
COMPUTING LOCAL ARTIN SYMBOLS IN MAGMA

WILLIAM B. HART AND SAMIR SIKSEK

Abstract. We give MAGMA code for computing local Artin symbols in a
relative extension of number fields.

1. The Algorithm

We wish to compute local Artin symbols in an extension L/K of number fields. We
implement this algorithm in MAGMA using the algorithm presented in [1].

1.1. Input to the algorithm. As input to the algorithm we supply:

• An abelian extension L/K of number fields
• A valuation v corresponding to a prime ideal p of K
• An element av of K∗

v for which we wish to compute the Artin symbol
(av, Lw/Kv)

To specify the abelian extension L/K, we supply K by a minimum polynomial of
a generator of K over Q and L by a polynomial defining L as a relative extension
of K.

The valuation v will be given by specifying a prime p of K.

In this document we will supply av by specifying an element a of K∗ (which is a
special case). More generally, one may specify an element av by giving the set of
coefficients of its expansion

(1) av =
∑

i=ordv(av)

ciπ
i
v,

truncated at an appropriate precision (discussed below), where πv is a uniformizing
element of v (thought of as belonging to K∗) and the coefficients ci are representa-
tives in K of appropriate elements of the residue field K∗

v/(πv).

In fact the algorithm presented below, if given an element a of K∗ will first generate
an expansion of the form (1), so that computing an Artin symbol from an expansion
of the latter kind is really a subset of what is presented below.

Let us give an example of how to specify these different components to MAGMA.

We begin by specifying a base field K. We need to give a minimum polynomial for
a generator of K over Q, and so first we set up a polynomial ring over the integers
Z. Here y will represent the generator of the number field K over Q. It is also
useful to specify O to be the ring of integers of K.

R<x> := PolynomialRing(Integers());
f := x^2-10;
K<y> := NumberField(f);
O := MaximalOrder(K);

1



2 WILLIAM B. HART AND SAMIR SIKSEK

Next we specify the extension L of K by giving a minimal polynomial for a generator
of L/K. As we wish to work with the functions in MAGMA which apply to abelian
extensions, we tell MAGMA to consider L to be an abelian extension of K. This
of course assumes that this is the case.

L:=ext<K|x^3+x^2-2*x-1>;
L:=AbelianExtension(L);

Next we wish to specify a prime p of K which will correspond to our valuation v.
Any method for specifying a prime ideal of K in MAGMA will work here. In this
example we simply take p to be one of the primes of K that lie above 13.

I := Decomposition(O,13);
p := I[1,1];

Finally we specify our element a ∈ K∗ for which we wish to compute the Artin
symbol (av, Lw/Kv). Again any way of specifying an element of K∗ in MAGMA
will do. Here we chose the element a = 169

√
10 + 221 of K.

a := elt<O|169,221>;

1.2. The Implementation of the Algorithm. First of all, we need to compute
an admissible cycle c for L/K. The conductor of the extension will do.

c,pinf:=Conductor(L);

We compute ordv(a) and ordv(c). The precision s to which we need to compute
the expansion (1) is the sum of these two orders.

ordva:=Valuation(a,p);
ordvc:=Valuation(c,p);
s := ordva+ordvc;

Now we are able to compute the p-adic expansion of a. To compute the expansion,
we first compute a uniformizing element µ for the ideal p.

The coefficients ci will be stored in the sequence ci, e.g. ci[1] will be the coefficient
c0 of the expansion (1).

mu := UniformizingElement(p);

ci:=[0:x in [0..s]];
rem:=a;
ci[1]:= a mod p;
for i := 1 to s do
rem:=rem-ci[i]*mu^(i-1);
ci[i+1] := O!(rem/mu^i) mod p;
end for;

We are now able to compute the Artin symbol we are after if p 6
∣∣ c. It is returned

in symbol.

mA := ArtinMap(L);

if ordvc eq 0 then
symbol:=mA(p)^ordva;
symbol;
end if;



COMPUTING LOCAL ARTIN SYMBOLS IN MAGMA 3

If this is not the case, the algorithm continues. We truncate the expansion for a
one term early, calling the result h1. Then we find an h ∈ K such that h ≡ h1
(mod ps) and h ≡ mod c using the Chinese Remainder Theorem.

if ordvc ne 0 then
h1 := 0;
for i := 0 to s-1 do
h1 := h1+ci[i+1]*mu^i;
end for;

h:= CRT([O!h1,O!1],[p^s,c]);

Now we need h to be adjusted so that h ≡ mod∗ c, which means we have to ensure
that the archimedean part of the mod∗ condition holds, i.e. that the value h is
positive at each of the real embeddings pinf that we obtained when we computed
the conductor.

In order to achieve this, we find a rational integer which is zero modulo psc (the
norm of this ideal will do) and add it to h until h satisfies the required mod∗

property.

if #pinf ne 0 then
infp:=InfinitePlaces(K);
alpha := Norm(p^s*c);
i:=0;
repeat
h:=h+(K!(2^i))*alpha;
positive:=true;
for j:=1 to #pinf do
if Evaluate(h,infp[j]) le 0.01 then
positive:=false;
end if;
end for;
i:=i+1;
until positive eq true;
end if;

Finally we compute the required Artin symbol.

aideal := (h*O)*p^(-Valuation(h,p));
symbol := mA(aideal)^(-1);
end if;

References

[1] Acciaro, Vincenzo and Klüners, Jürgen Computing Local Artin Maps, and Solvability of
Norm Equations J. Symb. Comp. (2000) 11, 1-14

E-mail address: w.b.hart@maths.warwick.ac.uk


