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Abstract. We give a short introduction to algebraic number theory.

Algebraic number theory is the study of extension fields Q(α1, α2, . . . , αn) of the
rational numbers, known as algebraic number fields (sometimes number fields for
short), in which each of the adjoined complex numbers αi is algebraic, i.e. the
root of a polynomial with rational coefficients.

Throughout this set of notes we use the notation Z[α1, α2, . . . , αn] to denote the
ring generated by the values αi. It is the smallest ring containing the integers Z
and each of the αi.

It can be described as the ring of all polynomial expressions in the αi with integer
coefficients, i.e. the ring of all expressions built up from elements of Z and the
complex numbers αi by finitely many applications of the arithmetic operations
of addition and multiplication.

The notation Q(α1, α2, . . . , αn) denotes the field of all quotients of elements of
Z[α1, α2, . . . , αn] with nonzero denominator, i.e. the field of rational functions
in the αi, with rational coefficients.

It is the smallest field containing the rational numbers Q and all of the αi. It
can be thought of as the field of all expressions built up from elements of Z
and the numbers αi by finitely many applications of the arithmetic operations
of addition, multiplication and division (excepting of course, divide by zero).

1 Algebraic numbers and integers

A number α ∈ C is called algebraic if it is the root of a monic polynomial

f(x) = xn + an−1x
n−1 + an−2x

n−2 + . . .+ a1x+ a0 = 0

with rational coefficients ai.

We say that such a number α is algebraic over Q because the coefficients of the
polynomial f(x) are in Q.

If a number α in C is not algebraic it is called a transcendental number.

The monic polynomial of minimum degree n that an algebraic number α satisfies,
is unique.



For, suppose that α is the root of two monic polynomials f1(x) and f2(x) of
minimum degree n. Then α is a root of f1(x) − f2(x). Dividing by the leading
coefficient of this polynomial we find a monic polynomial of smaller degree than
n of which α is a root, which is a contradiction.

We call this polynomial of minimum degree the minimum polynomial of α.

The minimum polynomial f of α is irreducible over Q.

Assume that it is not, i.e. that f(x) = g(x)h(x) for nonconstant polynomials
g(x) and h(x). In fact g and h can both be made monic by scaling by a constant.

Since g(α)h(α) = f(α) = 0, then either g(α) = 0 or h(α) = 0, since the quantities
f(α), g(α), h(α) all lie in C which is an integral domain.

But this implies that there is a monic polynomial of smaller degree than f which
has α as a root, contradicting the minimality of f .

Any polynomial g(x) with rational coefficients of which α is a root is divisible
by f .

For, by the division algorithm for polynomials, g(x) = f(x)q(x) + r(x) for some
polynomial r(x) of degree less than the degree of f(x).

Assume r(x) 6= 0 so that f(x)6
∣∣ g(x).

Substituting α in to the division equation we get r(α) = 0. Dividing r by its
leading coefficient, it becomes monic. But now we have a monic polynomial of
smaller degree than f of which α is a root, contradicting the minimality of f .
Thus r(x) = 0 and f(x) | g(x).

The degree n of the minimum polynomial f(x) of α is called the degree of α.

If we adjoin finitely many algebraic numbers αi to Q we get a subfield of C
called an algebraic number field, i.e. an algebraic number field is of the form
Q(α1, α2, . . . , αm) for algebraic numbers αi.

We will also be interested in the elements of a number field called algebraic
integers.

An algebraic integer (or integer for short) α ∈ C is a root of a monic polynomial

xn + bn−1x
n−1 + bn−2x

n−2 + . . .+ b1x+ b0

with rational integer coefficients bi.

To avoid confusion with more general algebraic integers, we henceforth call the
ordinary integers Z, the rational integers.

Of course the rational integers are examples of algebraic integers, since they are
roots of monic, linear polynomials with rational integer coefficients.

The earliest historical example of algebraic integers is the Gaussian integers,
denoted Z[i]. This is the ring of numbers of the form a+ bi for rational integers
a and b.

Note that we don’t need to include terms involving i3, i4, . . ., since i3 = −i, i4 =
1, etc.
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It is easy to show that the Gaussian integers are the algebraic integers in the
number field K = Q(i), called the Gaussian numbers.

Another historical example of number fields is given by cyclotomic number fields
investigated extensively by Kummer when studying Fermat’s Last Theorem.

These have the form K = Q(ζn) , where ζn is a primitive nth root of unity, i.e:
satisfying xn − 1 = 0.

The set of algebraic integers in K turns out to be Z[ζn].

Another important example is that of quadratic number fields. These are of the
form K = Q(α) with α a root of an irreducible quadratic ax2 + bx + c for
a, b, c ∈ Q.

These come in two types:

(i) real quadratic number fields, with discriminant d = b2 − 4ac > 0 and thus α
real.

(ii) imaginary quadratic number fields, with d = b2−4ac < 0 and thus α complex
with non-zero imaginary part.

Clearly if d = m2d′ then Q(
√
d) = Q(

√
d′). We also see that a discriminant is

a square modulo 4, i.e. d ≡ 0, 1 (mod 4). We call a discriminant fundamental
if it is either 1 (mod 4) and squarefree, or 0 (mod 4) and 4 times a squarefree
integer.

The set of algebraic integers in the quadratic number field K = Q(
√
d) for

fundamental discriminant d turns out to be of the form Z[
√
d] if d ≡ 0 (mod 4),

or Z
[
1+
√
d

2

]
for d ≡ 1 (mod 4).

We will later see that the set of algebraic integers of a number field is in fact a
subring, which we call the ring of integers of the number field K, denoted OK .

2 Simple algebraic extensions

The following theorem allows us to characterise number fields.

Theorem 1. (Primitive element theorem) An algebraic number field with finitely
many algebraic generators γi, i.e. K = Q(γ1, γ2, . . . , γm), can be expressed as
K = Q(α) in terms of a single algebraic generator α.

Proof: It is sufficient to show that if K = K1(α, β) for algebraic numbers α
and β and some number field K1, there there is a single algebraic number θ for
which K = K1(θ). The general result then follows by induction on the number
of generators of K over the rationals, as Q is also a number field.

Let the mimimum polynomials of α and β over K1 be p(x) and q(x) respectively,
i.e. the monic polynomials of minimum degree with coefficients in K1, of which
α and β are roots.
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Suppose that α = α1, α2, . . . , αn and β = β1, β2, . . . , βm are the roots in C of p
and q respectively.

The argument earlier for numbers which are algebraic over Q also shows that
the minimum polynomials p and q are irreducible over K1.

Now since p is irreducible, it cannot have any roots in common with its derivative,
i.e. it is separable. For suppose that it did and let that root be α′. Then p is also
the minimum polynomial of α′ (since p is irreducible and by a previous result
the minimum polynomial of α′ must divide p). However p′ has lower degree than
p, contradicting the minimality of p.

But if p and p′ have no common roots, then p has no repeated roots (this is easy
to see if one writes p(x) as a product of linear factors (x − αi) and takes the
derivative).

The same argument can be used to show that all the roots βj of q are distinct.

Write δij = αi−α1

β1−βj for j 6= 1. We see that δij is the unique solution of αi+xβj =

α1 + xβ1. Note that there are only a finite number of δij .

Choose any value c ∈ K1 which is not equal to any of the δij . Now αi + cβj 6=
α1 + cβ1 = α+ cβ for all 1 ≤ i ≤ n, 2 ≤ j ≤ m.

Define θ = α+ cβ. Clearly K1(θ) ⊆ K1(α, β).

Since α = θ − cβ, if we can prove that β ∈ K1(θ) then α ∈ K1(θ) and we will
have shown that K1(α, β) ⊆ K1(θ) and thus K1(α, β) = K1(θ) as required.

Now p(θ − cβ) = p(α) = 0. So define r(x) = p(θ − cx) ∈ K1(θ)[x], so that r(x)
has β as a root in common with q(x).

Suppose that r(x) and q(x) have another root ζ in common. Then ζ is one of
the β1, . . . , βm, βk say, and θ − cζ is one of α1, . . . , αn, αi say. But this means
αi = θ − cβk.

But from the above, the only possibility is that βk = β1, i.e. ζ = β1 = β. In
other words, the only common root of r(x) and q(x) is β.

Let h(x) be the minimum polynomial of β over K1(θ). Then h(x) | q(x) and
h(x) | r(x). But q(x) and r(x) have only one common zero in C, so we must
have degree h = 1, i.e. h(x) = x+ µ for µ ∈ K1(θ).

Then 0 = h(β) = β + µ so that β = −µ ∈ K1(θ) as was to be shown. ut

Theorem 2. Given a number field K = Q(α), any β ∈ K can be expressed
uniquely in the form

β = c0 + c1α+ c2α
2 + · · ·+ cn−1α

n−1

for some coordinates ci ∈ Q.

Proof: Let f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 be the minimum polynomial

of α.
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By writing f(x) = xg(x) + a0 and noting that f(α) = 0, we can write 1/α =
−g(α)/a0, which has rational coefficients. Thus 1/α ∈ Q[α].

As we can write any β ∈ K as a quotient of elements of Z[α], then using the
partial fraction expansion, we can write β as a sum of quotients with numerators
in Q[α] and denominators of the form 1/α.

In this way, we can show that β is contained in Q[α], i.e. K = Q[α].

By expanding and rearranging the expression f(α) = 0 we can write αn as a
linear combination of lower powers of α. Thus any power of α greater than or
equal to n can be written as a linear combination of lower powers.

From this we obtain the first part of the theorem.

To show uniqueness, suppose that β has two expressions of the required form
with coordinates ci and c′i respectively.

As the difference of the two expressions is zero, the coefficients of the difference,
ci − c′i, must all be zero. Otherwise we obtain a polynomial of degree less than
n which α satisfies.

Thus ci = c′i for all i and the expression given in the theorem is unique. ut
What we have shown is that Q(α) is a vector space over Q of dimension n where
n is the degree of α.

We see immediately that if K = Q(alpha1) = Q(α2) then α1 and α2 have the
same degree, as it is equal to the dimension of K as a vector space over Q.

The same arguments as above apply equally with any number field as base field,
instead of Q. That is, if L = K(α1) = K(α2) for a number field K and algebraic
numbers α1 and α2 then the degree n of α1 over K is the same as the degree of
α2 over K, as L is a vector space over K of dimension n, etc.

For an algebraic number field K = Q(α), the degree of the generator α is also
called the degree of the number field.

As we have just seen, this definition does not depend on the choice of α as
generator.

In more generality, if L = K(α) for some number field K, then we say that
L/K is an extension of number fields and that the degree of the extension is the
degree n of the minimum polynomial of α over K.

Again, this definition does not depend on the choice of α.

The degree of the extension L/K is denoted n = [L : K].

Not every element of an algebraic number field has the same degree n, however
we have the following.

Theorem 3. If L = K(α) with the degree of α of degree n over K, then for any
other β ∈ L we have that the degree of β over K divides n. If the degree of β
over K actually equals n, then in fact L = K(β).
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3 The ring of integers

We can show that the set of algebraic integers in an algebraic number field
K = Q(α) is a ring.

It suffices to show that if β1 and β2 are algebraic integers in K then so are
β1 + β2, β1β2 and −β1.

To show this, consider the ring R = Z[β1][β2] and let m and n be the respective
degrees of the minimum polynomials of β1 and β2 over Z.

By making use of the minimum polynomial of β2, any power of β2 higher than
n−1 can be rewritten in terms of a lower power with rational integer coefficients.
Similarly, any power of β1 higher than m− 1 can be rewritten in terms of lower
powers with rational integer coefficients.

Therefore, any element of R can be written as a linear combination of βi1β
j
2 for

0 ≤ i < m and 0 ≤ j < n. Let us write β1, β2, . . . , βmn for the mn values βi1β
j
2.

Now we will use this fact to show that any element of R is an algebraic integer.

Suppose γ is in R. Write γβi =
∑
j ai,jβj for each 1 ≤ i ≤ mn and some ai,j ∈ Z.

We can rearrange these sums by moving the terms on the left hand side to the
other side, yielding linear combinations of the βi that give zero.

As γ is in R we know that this homogeneous set of equations in the βi has a
solution. But it has a solution if and only if the determinant of the associated
matrix of coefficients has zero determinant.

But the determinant of this matrix is a monic polynomial in γ with coefficients
in Z. Thus γ is an algebraic integer.

As γ = β1 + β2, γ = β1β2 and −β1 are all in R, we have shown that they are all
algebraic as required.

We call the ring of algebraic integers in K = Q(α) the ring of integers of K and
denote it OK .

4 The unit group

By analogy with the rational integers, an integer α ∈ OK is divisible by another
β ∈ OK , if there is a third integer γ ∈ OK such that α = βγ.

An integer ε ∈ OK which divides all integers in OK is called a unit. In particular
it divides the 1, i.e: it has an inverse ε−1 ∈ OK .

The set of all units in OK is a group, called the unit group of (the ring of integers
of) K. It is denoted UK .

Note that the properties of divisibility and being a unit depend on the particular
number field K under consideration.

If two algebraic integers are related by α = βε with ε a unit, then since ε has an
inverse, we have that α and β both divide each other. We call α and β associates.
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The following examples give some indication of some of the things that can
happen with units:

(i) The rational integers Z have only the units ±1.

(ii) The units of the imaginary quadratic number field Q(i) are ±1,±i.

(iii) The units of Q(
√

5) are ±
(

1+
√
5

2

)n
∀ n ∈ Z.

5 Conjugate Fields

Let the field K = Q(α) be given with generator α having minimum polynomial
f(x) of degree n. The n roots of f(x), α = α1, α2, . . . , αn are called conjugates
of α.

Since f(x) is a minimum polynomial, it is irreducible. Thus it is the minimum
polynomial of all its roots. Neither can it have repeated roots αi, otherwise we
would have that αi was a root of f ′(x), which is of smaller degree than f(x),
contradicting the minimality of the latter.

Since each element of K = Q(α) can be expressed as a linear combination of
powers of α, the map σi which takes α to another root αi of f(x), in this
expression, can be seen to define an isomorphism from K to the field Q(αi).

We call these fields Q(αi), isomorphic to K, conjugate fields.

Conversely, consider any isomorphism σ of Q(α) that preserves Q. The minimum
polynomial expression f(α) = 0 is preserved by σ and hence α can only be taken
to another root of f(x) by σ, i.e: to one of its conjugates αi.

There is no reason why the αi should all define different fields. For example
the root αi might already belong to K = Q(α) and the associated isomorphism
simply defines an automorphism of K. It may even be the case that all the roots
are in the same field.

When all the conjugates αi of α are in K = Q(α), we call K a Galois number
field.

In this case the set of automorphisms σi of K that fix Q is a group called the
Galois group of K, denoted Gal(K/Q).

More generally we have relative Galois extensions L/K, where the conjugates of
a generator α of the extension are all in L, and thus each isomorphism of L that
fixes K is an automorphism of L. Here we denote the Galois group Gal(L/K).

Note that whilst the Q(αi) may be distinct, they are all isomorphic, and thus
there is a single abstract number field K having n distinct embeddings into the
complex numbers, σi : K ↪→ C, with images Q(αi) respectively.

We can think of the abstract number field K as the field Q[x]/(f), i.e. the set of
polynomials over Q reduced modulo f . Clearly this definition does not depend
in any way on a given root of f . We can see that this field is isomorphic to Q(αi)
by sending x to αi.
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If one of the embeddings σi takes K wholly into the reals, R, it is called a real
embedding. Otherwise it is called a complex embedding.

Since the complex roots of polynomials come in conjugate pairs then so do
complex embeddings. If σ : α 7→ αi defines a complex embedding for a generator
α ∈ K and a particular root αi ∈ C, then it has a conjugate embedding σ′ : α 7→
αi, where the bar denotes complex conjugation.

Any field K which has only real embeddings is called a totally real field.

We can extend the notion of conjugates to arbitrary elements α of an extension
L/K, i.e. with α ∈ L.

If σi are the embeddings of L fixing K, then for an arbitrary α ∈ L we call the
values σi(α) the conjugates of α.

This definition agrees with our former definition. However note that the conju-
gates will not all be distinct now, unless α happens to generate the extension as
before.

6 Norm and Trace

Given an extension of number fields L/K, the norm (with respect to the exten-
sion) of an arbitrary α ∈ L is the value

NL/K(α) =
∏
σ

σ(α),

i.e: the product of all the conjugates of α.

When the base field K is Q we sometimes denote the norm by N(α) and call it
the absolute norm of L.

In this case, since all the embeddings fix the rational number field, then for all
elements a of Q, we have that N(a) = an, where n is the degree of the extension
L/Q.

A similar result follows for relative extensions L/K by replacing Q with K
throughout.

Since each embedding σ respects multiplication

σ(αβ) = σ(α)σ(β),

then we easily see that for all α, β ∈ L

NL/K(αβ) = NL/K(α)NL/K(β).

If we have an extension of number fields L/K, then for any α in L we have that
NL/K(α) is invariant under the action of each automorphism of L that fixes K.
Thus from Galois theory we have that NL/K(α) ∈ K.
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Note that if α is an integer of L then so are all its conjugates, and thus the norm
is an integer of K.

What we have shown is that the norm is a multiplicative group homomorphism
NL/K : L× → K×, where the cross indicates that we are taking the multiplicative
group of non-zero elements of the respective field.

The following is a useful result for computing the norm of an element.

Theorem 4. Suppose that L/K is an extension with [L : K] = n and α an ele-
ment of L with minimum polynomial f(x) of degree h. Let the constant coefficient
of h be a0. Then

NL/K(α) = (−1)nan/ho .

Using this theorem twice, we see that if K ⊂ L ⊂ M is a tower of extensions,
then for α ∈ L

NM/K(α) = (−1)[M :L]NL/K(α)[M :L].

This shows that the norm of an algebraic number is not an invariant but depends
on the particular extension that the norm is defined over.

Given an extension L/K, the trace of α (with respect to the extension) is given
by

TrL/K(α) =
∑
σ

σ(α).

As per the analogous result for the norm, we have that for an extension L/K
and an element a of the base field K

TrL/K(a) = [L : K] · a.

We can also relate the trace of an element of L to its minimum polynomial.

Theorem 5. With conditions as per Theorem 4 we have

TrL/K(α) = −(n− h)an−1

where an−1 is the coefficient of xn−1 in the minimum polynomial f(x).

Also as per the norm, we have for all α ∈ L that TrL/K(α) ∈ K, and similarly
that traces of algebraic integers in L are algebraic integers in K.

The trace is a linear transformation between Q-vector spaces TrL/K : L → K.
The most important property of the trace is that for all α, β ∈ L we have that

TrL/K(α+ β) = TrL/K(α) + TrL/K(β).

If we have a tower of fields, K ⊂ L ⊂M , then

TrM/K(α) = [M : L] · TrL/K(α),

so once again, the trace of an element depends on the extension it is taken
relative to.
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7 The Discriminant

It is convenient to denote the value σ(α) for an embedding σ, by σα.

We now restrict ourselves to extensions K/Q. The more general case of relative
extensions requires more algebra in general, which we deal with in another place.

Given any n numbers, α1, α2, . . . , αn in a field K of degree n over Q, we define
their discriminant by

∆(α1, α2, . . . , αn) =

∣∣∣∣∣∣∣∣
σ1α1 σ2α1 . . . σnα1

σ1α2 σ2α2 . . . σnα2

. . . . . . . . . . . .
σ1αn σ2αn . . . σnαn

∣∣∣∣∣∣∣∣
2

where the σi are the n embeddings of the field K into the complex numbers and
the expression on the right is the square of the determinant of the given matrix.

For any matrices it is true that det(A2) = det(AAT ). The following is therefore
clear from the definition.

Theorem 6. The discriminant is equivalent to the following

∆(α1, α2, . . . , αn) = det(Tr(αiαj)).

If K = Q(θ) for a generator θ, the discriminant of powers of θ is given by the
expression

∆(1, θ, θ2, . . . , θn−1) =

∣∣∣∣∣∣∣∣
1 1 . . . 1
θ1 θ2 . . . θn
. . . . . . . . . . . .
θn−11 θn−12 . . . θn−1n

∣∣∣∣∣∣∣∣
2

where θi = σiθ, is the i-th conjugate of θ.

We can evaluate this using Vandermonde’s Theorem and obtain

Theorem 7.

∆(1, θ, θ2, . . . , θn−1) =
∏

1≤i<j≤n

(θi − θj)2.

Since none of the θi are equal (they are conjugates of a generator), this discrim-
inant is non-zero. The symmetry of this expression also leads to

Theorem 8. If K = Q(θ) then

∆(1, θ, θ2, . . . , θn−1) ∈ Q.
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For α ∈ K let αi for i = 1 . . . n be its conjugates. We call the following polynomial
the characteristic polynomial of α

f(x) = (x− α1)(x− α2) · · · (x− αn).

It is clearly a power of the minimum polynomial of α.

Define the discriminant of f(x) as follows

Disc(f) = (−1)n(n−1)/2
n∏
j=1

f ′(αj).

By evaluating the expression on the right we see that

Theorem 9. For any α ∈ K the discriminant of powers of α is equal to the
discriminant of its characteristic polynomial

∆(1, α, . . . , αn−1) = Disc(f).

Since all the given expressions are zero when α is not a generator of K, this
theorem applies in general, not just for α a generator of K.

We note that the discriminant as it has been defined is not invariant under
change of basis for the Q-vector space K. For, let α1, α2, . . . , αn be a basis for
K, with

αi = hi1 + hi2θ + · · ·+ hinθ
n−1

given in terms of the basis 1, θ, θ2, . . . , θn−1. With a little work, the following
expression relating the discriminants can be obtained

Theorem 10.

∆(α1, α2, . . . , αn) = det(hij)
2 ·∆(1, θ, θ2, . . . , θn−1).

There is no reason to suppose that det(hij) is unity, or even a rational integer.
In fact, in general it can be any square of a rational number. We need some
canonical basis to remedy this situation.

A further observation is that the determinant of all the hij is non-zero if and
only if the αi are a basis of K. Thus

Theorem 11. ∆(α1, α2, . . . , αn) is non-zero iff α1, α2, . . . , αn is a basis of K.

To create a canonical basis for K, we first describe bases consisting of integers
αi ∈ OK .

Firstly consider the minimum polynomial of an arbitrary ωi ∈ K. If we multiply
ωi by the lowest common denominator di, of the coefficients of that polynomial,
we obtain a value αi = diωi, which is actually an integer of K. But the set of in-
tegers αi still forms a Q-basis for K. We now apply the following straightforward
theorem
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Theorem 12. For any α1, α2, . . . , αn ∈ OK we have

∆(α1, α2, . . . , αn) ∈ Z.

From Theorem 10 we see that the signs of these discriminants are always the
same. Amongst their values must be a non-zero one with the smallest absolute
value.

We call the discriminant of values α1, α2, . . . , αn ∈ OK with the smallest non-
zero absolute value, the discriminant of the ring of integers OK (and, by abuse
of language, of the field K) and denote it

DK = ∆(α1, α2, . . . , αn).

8 Unique Factorization

We turn now to the question of unique factorization in the ring of integers OK of
a number field. We wish to have a unique decomposition of integers upto order
and the presence of units, into something like the primes of the rational integers.

The Gaussian integers have unique factorization. For example we have the de-
composition 2 = −i(1 + i)2. Here −i is a unit and (1 + i) is irreducible in Z[i]
and in fact a prime of Z[i].

The ring Z[i] is an example of a Euclidean domain.

An integral domain O is a Euclidean domain if it possesses a norm (a map
n : O→ Z≥0) with

(i) n(1) = 1,

(ii) n(ab) = n(a)n(b) ∀ a, b ∈ O;

and such that, given α, β ∈ O, β 6= 0, there exist γ, δ ∈ O such that

α = γβ + δ with n(δ) < n(β),

i.e: the ring has a Euclidean algorithm.

For α = a+ bi ∈ Z[i] choose the norm to be n(α) = a2 + b2.

We recall the following result.

Theorem 13. A Euclidean domain possesses unique factorization. The rings
of integers of Q(

√
−2),Q(

√
−3),Q(

√
−7),Q(

√
2) and Q(

√
3) are all Euclidean

domains.

Now consider the field K = Q(
√
−5) which has OK = Z[

√
−5]. In this ring

6 = 2× 3 = (1 +
√
−5)(1−

√
−5). (1)

We now use the following theorem to show that both pairs of factors here are
irreducible in Z[

√
−5].
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Theorem 14. If α | β for α, β ∈ OK then N(α) | N(β).

We apply this to (1). The only conjugate of
√
−5 is −

√
−5. Thus N(1 +

√
−5) =

N(1 −
√
−5) = 6. But no α ∈ OK has N(α) = 2 or 3. Thus by the theorem,

1 +
√
−5 and 1 −

√
−5 are irreducible. Similarly 2 and 3 are irreducible. So 6

has two distinct factorizations into irreducibles in OK . (We check easily that the
only units in OK are ±1).

We conclude that OK does not possess unique factorization!

9 Ideals

To resolve this embarrassment Kummer introduced additional formal numbers
called ideal numbers to act as divisors of these otherwise irreducible factors.

Dedekind extended this concept, creating the notion of an ideal. Again ideals
are introduced to act as ‘factors’ of these irreducibles. However unlike the purely
formal notion of ideal numbers, ideals are concrete entities related to the ring
of integers. They are based on the observation that for α, β ∈ Z the ideal of
numbers

(α, β) = {mα+ nβ : m,n ∈ Z}

consists of all rational integers divisible by the greatest common divisor of α and
β.

We thus make the following definition.

For each α, β ∈ OK define the ideal

(α, β) = {γα+ δβ : γ, δ ∈ OK}.

Clearly if 1 ∈ (α, β) then (α, β) = OK . In fact, this is true if any unit ε of K is
in (α, β).

In analogy with the case of rational integer ideals, if 1 ∈ (α, β) = OK we say
that α and β are coprime.

Dedekind made use of an extension of this notation in his definition of an ideal
(although we later see that the ideal definition above (α, β) is all that is in fact
necessary):

An ideal is a set of integers

(α1, α2, . . . , αk) = {γ1α1 + γ2α2 + · · ·+ γkαk : γi ∈ OK},

for some finite set of algebraic integers αi ∈ OK .

Once again we can think of an ideal as a kind of greatest common divisor of the
αi. Ideals are often denoted by gothic letters, e.g: a = (α1, α2, . . . , αk).

An ideal of the form
(α) = {γα : γ ∈ OK}

13



for some α ∈ OK is called a principal ideal.

Principal ideals are a good device for avoiding the inconvenience of units.

For α, β ∈ OK we have that (α) = (β) iff α and β are associates, i.e: α = βε for
some unit ε.

Thus there is a 1-1 correpsondence between principal ideals and integers modulo
units.

The great idea of Dedekind was to consider the set of ideals of OK as an arith-
metic in its own right, which extends that of the integers themselves. The fol-
lowing is a list of standard properties of ideals which he developed.

(i) For α, β ∈ OK we have (α) ⊇ (β) iff α | β in OK .

(ii) For ideals a, b ⊆ OK define a | b to mean a ⊇ b (considered as sets of
integers), thus generalizing (i).

(iii) For ideals a = (α1, α2, . . . , αk), b = (β1, β2, . . . , βm) define the product
of these two ideals by ab = (α1β1, α1β2, . . . , αkβm). (Thinking of ideals as a
greatest common divisor helps motivate this definition).

(iv) For any a an ideal, OKa = aOK = a. Thus OK acts as an identity.

(v) With the product definition of (iii) we have that a | ab and b | ab for all
ideals a, b, as we might hope.

Theorem 15. For a field K of degree n, each ideal of OK is an infinite Abelian
group, with a finite basis over Z consisting of exactly n integers αi ∈ OK , i.e.
each element α of an ideal a has a representation in the form

α = m1α1 +m2α2 + · · ·+mnαn with all mi ∈ Z.

This applies in particular for the identity ideal, OK itself.

Proof: Let v = {α1, α2, . . . , αn} be a Q-basis of K. We can multiply each αi
by a sufficiently large integer so that each αi is contained in a. This is always
possible because we can first multiply by an integer so that αi is contained in
OK , then by the norm of one of the generators of a.

Now let M be the set {m1α1 + m2α2 + · · ·mnαn with all mi ∈ Z}. As the αi
are a Q-basis of K then ∆(α1, α2, . . . , αn)2 is a positive integer. We will choose
the αi as above such that ∆(α1, α2, . . . , αn)2 is minimal.

We claim that {α1, α2, . . . , αn} is the basis required by the theorem.

If not, then there is an element α in a but not in M .

Write α =
∑
ciαi for some ci ∈ Q. If we add a Z-multiple of αi to α then the

result is in a but not in M . Therefore by adding Z-multiples of the αi to α we
can ensure that |ci| ≤ 1/2 for each i.

As α is not in M it is not zero, and so one of the ci must be nonzero. Let w be
the Q-basis of K obtained by replacing vi in v by α. We still have that all of the
elements of w are in a.

14



But it is easy to show that |∆(w)|2 = c2i |∆(v)|2 < |∆(v)|2. But this contradicts
the minimality of |∆(v)|2. Thus α is in M after all. Thus a is contained in M
and the reverse inclusion is obvious, giving the required result. ut
The set of n integers α1, α2, . . . , αn generating a particular ideal a as in the
theorem, is called a Z-basis for the ideal. The ideal then has the following two
expressions

a = (α1, α2, . . . , αn) = Zα1 + Zα2 + · · ·+ Zαn.

We emphasize that though some of the values αi may be redundant in the first
expression (e.g: only one value is required to write a principal ideal), there need
to be exactly n values in a Z-basis.

Note that OK is an ideal and therefore has a Z-basis, which we call an integral
basis for K.

10 Prime Decomposition of Ideals

We will see that in terms of the arithmetic on ideals that we have just defined,
there is a unique factorization of ideals into prime ideals.

An ideal p, properly contained in OK , is prime if p | ab for ideals a and b implies
that either p | a or p | b.

We have the following nontrivial but important result.

Theorem 16. For any ideal a there exists a non-zero ideal b such that ab is
principal.

We can use this to prove the following.

Theorem 17. If ab = ac and a 6= (0) then b = c.

Proof: Choose an ideal m as per the previous theorem, such that ma = (α) is
principal. Then (α)b = (α)c and the result follows easily. ut
For ideals, there is a concept of greatest common divisor with respect to ideal
multiplication as we have defined it.

Theorem 18. Each pair a = (α1, α2, . . . , αk), b = (β1, β2, . . . , βm) of ideals,
possesses a greatest common divisor g = gcd(a, b). It has the form

g = (α1, α2, . . . , αk, β1, β2, . . . , βm).

Proof: Clearly g consists of all elements of the form α + β with α ∈ a, β ∈ b.
Since every ideal contains the integer 0 then g ⊇ a and g ⊇ b, thus g | a and
g | b. The result follows by noting that if h | a and h | b for some ideal h then
h ⊇ a and h ⊇ b and so h ⊇ g. ut
From the expression for g in the theorem, and the definition of ideal multiplica-
tion, we obtain immediately
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Theorem 19. For ideals a, b and c

c · gcd(a, b) = gcd(ca, cb).

We call an ideal irreducible if it is not the product of two nontrivial ideals (we
refer to OK as the trivial ideal).

Note that if the greatest common divisor of two ideals a and b is trivial then the
ideals are coprime.

Theorem 20. If p is an irreducible ideal and p | ab then p divides a or b, i.e. p
is a prime ideal.

Proof: If p6
∣∣ b then gcd(p, b) = (1) since p has no other factors. Thus

a = a(1) = a · gcd(p, b) = gcd(ap, ab)

and since p | ab then this equation says that p | a. ut
Because we have a greatest common divisor, ideals factor uniquely into prime
ideals by a standard argument (as for rational integers), once we have the fol-
lowing.

Theorem 21. Each ideal i has only finitely many ideal factors.

Proof: Suppose a = (α1, α2, . . . , αk) is a factor of i and that i is any algebraic
integer in i. Let its norm be n = N(i) ∈ Z. Since i | (i) | (n) we have that
a | (n), i.e: a contains n. Now express each of the αi of a in terms of a Z-basis
ω1, ω2, . . . , ωn of the ring of integers OK

a = (a11ω1 + a12ω2 + · · ·+ a1nωn, . . . , ak1ω1 + ak2ω2 + · · ·+ aknωn)

with aij ∈ Z for all i, j. Now by reducing the aij modulo n we obtain

a = (a′11ω1 + a′12ω2 + · · ·+ a′1nωn, . . . , a
′
k1ω1 + a′k2ω2 + · · ·+ a′knωn, n)

with aij ∈ {0, 1, . . . , n − 1} for all i, j. But there are only finitely many such
ideals, and we are done. ut
So we finally have the result

Theorem 22. Every ideal a of OK has a unique factorization into prime ideals,
upto order.

With a little work it is possible to use this result to construct the following.

Theorem 23. For any given nonzero ideals a, b there exists an integer ω such
that (ω, ab) = a, i.e: there exists an algebraic integer ω in K which is divisible
by a but coprime with b.

By letting b be the ideal of Theorem 16 with ab = (β) we obtain the following
special case of this result.

Theorem 24. Every ideal a has a representation a = (ω, β) for two algebraic
integers ω and β of K.
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11 Norms of Ideals

We wish to define a norm on ideals which is compatible with the norm we have
on elements of the field. Since units divide every integer, their norms must divide
the norm of every integer. Thus they can only have the values ±1. It makes sense
therefore to have the norm of a principal ideal defined by

N((α)) = |N(α)|. (2)

For any ideal a we define two integers α, β to be congruent modulo a if α−β ∈ a;
denoted as usual by α ≡ β (mod a).

Congruence modulo a is an equivalence relation on the set of integers OK .

The norm of a, N(a), is defined to be the number of congruence classes of
integers modulo a, i.e: the maximum number of integers which are all mutually
incongruent modulo a.

Since a is the class of integers congruent to 0 modulo a and since a is a subgroup
of OK , then the following result is clear.

Theorem 25. The norm N(a) is equal to the index of a in OK when they are
considered as Abelian groups.

It is clear from this that the norm of an ideal is always finite.

If a = (α1, α2, . . . , αn) with {αi} a Z-basis of a and αi = ai1ω1 + ai2ω2 + . . . +
ainωn for elements aij ∈ Z the expression for αi in terms of a Z-basis {ωi} of
OK , then it is clear that N(a) is equal to the absolute value of the determinant
of the coefficients aij . For this determinant gives the index of a in OK .

Upon fixing a Z-basis {ωi} of OK , the definition of a discriminant leads directly
to

Theorem 26. If α1, α2, . . . , αn is a Z-basis for a then

N(a) =

∣∣∣∣∣∣
√
∆(α1, α2, . . . , αn)

DK

∣∣∣∣∣∣ .
We now see that this definition of the norm of an ideal is compatible with
equation (2). For, a basis of a principal ideal (α) is given by αω1, αω2, . . . , αωn.
From the definition of a discriminant it is also clear that

∆(αω1, αω2, . . . , αωn) = N(α)2∆(ω1, ω2, . . . , ωn).

Thus equation (2) holds by the theorem.

Theorem 27. For any two ideals a, b we have

N(ab) = N(a)N(b).
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Proof: From Theorem 23 we can find (α), for an integer α, divisible by a such
that (α)/a is coprime to b. If ζi form a complete set of integers incongruent
modulo a and ηj such a set modulo b, then ζi +αηj form such a set modulo ab.
ut

Theorem 28. For p a prime ideal

N(p) = pf

for some rational prime p and rational integer f < n where n is the degree of
the field K over Q.

Proof: Since the rational integers cannot all be incongruent modulo p, let a ≡
b (mod p) for some a, b ∈ Z, i.e: p | (a− b). But since p is prime, it must divide
one of the factors (p) of (a − b) with p a rational prime. I.e: (p) = pa for some
ideal a. Thus pn = N(p)N(a). Thus N(p) = pf with f ≤ n. ut
Furthermore we have

Theorem 29. Every (p) for p a rational prime can be decomposed into at most
n factors.

Proof: Let (p) be decomposed into prime factors (p) = p1p2 . . . pr. Then, taking
norms, pn = N(p1)N(p2) . . .N(pr). Thus it is clear that r ≤ n. ut

12 Fractional Ideals

Thus far our ideals obey a cancellation law, but there is no concept of the
inverse of an ideal. Since ideal multiplication is clearly associative, and even
commutative from the definition, the existence of inverses would turn the set of
ideals into an Abelian group. Fractional ideals rectify this situation.

A fractional ideal is a set of elements of K

g = (ρ1, ρ2, . . . , ρr) = {γ1ρ1 + γ2ρ2 + · · ·+ γrρr with all γi ∈ OK}

defined for a finite set of ρi ∈ K. An ideal where all the ρi are integral as before,
will be called an integral ideal.

Principal fractional ideals are now of the form (ω) with ω ∈ K.

According to the remarks after Theorem 11 an arbitrary element of K can be
expressed as the quotient of two integers of K. Doing this for each of the ρi
above, we can express all the ρi over a common denominator, ρi = αi

ν say. Thus
it is clear that (ν)g is the integral ideal a = (α1, α2, . . . , αr).

Once again, fractional ideals are infinite Abelian groups, and the analogue of
Theorem 15 holds. For if β1, β2, . . . , βn is a Z-basis for a, then clearly β1

ν ,
β2

ν , . . . ,
βn
ν

is a Z-basis for g.
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Ideal multiplication is defined as for integral ideals and is again clearly commu-
tative and associative. The ideal OK still acts as an identity.

Since we can always make g integral by multiplying by the integral ideal (ν) for
a suitable integer ν, we have the analogue of Theorem 16.

Theorem 30. For any fractional ideal a, there is an integral ideal b such that
ab is principal and integral.

Theorem 17 then also follows verbatim for fractional ideals.

It is now easy to prove the following results.

Theorem 31. If g1 and g2 are fractional ideals with g1 6= (0) then there exists
a unique fractional ideal l such that g1l = g2.

Note that by setting g2 = (1) we guarantee the existence of inverses. This justifies
the notation l = g2

g1
.

Theorem 32. The set of fractional ideals of K is an Abelian group with respect
to ideal multiplication.

From Theorem 30 it is immediate that

Theorem 33. Each fractional ideal can be expressed uniquely as the quotient of
two relatively prime integral ideals g = a1

a2
.

We call these ideals the numerator and denominator.

The norm of a fractional ideal g expressed as a quotient of integral ideals g = a1

a2

is defined to be

N(g) =
N(a1)

N(a2)
.

Once again Theorem 27 holds verbatim for fractional ideals.

Also if α1, α2, . . . , αn is a Z-basis for a fractional ideal a then Theorem 26 applies
unchanged. The proof is much the same, but requires one to first convert a to
an integral ideal by multiplying by a suitable (ν).

13 The Class Number

We define an equivalence relation on fractional ideals. We say that ideals a and
b are equivalent, denoted a ∼ b if there exists a principal ideal (c) such that
a = b(c). This equivalence relation partitions the Abelian group of non-zero
fractional ideals F into equivalence classes which are cosets of the subgroup of
non-zero principal fractional ideals P .
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We call the quotient group ClK = F/P the ideal class group of the number field
K.

Our aim in this section is to show that ClK is always a finite Abelian group.
It is already clear that it is an Abelian group. This can also be seen by noting
that if a ∼ b then ac ∼ bc, and if c 6= 0 the converse holds by the analogue of
Theorem 17 for fractional ideals. Thus multiplication respects ideal classes and
the group multiplication of ideal classes is well defined.

It remains only to prove that the class group is finite. Firstly we prove

Theorem 34. Let N = N(a) for a non-zero integral ideal a, then a | (N).

Proof: In the quotient group OK/a which is of order N (by Theorem 25), every
element has order dividing N . Thus for any x ∈ OK we have Nx ∈ a. Taking
x = 1 we have N ∈ a, thus a | (N). ut

Theorem 35. There are only finitely many integral ideals with norm equal to a
positive integer N .

Proof: Since (N) has only finitely many divisors, then by the previous theorem,
the result follows. ut

Theorem 36. There exists a non-zero element a ∈ a for each non-zero integral
ideal a such that

|NK/Q(a)| ≤ N(a) · µ,

where µ is a positive integer dependent only on the number field K.

Proof: Let α1, α2, . . . , αn be an integral basis of K. Let k be the integer such
that kn ≤ N(a) < (k + 1)n. Let S be the set of all elements

∑n
i=1 dixi with

0 ≤ di ≤ k. Since (k+ 1)n > N(a) there must be two elements b, c ∈ S which are
not equal and such that a = b− c =

∑n
i=1 aixi is in a. Clearly |ai| ≤ k. Letting

x
(1)
i , x

(2)
i , . . . , x

(n)
i be the conjugates of xi, then

∣∣NK/Q(a)
∣∣ =

n∏
j=1

∣∣∣∣∣
n∑
i=1

aix
(j)
i

∣∣∣∣∣ ≤
n∏
j=1

k

(
n∑
i=1

∣∣∣x(j)i ∣∣∣
)

= kn ·
n∏
j=1

(
n∑
i=1

∣∣∣x(j)i ∣∣∣
)
.

Note that each |x(j)i | is an algebraic integer. Also each of the conjugates in K

of µ =
∏n
j=1

(∑n
i=1

∣∣∣x(j)i ∣∣∣) have the same value. Thus µ is a rational integer

which is manifestly positive. Note µ only depends on K, and kn ≤ N(a) leads to∣∣NK/Q(a)
∣∣ ≤ N(a) · µ as required. ut

Theorem 37. The class number ClK is finite.

20



Proof: By Theorem 35 there are only a finite number of ideals a1, a2, . . . , ak
which are nonzero and such that N(ai) ≤ µ.

Let b be any fractional ideal of OK . By our comments after the definition of
a fractional ideal, there exists a non-zero ν ∈ OK such that νb−1 is integral.
By Theorem 36 there is a non-zero b ∈ νb−1 such that N((b)) ≤ N(νb−1) · µ.
Multiply by N(b) and note that bν−1b is an integral ideal, since b ∈ νb−1. Thus

N(bν−1b)N((ν)) = N(bb) = N((b))N(b) ≤ N(νb−1)N(b)µ = N((ν))µ.

That is, N(bν−1b) ≤ µ.

Thus each class contains an ideal of norm bounded by µ, of which there are
finitely many, and we are done. ut

The number h = hK of ideal classes is called the class number of K.

Since raising any element of a group to a power equal to the order of that group
will give the identity, we have

Theorem 38. Let a be a non-zero fractional ideal of OK , then ah is principal.

14 Minkowski’s Theorem

We would like to place a bound on the class number of an algebraic number
field. For this we require methods from the geometry of numbers. It involves
considering the ring of integers as a lattice in a certain space, and ideals as
sublattices.

For a number field K of degree n we consider the so called Etale algebra OK⊗R.
We don’t need to know about this except that it embeds OK into Rn as follows.
Take α ∈ OK . Let σ1, σ2, . . . , σn be the embeddings of K into the complex
numbers. In fact let σ1, σ2, . . . , σr be the real embeddings and σ′1, σ

′
2, . . . , σ

′
s be

the complex embeddings, each with a conjugate σ′i. Think of the complex plane
as R2, so each σ′i embeds into R2. Then define our embedding of α ∈ OK into
Rn by

σ(α) = (σ1(α), σ2(α), . . . , αr(α), σ′1(α), σ′2(α), . . . , σ′s(α)).

Now any integral basis for OK becomes n independent vectors in Rn under this
embedding, and thus OK becomes a full lattice in Rn.

Considering that the norm N of an integral ideal a is the index of a in OK as a
subgroup, embedding this ideal a in the same way introduces it as a sublattice
in Rn of the ring of integers OK of index N .

We can define the volume of a lattice to be given by the volume of a fundamental
region for that lattice. Then we have the following important theorem.
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Theorem 39. Let χ be the lattice given by embedding OK , and Λ the lattice
corresponding to the integral ideal a of norm N , then

vol(χ) =
1

2s

√
|DK |

vol(Λ) = N · vol(χ).

The theorem from the geometry of numbers that we will apply is

Theorem 40. (Minkowski) Let Λ be a lattice in Rn and A be a bounded convex
symmetric subset of Rn. If vol(A) > 4 · vol(Λ) then there is at least one lattice
point in A.

Let D1 = {(α1, α2, . . . , αn) ∈ Rn such that
∏r
j=1 |αi| ·

∏r+s
i=r+1(α2

i + α2
i+s) ≤ 1}.

We will show that for every symmetric, convex D ⊆ D1 there is a non-zero
element a ∈ a such that

|N(a)| ≤ 2r+s

vol(D)
N(a) ·

√
|DK |.

Let ρ ∈ R+ be such that ρn = 2r+s

vol(D)
N(a) ·

√
|DK |. Consider

ρD = {ρα such that α ∈ D},

then vol(ρD) = ρn · vol(D) = 2n · vol(Λ) as per Theorem 39.

Thus by Minkowski’s theorem, there is a non-zero ζ ∈ D such that ρζ ∈ Λ, i.e:
there is a lattice point in Λ. So there is an a ∈ a such that ρζ = σ(a). Now σ(a) ∈
ρD ⊆ ρD1 so that σ(a) = (ρα1, ρα2, . . . , ραn) for some (α1, α2, . . . , αn) ∈ D1.

But |N(a)| =
∏n
j=1 |a(j)|. Also a(r+s+i) = a(r+i) for i = 1, 2, . . . , s. Thus |a(r+s+i)|·

|a(r+i)| = (Re a(r+i))2+(Im a(r+i))2 = ρ2(α2
r+i+α

2
r+s+i). Similarly |a(i)| = ρ|αi|

for i = 1, 2, . . . , r.

Thus we have that |N(a)| ≤ ρn from the definition of D1, and the result follows.

Theorem 41. For each non-zero integral ideal a of K, there is a non-zero a ∈ a
such that

|N(a)| ≤
(

4

π

)
n!

nn

√
|DK | ·N(a).

Proof: Choose D = {(α1, α2, . . . , αn) ∈ Rn such that

|α1|+ · · ·+ |αr|+ 2
√
α2
r+1 + α2

r+s+1 + · · ·+ 2
√
α2
r+s + α2

n ≤ n}.

By the A.M. ≥ G.M. inequality D ⊆ D1. Also it is clear that D is symmetric and
convex. The volume of D is computed by induction on r and s using integration.

Thus vol(D) =
2r(π2 )

s
nn

n! . The result follows. ut
By taking a = OK we deduce
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Corollary 1.

|DK | ≥
(π

4

)2s(nn
n!

)2

.

By explicit computation, all the prime ideals whose norm is less than the Minkowski
bound can be quickly found and thus the class number can be bounded. Although
not best possible, the Minkowski bound does help narrow the possibilities down
quickly in numerous practical situations.

15 The Unit Group

The methods of Minkowski can also be applied to the group of units UK , i.e: the
group of invertible elements of OK .

This time the map that is used is

f(α) = (log |σ1(α)|, . . . , log |σr(α)|, log(|σr+1(α)|2), . . . , log(|σr+s(α)|2))

for any α ∈ OK . This maps the non-zero integers into Rr+s and induces a
homomorphism φ of the unit group UK into Rr+s.
We firstly prove that the kernel of g is finite. Indeed for any bounded subset
Z ⊂ Rr+s the preimage φ−1(Z) is finite. For, Z bounded means that for all
φ(u) ∈ Z there is a uniform c such that |σi(u)| ≤ c for all i. But then the
coefficients of the characteristic polynomial of u,

∏n
i=1(X − σi(u)) are bounded

(and rational integers). Thus there can only be finitely many such u. Thus the
kernel of φ is a finite subgroup of OK . In particular it is a finite subgroup of the
multiplicative group K× of the field K. It is therefore cyclic.

It is clear however that all the roots of unity in K belong to this kernel. For if
z is such a root of unity, m · φ(z) = φ(zm) = φ(1) = 0 so that φ(z) = 0 (recall
it is a vector in Rr+s). Thus it is clear that this kernel actually consists of the
roots of unity.

For any unit u of K we have N(u) = ±1, for it must be simultaneously a unit
of K (the norm of a unit is a product of units) and a rational integer. Thus∏
|σi(u)| = 1 and so we have

log |σ1(u)|+ · · ·+ log |σr(u)|+ log(|σr+1(u)|2) + · · ·+ log(|σr+s(u)|2)) = 0.

Thus φ(UK) is contained in the hyperplane H of Rr+s given by the equation
y1 + y2 + · · ·+ yr+s = 0.

The main result which follows by applying Minkowski’s Theorem in this situation
is the following.

Theorem 42. The unit group UK is a finitely generated Abelian group of rank
r + s− 1.

A set of generators for UK is called a set of fundamental units of K.
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