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Abstract

Hamiltonian chains of oscillators in general probably do not sustain exact

travelling discrete breathers. However solutions which look like moving dis-

crete breathers for some time are not difficult to observe in numerics. In this

paper we propose an abstract framework for the description of approximate

travelling discrete breathers in Hamiltonian chains of oscillators. The method

is based on the construction of an effective Hamiltonian enabling one to de-

scribe the dynamics of the translation degree of freedom of moving breathers.

Error estimate on the approximate dynamics is also studied. The concept

of Peierls-Nabarro barrier can be made clear in this framework. We illus-

trate the method on two simple examples, namely the Salerno model which

interpolates between the Ablowitz-Ladik lattice and the discrete nonlinear

Schrödinger system, and the Fermi-Pasta-Ulam chain.
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1 Introduction

In this paper we present a Hamiltonian framework for the description of travelling

discrete breathers in oscillator lattices. The concept of discrete breathers (DB) is

well-defined mathematically –a time-periodic solution which is spatially localised [1]

– whereas the notion of travelling DB can be formulated in different ways [2, 3]. Here

we consider that a travelling DB is a spatially localised solution which has essentially

two dynamical degrees of freedom (DOF): a translation DOF which makes the center

of the breather move in time, and a vibrational (or rotational) DOF which evolves

periodically in time. So a functional form for describing these structures could

be written as un(t) = F(t, n − ct, n) which is time-periodic with respect to the

first variable, F(t + T, ·, ·) = F(t, ·, ·), and spatially localised with respect to its

second variable (e.g. |F(·, n, ·)| is exponentially localised in space variable n). Such

functional form, however, has not been shown to comply with exact solutions in

typical anharmonic lattices. (Notable exception is the family of travelling DB of

the Ablowitz-Ladik system (AL) [4].) Moreover, most likely travelling DB are non-

generic phenomena [5]. Nevertheless, spatio-temporal structures which resemble

travelling DB have been observed in numerous numerical simulations, leading to

several theoretical analyses which have attempted to describe these solutions [6]-[11].

For instance in [7] the problem of moving breather is dealt with by perturbation

of the AL system; in [9] numerics are compared with high order multiple scale

expansions of a Klein-Gordon model, and in [6, 10] the mobility of DB is related

to the stability analysis of DB. In the present work, we would like to approach

this problem from the general point of view sketched in [11]: if we forget about its

internal DOF of vibration, a solution which looks like a travelling discrete breathers

should be governed by a 1-DOF effective Hamiltonian that could be constructed,

at least perturbatively. In [7] the authors provided an effective dynamics for the

motion of DB in the perturbed AL model, and this was obtained with the help of

the inverse scattering transform of the AL system. Here we propose a framework

which we think is conceptually simpler, and which applies to systems which are not

necessarily integrable. Moreover the method is designed in such a way that the

error estimate is in principle tractable. All that we require is the existence of a

set of loops (i.e. closed curves in phase space) which form a family of approximate

discrete breathers indexed by a parameter Q representing a translation DOF. Then,

assuming that one can define another parameter P from the family, which should

be identified with a conjugate variable to Q (we will see below how to deal with

this point), we construct an effective Hamiltonian dynamics for P and Q such that

the stationary points of H
eff(P,Q) correspond to exact discrete breathers, and the
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approximate dynamics is accurate for trajectories for which |∇H
eff | remains small.

The principle of the method was initiated in [11] and developed from a broader point

of view in [12]. The construction of the effective dynamics is variational and consists

in considering the family of approximate periodic solutions as exact critical points

of the averaged Hamiltonian subjected to constraints of fixed P and Q, and fixed

area (recall the latter is defined as
∫

pdq in canonical coordinates). Then we show

that the slow dynamics for (P,Q) can be deduced from the associated Lagrange

multipliers.

The paper is organised as follows. In section 2 and 3 we recall the principle of

the method in an abstract way, so that it can be useful for applications in contexts

different from those of discrete breathers. Section 3 is devoted to estimating the error

made in approximating the actual dynamics by an effective one. In section 4 and 5

the method is applied to specific examples related to travelling discrete breathers.

First, in section 4 we consider the Salerno model (a subtle interpolation between

the AL model and the discrete nonlinear Schrödinger system), and gives analytical

results on moving DB in this model. The latter are illustrated by some numerical

simulations. In next section, the method is applied to some travelling localised

solutions of the Fermi-Pasta-Ulam model (FPU), both analytically and numerically.

Conclusions are drawn in section 6.

2 The method of the effective Hamiltonian

The method of the effective Hamiltonian that we consider in this paper was initiated

in [11] in the context of dynamics of generalised multibreathers. In the present paper,

it is presented in a more general way so that it should be applicable to a broader

range of situations. The starting point is the variational formulation of Hamiltonian

dynamics. In this framework, one is given (E , α,H) where E is an exact symplectic

manifold (the phase space), α is a non-degenerate one-form called the area form

(
∑

j pjdqj in canonical coordinates) and H is a Hamiltonian function. Then the

dynamics is given by the principle of least action. It says that z(t) is a solution of

the Hamiltonian system if it stationarises the action defined by:

W (z) =

∫ tf

t0

(H(z)− α[
dz

dt
])dt

in the space of C1 trajectories with fixed ends δz(t0) = δz(tf ) = 0. This prescription

imposes that the dynamics is governed by a vector field dz
dt

which can be computed

for each z ∈ E as the (unique) solution of the equation:

dαz[ξ,
dz

dt
] = dHz[ξ], for all ξ ∈ TzE (1)

3



Here dα is a two-form which is called the symplectic form associated to the Hamil-

tonian dynamics. Indeed when z = (p, q) and α =
∑

j pjdqj, the latter equation

turns out to be nothing but the canonical Hamiltonian equations

(

0 1

−1 0

)(

ṗ

q̇

)

=

(

∂pH

∂qH

)

, (2)

since in this case, dα =
∑

dp∧dq, which is the above square matrix when written in

components. Below, however, we will see examples with non-canonical coordinates.

Moreover, this general formulation of Hamiltonian dynamics can be adapted to

defining Hamiltonian dynamics on a set of loops as follows.

Let L1 be the space of C1 period-1 loops in E . Then, if z ∈ L1, TL1 is the space

of C0 loops ξ such that ξ(s) ∈ Tz(s)E for all s ∈ [0, 1]. The symplectic form dα given

on TE induces a symplectic form Ω on TL1 defined by:

Ω[ξ, ζ] =

∮

dαz[ξ(s), ζ(s)]ds, (3)

Here and in the following the notation
∮

means that we compute the mean value of

a periodic function over one period. Then the natural extension of eq. (1) to loop

space writes:

Ω[ξ,
dz

dt
] =

∮

dHz(s)[ξ(s)]ds, for all ξ ∈ TzL1. (4)

This idea goes back to A. Weinstein [13]. Here dz
dt

represents a vector field on the

loop z(s) whose integration from t = 0 provides a function z(t, s) describing the

deformation of the initial loop in time. So far there is no approximation. The goal

of this section is to propose a good estimate of z(t, s) when we know a family of

period-1 loops {zµ(s)}µ which form an approximate invariant manifold M of L1.

(This means that each loop is nearly a periodic solution of the Hamiltonian system,

provided that it is parametrised with the appropriate period, which is not necessarily

equal to 1.) We will see later how such a family can in principle be constructed.

The loops are indexed by an even number of parameters µ = (a, φ0,p,q) where a is

the area of the loop:

a =

∮

α[∂szµ]ds,

and φ0 is a reference phase along the loop:

z(a,φ0,p,q)(s) = z(a,0,p,q)(s+ φ0).

The other parameters (p,q) ∈ R
2m should play the role of conjugate variables and

we will see how to check that point below.
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Now if we start with an initial loop on M, then by assumption it will stay for

a long time on this subspace, but with a slow drift in parameters µ. The actual

trajectory can be approximated by:

z(t, s) ≈ zµ(t)(s) ∈ M, (5)

and we want to find an approximate dynamics for variables µ(t). Thus the latter

play the role of “collective coordinates” widely used in the study of solitons [14].

Let us note that in eq. (5) we are not interested in the variable s and will make it

disappear by averaging. Now, we consider eq. (4) as the basic equation to determine

the dynamics dz
dt

. A natural simplification of eq. (4) is to “project” it on TM by

restricting the vectors dz
dt

and ξ to be tangent to TM. This is relevant because we

assume that space M is nearly invariant under the dynamics. So we propose the

following equation to compute the evolution of dµ
dt

:

Ω[ξ,Dµzµ
dµ

dt
] =

∮

dHzµ(s)
[ξ(s)]ds, for all ξ(s) ∈ Tzµ

M. (6)

The benefit of this projection is that the number of degrees of freedom has been

reduced to the number of components of µ, or even better, to the dimension m

of (p,q). To convince oneself that this is true, we consider now the simple case

µ = (a, φ0, P, Q), and will write the effective Hamiltonian dynamics for (P,Q),

deduced from (6). The tangent vectors to the loops are decomposed along these

coordinates µ. In particular, the approximate vector field is written as:

dzµ
dt

= ȧ∂azµ + φ̇0∂φ0zµ + Ṗ ∂P zµ + Q̇∂Qzµ,

with the dots denoting derivative with respect to time t. First it is easy to show

that ȧ = 0 by substituting ξ = ∂szµ(= ∂φ0zµ) in (6), and noticing that

∂µk

∮

zµ

α =

∮

dα[∂µk
zµ, ∂szµ],

the latter vanishes for any component of µ, but the first one, since
∮

α = a(= µ1)

is constant. Secondly, by using the same fact, and substituting ξ = ∂P zµ or ∂Qzµ

in (6), one obtains a direct generalisation of the canonical equation (2) as follows:
(

0 τPQ

−τPQ 0

)(

Ṗ

Q̇

)

=

(

∂PH
eff

∂QH
eff ,

)

(7)

where the effective Hamiltonian is defined as the mean energy along the loop indexed

by (P,Q):

H
eff(a, P,Q) =

∮

H(z(a,φ0,P,Q)(s))ds, (8)
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and is to be used with an effective symplectic form whose components are determined

by:

τPQ(µ) = Ω[∂P zµ, ∂Qzµ]. (9)

Equation (7) generalises obviously for multi-component (p,q). Then τpiqj becomes

a matrix. An important remark is that the effective dynamics is well-defined only

if the associated matrix τ is invertible for all µ. This is what we meant by saying

that (p,q) should be “conjugate variables”, as we required at the beginning of this

section. A second remark is that since ȧ = 0 we see directly that the effective

dynamics take place in a family of loops with constant area. It is well-known that

area is an adiabatic invariant for perturbation of an integrable Hamiltonian system.

Notice that here the system is not assumed to be integrable, however.

A third remark is that, in practise, the Hamiltonian system often depends on a

small parameter, say Hε and αε depending on ε, but typically the family of loops zµ

is only known in the unperturbed case ε = 0. In this situation, it might be difficult

to find explicit continuation of zµ for ε 6= 0. Nevertheless, equation (7) can generally

be written at the first order in ε, using an approximate effective Hamiltonian H
eff
ε ≈

H
eff
0 + V

eff (and an approximate effective symplectic form), where V
eff is obtained

by averaging the perturbation Hε − H0 around the loops zµ. Examples will be

provided in sections 4 and 5. Prior to this we will study how to estimate the error

|dzµ

dt
−XH(zµ)| where XH(zµ) is the actual Hamiltonian vector field associated with

H and α and defined by (1).

3 Estimating the approximation error

The accuracy of the approximation (6) and (7) will depend on the choice of M as

a good approximate invariant manifold of the dynamics. In this section we analyse

how such an approximate invariant manifold could be constructed and estimate the

error |∆X| = |XHeff (zµ)−XH(zµ)|, where XH(zµ) and XHeff (zµ) are respectively the

Hamiltonian vector field and the effective Hamiltonian vector field. The result that

we aim to show in this section can be written as follows:

‖∆X‖ ≤ K‖∇H
eff‖ cos γ (10)

where K is a bounded constant, and γ is an angle between two submanifolds to be

defined below. This inequality is useful as it shows in which cases the approximation

can be good.

We recall that E is a symplectic phase space with the symplectic form dα defined

on the tangent bundle TE , and L1 is the space of C1 period-1 loops in E which
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inherits a symplectic form defined by (3). We suppose that there is also a scalar

product (·, ·) on TE and endow TzL1 with the scalar product (and the associate

norm L2) defined by:

< ξ, ζ > =

∮

(ξ(s), ζ(s))ds

= ‖ξ‖ ‖ζ‖ cosϕ,

where ϕ is called the Euclidean angle between ξ and ζ belonging to TzM. Likewise,

we assume that the symplectic form Ω can be written as:

Ω[ξ, ζ] = ‖ξ‖ ‖ζ‖ cos θs,

where θs is called the symplectic angle between ξ and ζ.

Before using these definitions, we want to specify how one can obtain the family

of loops {zµ(s) ∈ L1}µ considered in the previous section. We suppose that there is

a function G defined on E such that
∮

G(zµ) = (p,q), (11)

and a phase function Φ such that
∮

Φ(zµ) = φ0

Then, as already stated in [11], if zµ(s) is an approximate periodic solution of the

Hamiltonian system, it can also be viewed as a critical point of the mean energy
∮

H subjected to fixed area, a =
∮

α(z), fixed phase φ0 =
∮

Φ and fixed parameters

(p,q) =
∮

G. Equivalently, zµ is defined as a critical point of the constrained energy:

H(z) =

∮

H(z)− f(

∮

α[∂sz]− a)− k(

∮

Φ(z) − φ0)− λ[

∮

G(z)− (p,q)] (12)

where f, k and λ are Lagrange multipliers. Moreover, it is not difficult to prove

that [11]:

f = ∂aH
eff

k = ∂φ0H
eff = 0

λ = ∂(p,q)H
eff

with H
eff(µ) =

∮

H(zµ). (Here ∂(p,q) denotes the vector (∂p1, ∂p2, · · · , ∂q1, ∂q2, · · · , ∂qm)).

Then M can be redefined as the subspace of L1 formed by the critical points

zµ of H(z) and parametrised by µ. We also assume that L1 can be foliated by the

subspaces:

Fµ = {z ∈ L1 |
∮

α[∂sz] = a,

∮

Φ(z) = φ0,

∮

G(z) = (p,q)}
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in such a way that each tangent loop v of Tzµ
L1 can be written as a sum v = ξ+ η,

with ξ ∈ Tzµ
M and η ∈ Tzµ

Fµ. Note that the latter is defined as

Tzµ
Fµ = {η ∈ Tzµ

L1 |
∮

dα[η, ∂szµ] = 0,

∮

dΦ(η) = 0,

∮

DG(η) = 0} (13)

Now, to achieve the estimate (10), the main step consists in showing that

Ω[∆X, ξ + η] = Ω[XHeff , η]. (14)

Indeed, by using the definition (6) of XHeff , we have that for all ξ ∈ Tzµ
M:

Ω[ξ,XHeff ] =

∮

dαzµ
[ξ,XHeff ] =

∮

dH[ξ] = Ω[ξ,XH ] (15)

Consequently, Ω[ξ,∆X] = 0. Secondly, by expressing that δH = 0 (from eq. (12))

in conjunction with eq. (13), one deduces that, for all η ∈ Tzµ
Fµ:

Ω[η,XH ] =

∮

dHzµ
[η]

= 0. (16)

So, eqs. (15) and (16) imply eq. (14).

On the other hand, as Ω is non degenerate, there exists v = ξ + η such that

Ω(∆X, ξ + η) = ‖∆X‖ ‖ξ + η‖ cos θs with non vanishing θs. Therefore, for this v:

‖∆X‖ =
Ω(∆X, ξ + η)

‖ξ + η‖ cos θs

=
Ω(XHeff , η)

‖ξ + η‖ cos θs

= ‖∇H
eff‖ ‖η‖

‖ξ + η‖
cosϕ

cos θs
,

where ϕ is the Euclidean angle between ∇H
eff and η. By taking the supremum over

ξ ∈ TM we get

‖∆X‖ ≤ ‖∇H
eff‖ cosϕ

cos δ cos θs

with δ being the Euclidean angle between ξ + η and η. Finally, one can replace ϕ

by

γ = inf
ξ∈TzM,η∈TzFµ

arccos | < ξ, η > |, (17)

which we define as the angle between Tzµ
Fµ and Tzµ

M. In conclusion we obtain

the above equation (10). We see that if γ = π
2

for all zµ, the effective dynamics is

exact since we have ‖∆X‖ = 0. In general it is not the case but nevertheless the

error can be quite small in a neighborhood of critical points of H
eff , which are true
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periodic orbits of the system. Finally notice that estimate (10) depends on the full

dynamics, not only on the approximating one. For example modifying the actual

system without changing the approximating one amounts to change the foliation

Fµ, which in turn will change the angles defined in (17) and in previous equations,

and so the constants in estimate (10).

4 Salerno’s model

In this section we illustrate the theory presented in section 2 on an interesting model

proposed by Salerno, whose Hamiltonian can be written as follows [14, 15]:

Hε = −
∑

n

[

φ∗n(φn+1 + φn−1) +
2ε

γ − ε
|φn|2 −

4γ

(γ − ε)2
log(1 +

γ − ε

2
|φn|2)

]

,

to be used with the area form:

αε = i
2

γ − ε

∑

n

log(1 +
γ − ε

2
|φn|2)

dφn
φn

(18)

So the symplectic form dαε = Ωε is computed as:

Ωε = i
∑

n

dφ∗n ∧ dφn
1 + (γ−ε

2
)|φn|2

Here the conjugate variables are (iφ∗n, φn). Note that the symplectic form is canonical

only when γ = ε.

The Salerno model has the nice property to provide a Hamiltonian interpolation

between two well-studied systems, namely the Ablowitz-Ladik system (AL), for

ε = 0, and the discrete nonlinear Schrödinger system (DNLS), when ε = γ [4, 14].

In the latter limit, the expression of Hγ seems singular, but using the expansion of

log(1 + x) one easily checks that

lim
ε→γ

Hε = −
∑

n

[

φ∗n(φn+1 + φn−1 − 2φn) +
γ

2
|φn|4

]

(19)

which gives, using Ωγ , the DNLS equation:

iφ̇n + γ|φn|2φn + (φn+1 + φn−1 − 2φn) = 0

On the other hand, when ε = 0, the evolution equation (with the non-canonical

form Ω0) is found to be the AL equation:

iφ̇n +
γ

2
|φn|2(φn+1 + φn−1) + (φn+1 + φn−1 − 2φn) = 0
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which is known to be completely integrable. In particular, the AL system possesses

a family of moving discrete breathers that can be explicitly written as:

un(t) =

√

2

γ
sinh β

e−i(ωt−kn)

cosh β(n− ct)
(20)

with parameters β, γ, k and ω = 2(1− cos k cosh β). The velocity of the DB is given

by

c = 2 sin k
cosh β

β
(21)

Our aim is to show that the method of the effective Hamiltonian applies here to

analyse moving discrete breathers in the Salerno model. First we will interpret the

travelling DB of the AL system (20) as a trivial one degree of freedom dynamics

governed by a simple effective Hamiltonian system. Next we will use these exact

travelling solutions to describe approximate moving breathers for ε 6= 0, and in

particular for the DNLS system. In the following we set γ = 2 for convenience (or

equivalently we rescale amplitude of φn to
√

2
γ
φn).

We consider the following family of period-1 loops

zn(s) = sinh β
e−i(2πs−kn)

cosh β(n−Q)
, (22)

with parameter Q, k and β. We first compute the area of these loops, using the area

form (18), and find that:
∮

z

α0 = 4πβ. (23)

Note that this is an exact result, which can be obtained by a Poisson summation.

As this technique is frequently used in this section, it is recalled in Appendix A.

So, we note that (22) forms a family of loops with constant area, if β is fixed.

Next, it is easy to check that these loops form a family of exact periodic solutions

of the AL equation only when k = 0 or π, and if the time s is scaled properly as

in eq. (20). Moreover, the amplitude of these solutions is exponentially localised

in space about position nc = Q, thus these loops constitute a continuous family

of discrete breathers parametrised by a translation coordinate Q (see Fig. 1(c) and

(d)). This is exactly what we want to get moving breathers, except that we need

a conjugate variable to Q. We can try to use variable k if the symplectic form Ω0

restricted to coordinates (k,Q) is non-degenerate. As explained in section 2, this

can be checked by computing eq. (9), viz.,

τ(k,Q) =

∮

Ω0(∂kz, ∂Qz) = 2β,
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which is non zero for β 6= 0. Now, if k is near 0 or π, the family of loops (22) is inter-

preted as forming an approximate invariant manifold in phase space, parametrised

by (k,Q), on which it could be possible to describe the slow evolution of (k,Q). To

this end we have just to compute H
eff
0 given by eq. (8). After some computations

which involves the same technique as before we find:

H
eff
0 = −4 cos k cosh β.

Using Ωeff = 2β dk ∧ dQ, one gets the following equations of motion:

k̇ = 0

Q̇ =
2 sin k cosh β

β

Therefore the dynamics of discrete breathers is extremely simple in this case, since

they move with constant speed Q̇ (which coincides with formula (21)). The corre-

sponding phase portrait is sketched on Fig.1(a).

Let us notice that other “conjugate” variables to Q could have been chosen. For

example it might be natural to think of the following conserved quantity of the AL

system, which can be interpreted as the “momentum” of the system:

P = −i
∑

n

φ∗n(φn+1 − φn−1).

Computing the momentum of the loops (22) with the same technique as for (23) we

get:

P ({zn}) = 4 sin k sinh β. (24)

So we have P = 0 for discrete breathers (k = 0 or π) which is consistent with the

fact that these structure are immobile. On the other hand, we can look at (22) with

arbitrary k as periodic solutions of AL system under the constraint that
∮

P has a

non-zero value fixed in [− sinh β, sinh β]. As before, these periodic solutions enable

one to construct an effective Hamiltonian in variables (P,Q), which has the form

H
eff
0 (P,Q) = 4β −

√

16 sinh2 β − P 2, and the associated dynamics is quite simple:

Ṗ = 0; Q̇ = P
2β

.

The method of effective Hamiltonian generally gives only approximate solutions,

but in the special case of AL system, it describes exact moving breathers. (We

expect that the symplectic angle defined by (17) is equal to π/2 in the present case).

Now we want to compute an effective Hamiltonian for the Salerno interpolation, i.e.

when ε 6= 0. In this case we do not know exact periodic solutions of the system

with constraints of constant area and fixed (k,Q) but we can use the family (22) to
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produce a perturbative scheme, as explained in section 2. Then at first order in ε,

the effect of perturbation is to change H
eff
0 to H

eff
0 + V

eff with

V
eff = −ε4π2 sinh2 β

β2 sinh(π
2

β
)

cos(2πQ) +O(εe−
2π2

β cos(4πQ)) (25)

Therefore H
eff now depends on Q and the phase portrait of Fig.1(a) is changed

to the pendulum-like phase portrait of Fig.1(b). We see that the line of critical

points (k = 0 or π) of the former has turned into a set of isolated equilibria which

correspond to (exact) discrete breathers of Salerno’s system. More precisely, these

discrete breathers are centred at Q = n
2

(n ∈ Z). The in-phase discrete breathers

(i.e. k = 0) are stable for n even and unstable for n odd, and the converse situation

holds for the anti-phase discrete breathers (k = π). In this picture, if a stable

discrete breather is perturbed, its position Q simply oscillates periodically, since in

space (k,Q), its trajectory is trapped within the corresponding island. On the other

hand, the stable discrete breathers can be set into motion by a kick of momentum

which brings the state of the system outside the islands of the stable critical points.

This change of momentum amounts to crossing a minimal energy barrier which is

called the Peierls-Nabarro barrier by analogy with the theory of moving localized

defects in solid. Thus in the context of discrete breathers, as already mentioned

in [11], the PN barrier is defined as the difference of potential energy ∆V
eff between

the stable and the unstable breathers with same area.

In fact, the phase portrait depicted in Fig.1(b) was already presented by Claude

et al. [7] in order to analyse the motion of discrete breathers in anharmonic chains

with on-site potential. In particular, they pointed out that there is a critical value βc

above which the saddle-nodes of lines k = 0 or those of k = π are no longer connected

horizontally, but connect vertically in the plane (k,Q). This βc depends on ε, and

Claude et al. obtained βc ' 3.6862, which corresponds to ε = 2 in (25). For β > βc,

the trajectories with monotonously increasing (or decreasing) Q are lost, and so are

the moving discrete breathers. This explains, at least qualitatively, why the large

amplitude DB (which occurs for large β), are always trapped in the anharmonic

chains of the Salerno family (with ε 6= 0). We remark, however, that rigorous

conclusions should take into account that the method of the effective Hamiltonian

works well only when the size of the islands is small, which is the case for β � βc,

since only in this case the error estimate is guaranteed to be small (eq. (10)). In

fact, numerical simulations reported in [9] demonstrate that the trapping of DB

happens with amplitudes corresponding to β much smaller than βc. This tendency

to pinning will also be illustrated below by a numerical simulation.

We also notice that if one is interested in the limit ε = 2, which indeed cor-
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responds to the DNLS limit of the Salerno family, then, in view of eq. (19) (recall

γ = 2), the effective potential should not be determined by setting ε = 2 in (25), but

should be estimated by substitution of (22) in
∑

n(2‖φn‖2 − ‖φn‖4). One obtains

the new effective potential as:

V
eff = 8π2 sinh2 β

β2 sinh(π
2

β
)

(

1− 1

3
[1 +

π2

β2
] sinh2 β

)

cos(2πQ) +O(e−
2π2

β ).

For this potential there is also a critical β, but now evaluated as βc ' 1.695. To end

this section, we wish to show how the analysis presented above can be matched with

direct numerical simulations of the Salerno equations, projected on the effective

phase space spanned by coordinates (k,Q). To this purpose, we have to find a

function G = (G1, G2) (see eq. (11)), such that
∮

G({φn}) = (k,Q),

when φn is replaced by the loops (22). The function G1 can be determined from

eqs. (24), and the function G2 can be defined by:

G2({φn}) =

∑

n n log(1 + ‖φn‖2)
∑

n log(1 + ‖φn‖2)
.

We consider a chain of 99 oscillators with periodic boundary conditions and

integrate numerically the Salerno equations with ε = 0.1 and initial conditions given

by a member of the loop family (22), with β = 1 and small k. The evolution of

variables:

(k(t), Q(t)) =
1

T

∫ t+T

t

G({φn(t′)})dt′ (26)

is followed in time and plotted in the plane (k,Q). The period T is chosen as the one

of the DB (k = 0). Figure (2) shows two trajectories which are consistent with the

effective separatrices (i.e. the frontiers of the islands). The latter are computed from

H
eff(k,Q). Let us note that performing the averaging of G is crucial to eliminate

the effect of global phase of the loops on the dynamics. This point is illustrated on

Fig. (3) where trajectories are compared with and without averaging G.

Next, increasing slightly ε, one observes an example of trapping phenomenon

which is not predicted by the effective Hamiltonian. Figure (4) shows a trajectory

which starts outside the trapping islands, but which ends on pinning due to a de-

crease of k in time. For this value of ε = 0.2, this behaviour is observed for any initial

k. It is presumably related to interaction of the DB with its own radiation, due to

finite size of the system, but it could be interesting to investigate this point further.

In any case, we numerically observe that the validity of the effective Hamiltonian

description in a finite chain is limited to relatively low value of ε.
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5 Weakly localised travelling discrete breathers

in FPU chains

We consider another situation where the framework of the effective Hamiltonian can

be used to describe approximate travelling discrete breathers, namely the Fermi-

Pasta-Ulam (FPU) system on a ring. This model has been theoretically studied

recently by different authors [16, 17, 18]. It is given by a closed chain of identical

masses anharmonically coupled to their first neighbours:

H =
N
∑

n=−N

(
p2
n

2
+ V (xn+1 − xn)) (27)

The number of particles is assumed to be odd, and equal toM = 2N+1. We consider

the so-called αβ-FPU system in which the anharmonicity is at most quartic:

V (x) =
x2

2
+ α

x3

3
+ β

x4

4

First we recall some standard results concerning the complete analysis of the har-

monic chain α = β = 0. In this case H0 can be diagonalised by a discrete Fourier

transform as follows:

zk =
1√

2Mωk

N
∑

n=−N

(ωkxn + ipn)e
−i2πkn/M (28)

where ωk = 2| sin(kπ
M

)| for (k = ±1,±2, · · · ,±N), and the k = 0 component is

treated by defining p0 = 1√
M

∑

n pn and x0 = 1√
M

∑

n xn. The change of coordinates

(pn, xn) → (p0, x0, iz
∗
k, zk) is canonical, i.e. the symplectic form writes Ω =

∑

n dpn∧
dqn = dp0 ∧ dx0 + i

∑

k dz
∗
k ∧ dzk. The expression of H0 becomes simply

H0 =
p2

0

2
+

N
∑

k=1

ωk(|zk|2 + |z−k|2),

and we can assume that the center of mass of the chain is at rest, i.e. p0 = 0. In this

setting, it is readily seen that the general (vibrational) solution is a superposition

of N distinct modes (the phonons) which are twofold degenerate.

It is yet simpler to describe the phonons of frequency ωk with the help of action-

angle variables defined by:

zk =
√

Jke
−iψk

z−k =
√

J−ke
−iψ

−k (29)
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This second canonical transformation simplifies further the Hamiltonian into

H0 =

N
∑

k=1

ωk(Jk + J−k),

such that the evolution of the variables are trivially given by

ψk = ωkt+ ψ0
k

ψ−k = ωkt+ ψ0
−k

and the actions Jk are constant. Note that we can easily come back to the physical

displacement xn by inverting the transformations (28) and (29). For instance, the

phonons of frequency ωN form a 4−parameter family of periodic solutions which can

be written as:

xn(t) =

√

2

MωN

[

√

JN cos(ωN t− σNn+ ψ0
N ) +

√

J−N cos(ωN t+ σNn+ ψ0
−N )

]

(30)

with σN = 2πN
M

.

Strictly speaking there are no discrete breathers in the harmonic chain. Nev-

ertheless we can consider that some periodic solutions of this system are weakly

localized in space, namely the phonons with the upper frequency, ωN , and with

JN = J−N . The latter correspond to the standing wave:

xn(t) = 2

√

2JN
MωN

cos(ωN t +
ψ0
k + ψ0

−k
2

) cos(σNn−
ψ0
k − ψ0

−k
2

) (31)

By writing σNn = πn(1 − 1
2N+1

) the spatial shape of this periodic solution can be

seen as follows:

cos(σNn−
ψ0
k − ψ0

−k
2

) = (−1)n cos(
π

2N + 1
n− ψ0

k − ψ0
−k

2
)

so it corresponds to the anti-phase oscillations (−1)n modulated by a one-bump

envelope which is centred around θ ≡ ψN−ψ−N

2
=

ψ0
N−ψ0

−N

2
. One can check that

the energy density (defined as hn = pn

2
+ 1

2
(V (xn+1 − xn) + V (xn − xn−1))) is also

localised in this weak sense. Therefore the relative phase variable θ plays the role of

a spatial coordinate of a periodic solution which is weakly localised. Let us call it a

weakly localised discrete breather. This name can be justified a posteriori, because

we notice by numerical simulations, that the localisation of this periodic solution is

enhanced when the anharmonicity is turned on (see Fig.5).

In order to construct an effective Hamiltonian for θ we need to specify its con-

jugate variable. Here it is natural to consider the relative action JN − J−N . This
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motivates a further canonical transformation as follows:

a = JN + J−N

J = JN − J−N

ϕ =
ψN + ψ−N

2

θ =
ψN − ψ−N

2

The first variable a is proportional to the area of the periodic solutions defined by

eq. (30). In fact the exact relation is

area =

√

2

MωN
2πa

By extension, let us call a the area in the sequel. Therefore, for fixed area, eq. (30)

define a two-dimensional family (parametrised by J and θ ) of periodic solutions

of the chain when β = 0. In the spirit of section 4 this family can be used as a

submanifold of loops in order to obtain an effective dynamics of J and θ . Thus we

substitute

xn(J, θ; s) =

√

2

MωN

[

√

a + J

2
cos(2πs− σNn− θ) +

√

a− J

2
cos(2πs+ σNn+ θ)

]

(32)

in the FPU-Hamiltonian (27) (with pn = ẋn) and obtain, after averaging over s, and

at the lowest order in (α, β):

H
eff ' ωa+

3

16
β
ω2

M
(3a2 − J2).

We remark that this Hamiltonian is a particular case of the (Birkhoff) normal form

Hamiltonian obtained by Rink for the periodic β-FPU chains, when only modes ωN

are excited [18]. In view of this Hamiltonian, the variable θ (or more precisely its

averaged value) has now a drift which is given by:

θ(t) = −3

8
β
ω2

M
Jt+ θ0. (33)

The drift (33) is associated with the slow motion of the weakly localised discrete

breathers defined by eq. (31). To make this clear, we compute from eq. (32) the

averaged square amplitude of xn(J, θ, s), when J is small compared to a:
∮

|xn(J, θ; s)|2 ds ≈
a

MωN
cos2(σNn− θ(t))

Let us note that at this order of approximation J is constant, since H
eff does not

depend on θ. So the phase portrait is like that of fig.1(a), and at this level of
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approximation there is no PN barrier. This may be related to the observations that

mobile breathers are easily observed in numerical simulations of the FPU systems.

It is likely, however, that a PN barrier would show up at a higher order in α or in

β, and this could be interesting to estimate explicitly.

We have performed some numerical simulations of the FPU model to illustrate

the theory. We use a small chain of 25 particles and integrate numerically the dynam-

ics in (pn, xn) variables with a Runge-Kutta method. We monitor the time evolution

of the relative phase θ which is deduced from the numerics as θ = 1
2
arg(zNz

∗
−N ),

where zN is computed with the help of eq. (28).

We start with an initial area of a = 0.05. As mentioned above the effect of

anharmonicity reinforces the localisation of the solution, as compared with the shape

of the ansatz [Fig.5] . On a time interval of order 25T , where T = 2π/ωN is the

period of the fast oscillations, we see that the evolution of variable θ is almost

linear and the slope of the line is in good agreement with eq. (33) [Fig.6(a)]. The

fast oscillations of θ can be eliminated by averaging, as explained in the previous

section. Figure 6(b) shows the evolution of θ on a much longer time scale. One sees a

discrepancy growing between the actual dynamics θ(t) and its linear estimate given

by eq. (33). Let us note that in the same time fairly constant values of variables a

and J were observed . With these parameters, and for any initial value of θ we have

not observed any trapping of the weakly localised discrete breather. If we consider

an initial area which is two times higher but still small, a = 0.1, we observe that the

effective dynamics describes fairly well the actual dynamics for the same time interval

as compared with the previous case (of order 25T ). However here the discrepancy

grows faster with large amplitude oscillations [Fig. 7(a)], and the numerics show that

area a is no longer constant. Nevertheless, the linear approximation given by (33)

describes yet the global drift of the relative phase. In the local phase (θ, J), the

trajectory is still drifting in θ but not like the simple linear drift predicted for the

effective dynamics [Fig. 7(b)]. Again in this case, no pinning state is observed for

various initial values of θ.

To end this section we point out that recently a proof of existence of DB in

FPU chains has been obtained by G. James [20]. These DB can also be described

as “weakly localised” for small amplitude since although they are exponentially

localised the spatial decay rate goes to zero with the amplitude. So by deducing

from his result an analytical form for a family of (approximate) DB solutions it

could be interesting to consider the latter as a starting point for constructing the

effective Hamiltonian.

17



6 Conclusions

In this paper we have proposed a framework to figure out the approximate travelling

DB as trajectories described by an effective 1-DOF Hamiltonian. Our method can

also be regarded as a method of collective coordinates for loops in Hamiltonian

systems, based on an averaging procedure, and designed so that the error can in

principle be estimated. The effective Hamiltonian is constructed as the averaged

energy along loops representing approximate DB of the system with fixed area,

and indexed by a spatial-like parameter. This Hamiltonian possesses critical points

which correspond to exact DB of the chain. Some of them may be stable, others

are unstable. Around the stable DB the trajectories of the effective Hamiltonian

are closed and form an island of quasi-periodic breathers. The smaller is the size of

these islands, the better is the approximation because in this case the error given by

eq. (10) is small. In the effective phase portrait, the difference of potential energy

between the stable and the (most) unstable DB can be defined as the Peierls-Nabarro

barrier for DB. Thus the simple picture which emerges from this framework is that

if one starts with an approximate DB with energy slightly above the PN barrier, it

travels, drifting along separatrices in the effective phase space.

To illustrate the theory we applied the method to simple tutorial models, both

analytically and numerically. In particular the concept of PN barrier for DB is il-

lustrated on the Salerno model. For the FPU model, no PN was found at the lowest

order in the anharmonicity parameters. Further applications could be thought of,

however, to give insight on travelling DB in more realistic models. For example, a

recent paper by Tsironis et al. [21] proposed a modification of the FPU model to

take into account the curvature of discrete curvilinear chains that model biopoly-

mers. If this curvature is small enough, it plays the role of a perturbation of the

standard FPU model and an effective potential could be computed for the family

of loops (30), so that the effect of such curvature could be estimated on loose DB

defined in previous section. Another perspective is to consider application of the ef-

fective Hamiltonian method to describing travelling DB in Davydov or Holstein-like

models [14]. Preliminary work is in progress in this direction.

A Appendix

In this appendix we briefly recall the technique of Poisson summation and use it to

obtain eq. (23). The same method is used to compute various quantities in section 4,

as for instance P,Heff ,Ωeff and V
eff .

The following result is standard in signal analysis [19] and is known as the Poisson
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summation formula:
∞
∑

n=−∞
f(n) =

∞
∑

n=−∞
f̂(n), (34)

where f̂ is the Fourier transform of f defined by:

f̂(ν) =

∫ ∞

−∞
f(x)e−i2πνx dx

Now we want to compute
∮

z
α0, i.e. integrate the area form (18) over a loop of

the family (22). Integration over time is trivial and gives

a(β,Q) = 2π
∑

n

log(1 +
sinh2 β

cosh2(β[n−Q])
).

First choose Q = 0 and compute:

∂a

∂β
(β, 0) = 2π

2 sinhβ

β

∑

n

β cosh β cosh βn − βn sinh β sinh βn

cosh β(n+ 1) cosh βn cosh β(n− 1)

The sum can be written as
∑

n g(βn) with some function g(x) whose Fourier trans-

form can be computed explicitly using residue calculus:

ĝ(ν) = π2 sin2 πνβ cosh π2ν

sinh β sinh2 π2ν

So application of the Poisson formula (34) yields:

∂a

∂β
= 2π

2 sinh β

β2

∑

n

ĝ(
n

β
) = 4π

On the other hand, the same technique enables one to prove that ∂a
∂Q

= 0. Therefore

equation (23) is obtained.
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Figure 1: (a) Effective Hamiltonian phase portrait for travelling DB in the AL lattice

(ε = 0 in the Salerno model). (b) Perturbation of the (ε = 0) phase portrait in the

Salerno family. ε = 1, β = 1.5 (c) “anti-phase” discrete breathers, when k = π

in (20) , (d) “in-phase” discrete breathers when k = 0. In both examples, the real

part is shown with β = 1.5, Q = 3.15.

22



25 26 27 28

-0.05

0.05

Q

k

Figure 2: Solid lines: projection of the (k,Q) variables [eq. (26)] computed from the

numerical integration of the Salerno model (ε = 0.1) in the effective phase portrait

of Fig. 1. Dashed lines correspond to the theoretical separatrices. Parameter β = 1.
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Figure 3: Dotted line shows the evolution of function G without averaging (see text).

The corresponding averaged trajectory is indicated in solid line. Same parameters

as in Fig. 2 but ε = 0.2.
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Figure 4: Anomalous trapping of travelling DB (w.r.t. the expected effective Hamil-

tonian). Parameters are as in Fig. 3.
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h n

Figure 5: Enhancement of the localisation of energy density hn after a lapse of time

t = 100 in the numerical simulation of the FPU chain (solid line) , as compared

with the initial condition given by the ansatz (32) (dotted line). The parameters

are chosen as in Fig. 6.
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Figure 6: Evolution of the coordinate θ in time (see text). The straight lines indicate

the prediction of the effective dynamics, given by eq. (33). The parameters of the

FPU model as chosen as α = 0, β = 1, a = 0.05, θ0 = −π
2
, J0 = −0.01. Panel (a)

is an enlargement of a part of the graphic of panel (b), corresponding to the time

lapse [0, 50].
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Figure 7: (a) Evolution of θ as in Fig. 6 (b), but the area of approximate DB is

doubled, a = 0.1. The straight line shows the simple dynamics given by eq. (33)

; (b) The actual phase trajectory. The effective phase space should be more than

2-dimensional.
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