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BILL HART

1. Compute an aribtrary Q-basis for K = Q(
√

2,
√

3) consisting of algebraic integers
and compute the discriminant of that basis. Use this to bound the discriminant of
K. Write out a finite list of possible values that the discriminant could be.

We note K = Q(
√

2,
√

3) is a degree 4 number field. We can take {1,
√

2,
√

3,
√

6}
as a Q-basis, as each of these elements is linearly dependent of the others over Q.
Note that the elements of this basis are algebraic integers of K.

As we have seen before, there are four embeddings of K into C. The first is the
identity monomorphism. The second takes

√
2 to −

√
2, the third takes

√
3 to −

√
3

and the fourth takes
√

2 to −
√

2 and
√

3 to −
√

3.

(One can verify this by finding a single generator of K and writing
√

2 and
√

3 in
terms of this generator and seeing what happens when you replace the generator
with each of the roots of its minimum polynomial, or one may simply note that
each of the above is a distinct monomorphism of K into C described fully by its
action on a basis for K and that there are four of them.)

Now we compute the discriminant of this basis.
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,

the rows of which I obtain by applying each of the monomorphisms of K into C to
the basis in turn noting that

√
6 =

√
2
√

3.

I note that the second column has a common factor of
√

2, the third column a
factor of

√
3, etc. Pulling these out and evaluating the resulting 4× 4 determinant,

I find that the discriminant is ∆ = 210 × 32.

We note that the discriminant of K will be this value divided by some square factor
of this value. It may therefore have any of the values 1, 22, 24, 26, 28, 210, 32, 2232,
2432, 2632, 2832, 21032.

2. Now use the algorithm demonstrated in class to determine the discriminant of
K. Check your answer with Pari.

We apply the algorithm from class to find the discriminant of K. We note first
that the only primes whose squares divide ∆ are p = 2, 3. Thus we must look for
algebraic integers of the form

λ1 =
1
2
(a1 + a2

√
2 + a3

√
3 + a4

√
6)

for ai = 0, 1 not all zero, and

λ2 =
1
3
(a1 + a2

√
2 + a3

√
3 + a4

√
6)

1
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for ai = 0, 1, 2 not all zero.

In this case it is easy to note that (1 +
√

3)
√

2/2 when multiplied by (1−
√

3)
√

2/2
gives -1 and the sum of the values is

√
2. Thus they are roots of x2 −

√
2x− 1, i.e.

roots of x4 − 4x2 + 1. But the first of these values is (
√

2 +
√

6)/2 which is one of
the values we are after.

Adding this to our original Q-basis and reducing to a four element basis again,
we get the Q-basis {1,

√
2,
√

3, (
√

2 +
√

6)/2}. The discriminant of this must be
∆/22 = 2832.

We must now look for algebraic integers of the form

λ1 =
1
2
(a1 + a2

√
2 + a3

√
3 + a4(

√
2 +

√
6)/2)

for ai = 0, 1 not all zero, and

λ2 =
1
3
(a1 + a2

√
2 + a3

√
3 + a4(

√
2 +

√
6)/2)

for ai = 0, 1, 2 not all zero.

Applying each of the monomorphismsand adding gives us the trace, which is 2a2

in the case of λ1 and 4a1/3 in the case of λ2. In the first case the trace being an
integer for λ1 and algebraic integer, gives us no information. But in the case of λ2

it gives us that a1/3 is an integer, which we can then subtract from λ2. We thus
only need to look for algebraic integers of the form

λ2 =
1
3
(a2

√
2 + a3

√
3 + a4(

√
2 +

√
6)/2)

for ai = 0, 1, 2 not all zero, in the second case.

We now compute the norm of λ1 which is ω/16 where (after a painful calculation
- I used Pari to do the arithmetic), ω = a4

1 + (−4a2
2 − 4a4a2 + (−6a2

3 − 4a2
4))a

2
1 +

(24a4a3a2+12a2
4a3)a1+(4a4

2+8a4a
3
2−12a2

3a
2
2+(−12a4a

2
3−4a3

4)a2+(9a4
3−12a2

4a
2
3+

a4
4)). Plugging in the fifteen possibilities, we find none is zero modulo 16 (again I

used Pari to do the arithmetic).

Similarly the norm of λ2 is ω/27 where ω = 4a4
2 + 8a4a

3
2 − 12a2

3a
2
2 + (−12a4a

2
3 −

4a3
4)a2 + (9a4

3 − 12a2
4a

2
3 + a4

4). Plugging in each of the 26 possibilities we find none
that are zero modulo 27.

Thus there are no algebraic integers of either of the two forms and this Q-basis
must have dsicriminant equal to the discriminant of K. Thus the discriminant of
K is in fact 2832, a fact which Pari easily verifies.

Sadly there is no way around the boring calculations in this algorithm. Obviously
it is unlikely I would ask you to do such a computation in full on an exam, however
it is important to understand every step of the technique, since I may ask you to
complete any part of such a computation on the exam.

3. Let P = (2,
√
−5) and Q = (2, 1 +

√
−5) be ideals in the ring Z[

√
−5]. Compute

PQ and P + Q. (Give both the sum and product ideals in terms of one or two
generators.)

We have that P + Q = (2,
√
−5, 1 +

√
−5) = (1,

√
−5) = Z[

√
−5].

This is not a suprise since
√
−5

√
−5 = −5 ∈ P. Thus −5 + 3 × 2 ∈ P, i.e.

P = (1,
√
−5) = Z[

√
−5].
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We also have PQ = Z[
√
−5]Q = Q. This can also be seen from PQ = (4, 2 +

2
√
−5, 2

√
−5,−5 +

√
−5) = (2, 2

√
−5, 1 +

√
−5) = (2, 1 +

√
−5) = Q.

4. Compute the number of cosets of the ideal P = (2, 1+
√
−5) in R = Z[

√
−5], i.e.

compute the order of R/P and show that P is a maximal ideal of R. Is it prime?

Elements of P = (2, 1+
√
−5) are of the form 2(a+b

√
−5)+(1+

√
−5)(c+d

√
−5) =

(2a + c− 5d) + (2b + c + d)
√
−5 = r + s

√
−5 for a, b, c, d,∈ Z. Thus r and s can be

anything integers of the same parity.

Adding any element m + n
√
−5 with m,n of opposite parity to (the generators) of

P yields the whole of Z[
√
−5], thus P is maximal. It is therefore prime, since all

maximal ideals are prime.

There are clearly two cosets of P in R, namely 0+P and 1+P, since every element
of R is of the form 0 + x or 1 + x for some x ∈ P. Thus the order of R/P is two,
i.e. the norm of P is 2.

This could also be found by noting that P2 = (2) and N((2)) = |N(2)| = 4.
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