
1. PROPERTIES OF ETA UNITS

(WITH ROBIN CHAPMAN)

Introduction

This chapter reports on joint work of myself and Robin Chapman, carried out when
I visited the University of Exeter in 2002 with the assistance of a Postgraduate
Research Fund grant supplied by Macquarie University.

Our aim was to investigate resolvents of logarithms of particular eta units. We
start by defining, for a given discriminant d, the values
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where (a, b, c) are the coefficients of a reduced binary quadratic form of discriminant
d = b2 − 4ac. These values h(a, b, c) are themselves transcendental, but quotients
of them are units in the real subfield of the Hilbert class field of the imaginary
quadratic number field of discriminant d and turn out to have interesting properties.

The results that we report on here relate these units in a novel way to special values
of L-series. In fact we show that the derivatives of the relevant L-series, evaluated
at s = 0, are each closely related to resolvents formed from single eta units. This
is in contrast to Kronecker’s limit formula which relates the L-series’ to sums over
multiple eta units.

Along the way we notice some interesting properties involving Galois actions on
our eta units. We are able to prove these and this process provides an excellent
opportunity to survey the further results which we have alluded to in the previous
chapter.

In particular we look at lower powers of eta quotients than the 24-th power. In the
last chapter we saw that quotients of the discriminant function were in the Hilbert
class field or various ring class fields, or at least small known extensions of the same.
In this chapter we quote results which state that various lower powers of the eta
quotients are also in these fields. These quotients are called class invariants.

The Galois action on such class invariants can then be described. It is this which
leads us to the proofs of the results we mentioned above.

Further in the case of class number five we prove along the way a nice result which
expresses the degree to which eta units fail to be fundamental in terms of the class
number of the real subfield of the Hilbert class field.

1. L-series and Resolvents of Units

Our starting point is the following expression, which is equation (33) of the prelim-
inaries chapter and was derived using the Kronecker Limit Formula and functional
equation for partial zeta functions

(1) L′(0, χ) =
−4
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The values h(a, b, c) defined above are recognizable on the right hand of this expres-
sion and indeed it was this equation which motivated us to consider these particular
values.

Again we remind the reader of the canonical isomorphism of the form class group
and ideal class group of the imaginary quadratic number field of discriminant d,
allowing us to consider the character χ as a character of either group. We also
recall that χ denotes the complex conjugate of the character χ.

We start with discriminants where the class number is 5. It is easiest to do this with
an example. If we set d = −47 we have class number 5 and there are three distinct
values to consider: h(1, 1, 12), h(2, 1, 6) = h(2,−1, 6) and h(3, 1, 4) = h(3,−1, 4).
We define the two quantities

m1 =
h(1, 1, 12)2

h(2, 1, 6)2
and m2 =

h(2, 1, 6)2

h(3, 1, 4)2
.

Of course we could have just as easily defined m1 and m2 with the forms (2, 1, 6)
and (3, 1, 4) swapped. This is equivalent to considering the form class group as
being generated by the class of (3, 1, 4) instead of (2, 1, 6). In fact this does make
a difference to our calculations, especially when we invoke a character of the form
class group below. As we noted already, this form class group character corresponds
canonically to the character χ of our L-series. But choosing the binary quadratic
forms here in a different order will simply correspond to permuting the characters
of the form class group with respect to those of the ideal class group. We choose
to spare the reader from a lengthy discussion of the explicit canonical isomorphism
between the two character groups and keep this permutation of characters in mind
when discussing our results.

As for the values m1 and m2, we will prove in the next section that they are in fact
units and that they are in the real subfield of the Hilbert class field of Q(

√
−47).

We simply assume this for now so that the flow of thought is not broken at this
point. In fact we often refer to the values mi as units for convenience and leave the
detailed demonstration till later.

In all cases where the class number is 5 the number of roots of unity w(d) of the
associated quadratic number field is 2. Thus, writing ζ = e

2πi
5 , the right hand side

of (1) can be written

(2) − 2 [log(h(1, 1, 12)) + (ζ + ζ4) log(h(2, 1, 6)) + (ζ2 + ζ3) log(h(3, 1, 4))]

= − log(m1)− 2[(1 + ζ + ζ4) log(h(2, 1, 6)) + (ζ2 + ζ3) log(h(3, 1, 4))]

= − log(m1)− 2[−(ζ2 + ζ3) (log(h(2, 1, 6))− log(h(3, 1, 4)))]

= − log(m1) + (ζ2 + ζ3) log(m2)

This expression for the L-series is quite general. If we define the units m1 and m2

in an analogous way for other discriminants where the class number is 5 then we
always have (for some character χ which depends on our specific choice of m1 and
m2)

(3) L′(0, χ) = − log(m1) + (ζ2 + ζ3) log(m2) = − log(m1)−
1 +

√
5

2
log(m2).

A similar computation then shows that

(4) L′(0, χ2) = − log(m1) + (ζ + ζ4) log(m2) = − log(m1)−
1−

√
5

2
log(m2).
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Now we turn to resolvents of logs of our units m1 and m2. The Hilbert class field
H of the quadratic number field K of discriminant -47 is a Galois extension of Q of
degree 10 with dihedral Galois group generated by complex conjugation and by an
automorphism σ which has order 5. The automorphism σ also generates the Galois
group of H/K which is cyclic of order 5.

We will be interested in the resolvents

res(m2, k) =
5∑

i=1

ζik log |σi(m2)| and res(m1, k) =
5∑

i=1

ζik log |σi(m1)|,

particularly for the values k = 1, 2 and where we again have ζ = e
2πi
5 .

It is possible to use the Artin map to write these resolvents in terms of characters
which correspond in a canonical way to those of the L-series. However apart from
being, as noted above, a complication which is best avoided, the inconsistent way
that Pari treats automorphisms would make this a difficult project, even if it did
provide any worthwhile benefit here.

As Artin reciprocity is a deep result there is little doubt that out results below
indicate by their very nature which resolvents pair with which L-series, for only
certain pairings lead to numerically recognizable algebraic values.

Again there is nothing special about the discriminant d = −47, for our purposes,
except that it has class number 5. All the same expressions can be calculated for
any disciminant with that class number.

The following Pari program allows the computation of the resolvent res(−, k) of
an eta unit and the L-series’ L′(0, χk).

\p 500;\ps 500
h(a,b,c) = a^(-1/4)*sqrt(norm(eta((b+sqrt(b^2-4*a*c))/(2*a),1)))
z = exp(2*Pi*I/5)
co(a,d)=local(r);bnf=bnfinit(polred(polcompositum(x^2-d,quadhilbert(d

))[1])[5]);aut=nfgaloisconj(bnf);r=polroots(bnf.pol)[1];return(lin
dep([a,r^9,r^8,r^7,r^6,r^5,r^4,r^3,r^2,r,1]));

pol(a,d) = local(c);c = co(a,d);return(Mod(Pol(c)/(-c[1])+x^10,bnf.po
l));

s=vector(5)
sig(a,d)=local(p);p=pol(a,d);s[1]=p;s[2]=nfgaloisapply(bnf,aut[2],s[1

]);s[3]=nfgaloisapply(bnf,aut[2],s[2]);s[4]=nfgaloisapply(bnf,aut[
2],s[3]);s[5]=nfgaloisapply(bnf,aut[2],s[4]);return(s);

seval(a,d)=local(r);sig(a,d);r=polroots(bnf.pol)[1];x=r;return([eval(
s[1].pol),eval(s[2].pol),eval(s[3].pol),eval(s[4].pol),eval(s[5].p
ol)]);

t=vector(5)
initconjugates(a,d)=t=seval(a,d);kill(x);
l(y)=log(sqrt(norm(y)))
res(i)=l(t[1])+z^i*l(t[2])+z^(2*i)*l(t[3])+z^(3*i)*l(t[4])+z^(4*i)*l(

t[5])
L0X(j)=-(log(m1)-(z^(2*j)+z^(3*j))*log(m2))

The following fragment of code demonstrates how to use this Pari program. It
calculates two quantities

q1 =
L′(0, χ)

res(m2, 2)
and q2 =

L′(0, χ2)
res(m2, 1)

,

for discriminant d = −47 and expresses them as linear combinations of ζ, ζ2, ζ3, ζ4.
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m1 = h(1,1,12)^2/h(2,1,6)^2
m2 = h(2,1,6)^2/h(3,1,4)^2
initconjugates(m2,-47)
q1 = L0X(1)/res(2)
q2 = L0X(2)/res(1)
lindep([q1,z,z^2,z^3,z^4])
lindep([q2,z,z^2,z^3,z^4])

The coefficient vectors which are obtained from this computation expressing q1 and
q2 in terms of powers of ζ are [−5,−2, 2, 2,−2] and [−5, 2,−2,−2, 2] respectively.
After summing the fifth roots of unity that we have obtained and dividing by 5, we
discover that, remarkably,

(5) L′(0, χ) = −2 res(m2, 2)√
5

and L′(0, χ2) =
2 res(m2, 1)√

5
.

Note that in contrast to the equations (3) and (4) the right hand sides here only
involve the unit m2.

Of course we can do similar computations with the unit m1 instead of m2. The
same combinations q1 and q2 as expressed in the code above are meaningful, with
the coefficient vectors being [−5, 4, 6, 6, 4] and [−5, 6, 4, 4, 6] respectively.

Summing the 5-th roots of unity resulting from these computations yields

(6) L′(0, χ) = −(
√

5 + 1)
res(m1, 2)√

5
and L′(0, χ2) = (1−

√
5)

res(m1, 1)√
5

.

For future reference we note that if we write all the expressions obtain so far in the
form

L′(0, χj) =
2α

5
res(mi, k),

then in the first two cases above α takes on the roots of x2 − 5 = 0 whilst in the
other two cases α takes on the roots of x2 + 5x + 5.

What is more remarkable perhaps is that there is nothing special about -47. These
equations hold if we replace -47 with another discriminant of class number 5 (up
to the ambiguity in character mentioned above). In fact we have checked that
the previous equations hold, modulo a possible permutation of characters, for d =
−79,−103,−127,−131 and−179. We conjecture that these are quite general results
for class number five.

We also happened to notice numerically that in each case m1 = mσ2+σ3

2 . It will be
a major aim of this chapter to prove this fact and the relations given above which
are actually related.

Before we make any preparations for proving anything, let us extend our compu-
tational work into the case where the class number is 7. This time there are seven
reduced binary quadratic forms, which we shall denote (a0, b0, c0) and (ai,±bi, ci)
for i = 1, 2, 3.

Here we intend that (a0, b0, c0) represents the identity of the form class group and
(ai, bi, ci) composed with (a1, b1, c1) is equivalent to (ai+1, bi+1, ci+1) for i = 1, 2.

There are numerous ways that we could take quotients of the values h(ai, bi, ci)
to give units (as usual we call them units since in all cases we quote this is true
numerically but we again leave any detailed proofs till later). We will make the
following choice

m1 =
h(a0, b0, c0)2

h(a1, b1, c1)2
, m2 =

h(a1, b1, c1)2

h(a2, b2, c2)2
, m3 =

h(a2, b2, c2)2

h(a3, b3, c3)2
,
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where we have taken the square so that the values mi lie in the real subfield of the
Hilbert Class Field of the underlying quadratic field of discriminant d. We again
defer detailed justification of this till later.

Again using the identity (1), we can write

(7) L′(0, χ) = −2 [log(h(a0, b0, c0) + (ζ + ζ6) log(h(a1, b1, c1))

+ (ζ2 + ζ5) log(h(a2, b2, c2)) + (ζ3 + ζ4) log(h(a3, b3, c3))]

= −m1 − 2[(1 + ζ + ζ6) log(h(a1, b1, c1))

+ (ζ2 + ζ5) log(h(a2, b2, c2)) + (ζ3 + ζ4) log(h(a3, b3, c3))]

= −m1 − (1 + ζ + ζ6)m2 − 2[(1 + ζ + ζ6 + ζ2 + ζ5) log(h(a2, b2, c2))

+ (ζ3 + ζ4) log(h(a3, b3, c3))]

= −m1 − (1 + ζ + ζ6) m2 + (ζ3 + ζ4) m3,

where we now have ζ = e−
2πi
7 .

We adjust the definition of our resolvents res(mi, k) in an obvious way and allow
k ∈ {1, 2, 3}. Our Pari program becomes

\p 1000;\ps 1000
classnum = 7
h(a,b,c)=a^(-1/4)*sqrt(norm(eta((b+sqrt(b^2-4*a*c))/(2*a),1)))
z=exp(2*Pi*I/classnum)
co(a,d)=local(r);bnf=bnfinit(polred(polcompositum(x^2-d,quadhilbert(d

))[1])[7]);aut=nfgaloisconj(bnf);r=polroots(bnf.pol)[1];return(lin
dep([a,r^13,r^12,r^11,r^10,r^9,r^8,r^7,r^6,r^5,r^4,r^3,r^2,r,1]));

pol(a,d)=local(c);c=co(a,d);return(Mod(Pol(c)/(-c[1])+x^(2*classnum),
bnf.pol));

s=vector(classnum)
sig(a,d)=local(p);p=pol(a,d);s[1]=p;for(y=1,classnum-1,s[y+1]=nfgaloi

sapply(bnf,aut[2],s[y]));return(s);
t=vector(classnum)
seval(a,d)=local(r);sig(a,d);r=polroots(bnf.pol)[1];x=r;for(y2=1,clas

snum,t[y2]=eval(s[y2].pol));return(t);
initconjugates(a,d)=seval(a,d);kill(x);
l(y)=log(sqrt(norm(y)))
res(i)=sum(yval=1,classnum,z^((yval-1)*i)*l(t[yval]))
L0X(j)=-log(m1)-(1+z^(j)+z^(6*j))*log(m2)+(z^(3*j)+z^(4*j))*log(m3)

Note that in some later versions of Pari the ordering of automorphisms has been
changed. Thus we replace

....bnf,aut[2],s[y]....

with

....bnf,aut[11],s[y]....

in the line of code near the centre of this program.

The following is an example of how to use this program for the discriminant d = −71
which has class number 7.

m1 = h(1,1,18)^2/h(2,1,9)^2
m2 = h(2,1,9)^2/h(4,3,5)^2
m3 = h(4,3,5)^2/h(3,1,6)^2
initconjugates(m1,-71)
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mi j k coefficients α min. poly.
1 3 −7, 6, 10, 12, 12, 10, 6

m1 2 1 −7, 12, 6, 10, 10, 6, 12 x3 + 14x2 + 49x + 49
3 2 −7, 10, 12, 6, 6, 12, 10
1 3 −7, 2, 8, 4, 4, 8, 2

m2 2 1 −7, 4, 2, 8, 8, 2, 4 x3 + 7x2 − 49
3 2 −7, 8, 4, 2, 2, 4, 8
1 3 −7, 4, 2, 8, 8, 2, 4

m3 2 1 −7, 8, 4, 2, 2, 4, 8 x3 + 7x2 − 49
3 2 −7, 2, 8, 4, 4, 8, 2

Table 1.1

q=L0X(1)/res(3)
lindep([q,z,z^2,z^3,z^4,z^5,z^6])

For the discriminant d = −71 the above computation returns the coefficient vector
[−7, 6, 10, 12, 12, 10, 6] which, after rearranging, leads us to the following expression

L′(0, χ) =
2α

7
res(m1, 3),

where α satisfies the equation x3 + 14x2 + 49x + 49 = 0.

Now there are various other combinations of the unit m1, m2, m3 and values j and
k in the expression

q = L0X(j)/res(k)

that we can use in the code above. A number of these yield meaningful values. We
summarise the relevant combinations in the table above.

In summing the linear combinations of 7-th roots of unity which these computations
report, we always obtain an expression of the form

L′(0, χj) =
2α

7
res(mi, k)

where α satisfies a cubic equation. The minimal polynomials for α are listed in the
table.

It is interesting to note from the table that the minimum polynomial of α only
depends on the value mi which is being used and that in fact for a particular given
value mi, the values α take on all three of the roots of the particular polynomial
listed as j and k vary.

We also note the divisibility of the coefficients of the minimum polynomials by 7,
although this should not be a suprise given that our character takes 7-th roots of
unity as values.

Now the values mi which we picked are not particularly special. In fact there are
numerous other units u which can be expressed as the quotient of two different
squares of h(a, b, c) values.

In the following table we give a list of such units along with the various coefficient
vectors that result from our program for various values of j and k. The minimum
polynomials for the various values of α can easily be determined by comparison
with the results in the previous table since, as is clear, they are all equal to plus or
minus one of the values from that earlier table.

Now if we replace a particular unit u with its multiplicative inverse we simply obtain
the additive inverse for the value α. The reason for this is easy to see from the
definition of res(u, k).
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unit j k coefficients
1 3 −7,−8,−4,−2,−2,−4,−8

m2m3 2 1 −7,−2,−8,−4,−4,−8,−2
3 2 −7,−4,−2,−8,−8,−2,−4
1 3 −7, 10, 12, 6, 6, 12, 10

m1m2m3 2 1 −7, 6, 10, 12, 12, 10, 6
3 2 −7, 12, 6, 10, 10, 6, 12
1 3 −7,−12,−6,−10,−10,−6,−12

m1m2 2 1 −7,−10,−12,−6,−6,−12,−10
3 2 −7,−6,−10,−12,−12,−10,−6

Table 1.2

It is also easy to see from the definition of res(u, k) how the values in this second
table can be calculated from those of the previous table, since log |σi(u1u2)| =
log |σi(u1)|+ log |σi(u2)| for any two units u1 and u2.
What is more interesting perhaps is that we end up with no new values for α other
than those in the first table (except, of course, the additive inverses of these values)
until we take units which are not of the form u = h(r1, r2, r3)2/h(s1, s2, s3)2. The
unit m2

1m2m3 = h(1, 1, 18)4/(h(2, 1, 9) h(3, 1, 6))2 is such an example. In that case
the coefficients that result are [−91, 40, 48, 38, 38, 48, 30].
As for the class number five situation, there is nothing special about the discrim-
inant d = −71, except that it has class number seven. We have checked that for
d = −151, which is also class number seven, exactly the same values of α result.
Again we speculate that a very general result is at work here.
It has not been possible at this time to extend our computations to the class number
9 and 11 cases, since the memory and computational power required to run our
program already becomes prohibitive in these cases.

2. Lower Powers of Eta Quotients

In the previous section we made a number of assertions about our eta quotients
which were not proved there. In one such case we claimed that various powers of
quotients of the values h(a, b, c) were in the real subfield of the Hilbert class field
(or more generally some ring class field) of the related quadratic number field. This
section is devoted to proving that result where possible.
The “main theorems” of complex multiplication state that if ω is a root of a binary
quadratic form (a, b, c) then
(i) if (a, b, c) has fundamental discriminant d = b2 − 4ac < 0 then j(ω) is in the
Hilbert class field of Q(ω) (in fact it generates it); and
(ii) if (a, b, c) has non-fundamental discriminant D = k2d = b2 − 4ac < 0 then j(ω)
generates the ring class field modulo k of Q(ω).
Here j(τ) is the absolute modular invariant function which is well known from the
theory of modular forms and elliptic curves.
Now Weber defines three functions

(8) f(τ) =
e−

πi
24 η

(
τ+1
2

)
η(τ)

, f1(τ) =
η
(

τ
2

)
η(τ)

, f2(τ) =
√

2
η (2τ)
η(τ)

which have been called the Weber functions.
He shows that the functions f(τ)24, −f1(τ)24 and −f2(τ)24 satisfy the equation

(x− 16)3 = jx,
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ω d eta quotient class invariant
3+
√

d
2 d ≡ 5 (mod 8)

√
2 φ = ε f32(ω) ∈ R+, ε16 = 1 φ ∈ Re{R2}

d ≡ 1 (mod 8) φ = ε f32(ω) ∈ R+, ε16 = 1 φ ∈ Re{H}
d ≡ 3 (mod 4) φ1 = f121 /

√
2
3
, φ2 = f122 /

√
2
3

φ1, φ2 ∈ Re{R2}
φ = f12/8 φ ∈ Re{H}

d ≡ 7 (mod 8) φ = f6/
√

2
3

φ ∈ Re{H}
d ≡ 2 (mod 4) φ = f61/

√
2
3

φ ∈ Re{H}√
d d ≡ 5 (mod 8) φ = f3 φ ∈ Re{H}

d ≡ 1 (mod 8) φ = f3/
√

2
3

φ ∈ Re{H}
d ≡ 12 (mod 16) φ = f121 /

√
2
9

φ ∈ Re{H}
d ≡ 20 (mod 32) φ = f121 /25 φ ∈ Re{H}
d ≡ 4 (mod 32) φ = f121 /26 φ ∈ Re{H}

Table 1.3

where j = j(τ) is the modular invariant function as above. In other words, Q(f(τ)),
with f(τ) the 24-th power of any of the Weber functions, is a cubic extension of
Q(j(τ)), as function fields.

However, when we specialise to a certain value τ = ω, say, for some root ω of a
binary quadratic form, it may be that the resulting f(ω) is actually in Q(j(ω)).
In other words, Q(f(ω)) = Q(j(ω)), as number fields. When this happens, Weber
calls the value f(ω) a class invariant.

Thus for various values of ω, the 24-th powers of the Weber functions are class
invariants. However it may also be that lower powers of the Weber functions become
class invariants for various values ω.

Weber himself gave many examples of precisely this phenomenon. Unfortuantely
not all of his results were adequately proved.

Much later Birch [1] proved all of Weber’s results using Söhngen’s Theorem. A
similar proof could probably be effected using Shimura’s Reciprocity Law. However
the version based on Söhngen’s theorem seems to be simple enough.

We will not quote Söhngen’s theorem or Birch’s proofs here but simply refer the
reader to his paper [1]. We will however quote and collate the results themselves
which do not seem to be tabulated there.

We state the results in a table with four columns. The first column contains the
value of ω in terms of

√
d for some negative integer d (we assume d 6= −2,−4) which

provides us with our class invariant. The second column contains a congruence
condition on the value d. The third column lists the eta quotient which is a class
invariant. Finally the fourth column gives the particular ring class field which the
class invariant lies in. We will write H for the Hilbert class field of Q(ω) and Rn

for its ring class field modulo n and Re{H} for the real subfield of H, etc.

Moreover Birch proves that if 3 does not divide the discriminant of the reduced
binary quadratic form of which ω is a root then the same results hold if the functions
φ, φ1 and φ2 are all replaced with similar functions where all the exponents of

√
2,

2, f, f1 and f2 are divided by three.

Birch also states that all the values φ, φ1, φ2 that are quoted in the table are in fact
units in the fields given. Birch uses some results of Deuring to prove this fact.

We will now use the results in the table to prove that various of our eta quotients
are in fact units in the Hilbert class field of the related quadratic number field.
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In some cases we must wait until we compute the units explicitly to demonstrate
that they are in fact units, as Birch’s results and their generalizations do not seem
to provide us with this information.

We begin with the value m1 for the discriminant d = −47.

We have that

m1 =
√

2
∣∣∣∣η((1 +

√
−47)/2)

η((1 +
√
−47)/4)

∣∣∣∣2 =
√

2
/ ∣∣f1((1 +

√
−47)/2)

∣∣2 .

However, note that∣∣f((1 +
√
−47)/2)

∣∣ = ∣∣f1((−1 +
√
−47)/2)

∣∣ = ∣∣f1((1 +
√
−47)/2)

∣∣ .
Therefore, since f f1f2 =

√
2 we have that

m1 =
∣∣f2((1 +

√
−47)/2)

∣∣ = ∣∣f2((3 +
√
−47)/2)

∣∣ .
According to the results above this is a real unit in the Hilbert class field of
Q(
√
−47).

An identical argument shows that the value m1 is a unit in the real subfield of the
Hilbert class field for the discriminants d = −79, −103 and −127. That is, we have
that

m1 =
∣∣∣f2((3 +

√
d)/2)

∣∣∣
for the given discriminants d.

As for the values m2 for the discriminants d = −79 and −127, we can express them
in terms of Weber functions, however it is not possible to change the argument to
one of those given in our table. Thus we do not deal with these values here.

Returning to the value m2 for the discriminant d = −47 we find that although it
can be expressed in terms of Weber functions it is more fruitful to consider it in
terms of some alternative class invariants.

Alice Gee investigated a generalization of the Weber functions in the fourth chapter
of her thesis [2]. She defines

g0(z) =
η
(

z
3

)
η(z)

g1(z) = ζ−1
24

η
(

z+1
3

)
η(z)

g2(z) =
η
(

z+2
3

)
η(z)

g3(z) =
√

3
η(3z)
η(z)

.

We will ourselves define functions similar to these in a later chapter.

Gee shows that various class invariants can be constructed out of these functions.
Her table 2 lists various cases given by congruence conditions on the fundamental
discriminant. Each of these class invariants is given as a function evaluated at
θ =

√
d/4 if 4|d or at θ = (−1 +

√
d)/2 otherwise.

Firstly we note that

h(1, 1, 12)2

h(3, 1, 4)2
=
√

3
∣∣∣∣η((1 +

√
−47)/2)

η((1 +
√
−47)/6

∣∣∣∣2 =
√

3
/
|g0((1 +

√
−47)/2)|2.

But according to Gee’s table for d = −47 the value g2
0(θ) is a class invariant. This

does not help us with finding a unit in the Hilbert class field but by the theorem 0.5.2
of our preliminaries chapter it is clear that if the value

√
3
/
|g0((1 +

√
−47)/2)|2

is actually in the Hilbert class field H of Q(
√
−47) then it is a real unit in H.

Although we are unable to calculate this unit we do later explicitly calculate Gee’s
class invariant which is of course itself an eta quotient.

But then the value m2 is the quotient of this real unit and the real unit m1. Thus
it would itself be a real unit in the Hilbert class field of Q(

√
−47). Unfortunately
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Gee’s results do not help us to demonstrate that the value
√

3
/
|g0((1+

√
−47)/2)|2

is actually in H.

For the discriminants d = −131 and d = −179 the values m1 are of the form

m1 =
√

3

∣∣∣∣∣η((1 +
√

d)/2)
η((1 +

√
d)/6

∣∣∣∣∣
2

=
√

3
/
|g0((1 +

√
d)/2)|2.

A similar argument applies to these values, except that for d = −179 we use the
fact from Gee’s table that ζ3 g2

0(θ) is a class invariant for this discriminant. Again
we cannot demonstrate that they are actually units until we can demonstrate that
they are actually in the Hilbert class field.

The other units for the class number five cases are neither recognizable as Birch’s
Weber function class invariants nor those involving Gee’s level 3 functions.

We now consider the class number seven cases. The m1 values for d = −71 and
−151 are nothing more than examples of the case we dealt with for the m1 value
of d = −47 above.

The only other case which can be dealt with is the value m1m2m3 for the discrimi-
nant d = −71. The argument for the level three functions that we gave above works
here, since according to Gee’s table we are again in a case where ζ3 g2

0(θ) is a class
invariant.

It is likely that a similar analysis to Gee’s can be done for level five generalizations
of the Weber functions giving further class invariants involving those functions.

As for the values such as h(2, 1, 10)2/h(4, 1, 5)2, that we have not dealt with, it is
not clear how to prove that they are class invariants let alone that they are real
units in the Hilbert class field. The fact that so many such values exist which
cannot be dealt with by Birch or Gee’s theorems and that numerically are seen to
be units does suggest that an extensive generalization of their results should exist.
Unfortunately we have not however been able to find such a theorem or its proof
at this time.

3. Galois Actions on Eta Quotients

In section 5 of the preliminaries chapter we quoted a result which shows how K-
automorphisms of the Hilbert class field act on quotients of the discriminant func-
tion. In fact a much more specific result is available. It is proved in [3] as following
from a reciprocity relation given by Stark.

Firstly we need a definition.

Definition 3.0.1. Let K = Q(
√

d) be an imaginary quadratic number field and let
D = m2d be some not necessarily fundamental discriminant. Let m be any integral
ideal of K which is not divisible by an integer greater than 1 (primitive). Let its
norm be m and let m be prime to 6D. Suppose m has Z-basis [ω − t, m] for some
integer t and ω = (−D +

√
−D)/2.

We define
η(m) = exp(πim(2− t)/12) η((t− ω)/m).

The definition is independent of the choice of the integer t.

Hajir’s theorem can be written as follows
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Theorem 3.0.2. Given two primitive integral ideals q and m of K prime to 6D,
let σ(q) be the Frobenius automorphism of q in Gal(Kab/K), then(

η(m)
η(O)

)σ(q)

=
η(mq)
η(q)

,

(
η(m)
η(O)

)σ(q)

=
η(mq)
η(q)

,

where η(m) = η(m).

We will use this theorem to prove the following result which we already noted
numerically

Theorem 3.0.3. For m1 and m2 defined as above in terms of reduced forms of a
discriminant of class number five we have

m1 = mσ2+σ3

2 =
∣∣∣mσ2

2

∣∣∣2 ,

for some Frobenius automorphism σ in Gal(Kab/K).

Proof: Since m1 and m2 are real and mσ2

2 is the complex conjugate of mσ3

2 the
roots of unity in the definition of η(m) are clearly irrelevant to our theorem.

The action of the Frobenius automorphisms on rational integers is trivial. Thus
the result of the theorem above can be rewritten(

m−1/4 η(m)
η(O)

)σ(q)

= m−1/4 η(mq)
η(q)

Now we note that

m2 =
h(a1, b1, c1)2

h(a2, b2, c2)2
=
√

a2

a1

∣∣∣∣η(m)
η(n)

∣∣∣∣2 ,

for some ideals m and n with norms a1 and a2 respectively.

Applying the theorem we obtain

m
σ2(q)
2 m

σ3(q)
2 =

a2

a1

∣∣∣∣η(mq2)
η(nq2)

η(mq2)
η(nq2)

η(mq2)
η(nq2)

η(mq2)
η(nq2)

∣∣∣∣ .
However the quantity a

−1/2
1 |η(m)|2 is a real 24-th root of the well known class

invariant F (C) = |N(m)6∆(m)|2 and therefore itself depends only on the ideal class
C of m. In fact the previous equation can be expressed in terms of such class
invariants.

Now write {m} for the ideal class of m. Suppose that {m}2 = {n} and also suppose
that the automorphism σ is chosen so that {mq} = {n}.

Once this is done, there is cancellation in the expression above and we are simply
left with

m
σ2(q)
2 m

σ3(q)
2 =

h(a0, b0, c0)2

h(a1, b1, c1)2
= m1,

as required. �

There are of course similar relationships which hold in the class number seven case.
In fact there are a multitude of such relations. We shall prove the following

Theorem 3.0.4. There is a Frobenius automorphism σ such that

m3 = |mσ
1 |
−2

.
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Proof: We write

m1 =
h(a0, b0, c0)2

h(a1, b1, c1)2
.

We will suppose that the form (ai, bi, ci) corresponds to the ideal mi of norm ai,
for i ≥ 0. Similarly think of the ideal mi as corresponding to the form (ai,−bi, ci).

Write {mi} for the class of mi. The powers of {m1} in order will be {m1}, {m2},
{m3}, {m3}, {m2}, {m1} and {m0}.
Also suppose that q is an ideal with {q} = {m1}3.

By the theorem of Hajir

|mσ
1 |
−2 =

a0

a1

∣∣∣∣η(m1q) η(m1q) η(m1q
6) η(m1q

6)
η(m0q) η(m0q) η(m0q6) η(m0q

6)

∣∣∣∣ = a0

a1

∣∣∣∣η(m3) η(m2) η(m2) η(m3)
η(m3) η(m3) η(m3) η(m3)

∣∣∣∣ ,
which after simplification and cancellation leads to the required result as per the
previous theorem. �

A vast list of similar relations exist which can be proved by similar methods. We
list some of them here without giving the explicit proofs.

Theorem 3.0.5.

(9) m2 =
∣∣∣mσ+σ3

1

∣∣∣−2

, m1m3 = |mσ
2 |

2
, m3 =

∣∣∣mσ+σ2

2

∣∣∣2 , m1 =
∣∣∣mσ2

2

∣∣∣2 ,

m1 =
∣∣∣mσ2+σ3

3

∣∣∣−2

, m2 =
∣∣∣mσ3

3

∣∣∣−2

.

4. Regulators

In this section we look at regulators of eta units in the Hilbert class field (or in its
real subfield). On the one hand we use the analytic class number formula to relate
the Dedekind zeta function of the Hilbert class field to such a regulator and on the
other hand we express the Dedekind zeta function as a product of L-series which we
believe have expressions in terms of resolvents of eta units, as per the first section
of this chapter.

We begin by stating a relevant version of the analytic class number formula. It
can be derived from the version in the previous chapter by summing over all ideal
classes.

Theorem 4.0.6. The zeta function of a field K has the first non-zero coefficient
in its Taylor series expansion at s = 0 given by

lim
s→0

s−r1−r2+1ζK(s) = −hKRK

wK

where wK is the number of roots of unity in K, hK is the class number and RK is
the regulator.

Now we consider the well known expression for the zeta function in terms of L-series.

Theorem 4.0.7. Let L/K be a finite Abelian extension with Galois group G =
Gal(L/K). Let the character group of G be denoted Ĝ, then

ζL(s) = ζK(s)
∏

1 6=χ∈Ĝ

L(s, χ),

where the product is over all primitive L-series for the extension L/K.
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If we take the field L to be the Hilbert class field H of an imaginary quadratic field
K whose class number hK is prime then we note that r1 + r2 − 1 = hK − 1 (since
r1 = 0 and 2r2 = hk). But the cardinality of the character group Ĝ, minus its
identity element, must also be hk − 1. Thus applying the limit which appears in
the first theorem above to this last theorem and evaluating the zeta function of K
we have

Theorem 4.0.8. Let H be the Hilbert class field of the imaginary quadratic field
K with Galois group G of prime order. Then∏

1 6=χ∈Ĝ

L′(0, χ) =
hHRH

hK
,

where hH and hK are the class numbers of the Hilbert class field and of K respec-
tively and RH is the regulator of the Hilbert class field.

Before this result becomes of particular use to us we need to express the regulator
of the Hilbert class field H in terms of the regulator of its real subfield Re{H}. To
do this we use one of the Brauer relations which appear in [4]. First we need a
couple of definitions.

Definition 4.0.9. For a subgroup T and element γ of some other group let T γ

denote the conjugate subgroup γ−1Tγ. A group Γ is called a Frobenius group if it
has a proper subgroup T such that T γ

⋂
T = (1) whenever γ /∈ T .

If Γ is a Frobenius group, then it is a theorem of frobenius that Γ has a normal
subgroup Σ such that T

⋂
Σ = (1) and Γ = ΣT .

This will be a useful definition, for the Galois group of the Hilbert class field H
over Q is a Frobenius group. This is clear since the Galois group of H/Q is dihedral
and generated by an automorphism σ and complex conjugation τ . In particular, if
we let T =< τ > then the Galois group satisfies the conditions of the definition.

The subgroup Σ of Frobenius’ theorem for our Galois group is < σ >.

Definition 4.0.10. For any number field K define the quantity

ξ(K) =
hKRK

ωK

√
|dK |

,

where hk, RK , ωK and dK are the class number, regulator, number of roots of unity
and discriminant of the field K respectively.

Now for a Galois number field L and a subgroup T of its Galois group, let LT

denote the subfield of L fixed by the automorphisms in T and |T | denote the order
of T .

With these definitions the theorem which interests us is given as theorem 75 in
§VIII.7 of [4] which we repeat here

Theorem 4.0.11. Let L be a Galois number field with Galois group Γ = Gal(L/Q).
If Γ is a Frobenius group as in the definition above, then

ξ(Q)|T |ξ(L) = ξ(LT )|T |ξ(LΣ).

If we let N denote the real subfield Re{H} of the Hilbert class field H then we have
immediately the following result.

Theorem 4.0.12. If H is the Hilbert class field of the imaginary quadratic field K
and if N denotes the real subfield Re{H} of H, then

ξ(Q)2ξ(H) = ξ(N)2ξ(K).
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Substituting the expressions for ξ into this equation and simplifying we obtain

(10)
hHRH√
|dH |

=
hKR2

Nh2
N

|dN |
√
|dK |

.

But now if we let NL/M denote the relative norm and D(L/K) the relative discrim-
inant from the field L to K then we have the following result (see [4] III.2)

Theorem 4.0.13. Given a tower of number fields N/L/K, we have

D(N/K) = NL/K(D(N/L))D(L/K)[N :L].

Applying this to the tower of fields H/N/Q reduces equation (10) to the following

Theorem 4.0.14. If N is the real subfield of H, the Hilbert class field of an imag-
inary quadratic number field K, then

hHRH = hKR2
Nh2

N .

In particular when the class numbers of the Hilbert class field and its real subfield
N are 1 then this relation even becomes

RH = hKR2
N .

Pari reveals that this is indeed the case for all the examples that were dealt with
in the first part of this chapter.

Either way, combining the results of theorems (4.0.8) and (4.0.14), we obtain

Theorem 4.0.15. Let H be the Hilbert class field of the imaginary quadratic field
K with Galois group G of prime order. Then∏

1 6=χ∈Ĝ

L′(0, χ) = R2
Nh2

N ,

where RN and hN are the regulator and class number of the real subfield of the
Hilbert class field.

Now we turn to the class number five situation which we encountered in the first
part of this chapter. The eta units there m1 and m2 are in the real subfield N of
the Hilbert class field (a fact which we have actually proved for the discriminant
d = −47) and they are clearly independent.

The unit rank of N is 2. It may be that our 2 eta units m1 and m2 are not
fundamental but we can still calculate the regulator of N as though they were.
This will simply introduce some integer factor which we shall denote by C. In fact
C is equal to the index of the group of units generated by ±1, m1 and m2 in the
full unit group of N (see [5] Lemma 4.15 for a proof).

We note that in the class number five situation L′(0, χk) = L′(0, χk) for k = 1, 2.

Thus if we let RN (m1,m2) denote the regulator with respect to the units m1 and
m2 in N then from the theorem above we have

L′(0, χ)L′(0, χ2) = C−1hNRN (m1,m2).

But we can calculate the regulator in this expression

(11) RN (m1,m2) =
∣∣∣∣det

(
log |m1| log |m2|

2 log |mσ2

1 | 2 log |mσ2

2 |

)∣∣∣∣
= log |m1| log

∣∣∣mσ2

2

∣∣∣2 − log |m2| log
∣∣∣mσ2

1

∣∣∣2 ,
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where σ is the an automorphism of order 5 in the Galois group of the Hilbert class
field but which acts as an embedding of N into C.

But now we use the relationship

m1 =
∣∣∣mσ2

2

∣∣∣2 = mσ2

2 mσ3

2

which we proved in an earlier section of this chapter. This leads to∣∣∣mσ2

1

∣∣∣2 = mσ2

1 mσ3

1 = m2
2m

σ4

2 mσ
2 = m2/m1.

Thus the regulator can be expressed

RN (m1,m2) = log2 |m1|+ log |m1| log |m2| − log2 |m2|.

However if we multiply the expressions for L′(0, χ) and L′(0, χ2) that we have given
in equations (3) and (4) this is precisely the expression that we get. Thus we have
shown

Theorem 4.0.16. If m1 and m2 are the two eta values computed for a discriminant
of class number five as above and they are both units in the real subfield N of the
Hilbert class field then along with ±1 they generate a group of units whose index in
the full group of units of N is equal to the class number of N .

We have also shown of course that if m1 and m2 are units in N then

L′(0, χ)L′(0, χ2) = RN (m1,m2).

Finally we prove the relationship between the resolvents of m2 and the L-series
that was noted numerically in (5) of the first section. In order to do this we will
show that the product of the left hand sides equals the product of the right hand
sides and likewise for the differences.

Now we just obtained an expression for the product of the L-series. Replacing m1

with |mσ2

2 |2 throughout we get

L′(0, χ)L′(0, χ2) = 4 log2 |mσ2

2 |+ 2 log |mσ2

2 | log |m2| − log2 |m2|

Now we compute the product of the right hand sides of (5).

We have

(12) 2 res(m2, 1) = 2 log |m2|+ 2(ζ + ζ4) log |mσ
2 |+ 2(ζ2 + ζ3) log

∣∣∣mσ2

2

∣∣∣
=
√

5

(√
5− 1
2

log |m2| − 2 log
∣∣∣mσ2

∣∣∣)
Similarly

2 res(m2, 2) =
√

5

(√
5 + 1
2

log |m2|+ 2 log
∣∣∣mσ2

∣∣∣)
Multiplying out we find that the product of the right hand sides of (5) is identical
to the product of the L-series’ given above.

Now we must subtract the L-series. Referring to (3) and (4) we obtain

L′(0, χ2)− L′(0, χ) =
√

5 log |m2|.

Similarly subtracting the right hand sides of (5) gives
2√
5
(res(m2, 1) + res(m2, 2)) = 2 log |m2| − log |mσ

2 | − log
∣∣∣mσ2

2

∣∣∣ = √
5 log |m2|
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as required.

A similar argument to the above can also be used to demonstrate the relations
between the L-series and the resolvents of the unit m1 as given in equation (6).

It is not clear how one would prove the similar resolvent/L-series relations for class
number seven since in that case one cannot just compare the sum and product of
the expressions as there are now three L-series and three resolvents.

We would like to extend the result of theorem (4.0.16) to class numbers greater
than 5. We take this as far as we are able to here.

We call the units generated by the eta units and ±1 the group of elliptic units.
Thus given an imaginary quadratic number field K whose Hilbert class field H is
an extension of prime degree we would like to show that the index of our group of
elliptic units in the full group of units of the real subfield N of the Hilbert class
field is always equal to the class number of N .

So, let us consider the situation where the class number of the imaginary quadratic
field we are considering is p for a fixed odd prime p. We have (p − 1)/2 units
mi = h(ai−1, bi−1, ci−1)2/h(ai, bi, ci)2 for 1 ≤ i ≤ (p− 1)/2 and where (a1, b1, c1) is
being thought of as a generator of the form class group.

From the above arguments it is clear that to establish our result it is only neces-
sary to show that the regulator RN (m1,m2, . . . ,m(p−1)/2) is actually equal to the
expression obtained from the Kronecker limit formula for the product of L-series
with non-trivial and non-conjugate characters.

The first step in the process is to generalize the result of theorem (3.0.3). This we
will do by considering the action of the Frobenius automorphisms on each of the
units mi.

Firstly we will assume that the Frobenius automorphism σ = σ(q) of theorem (3.0.2)
is that of a fixed prime ideal q in the ideal class which canonically corresponds to
the form class of (a1, b1, c1). This will enable us to determine the action of σk on
any of our units mi easily for any integer k.

Again we think of (ai, bi, ci) as corresponding to an ideal mi of norm ai for 0 ≤
i ≤ (p − 1)/2. We will also define the ideal mi of norm ai for (p + 1)/2 ≤ i ≤
p− 1 to be the ideal mp−i of norm ap−i which corresponds to the binary quadratic
form (ap−i,−bp−i, cp−i). Thus mi for 0 ≤ i ≤ p − 1 will be a complete set of
representatives of the set of ideal classes.

We also extend our set of units as follows. We define mi for (p + 3)/2 ≤ i ≤ p− 1
to be equal to 1/mp−i+1 and m(p+1)/2 = 1 and m0 = 1/m1.

With these carefully chosen definitions and by a similar argument to that which we
gave previously for the class number five case we can show the following

Theorem 4.0.17. We have ∣∣∣mσk(q)
i

∣∣∣2 = mi+kmi−k,

where the subscripts are taken modulo p.

Proof: We have

(13)
∣∣∣mσk(q)

i

∣∣∣2 = m
σk(q)+σp−k(q)
i

=
√

ai+kai−k

ai+k−1ai−k−1

∣∣∣∣η(mi+k−1)η(mi+k−1)η(mi−k−1)η(mi−k−1)
η(mi+k)η(mi+k)η(mi−k)η(mi−k)

∣∣∣∣ ,
where the subscripts are taken modulo p.
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Now so long as we don’t have i + k ≡ 0 (mod p) or i − k ≡ 0 (mod p) then this
can be written ∣∣∣mσk(q)

i

∣∣∣2 = |mi+kmi−k|,

where the subscripts are again considered modulo p.

Clearly we cannot have both of the exceptional cases at the same time. Therefore
we consider them separately. When i + k ≡ 0 (mod p), looking at the expression
above, we see that we end up with∣∣∣mσk(q)

i

∣∣∣2 = |mi−k/m1|,

and when i + k ≡ 0 (mod p) we have∣∣∣mσk(q)
i

∣∣∣2 = |mi+k/m1|,

as required. �

Now we compute the regulator R = RN (m1,m2, . . . ,m(p−1)/2). We assume of
course that the units mi are independent units. However, if this were not the case,
then the regulator would simply be zero, a situation which is impossible, if we prove
our result, due to the non-vanishing of the L-series involved.

By definition the regulator R is the absolute value of∣∣∣∣∣∣∣∣∣∣∣∣∣∣

log |m1| log |m2| . . . . . . log |m(p−1)/2|

log |mσ
1 |

2 log |mσ
2 |

2
. . . . . . log

∣∣∣mσ
(p−1)/2

∣∣∣2
. . .

. . .

log
∣∣∣mσ(p−3)/2

1

∣∣∣2 log
∣∣∣mσ(p−3)/2

2

∣∣∣2 . . . . . . log
∣∣∣mσ(p−3)/2

(p−1)/2

∣∣∣2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We sketch the proof that this regulator is equal to the product of L-series in analogy
with the class number five case which we demonstrated above. The proof is long
and involved and so we leave some of the trivial computations up to the reader to
check for themself.

Firstly we can apply the previous theorem to the entries of each of the rows of this
determinant except the first. Then each new entry in the rows following the first
has a product of two m values. We refer to this version of the matrix as the old
version.

Next we add to each row in the matrix all the rows which came above it in the
old version of the matrix. So for example the new final row will be the sum of all
the old rows of the matrix. We note that we have not changed the determinant by
adding the rows in this way.

Having done this, each entry in the determinant now involves the product of a
string of successive mi’s.

However now we recall that mi = h(ai−1, bi−1, ci−1)2/h(ai, bi, ci)2 for 1 ≤ i ≤
(p − 1)/2, etc. Thus after cancellation we can express each product of successive
mi’s as a square of the quotient of two h(ai, bi, ci) values.

To make the notation neater we will write hi = h(ai, bi, ci) for 1 ≤ i ≤ (p − 1)/2
and we define hi for the other values of i by

hp−i = hi.
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After these definitions our regulator becomes the absolute value of∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

log
∣∣∣h0
h1

∣∣∣2 log
∣∣∣h1
h2

∣∣∣2 . . . . . . log
∣∣∣h(p−3)/2

h(p−1)/2

∣∣∣2
log
∣∣∣hp−1

h2

∣∣∣2 log
∣∣∣h0
h3

∣∣∣2 . . . . . . log
∣∣∣h(p−5)/2

h(p+1)/2

∣∣∣2
. . .

. . .

log
∣∣∣h(p+3)/2

h(p−1)/2

∣∣∣2 log
∣∣∣h(p+5)/2

h(p+1)/2

∣∣∣2 . . . . . . log
∣∣∣ h0
hp−2

∣∣∣2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

In fact it is now clear that if we write ai = log |hi|2 then our determinant can be
written conveniently as∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 − a1 a1 − a2 . . . . . . a p−3
2
− a p−1

2

a1 − a2 a0 − a3 . . . . . . a p−5
2
− a p−1

2

. . .

. . .
a p−3

2
− a p−1

2
a p−5

2
− a p−1

2
. . . . . . a0 − a2

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Each entry has a part with positive sign and a part with negative sign. One sees
that all the positive parts of the entries are the same along diagonals going one way
across the determinant whilst the negative parts are all the same along diagonals
going the other way across the determinant.

To evaluate this (p− 1)/2 by (p− 1)/2 determinant we first multiply the rows and
columns by various factors.

Letting ζ = ζp the p-th root of unity exp(2πi/p) we multiply the first row by
b1 = −(ζ + ζ2 + · · · + ζp−1) = 1, the second row by b2 = −(ζ2 + ζ3 + · · · + ζp−2),
the third row by b3 = −(ζ3 + ζ4 + · · ·+ ζp−3), etc.

Next we multiply the first column by 1/b1, the second column by 1/b2, the third
column by 1/b3, etc. Note that by doing thall these multiplications we have not
changed the value of our regulator at all. We thus have a new version of the
determinant which turns out to be easier to evaluate which we obtained from the
original version.

Next we sum together all the rows vectors in the new version of the determinant.
Note that a0 occurs precisely once in each column and that the a0 in row i has
been multiplied by bi/bi = 1 by the above process. Thus we have a contribution of
a0 to the sum at each of the coordinates of the vector row sum.

Next we need to express 1/bi as a sum of roots of unity. A simple computation
shows that

1/bi = ζp−i
ki−1∑
j=0

ζj(p−2i+1),

where we choose ki to be the smallest natural number such that ki(p− 2i + 1) ≡ 1
(mod p) (simply multiply the expression for 1/bi by that for bi to see that this is
so).

Now we notice that each aj appears twice in every column i except a0 which we
have already dealt with and a(p−1)/2−i+1. If p ≡ 1 (mod 4) then this value appears
with a minus sign in the original determinant in row (p−1)/2−2(i−1) up to about
half way, or more precisely for columns 1 ≤ i ≤ (p−1)/4 and with a positive sign in
row 2(i− (p− 1)/4)− 1 for the remaining columns, and if p ≡ −1 (mod 4) then it
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appears with a minus sign in row (p− 1)/2− 2(i− 1) for columns 1 ≤ i ≤ (p +1)/4
and with a positive sign in row 2(i− (p + 1)/4) for the remaining columns.

We carefully compute the constants that these aj , which appear only once in a
column, have been multiplied by in the new version of our determinant and we find
that such an aj always becomes (ζj + ζp−j) aj in all cases. Thus when the rows
vectors are summed in the new version of the determinant then we end up with a
contribution of precisely (ζj + ζp−j) aj for each of these aj that only appear once
in their column.

Now all the remaining values of aj appear twice in every column. So when the
row vectors are summed there are two components to the sum. Once the rows
and columns have been multiplied by the values bi, etc, that we have above, then
if the value aj appears in the rows k and l of column i then when the rows are
summed there is a contribution of aj(±bk ± bl)/bi to the i-th coordinate of the row
sum, where the signs depend on what signs the aj are endowed with in the original
version of the determinant.

Firstly we calculate where the aj appear in the original version of the determinant
and with what signs. After some study one realises that the aj values appear with
a positive sign in whichever of rows i + j and i− j exist and with a minus sign in
whichever of rows ((p− 2i + 2)± (p− 1)− 2j + 1)/2 exist.

Now by carefully calculating the constants (±bk ± bl)/bi that end up in our row
vector sum for the aj ’s from column i where k and l are the row numbers in that
column where they appear, we find than in every case we again have that the
coefficient of aj in the sum is (ζj + ζp−j).

Thus each of the columns in the new version of the determinant sum up to precisely
a0 + (ζ + ζp−1) a1 + (ζ2 + ζp−2) a2 + · · · + (ζ(p−1)/2 + ζ(p+1)/2) a(p−1)/2. In other
words if we replace the first row of the determinant with the sum of all the rows
we find that each entry in the row becomes precisely this expression. Thus we find
that this expression is actually a factor of our determinant.

Now if we redo the whole argument again with ζ replaced with ζ2 throughout we
will find that a0 + (ζ2 + ζp−2) a1 + (ζ4 + ζp−4) a2 + · · · + (ζp−1 + ζ) a(p−1)/2 is a
factor, and so on.

We see immediately that these are precisely the expressions given by the Kronecker
limit formula for the L-series of the theorem we are trying to prove (the factor of
4/w(d) = 2 which appears at the front of the expression (1) is obtained by taking
a factor 2 out of each of the expressions we obtain above, since ai = log |hi|2 =
2 log |hi|).
Of course it is easy to see that the product of all the factors that we have obtained
above is actually equal to the regulator we are calculating. In other words there
are no other factors which we have missed.

Thus from the argument we have given earlier we have proved the following theorem

Theorem 4.0.18. If mi for 1 ≤ i ≤ (p− 1)/2 are eta units belonging to an imag-
inary quadratic discriminant d having prime class number p, as described earlier,
and they are all in the real subfield N of the Hilbert class field associated to the un-
derlying quadratic field of discriminant d then along with ±1 they generate a group
of units whose index in the full group of units of N is equal to the class number of
N .

We note that this theorem is similar to others along the same lines which appear in
the literature. Although we are unable to find precisely this version of the theorem
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or the proof we have given it has some similarity to results mentioned in [3] which
we have made use of throughout.

The main innovation in our case is the fact that the units are simple eta quotients
of just two distinct hi values and the eta units are compared to the full group of
units of the real subfield of the Hilbert class field H rather than of H itself.

References

[1] B. J. Birch Weber’s Class Invariants Mathematika 16 (1969), pp. 283–294.
[2] A. Gee Class Invariants from Dedekind’s Eta Function Thesis, Thomas Stieltjes Institute

for Mathematics, 2001
[3] F. Hajir Elliptic Units of Cyclic Unramified Extensions of Complex Quadratic Fields Acta

Arith. LXIV.1 (1993) pp. 69 – 85.
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