MA3A6 WEEK 4 ASSIGNMENT : DUE MONDAY 4PM WEEK 4

BILL HART

1. Find a single generator for $\mathbb{Q}(\sqrt{2}, \sqrt{3})$. What degree is the resulting number field?
$K=\mathbb{Q}(\sqrt{2})$ is a degree 2 number field and we are adjoining $\sqrt{3}$ to it. This cannot give us more than a degree 4 extension of \mathbb{Q} (see the final solution below for hint as to how to prove this). Thus we just need to look for an element in $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ of degree 4 and it must then be a generator. We can easily guess such an element and check it has the required degree.
Alternatively, if we examine the proof of the theorem which tells us that a number field has a single generator, we see that it explicitly tells us how to construct a generator. In particular we could choose $\sqrt{2}+\sqrt{3}$ as a generator (there is only a finite number of things to check to ensure that this generator is ok).
We can easily compute the degree of $a=\sqrt{2}+\sqrt{3}$ by computing its minimum polynomial. $a^{2}=2+3+2 \sqrt{6}$, i.e. $\left(a^{2}-5\right)^{2}=24$, i.e. $a^{4}-10 a^{2}+1=0$. We easily check that $f(x)=x^{4}-10 x^{2}+1$ does not factor over \mathbb{Q}, thus it is the minimum polynomial of our generator, and thus the degree is 4 .
2. Determine if $\mathbb{Q}(\alpha)$ is Galois if α is a root of $f(x)=x^{3}-3 x^{2}+2 x+1$.

We compute the derivative $f^{\prime}(x)=3 x^{2}-6 x+2$. This has zeroes at $(3 \pm \sqrt{3}) / 3$. At both these turning points, $f(x)$ is positive. Plotting the graph of $f(x)$ one sees that it starts below the axis, crosses the axis, passes through a turning point, heads back down to the axis, but before it gets there, turns again and heads up. Thus there is only a single real zero.
If α is this real zero, then $\mathbb{Q}(\alpha)$ contains only real numbers. The other two roots of $f(x)$ are complex however, so cannot be in $\mathbb{Q}(\alpha)$. Thus $\mathbb{Q}(\alpha)$ cannot be Galois.
3. Let α be a root of $f(x)=x^{3}-3 x^{2}+2 x+1$. Write each of the following in the form $a_{1} \alpha^{2}+a_{2} \alpha+a_{3}$, for $a_{i} \in \mathbb{Q}$
(i) $\frac{1}{\alpha-1}$

We have $\alpha^{3}-3 \alpha^{2}+2 \alpha+1=0$. Thus $(\alpha-1)\left(\alpha^{2}-2 \alpha\right)=-1$. Thus $1 /(\alpha-1)=$ $-\alpha^{2}+2 \alpha$.
(ii) $\frac{\alpha^{2}-1}{\alpha}$

We have $\alpha^{3}-3 \alpha^{2}+2 \alpha+1=0$, thus $\alpha\left(\alpha^{2}-3 \alpha+2\right)=-1$, thus $1 / \alpha=-\alpha^{2}+3 \alpha-2$.
Therefore $\frac{\alpha^{2}-1}{\alpha}=\left(\alpha^{2}-1\right)\left(-\alpha^{2}+3 \alpha-2\right)=-\alpha^{4}+3 \alpha^{3}-\alpha^{2}-3 \alpha+2$.
We can replace α^{3} with $3 \alpha^{2}-2 \alpha-1$. Then $\alpha^{4}=\alpha\left(3 \alpha^{2}-2 \alpha-1\right)=3 \alpha^{3}-2 \alpha^{2}-\alpha=$ $3\left(3 \alpha^{2}-2 \alpha-1\right)-2 \alpha^{2}-\alpha=7 \alpha^{2}-7 \alpha-3$.
Thus $\frac{\alpha^{2}-1}{\alpha}=-7 \alpha^{2}+7 \alpha+3+3\left(3 \alpha^{2}-2 \alpha-1\right)-\alpha^{2}-3 \alpha+2=\alpha^{2}-2 \alpha+2$.
(iii) $\alpha^{4}+\alpha^{2}+1$.

We already computed that $\alpha^{4}=7 \alpha^{2}-7 \alpha-3$, so we get $8 \alpha^{2}-7 \alpha-2$.
4. Prove that if $K=\mathbb{Q}(\alpha)$ is a degree n number field then for any $\beta \in K$, the degree of β divides n.
$\mathbb{Q}(\beta)$ is a vector space over \mathbb{Q} of degree m_{1} say. Let $\left\{s_{1}, s_{2}, \ldots, s_{m_{1}}\right\}$ be a basis.
But $\beta \in K$, thus $\mathbb{Q}(\beta)$ is contained in $\mathbb{Q}(\alpha)$ meaning that K is a field extension of $\mathbb{Q}(\beta)$. Thus it is a vector space over $\mathbb{Q}(\beta)$ of dimension m_{2} say. Let $\left\{t_{1}, t_{2}, \ldots, t_{m_{2}}\right\}$ be a basis.
Clearly $\left\{s_{1} t_{1}, s_{1} t_{2}, \ldots, s_{m_{1}} t_{m_{2}}\right\}$ is a basis of K / Q. But this is a dimension n vector space over \mathbb{Q}, thus $m_{1} m_{2}=n$, i.e. $m_{1} \mid n$. However $\mathbb{Q}(\beta)$ is a dimension m_{1} vector space over \mathbb{Q}. But the dimension m_{1} is also the degree of $\mathbb{Q}(\beta)$ over \mathbb{Q} (and the degree of β), thus the degree of β divides n.

