MA3A6 WEEK 5 ASSIGNMENT : DUE MONDAY 4PM WEEK 5

BILL HART

1. Determine all the field conjugates of $\beta=1+\sqrt{\frac{1+\sqrt{5}}{2}}$ for the number field $K=\mathbb{Q}(\alpha)$ where α is a root of $f(x)=x^{4}-x^{2}-1$.
Let $g(x)=x^{2}-x-1$, then $f(x)=g\left(x^{2}\right)$. The roots of $g(x)$ are $\frac{1 \pm \sqrt{5}}{2}$, thus the roots of $g(x)$ are $\pm \sqrt{\frac{1 \pm \sqrt{5}}{2}}$.
Since we are after all the field conjugates of β, we should write β in terms of one of the roots of $f(x)$. Then all we have to do is replace this root of $f(x)$ with each of the other roots of $f(x)$ in turn to get the field conjugates of β.
Let's pick the root $\alpha=\sqrt{\frac{1+\sqrt{5}}{2}}$ of $f(x)$. We note that $\beta=\alpha+1$. So replacing α with each of its four conjugates in turn, in the expression for β, we get $1 \pm \sqrt{\frac{1 \pm \sqrt{5}}{2}}$. These four values are the field conjugates of β.
2. Let K be a number field and let $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}$ be the monomorphisms from K into \mathbb{C}. The absolute norm of an element $\beta \in K$ is defined to be $\mathcal{N}(\beta)=\prod_{i} \beta_{i}$ where $\beta_{i}=\sigma_{i}(\beta)$.
Let $K=\mathbb{Q}(\alpha)$ where α is a root of $x^{4}-x^{2}-1$. Determine $\mathcal{N}\left(\frac{3+\sqrt{5}}{2}\right)$ for the number field K. (Note the norm depends on the number field.)
Let α be as in the previous solution. We want the norm of $\gamma=\frac{3+\sqrt{5}}{2}=1+\alpha^{2}$. We replace α with each of its conjugates in this expression for γ to get the field conjugates of γ. We get $1+\frac{1+\sqrt{5}}{2}, 1+\frac{1+\sqrt{5}}{2}, 1+\frac{1-\sqrt{5}}{2}, 1+\frac{1-\sqrt{5}}{2}$ are the field conjugates of γ. The norm of γ in this field is the product of these field conjugates, i.e. $\left(1-\left(\frac{3+\sqrt{5}}{2}\right)\right)^{2}=1^{2}=1$.
3. Prove that all quadratic number fields are Galois.

All quadratic number fields are of the form $K=\mathbb{Q}(\sqrt{d})$ for some $d \in \mathbb{Z}$. The roots of the minimum polynomial are \sqrt{d} and $-\sqrt{d}$ which are both in K. Thus all roots of the minimum polynomial of the generator are in K and thus a quadratic field is Galois.
4. A number field is said to be totally real if each of the conjugate roots of the defining polynomial is real.
Consider the cyclotomic number field $\mathbb{Q}\left(\zeta_{p}\right)$ for a prime p, where $\zeta_{p}^{p}=1$ and $\zeta_{p} \neq 1$.
Let $L=\mathbb{Q}(\beta)$ be the subfield of K generated by the element $\beta=\zeta_{p}+\zeta_{p}^{-1}$. Show that L is totally real.
Since p is prime, the minimum polynomial is $\left(x^{n}-1\right) /(x-1)$. The roots of this are the p-th roots of unity, excluding 1, i.e. they are ζ_{p}^{i} for $i=1, \ldots,(p-1)$.
Since β is in K, the roots of its minimum polynomial are amongst the field conjugates of β. But the field conjugates of β are just $\beta_{i}=\zeta_{p}^{i}+\zeta_{p}^{-i}$. But ζ_{p}^{i} and ζ_{p}^{-i} are complex conjugates of each other, so their sum is real, i.e. each of the β_{i} are real. But if all the field conjugates of β are real, then all the conjugates of β are real. Thus the field $L=\mathbb{Q}(\beta)$ is totally real.

Is L Galois?

Yes. Each of the β_{i} can be written in terms of powers of β and is thus in $L=\mathbb{Q}(\beta)$. To prove the last statement, consider $\beta_{i}=\zeta_{p}^{i}+\zeta_{p}^{-i}$. Start with $\beta^{i}=\left(\zeta_{p}+\zeta_{p}^{-1}\right)^{i}$ and expand it out into an expression in terms of powers of ζ and ζ^{-1}. It starts $\beta^{i}=\zeta_{p}^{i}+\zeta_{p}^{-i}+p \zeta_{p}^{i-1}+p \zeta_{p}^{1-i}+\cdots$, i.e. $\beta_{i}=\beta^{i}+s\left(\zeta_{p}, \zeta_{p}^{-1}\right)$, where $s(x, y)=s(y, x)$, i.e. the rest of the expression is the same if you swap ζ_{p} and ζ_{p}^{-1}, and where $s(x, y)$ has degree $i-1$ in x and y.
But now we can write $s\left(\zeta_{p}, \zeta_{p}^{-1}\right)=p\left(\zeta_{p}+\zeta_{p}^{-1}\right)^{i-1}+t\left(\zeta_{p}, \zeta_{p}^{-1}\right)$ where $t(x, y)=t(y, x)$ and it has degree $i-2$ in x and y, etc. We keep doing this and we eventually get that $\beta_{i}=\beta^{i}+p \beta^{i-1}+a_{i-2} \beta^{i-2}+\cdots+a_{1} \beta+a_{0}$ for some $a_{i} \in \mathbb{Z}$, i.e. $\beta_{i} \in L=\mathbb{Q}(\beta)$ for all i.

Thus L is Galois.
I didn't expect you to prove this, but well done if you did!
Those of you studying Galois theory may have had an easier time with this problem.

