MA3A6 WEEK 5 ASSIGNMENT : DUE MONDAY 4PM WEEK 5

BILL HART

1. Determine all the field conjugates of $\beta=1+\sqrt{\frac{1+\sqrt{5}}{2}}$ for the number field $K=\mathbb{Q}(\alpha)$ where α is a root of $f(x)=x^{4}-x^{2}-1$.
2. Let K be a number field and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ be the monomorphisms from K into \mathbb{C}. The absolute norm of an element $\beta \in K$ is defined to be $\mathcal{N}(\beta)=\prod_{i} \beta_{i}$ where $\beta_{i}=\sigma_{i}(\beta)$.
Let $K=\mathbb{Q}(\alpha)$ where α is a root of $x^{4}-x^{2}-1$. Determine $\mathcal{N}\left(\frac{3+\sqrt{5}}{2}\right)$ for the number field K. (Note the norm depends on the number field.)
3. Prove that all quadratic number fields are Galois.
4. A number field is said to be totally real if each of the conjugate roots of the defining polynomial is real.
Consider the cyclotomic number field $\mathbb{Q}\left(\zeta_{p}\right)$ for a prime p, where $\zeta_{p}^{p}=1$ and $\zeta_{p} \neq 1$.
Let $L=\mathbb{Q}(\beta)$ be the subfield of K generated by the element $\beta=\zeta_{p}+\zeta_{p}^{-1}$. Show that L is totally real.
Is L Galois?
E-mail address: hart_wb@yahoo.com
