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Introduction

After hearing John Coates speak at Iwasawa 2004 on the new GL2 main conjecture
for Iwasawa theory, a la Coates, Fukaya, Kato, Sujatha and Venjakob, I went away
with a desire to learn about this non-commutative Iwasawa theory and give a talk
on it for learning purposes. This set of notes is essentially a written version of my
talk, given at the Intercity Number Theory Seminar, held in Leiden in September
2004.

The notes fall into three main sections.

The first section deals with the basic non-commutative setup for Iwasawa theory and
covers the structure theory of Λ-modules in this setting. Along the way definitions
of all the relevant non-commutative objects are given, including p-adic Lie groups
and Auslander regular rings.

The second section is mainly about K-theory. The manner of defining characteristic
elements of a Λ-module in the non-commutative setting is via K-theory. Actually
it can be done this way in the commutative setting as well but many people aren’t
familiar with this, so the requisite K-theory is described from scratch.

The final section is about the GL2 main conjecture itself. Here a certain p-adic
L-series associated to an elliptic curve is defined and conjectured to be the same as
a p-adic L-series coming from the characteristic element of a particular Λ-module,
namely, the dual of the Selmer group of the elliptic curve.

It is not the purpose of these notes to introduce anything new, only to provide an
introduction for mathematicians not familiar with all the theory needed to under-
stand the original papers. Actually the original papers are extremely well written
and eminently understandable, however as is always the case with such material,
they occasionally presuppose a certain background knowledge, which not everyone
possesses.

Proofs of the various results will be omitted and the reader is encouraged to consult
the references at the end of the notes for these.

1. Non-commutative Iwasawa Theory: p-adic Lie Groups and
Auslander Regularity

1.1. Where does Non-commutative Iwasawa Theory come from? Just as
the classical case of Iwasawa theory can loosely be thought of as coming from a
tower of number fields constructed by adjoining all the p-power torsion points of
the exponential function (p-th power roots of unity) to a number field, so the elliptic
curve version starts from adjoining all the p-power division points of an elliptic curve
to a number field k.

However there is more than one case of the elliptic curve version. One version is for
elliptic curves with CM. Just as for the classical case of Iwasawa theory, this case
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is inherently commutative. However there is also the elliptic curve case for elliptic
curves without complex multiplication. This case involves non-commutative algebra
and is the case we will be interested in throughout these notes. (Of course we are
over-simplifying the situation here, since there are numerous different approaches
to Iwasawa theory, even in the number field case, let alone the elliptic curve case.
However this overview is not too misleading.)
In other words, we will be considering the extension k∞ = k(E(p∞)) of k which
arises from adjoining all the p-power division points of E without complex multi-
plication.
The following celebrated theorem of Serre is the starting point for this theory.

Theorem 1.1.1. The galois group G = Gal(k∞/k) is an open subgroup of GL2(Zp).

We shall shortly see that the following is a corollary of this important result.

Corollary 1.1.2. G is a p-adic Lie group of dimension 4.

In the next part, we will define what we mean by a p-adic Lie group. Firstly
however, we make the following additional comments for general orientation.
Remark: More generally than the above, we can adjoin the p-power torsion points
of an Abelian variety, for a rational prime p, to a number field k. Note that we will
not deal with this more general situation in these notes, but restrict ourselves to
the elliptic curve case, or GL2 case, as it is known.
Note: It is important that we include the condition that E be without complex
multiplication in the above. In the case with complex multiplication, the Iwasawa
algebra Λ(G) of G is isomorphic to the ring of formal power series Zp[[S, T ]], in
two variables. The structure of Λ(G)-modules in this case is almost completely
understood, after the work of Coates and Wiles and Perrin-Riou. Also a two variable
main conjecture was formulated essentially by Yager and then proved by Rubin.

1.2. p-adic Lie Groups. We can think of a p-adic Lie group as the following three
things simultaneously:
i) A group;
ii) A topological space; and
iii) A p-adic manifold.
Firstly we remind ourselves of the following.

Definition 1.2.1. A topological group G is a topological space with a group struc-
ture such that the multiplication map and inversion are continuous.

Most readers will also be aware of the following definition.

Definition 1.2.2. A topological group G is profinite if it is the inverse limit lim←−Gi

in the category of topological groups, of an inverse system of finite groups, Gi, with
the discrete topology.

However, the following equivalent definition, is less well known.

Definition 1.2.3. A profinite group is a compact Hausdorff topological group G,
whose open subgroups form a base for the neighbourhoods of the identity.

In fact G ∼= lim←−G/N where N ranges over the open normal subgroups of G.

Example: Zp is a profinite group, since Zp = lim←−(Z/pnZ).
In actual fact, this last example is more special than a profinite group. It is an
example of a pro-p group.
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Definition 1.2.4. A profinite group is a pro-p group if each open subgroup has
index a power of p in the whole group. Alternatively, it is pro-p if it is the inverse
limit of finite p-groups.

In the example, the open subgroups of Zp are all of the form pkZp for k ≥ 0, and
so satisfy the given condition.

We will also make use of the following.

Definition 1.2.5. A topological group G is finitely generated if there is a finite
subset X of G such that G is equal to the closure in G of the subgroup generated by
X.

Now we come to our first definition of a p-adic Lie group.

Definition 1.2.6. A topological group G is called a p-adic Lie group if G has the
structure of an analytic manifold over Qp and if the function (x, y) → xy−1 is
analytic, i.e. it is locally homeomorphic to an open subgroup of Qn

p , with p-adic
analytic functions for transition maps and such that multiplication and inversion
are p-adic analytic functions.

The number n is called the dimension of the p-adic Lie group.

But p-adic Lie groups have a feature which is not held in common with the better
known Lie groups over R or C. For p-adic Lie groups, there is a completely group
theoretical way of describing them, without resorting to manifolds. This way of
describing them is due to Lazard.

We need a few basic definitions first before giving this second definition of p-adic
Lie groups.

Definition 1.2.7. A pro-p group H is called powerful if [H,H] ⊆ Hp (the group
generated by all the p-th power elements of H), for an odd prime p (or [H,H] ⊆ H4,
for p = 2).

Definition 1.2.8. A pro-p group H is uniform if it is

i) Finitely generated;

ii) Powerful; and

iii) Satisfies
[Pi(H) : Pi+1(H)] = [P1(H) : P2(H)],

where P1(H) = H and Pi+1(H) = Pi(H)p[Pi(H),H] (here [Pi(H),H] means the
subgroup generated by all commutators [x, y] with x ∈ Pi(H), y ∈ H).

The descending sequence of groups

H = P1(H) ⊇ P2(H) ⊇ · · ·
is called the lower central p-series of H.

Finally we come to:

Theorem (Lazard) 1.2.9. A topological group G is a p-adic Lie group iff G
contains an open subgroup which is a uniform pro-p group.

The minimum cardinality of the finite generating set of the uniform subgroup is
referred to as the dimension of G. It of course agrees with the dimension of the
p-adic Lie group as a Qp-manifold.

Examples: The following are examples of p-adic Lie groups.

(i) Qp has dimension 1, with open uniform subgroup Zp;
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ii) G =GLn(Zp) has dimension n2 with open uniform subgroup H = {X ∈ G : X ≡
In (mod p)}, where In is the n× n identity matrix;
iii) G =SLn(Zp) has dimension n2−1 with open uniform subgroup given by G

⋂
H,

with H defined as in ii);
iv) In particular, from ii), note that Z∗p is a p-adic Lie group.
Now that we have a feel for what it means for the group G that we defined in the
first section to be a p-adic Lie group, we return to Iwasawa theory.

1.3. Modules over the Iwasawa Algebra. If G is a p-adic Lie group, then the
Iwasawa algebra over G is defined as follows

Λ(G) = Zp[[G]] = lim←−Zp[G/U ],

where U runs through the open normal subgroups of G.
In particular, if G is a compact p-adic Lie group, such as the group G we defined
associated to an elliptic curve, in the first section, then Λ(G) is (left and right)
Noetherian.
To mirror the commutative case, we’d now like a dimension theory for modules
finitely generated over the ring Λ = Λ(G). In analogy with the commutative case
of Iwasawa theory, we’d also like to have a notion of pseudo-null modules.
Recall that in the commutative case the dimension of a module M , finitely generated
over a ring R, is defined to be the Krull dimension of the support of M in spec R
(where by support we mean the prime ideals p such that Mp is not zero). Then the
module M is said to be pseudo-null if the codimension of M , with respect to the
dimension of R over itself, is greater than or equal to 2.
A suitable dimension theory analogous to this, in the non-commutative case, has
been found for Auslander regular rings, which we now proceed to define.
From now on, we restrict attention to (left) modules M over Λ = Λ(G), which are
finitely generated over Λ.
Firstly we need some definitions.

Definition 1.3.1. The Iwasawa adjoints of a Λ-module M , are defined by

Ei(M) = ExtiΛ(M,Λ); for i ≥ 0.1

The Iwasawa adjoints are so-named, since if G ∼= Zp, then for a Λ(G)-module M ,
E1(M) is isomorphic to a certain adjoint module α(M) which Iwasawa defined.
The Iwasawa adjoints we have defined, have an action of Λ on the right, however
they can be construed as left Λ-modules via the involution of Λ.
These adjoints are important for the following definition.

Definition 1.3.2. The grade of a module M 6= 0 is given by

j(M) = min{i : Ei(M) 6= 0}.
By convention j({0}) =∞.

Now we can state the Auslander condition, which will be part of the definition of
an Auslander regular ring.
Auslander Condition on Λ: For all Λ-modules M , integers m and submodules
N of Em(M), require that j(N) ≥ m.
Now we can finally define the class of rings which interests us.

1For the definition of Ext, the reader may refer to the notes on cohomology found on the
author’s website: http://www.math.leidenuniv.nl/∼wbhart/, or simply refer to MacLane’s book

Homology.
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Definition 1.3.3. A Noetherian ring Λ is called Auslander regular if it has finite
global homological dimension2 and the Auslander condition holds.

The usefulness of Auslander regularity in our situation is provided by the following
result.

Theorem 1.3.4. If G is a p-adic Lie group without p-torsion, then Λ(G) is an
Auslander regular ring.

From now on, the following hypothesis must be made:

Hypothesis: G has no p-torsion.

Now the dimension theory for modules over an Auslander regular ring comes from
results of Björk. For an Auslander regular ring, he defined a certain finite canonical
filtration of modules for a Λ-module M

T0(M) ⊆ T1(M) ⊆ . . . ⊆ Td−1(M) ⊆ Td(M) = M.

Now the dimension can be defined as follows.

Definition 1.3.5. The minimum i for which Ti(M) = M is called the dimension
δ(M) of M 6= 0. By convention, δ({0}) = −∞.

Also one can naturally define:

Definition 1.3.6. A Λ-module M is called pseudo-null if it is at least of codimen-
sion 2, with respect to the dimension of the ring Λ over itself, i.e.:

δ(M) ≤ d− 2.

As usual we say that two modules M and N are pseudo-isomorphic if the kernel
and cokernel of a homomorphism between them are pseudo-null. We write M ∼ N .

The only difficulty is that in the non-commutative case, this is not an equivalence
relation. The way that we get around this difficulty is to take the quotient category
of Λ-modules with respect to the Serre subcategory PN of pseudo-null Λ-modules.
Thus we speak of modules mod PN. (We will define Serre subcategories and quo-
tient categories in the K-theory section of these notes.)

Furthermore, let us define Λ-mod(p) to be the subcategory of Λ-mod consisting of
Zp-torsion modules and define PN(p) = PN

⋂
Λ-mod(p).

Now we can state the structure theorems that have been proved for Λ-modules.

Firstly there is the fairly restrictive:

Theorem 1.3.7. If G is a p-adic Lie group without p-torsion such that Λ and Λ/p
are integral, and if M is in Λ-mod(p), then there exist unique n1, . . . , nr ∈ N such
that

M ∼=
⊕

1≤i≤r

Λ/pni (mod PN).

2Recall that a Λ-module M has finite left (right) homological dimension if there is a finite

projective resolution of M , i.e. an exact sequence

0 −−−−−→ Pn −−−−−→ · · · −−−−−→ P0 −−−−−→ M −−−−−→ 0

with Pi left (resp. right) projective Λ-modules (direct summands of free Λ-modules). Note that

for Noetherian Λ, left and right homological dimension coincide. Then the ring Λ has finite global
homological dimension if all Λ-modules have finite homological dimension.
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Note: from this definition, it is possible to define a µ-invariant:

µ ∼=
∑

i

ni(torZp
M).

Finally we state the much more general structure theorem for Λ-modules.

Theorem 1.3.8. Let G be an extra powerful ([G, G] ⊆ Gp2
) uniform pro-p group.

Then for any finitely generated Λ(G)-torsion module M , there exist finitely many
left ideals J1, . . . , Jr such that

M ∼=
⊕

1≤i≤r

Λ/Ji (mod PN).

Note that by a Λ-torsion module M , here, we mean a module such that the canonical
map

M
φM−−−−→ M++ = E0(E0(M)),

is the zero map. Note that if Λ is a Noetherian integral domain, then ker φM is
precisely the set of torsion elements of M .

2. K-theory: Characteristic Elements

In this section, we introduce the basics of K-theory. The main aim is to explain
a particular long exact sequence of K-theory called the localization sequence, and
apply it to the localization of our ring Λ at a certain multiplicative subset called
an Ore subset. This leads to us being able to define a characteristic element of a
Λ-module M as an inverse image of the class of M in a certain K-group, under one
of the maps of the localization sequence.

2.1. K0 of a Ring. Let M be a commutative monoid. Then there exists an abelian
group K(M) and a monoid homomorphism (preserves identity and addition),

γ : M → K(M),

such that any homomorphism into an abelian group f : M → A induces a unique
homomorphism f∗ : K(M) → A such that f = f∗ ◦ γ. That is to say, K(M) is
universal for homomorphisms of M into abelian groups.

To construct K(M), start with the free abelian group generated by M , Fab(M).
Let [x] correspond to the element of Fab(M) coming from the generator x ∈ M .
Let B be the subgroup of Fab(M) generated by elements of the form

[x + y]− [x]− [y] where x, y ∈M.

Let K(M) = Fab(M)/B.

Thus we have transferred the monoid operation to the abelian group.

Now we can let γ : M → K(M) be given by

γ : M → Fab(M)→ Fab(M)/B

x 7→ [x] 7→ [x] + B.

The abelian group K(M) is called the Grothendieck group of M .

Given a ring A, we can define the monoid of isomorphism classes of finitely generated
projective A-modules. We let [P ] denote the isomorphism class of P and define the
monoid operation by

[P ] + [Q] = [P ⊕Q].

Now we can take the Grothendieck of this monoid. It is denoted K0(A).
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2.2. K0 of a Symmetric Monoidal Category. We can do better than just
defining K0(A) for a ring A. In fact K-theory is best viewed as taking K-groups
of various categories.

Thus we define a symmetric monoidal category to be a category S with a functor

� : S × S → S,

a distinguished object e and the following natural isomorphisms

e� s ∼= s, s � e ∼= s,

s� (t �u) ∼= (s� t) �u, s � t ∼= t � s.

We also need “coherency”, so that s1 � . . .� sn can be written unambiguously
without parentheses.

Examples: � = ⊕ = direct sum, � =
∐

= finite coproduct or � = × = finite
product.

Now, in fact, we can define K�
0 exactly as we defined K0(A), so long as the iso-

morphism classes of objects of S form a set.

It is of course the case that the two definitions agree, i.e. K0(A) = K
L
0 (P(A)),

where P(A) is the category of finitely generated projective A-modules.

We can think of K�
0 via its presentation, with a generator [s] for each isomorphism

class of objects, subject to relations

[s� t] = [s] + [t].

It is clear from this that each element of K�
0 can be written [s]− [t] for some objects

s and t.

Example: The category of finite sets, Setf , with coproduct the disjoint sum
∐

.
We then have K

‘
0 (Setf ) = Z.

2.3. K0 of Skeletally Small Abelian Categories. This whole idea of taking
K-groups of categories can be vastly expanded. In particular, we can take K0 of a
skeletally small abelian category.

i) A category is said to be skeletally small if the objects in the category form a set,
or the category is equivalent to one in which they do.

ii) A category is abelian if it is additive,

(i) It contains a 0 object (both initial and terminal);

(ii) It contains all products A×B;

(iii) Every set Hom(A,B) has the structure of an abelian group (with operation
denoted +); and

(iv) Morphisms satisfy

β(α1 + α2) = βα1 + βα2, (β1 + β2)α = β1α + β2α,

(when defined).

AND

(v) Every morphism has a kernel and cokernel; and

(vi) Every monic arrow is a kernel and every epic arrow is a cokernel.

(Recall: An arrow f is monic if e1 6= e2 =⇒ fe1 6= fe2. An arrow f is epic if g1 6=
g2 =⇒ g1f 6= g2f . The kernel of an arrow α is a monic arrow x such that αx = 0
and for any other β, αβ = 0 =⇒ β = xβ′, (i.e. β factors through x). Of course a
cokernel of α is then an arrow σ such that σα = 0 and γα = 0 =⇒ γ = γ′σ.)
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Given an abelian category A, K0(A) is the abelian group having one generator [A]
for each object A of A, with a relation

[A] = [A′] + [A′′],

for every short exact sequence

0→ A′ → A→ A′′ → 0.

As a consequence of this definition, we have the following:

i) [0] = 0;

ii) If A ∼= A′, then [A] = [A’]; and

iii) [A′ ⊕A′′] = [A′] + [A′′].

If two abelian categories are equivalent, their Grothendieck groups are naturally
isomorphic.

If A is considered also as a symmetric monoidal category, K0(A) is a quotient group
of K⊕

0 (A) in general. In the case of the category of finitely generated projective
R-modules, for a ring R, all exact sequences are split, and thus the list of conditions
i)-iii) above is in fact exhaustive. This is precisely the set of conditions we had in
the definition of K0(R), and thus in this particular case, the two definitions of K0

in fact agree.

2.4. Quotient Categories. The main reason for defining K0 of abelian categories,
is that we can take quotient categories by Serre subcategories.

Definition 2.4.1. A Serre subcategory of an abelian category A is a subcategory
B which is closed under subobjects, quotients and extensions, i.e. if

0→ B → C → D → 0,

is exact in A, then C ∈ B ⇐⇒ B,D ∈ B.

If A is a small abelian category, with Serre subcategory B, we define the quotient
category A/B as:

i) The objects of A/B are the objects of A;

ii) If M,N are objects of A, and M ′, N ′ subobjects of M,N repsectively, then the
canonical morphisms ι : M ′ → M and ρ : N → N/N ′ yield a natural homomor-
phism HomA(M,N)→ HomA(M ′, N/N ′).

As M ′, N ′ range over the subobjects of M,N such that M/M ′ and N ′ are objects
of B, then the abelian groups HomA(M ′, N/N ′) form a directed system of abelian
groups. Thus we define

HomA/B(M,N) = lim−→HomA(M ′, N/N ′).

The following theorem makes quotient categories a useful and elegant one.

Theorem 2.4.2. A/B is also an abelian category.

The following is also useful to bear in mind when dealing with quotient categories.

Theorem 2.4.3. For the quotient category A/B

(i) If u : M → N then Tu : TM → TN is null iff im u ∈ Ob B;

(ii) Tu is a monomorphism iff ker u ∈ Ob B;

(iii) Tu is an epimorphism iff coker u ∈ Ob B.



NOTES ON THE GL2 MAIN CONJECTURE 9

2.5. K1 of a Ring. Now we must define the Whitehead group K1 for a ring R.

If G ∈ GLn(R) then there is an injection

ι : GLn(R) → GLn+1(R)

G 7→
(

G 0
0 1

)
.

We let GL(R) be the union of the sequence

GL1(R)
ι

↪→ GL2(R)
ι

↪→ · · ·GLn(R)
ι

↪→ · · · .

It is called the infinite general linear group.

Now we can define K1 of a ring R.

Definition 2.5.1. The Whitehead group K1(R) of a ring R is defined to be
GL(R)/[GL(R),GL(R)].

K1(R) has the following universal property: every homomorphism from GL(R) to
an abelian group A, must factor through the natural quotient GL(R)→ K1(R).

A ring homomorphism R → S induces a natural map GL(R) → GL(S) and hence
K1(R)→ K1(S). So K1 is a functor from rings to abelian groups.

The following theorem is also useful in calculating various K1 groups.

Theorem 2.5.2. If R = R′ ×R′′ then K1(R) = K1(R′)⊕K1(R′′).

Now it is actually possible to give another interpretation to K1 of a ring, via
elementary matrices. Firstly we define:

Definition 2.5.3. If i 6= j and r ∈ R then eij(r) is the elementary matrix in
GL(R) with 1 in every diagonal position, and zero elsewhere.

Note: Such a matrix can be thought of as an elementary row operation.

Let En(R) be the subgroup of GLn(R) generated by the eij(r). Let E(R) be the
union of the En(R) over all n. Then we have the following identification.

Theorem 2.5.4. We have

E(R) = [GL(R),GL(R)].

Thus

K1(R) = GL(R)/E(R).

In terms of the elementary row operations eij(r), En(R) is the set of matrices in
GLn(R) which can be reduced to the identity. Thus K1(R) measures how far from
achieving this that we are.

Example: If R = F , a field, then the obstruction is simply F×, measured by the
determinant. So we have

En(F ) = SLn(F ) and K1(F ) = F×.
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2.6. K1 of a Skeletally Small Abelian Category. Now we can define K1 of a
skeletally small abelian category.

We define first an auxilliary category Aaut which is defined as follows. The objects
of Aaut are pairs (A, f) where A ∈ Ob A and f ∈ Aut(A), and whose morphisms
(A, f)→ (B, g) are given by maps h : A→ B such that h ◦ f = g ◦ h.

Note: A sequence

0→ (A′, f ′)→ (A, f)→ (A′′, f ′′)→ 0,

is exact in Aaut iff 0→ A′ → A→ A′′ → 0 is exact in A.

Now we define K1(A) to be the abelian group whose generators are [(A, f)] ∈
Ob Aaut and whose relations are

i) If
0→ (A′, f ′)→ (A, f)→ (A′′, f ′′)→ 0,

is exact in Aaut then [(A, f)] = [(A′, f ′)] + [(A′′, f ′′)]; and

ii) For all f, g ∈ Aut(A)

[(A, fg)] = [(A, f)] + [(A, g)].

Theorem 2.6.1. The definition of K1 just given agrees with K1(R) for a ring R,
when A is the category of finitely generated, projective R-modules.

2.7. Cartan Homomorphisms. Ultimately we’d like the K-theory that we have
just been defining to bear some relevance to the modules that we met in the first
section of these notes. In particular we’d like to deal with the category of finitely
generated Λ-modules, dropping the projective condition (note that we could not
work simply with the category of Λ-modules, since it is not skeletally small).

We therefore define
G0(R) = K0(M(R)),

where M(R) is the category of finitely generated R-modules. It is an abelian
subcategory of mod−R, the category of R-modules, and is skeletally small.

This is a useful definition, since it turns out that there is a homomorphism K0(R)→
G0(R) called the Cartan homomorphism for K0. Thus this homomorphism is a
homomorphism from K0 of the category of finitely generated, projective R-modules,
to that of the category of finitely generated R-modules.

Similarly we can define
G1(R) = K1(M(R)),

and the inclusion of categories M(R) ⊃ P(R) again induces a (Cartan) homomor-
phism K1(R)→ G1(R).

In the case we are interested in, where R is Λ(G) as defined in the first section
of these notes, the following theorem makes these Cartan homomorphisms very
useful. In particular, it is a theorem that the ring Λ(G) as defined there, and with
the hypothesis that there is no p-torsion, is regular.

Theorem 2.7.1. For a regular (no left or right zero divisors), Noetherian ring R,
the Cartan homomorphisms are both isomorphisms.

This theorem should be viewed as enabling us to view any statement about G0(R)
and G1(R) as being interchangeable with one about K0(R) and K1(R), given that
the ring R is regular and Noetherian.
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2.8. Localization at an Ore Subset. The reason we have defined all these cat-
egory theory gadgets and K-theory is that we can apply the following remarkable
theorem of Quillen, called the localization theorem.

Theorem (Quillen) 2.8.1. Let T be a Serre subcategory of a small abelian category
M. Then there is a long exact sequence of K-groups

. . .Ki+1(M/T)→ Ki(T)→ Ki(M)→ Ki(M/T)→ Ki−1(T)→ . . .→ K0(M/T)→ 0.

Note that we have not defined the K-groups Ki for i ≥ 2. We will not need this
part of the sequence and so for us the only relevant part is that which contains the
K-groups Ki for i = 0, 1.

We will apply this theorem with M = M(R), the category of finitely generated
Λ-modules, and T the subcategory of M consisting of the M ∈ Ob M such that
MS∗ = 0. Here we mean that the localization of M at a certain multiplicative
subset, which we will describe below, is zero. This last category is also denoted
M(ΛS∗ − tors).

The following theorem is important for the application of the localization theorem
in this instance.

Theorem 2.8.2. With the definitions just given, M/T is equivalent to the category
of finitely generated ΛS∗-modules.

Again we define what we mean by the localization of Λ at the multiplicative subset
S∗, below.

The result of substituting all these categories into the localization theorem is that
the following sequence is exact

K1(Λ) −−−−→ K1(ΛS∗)
∂−−−−→ K0(ΛS∗ − tors) −−−−→ K0(Λ) −−−−→ K0(ΛS∗).

Now to make sense of the foregoing, we define what we mean by the localization
of a ring R at a multiplicative subset S. We note that localization in the non-
commutative case is delicate. In particular the following two conditions must be
met:

i) For any s ∈ S and r ∈ R, there exists an s′ ∈ S and r′ ∈ R such that sr′ = rs′;
and

ii) If sr = 0, then rs′ = 0 for some s′ ∈ S.

In our case, the ring R = Λ(G) is regular, and so only (i) will be needed. A
multiplicative subset S of R satisfying (i) is called an Ore subset.

In fact, the conditions (i) and (ii) are not just necessary:

Theorem 2.8.3. There is a localization (denoted RS) of a ring R at a multiplica-
tive subset S, iff the conditions (i) and (ii) above hold. This localization is a ring
homomorphism φ : R→ RS such that

i) The image under φ of each element of S is invertible in RS; and

ii) Each element of RS is of the form φ(r) · φ(s)−1, for some r ∈ R and s ∈ S.

We also need to define what we mean by the localization of an R-module M at such
a set S. We firstly define an equivalence on the product M × S, by (m, s) ∼ (n, t)
if there exist u, v ∈ R such that su = tv ∈ S and mu = nv. Then we define
MS = (M × S)/ ∼.
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2.9. A Canonical Ore Subset. The above results are applied, in practice, to a
canonical Ore subset of the ring Λ = Λ(G). However a further assumption needs
to be made.

Assumption: Let G have a normal subgroup H such that Γ = G/H ∼= Zp.

This situation is of particular interest to us. For, let E be an elliptic curve over Q
and set F∞ = Q(E(p∞)). By the Weil pairing, F∞ ⊃ Q(µp∞), hence F∞ contains
Qcyc. Now letting G = Gal(F∞/Q) and H = Gal(F∞/Qcyc), Γ = G/H has the
required property.

Under this assumption, we can construct a canonical Ore subset as follows.

Definition 2.9.1. We let S be the set of all f ∈ Λ(G) such that Λ(G)/Λ(G)f is a
finitely generated Λ(H)-module.

Theorem 2.9.2. The set S is a left and right Ore set in Λ(G), with no zero
divisors.

The following is helpful in further characterising the set S just defined.

Theorem 2.9.3. If M is a finitely generated (left or right) Λ(G)-module, then M
is finitely generated over Λ(H) iff M is S-torsion.

Now the perceptive reader will have noticed that in earlier subsections we mentioned
an Ore subset S∗. It turns out that by ‘saturating’ S by p, a more natural theory
is obtained, in a sense reducing the theory to modules over Λ(Γ), which can be
identified with Zp[[T ]]. To achieve this slightly more natural version of events, we
localize at the set S∗, defined as follows.

Definition 2.9.4. Let S∗ =
⋃

n≥0 pnS.

Note that S∗ is still a left and right Ore subset of Λ, without zero divisors. We also
note that

Λ(G)S∗ = Λ(G)S [1/p].

Now we have fully defined the objects that appear in the localization sequence
derived above from Quillen’s theorem. The important thing now, is that with
the definition of S∗ just given, one of the categories appearing in the localization
sequence has a special meaning.

Definition 2.9.5. Let MH(G) be the category of finitely generated S∗-torsion
Λ(G)-modules.

Theorem 2.9.6. The category MH(G) is the category of all Λ(G)-modules such
that M/M(p) is finitely generated over Λ(H), where M(p) is the largest submodule
killed by a power of p. (Note: H is a submodule of M(p).)

To use the localization sequence to define characteristic elements, we must retain
the assumptions we have introduced to date. We note that in particular the as-
sumption that G has no element of order p is automatically satisfied if p ≥ 5, in
the situation we have been considering, involving an elliptic curve over Q. Under
all the assumptions, we have:

Theorem 2.9.7. The following map from the localization sequence which we have
built, is surjective:

∂G : K1(Λ(G)S∗)→ K0(MH(G)).

At last, we can define what we mean by a characteristic element of a finitely gen-
erated Λ(G)-module M .
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Definition 2.9.8. A characteristic element of M is an inverse image under ∂G,
of [M ], in K0(MH(G)), written ζM .

Finally we mention the following conjecture which will be important for the state-
ment of the main conjecture in the next section.

Conjecture 2.9.9. Under all the assumptions made thus far,

X(E/F∞) = Hom(Sel(E/F∞), Qp/Zp),

is an object of the category MH(G).

In particular, if this conjecture holds, we can define a characteristic element of
the dual of Selmer, X(E/F∞). This particular characteristic element will play
an important part in the main conjecture, just as the characteristic element of a
particular module X does, in Iwasawa theory for number fields.

3. The Main Conjecture: p-adic L-functions

Throughout this section we will restrict to an elliptic curve E over Q with ordinary
reduction at p.

Our main task before stating the main conjecture will be to introduce a certain
p-adic L-series associated to E.

For a prime number q, let Frobq be, as usual, the Frobenius automorphism of q in
Gal(Qp/Qp)/Iq, where Iq is the inertia subgroup of q.

Let ρ be any Artin representation of our p-adic Lie group G, realised in a finite
dimensional vector space Vρ over some finite extension Kρ of Q. (By an Artin
representation we mean a representation which factors through some finite quotient
of the Galois group G). We can view this field as contained in Q, and then as
required, view the latter as embedded once and for all into both Qp and C.

We recall for motivation, the complex Artin L-function:

L(ρ, s) =
∏
q

det(1− Frob−1
q · q−s|V Iq

ρ )−1.

It is possible to define a set of local epsilon factors, eq(ρ) ∈ C∗, normalized in a
particular manner worked out by Deligne. We will not bother to define these factors
here and refer advanced readers to Deligne’s somewhat technical article.

Now it is possible to define a complex L-function associated with the elliptic curve
E, twisted by the representation ρ.

For a prime l distinct from q, consider the Tate module Tl(E) = lim←−Eln and let
Vl(E) = Tl(E)⊗Zl

Ql, and H1
l (E) = Hom(Vl(E), Ql).

Now fix a prime λ in Kρ above l, and let Vρ,λ = Vρ ⊗Kρ
Kρ,λ, where Kρ,λ is the

completion of Kρ at λ.

Now we can define

L(E, ρ, s) =
∏
q

det(1− Frob−1
q · q−s|(H1

l (E)⊗Ql
Vρ,λ)Iq )−1.

Unfortunately the following is still a conjecture.

Conjecture 3.0.10. L(E, ρ, s) can be continued to s = 1 for all Artin characters
ρ of G (it converges only for Re (s) > 3/2).
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Now fix a global minimal Weierstrass model for E over Z. Let ω be the Nèron
differential of this equation. Let γ+ (γ− resp.) denote a generator of the subspace
of H1(E(C), Z) fixed by complex conjugation (resp. on which complex conjugation
acts by −1).

Let Ω+(E) =
∫

γ+ ω, Ω−(E) =
∫

γ−
ω.

Let d+(ρ), d−(ρ) be the dimensions of the subspaces of Vρ on which complex con-
jugation acts by +1,−1 respectively.

With these definitions, the following conjecture, if true, ought to define a p-adic
L-function, whose only ‘parameter’ is the representation ρ.

Conjecture 3.0.11.
L(E, ρ, 1)

Ω+(E)d+(ρ)Ω−(E)d−(ρ)
∈ Q,

for all Artin representations ρ of G.

Let jE denote the j-invariant of E. Let R be the set of primes q with ordq(jE) < 0.

Let LR(E, ρ, s) be as for L(E, ρ, s) but with the product only over primes not in R.

Put pfp equal the p-part of the conductor of ρ.

Since E is ordinary at p,

1− apX + pX2 = (1− uX)(1− wX), u ∈ Z×p ,

with p + 1− ap = #(Ẽp(Fp), for Ẽp the reduction of E modulo p.

Now in order to make sense of the following conjecture, we need to understand how
an element of K1(Λ(G)S∗) can be thought of as a p-adic L-function.We consider
such an element as a function defined on Artin representations ρ of G, as follows.

Firstly we note that the representation ρ gives us a map from Zp[G/U ], for any
finite quotient G/U of G, to an n × n matrix over various extension fields of Qp.
So that we don’t have to work over fields that vary depending on ρ we can simply
embed into Cp, the completion of an algebraic closure of Qp.

Next we note that such representations are coherent, giving a map from Λ to n×n
matrices over Cp. This map extends to Λ(G)S∗ . Now we take K1 of this map. We
then make use of the fact that the K1-group of a matrix ring over Cp is naturally
isomorphic to K1 of Cp itself, which is in fact naturally isomorphic to the units of
Cp.

Thus in reality we have a map for each element of K1(Λ(G)S∗) to the units of Cp

depending only only the representation ρ. This map can be thought of as a p-adic
L-function.

Conjecture 3.0.12. Assuming p ≥ 5 and E has good ordinary reduction at p, then
there exists an LE in K1(Λ(G)S∗) such that for all Artin representations ρ of G,
LE(ρ) 6=∞ and

LE(ρ) =
LR(E, ρ, 1)

Ω+(E)d+(ρ)Ω−(E)d−(ρ)
· ep(ρ) ·Q · u−fp ,

where

Q =
det(1− Frob−1

q · u−1|V Iq

ρ̂ )

det(1− Frob−1
q · w−1|V Iq

ρ )
,

and ρ̂ is the contragredient representation:

ρ̂(g) = tρ(g−1).
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At last we come to our goal - the main conjecture of GL2 Iwasawa theory.

Conjecture (Main Conjecture) 3.0.13. Assume p ≥ 5 and E has good ordinary
reduction at p. Assume X(E/F∞) belongs to MH(G) as conjectured earlier. Then
given that the previous conjecture holds, the p-adic L-function LE in K1(Λ(G)S∗)
is a characteristic element of X(E/F∞).
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