c+1 × 2k−2 + Ar,c+2 × 2k−3 + · · ·+ Ar,c+k−1 × 20

end

function MethodFourRussiansMultiplication(A, B, k) do begin
m← NumberOfRows(A)
`← NumberOfColumns(A)
n← NumberOfColumns(B)
C ← GenerateZeroMatrix(m, n)

for 0 ≤ i < (`/k) do begin
//create table of 2k − 1 linear combinations
T ← MakeTable(B, i× k, 0, k)
for 0 ≤ j < m do begin

//read index for table T
id ← ReadBits(A, j, k × i, k)
//add appropriate row from table T
AddRowFromTable(C, j, T, id)

end
end
return C

end

k = blog2 ne for an n × n matrix. However, in practice this is not the case. First,
experimental evidence indicates [Bard 2007, Ch. 5] that b0.75× log2 ne seems to be
a better choice. Also, for cache efficiency it makes sense to split the input matrices
into blocks such that these blocks fit into L2 cache (see below). If that technique is
employed then the block sizes dictate k and not the total dimensions of the input
matrices. Thus, a much smaller k than log2 n is found to be optimal, in practice
(see below); restraining k in this way actually improves performance.

In our implementation, we pre-compute the Gray Code tables up to size 16.
For matrices of dimension > 20 million rows and columns, this is not enough.
But, such a dense matrix would have nearly half a quadrillion entries, and this
is currently beyond the capabilities of existing computational hardware. Also, for
these dimensions the Strassen-Winograd algorithm should be used. Of course, if
so desired we may generate the tables on the fly or generate the 2k − 1 linear
combinations using some other technique which also achieves an optimal number
of required row additions.
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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0 0

0 1
1 1

1 0
2-bit Gray Code

0 0 0
0 0 1

0 1 1
0 1 0

1 1 0

1 1 1
1 0 1

1 0 0
3-bit Gray Code

0 0 0 0

0 0 0 1
0 0 1 1

0 0 1 0

0 1 1 0
0 1 1 1

0 1 0 1

0 1 0 0
1 1 0 0

1 1 0 1

1 1 1 1
1 1 1 0

1 0 1 0

1 0 1 1
1 0 0 1

1 0 0 0
4-bit Gray Code

Fig. 1. Gray Codes

3.2 A Cache Friendly Version

Note that the M4RM algorithm creates a table for each stripe of B and then iterates
over all rows of C and A in the inner loop. If the matrices C and A are bigger than
L2 cache then this means that for each single row addition a new row needs to be
loaded from RAM. This row will evict an older row from L2. However, as this row
is used only once per iteration of all rows of A and C we cannot take advantage of
the fact that it is now in L2 cache. Thus if the matrices A and C do not fit into
L2 cache then the algorithm does not utilize this faster memory. Note that since T
instead of B is used in the inner loop, we can ignore the size of B for now.

Thus, it is advantageous to re-arrange the algorithm in such a way that it iterates
over the upper part of A completely with all tables for B before going on to the
next part. This gives rise to Algorithm 2, a cache friendly version of the M4RM
algorithm. For simplicity we assume that m, `, n are all multiples of some fixed
block size in the presentation of Algorithm 2. This cache-friendly rearrangement is
at the expense of the repeated regeneration of the table T . In fact, the complexity
of this cache-friendly version is stricly worse than the original algorithm. Namely
it is O

(
n3
)

if we set k = log n and treat BlockSize as a constant. However, our
experiments indicate that this effect is outweighed by the better data locality for
the dimensions we consider (cf. Section 5 below). Table IV shows that this strategy
provides considerable performance improvements.

3.3 Increasing the Number of Precomputation Tables

Recall that the actual arithmetic is quite cheap compared to memory reads and
writes and that the cost of memory accesses greatly depends on where in memory
data is located: the L1 cache is approximately 50 times faster than main memory.
It is thus advantageous to try to fill all of L1 with tables of linear combinations. For
example consider n = 10000, k = 10 and one such table. In this situation we work
on 10 bits at a time. If we use k = 9 and two tables, we still use the same memory

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm 2 Cache Friendly M4RM
function MethodOfFourRussiansCacheFriendlyMultipication(A, B, k)

m← NumberOfRows(A)
`← NumberOfColumns(A)
n← NumberOfColumns(B)
C ← GenerateZeroMatrix(m, n)

for 0 ≤ start < m/BlockSize do begin
for 0 ≤ i < `/k do begin

T ← MakeTable(B, i× k, 0, k)
for 0 ≤ s < BlockSize do begin

j ← start × BlockSize + s
x← ReadBits(A, j, k × i, k)
AddRowFromTable(C, j, T, id)

end
end

end
return C

end

for the tables but can deal with 18 bits at once. The price we pay is one additional
row addition, which is cheap if the operands are all in cache. To implement this
enhancement the algorithm remains almost unchanged, except that t tables are
generated for tk consecutive rows of B, tk values x are read for consecutive entries
in A and t rows from t different tables are added to the target row of C. This gives
rise to Algorithm 3 where we assume that tk divides ` and fix t = 2.

Table IV shows that increasing the number of tables is advantageous. Our im-
plementation uses eight tables, which appears to be a good default value according
to our experiments.

“base cases” (cf. Section 5)

Matrix Dimensions Algorithm 1 Algorithm 2 Algorithm 3, t = 2 Algorithm 3, t = 8

10, 000× 10, 000 4.141 2.866 1.982 1.599
16, 384× 16, 384 16.434 12.214 7.258 6.034

20, 000× 20, 000 29.520 20.497 14.655 11.655
32, 000× 32, 000 86.153 82.446 49.768 44.999

Table IV. Strassen-Winograd with different base cases on 64-bit Linux, 2.33Ghz Core 2 Duo

4. STRASSEN-WINOGRAD MULTIPLICATION

In 1969 Volker Strassen [Strassen 1969] published an algorithm which multiplies
two block matrices

A =
(

A00 A01

A10 A11

)
B =

(
B00 B01

B10 B11

)
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm 3 M4RM with Two Gray Code Tables
function AddTwoRowsFromTable(C, r0, T , r1, TT , r2) do begin

for 0 ≤ i < NumberOfColumns(C) do begin
Cr,i ← Cr,i + Tr1,i + TTr2,i

end
end

function MethodOfFourRussiansTwoTables(A, B, k) do begin
m← NumberOfRows(A)
`← NumberOfColumns(A)
n← NumberOfColumns(B)
C ← GenerateZeroMatrix(m, n)

for 0 ≤ i < `/(2× k) do begin
T ← MakeTable(B, 2× i× k, 0, k)
TT ← MakeTable(B, 2× i× k + k, 0, k)
for 0 ≤ j < m do begin

r1 ← ReadBits(A, j,2× k × i, k)
r2 ← ReadBits(A, j, 2× k × i + k, k)
AddTwoRowsFromTable(C, j, T, r1, TT, r2)

end
end
return C

end

with only seven submatrix multiplications and 18 submatrix additions rather than
eight multiplications and eight additions. As matrix multiplication (O(nω), ω ≥ 2)
is much more expensive than matrix addition (O

(
n2
)
) this is an improvement.

Later the algorithm was improved by Winograd [Winograd 1971] to use 15 sub-
matrix additions only, the result is commonly referred to as Strassen-Winograd
multiplication. While both algorithms are to a degree less numerically stable than
classical cubic multiplication over floating point numbers [Higham 2002, Ch. 26.3.2]
this problem does not affect matrices over finite fields and thus the improved com-
plexity of O

(
nlog2 7

)
[Strassen 1969; Bard 2007] is applicable here.

Let m, ` and n be powers of two. Let A and B be two matrices of dimension
m× ` and `× n and let C = A×B. Consider the block decomposition(

C00 C01

C10 C11

)
=
(

A00 A01

A10 A11

)(
B00 B01

B10 B11

)
where A00 and B00 have dimensions m/2 × `/2 and `/2 × n/2 respectively. The
Strassen-Winograd algorithm, which computes the m × n matrix C = A × B, is
given in Algorithm 4.

At each recursion step the matrix dimensions must be divisible by two which
explains the requirement of them being powers of two. However, in practice the
recursion stops at a given cutoff dimension (cs) — sometimes called “cross-over” di-
mension — and switches over to another multiplication algorithm. In our case, this

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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Algorithm 4 Strassen-Winograd
function StrassenWinograd(A,B) do begin(

ANW ANE

ASW ASE

)
← A;

(
BNW BNE

BSW BSE

)
← B

//8 additions
S0 ← ASW + ASE ; T0 ← BNE −BNW

S1 ← S0 −ANW ; T1 ← BSE − T0

S2 ← ANW −ASW ; T2 ← BSE −BNE

S3 ← ANE − S1; T3 ← T1 −BSW

//7 recursive multiplications
P0 ← Multiply(ANW , BNW )
P1 ← Multiply(ANE , BSW )
P2 ← Multiply(S3, BSE)
P3 ← Multiply(ASE , T3)
P4 ← Multiply(S0, T0)
P5 ← Multiply(S1, T1)
P6 ← Multiply(S2, T2)

//7 final additions
U0 ← P0 + P1

U1 ← P0 + P5

U2 ← U1 + P6

U3 ← U1 + P4

U4 ← U3 + P2

U5 ← U2 − P3

U6 ← U2 + P4

return
(

U0 U4

U5 U6

)
end

is the M4RM algorithm. Thus the requirement can be relaxed to the requirement
that for each recursion step the matrix dimensions must be divisible by two.

However, this still is not general enough. Additionally, in case of F2 the optimal
case is when m, n, ` are 64 times powers of 2 to avoid cutting within words. To deal
with odd-dimensional matrices two strategies are known in the literature [Huss-
Lederman et al. 1996]: One can either increase the matrix dimensions – this is
called “padding” – to the next “good” value and fill the additional entries with
zeros, yielding A+ and B+. Then one can compute C+ = A+B+ and finally cut
out the actual product matrix C from the bigger matrix C+. A variant of this
approach is to only virtually append rows and columns, i.e. we pretend they are
present. Another approach is to consider the largest submatrices A− and B− of
A and B so that the dimensions of A− and B− match our requirements – this is
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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called “peeling”. Then once the product C− = A−B− is computed, one resolves the
remaining rows and columns of C from the remaining rows and columns of A and B
that are not in A− and B− (cf. [Huss-Lederman et al. 1996]). For those remaining
pieces Strassen-Winograd is not used but an implementation which does not cut the
matrices into submatrices. We use the “peeling” strategy in our implementation,
but note that it is easy to construct a case where our strategy is clearly not optimal,
Table V gives an example where “padding” would only add one row and one column,
while “peeling” has to remove many rows and columns. This is an area for future
improvement.

Matrix Dimensions Time in s

214 − 1× 214 − 1 7.86
214 × 214 6.09

214 + 1× 214 + 1 6.11

Table V. “Peeling” strategy on 64-bit Linux, 2.33Ghz, Core 2 Duo

To represent the submatrices in Algorithm 4 we use matrix windows as described
earlier, in Section 2.1. While this has the benefit of negligible required additional
storage compared to out-of-place submatrices, this affects data locality negatively.
To restore data locality, we copy out the target matrix C when switching from
Strassen-Winograd to M4RM. On the other hand our experiments show that copy-
ing out A and B at this crossover point does not improve performance. Data locality
for B is achieved through the Gray code tables and it appears that the read of x
from A (cf. Algorithm 1) does not significantly contribute to the runtime.

However, even with matrix windows Strassen-Winograd requires more memory
than classical cubic multiplication. Additional storage is required to store interme-
diate results. The most memory-efficient scheduler (cf. [Dumas and Pernet 2007])
uses two additional temporary submatrices and is utilized in our implementation.
We also tried the “proximity schedule” used in FFLAS [Pernet 2001] but did not
see any improved performance.

5. TUNING PARAMETERS

Our final implementation calls Strassen-Winograd, which switches over to M4RM
if the input matrix dimensions are less than a certain parameter cs. If B then has
fewer columns than ws (word size in bits) the classical cubic algorithm is called,
which seems to be the most efficient choice for these dimensions. This last case is
quite common in the fix-up step of “peeling”. This strategy gives three parameters
for tuning. The first is cs, the crossover point where we switch from Strassen-
Winograd to M4RM. Second, bs is the size for block decomposition inside M4RM
for cache friendliness. Third, k dictates the size of the tables containing 2k − 1
linear combination of k rows. We always fix the number of Gray code tables to
t = 8 which appears to be a good default value according to our experiments.

By default cs is chosen such that two matrices fit into L2 cache, because this
provides the best performance in our experiments. For the Opteron (1MB of L2
cache) this results in cs = 2048 and for the Core 2 Duo (4MB of L2 cache) this
results in cs = 4096. We only fit two matrices, rather than all three matrices in

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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L2 cache as bs reduces the size of the matrices we are working with to actually fit
three matrices in L2 cache. The default value is fixed at bs = cs/2. The value k is
set to b0.75× log2 bsc − 2. We subtract 2 as a means to compensate for the use of
8 Gray code tables. However, if additionally reducing k by 1 would result in fitting
all Gray code tables in L1 cache, we do that. Thus, k is either b0.75× log2 bsc − 2
or b0.75 × log2 bsc − 3 depending on the input dimensions and the size of the L1
cache. These values have been determined empirically and seem to provide the best
compromise across platforms.

On the Opteron these values — cs = 2048, bs = 1024, k = 5, t = 8 tables — mean
that the two input matrices fit into the 1MB of L2 cache, while the eight tables fit
exactly into L1: 8 · 25 · 2048/8 = 64Kb. The influence of the parameter bs in the
final implementation is shown in Table VI for fixed k = 5 and cs = 2048.

On the Core 2 Duo these values are cs = 4096, bs = 2048, k = 6, t = 8 and ensure
that all data fits into L2 cache. Since the Core 2 Duo has only 32kb of L1 cache we
do not try to fit all tables into it. So far in our experiments, performance did not
increase when we tried to optimize for L1 cache.

Matrix Dimensions bs = 2048 bs = 1024 bs = 768

10, 000× 10, 000 2.96 2.49 2.57

16, 384× 16, 384 13.23 10.49 10.37
20, 000× 20, 000 21.19 17.73 18.11
32, 000× 32, 000 67.64 67.84 69.14

Table VI. Strassen-Winograd multiplication, 64-bit Linux, 2.6Ghz Opteron

6. RESULTS

To evaluate the performance of our implementation we provide benchmark com-
parisons against the best known implementations we are aware of. First, Magma
[Bosma et al. 1997] is widely known for its high performance implementations of
many algorithms. Second, GAP [The GAP Group 2007] (or equivalently the C-
MeatAxe [Ringe 2007]) is to our knowledge the best available open-source imple-
mentation of dense matrix multiplication over F2. Note, that the high-performance
FFLAS [Pernet 2001] library does not feature a dedicated implementation for F2.

We note that all three projects implement different variants of matrix multipli-
cation. GAP implements Algorithm 1 with a fixed k = 8 but no asymptotically
fast matrix multiplication algorithm. Magma implements Strassen-Winograd ma-
trix multiplication with “padding” and a version of Algorithm 1 as base case [Steel
2009]. The crossover from Strassen to Algorithm 1 in Magma is hardcoded at
cs = 2048 for the Core 2 Duo and cs = 1800 for the Opteron. To achieve cache effi-
ciency Magma divides the input matrices into submatrices of dimensions 256×512
and 512 × 2048 on the Opteron before applying Algorithm 1 and into submatrices
of dimensions 2048 × 512 and 512 × 2048 on the Core 2 Duo. We note that while
dense matrix multiplication over F2 in Magma was optimized for the Core 2 Duo
and the Opteron, it was not optimized for any other architecture.

In the Tables VII and VIII we give the average of ten observed runtimes and
RAM usage for multiplying two random square matrices. The timings for M4RI
ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.
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were obtained using Sage [Stein et al. 2008]. M4RI was compiled with GCC 4.3.1
on both machines and we used the options -O2 on the Opteron machine and -O2
-msse2 on the Core 2 Duo machine.

Magma 2.14-17 GAP 4.4.10 M4RI-20080821

Matrix Dimensions Time Memory Time Memory Time Memory

10, 000× 10, 000 1.892 s 85 MB 6.130 s 60 MB 1.504 s 60 MB

16, 384× 16, 384 7.720 s 219 MB 25.048 s 156 MB 6.074 s 156 MB
20, 000× 20, 000 13.209 s 331 MB — — 10.721 s 232 MB
32, 000× 32, 000 53.668 s 850 MB — — 43.197 s 589 MB

Table VII. 64-bit Debian/GNU Linux, 2.33Ghz Core 2 Duo

Magma 2.14-13 GAP 4.4.10 M4RI-20090409

Matrix Dimensions Time Memory Time Memory Time Memory

10, 000× 10, 000 2.603 s 85 MB 10.472 s 60 MB 2.565 s 60 MB

16, 384× 16, 384 9.924 s 219 MB 43.658 s 156 MB 10.192 s 156 MB
20, 000× 20, 000 18.052 s 331 MB — — 17.744 s 232 MB
32, 000× 32, 000 66.471 s 850 MB — — 65.954 s 589 MB

Table VIII. 64-bit Debian/GNU Linux, 2.6Ghz Opteron

Magma 2.14-16 M4RI-20080909

Matrix Dimensions Time Memory Time Memory

10, 000× 10, 000 7.941 s 85 MB 4.200 s 60 MB
16, 384× 16, 384 31.046 s 219 MB 16.430 s 156 MB
20, 000× 20, 000 55.654 s 331 MB 28.830 s 232 MB

32, 000× 32, 000 209.483 s 850 MB 109.414 s 589 MB

Table IX. 64-bit RHEL 5, 1.6GHz Itanium

We note that the advantage of our approach over other implementations varies
greatly with the architecture considered. On one hand these timings demonstrate
the validity of our approach by showing a 1.2 − 1.3 speedup over the best known
implementation on the Core 2 Duo. On the other hand, our approach seems to
offer little if any advantage over the simpler approach followed by Magma on the
Opteron. It seems unclear whether significant gains can be achieved on the Opteron
without any further theoretical advancements in the field of matrix multiplication
or whether in fact the comparable performance indicates optimal performance using
current techniques.

We note that whilst the advantage over Magma is considerable on the Itanium
this does not allow one to draw conclusions about the underlying strategy, as
Magma was not optimized for this platform. Also Magma hardcodes its optimiza-
tion parameters whereas we rely on compile time parameters which allow greater
flexibility across platforms.
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