Эргодическая теорема для действий фуксовых групп

А. И. Буфетов, А. В. Клименко, К. Сириес

Основной результат этой заметки, теорема 1, устанавливает поточечную сходимость сферических средних для действий фуксовой группы. Пусть G – конечно порождённая фуксова группа, \mathcal{R} – её фундаментальная область, возможно имеющая вершины или дуги на границе гиперболического диска \mathbb{D} , и пусть $\mathbf{T}_{\mathcal{R}} = \{g\mathcal{R} \colon g \in G\}$ – соответствующее замощение диска \mathbb{D} . Будем говорить, что \mathcal{R} удовлетворяет условию ровных углов (even corners), если геодезическая, проходящая через любую сторону области \mathcal{R} , содержится в объединении границ областей $g\mathcal{R} \in \mathbf{T}_{\mathcal{R}}$.

Пусть G_0 – симметричное множество образующих группы G, состоящее из элементов, переводящих \mathcal{R} в смежные области разбиения $\mathbf{T}_{\mathcal{R}}$. Обозначим |g| длину кратчайшего слова в G_0 , представляющего $g \in G$, и пусть $S(n) = \{g \in G \colon |g| = n\}$ – сфера радиуса n в группе G.

Пусть группа G действует на вероятностном пространстве (X,μ) сохраняющими меру преобразованиями T_g . Определим сферические средние функции $f \in L^1(X,\mu)$:

$$\mathbf{S}_n(f) = \frac{1}{\#S(n)} \sum_{g \in S(n)} f \circ T_g.$$

Пусть $v \in \mathbb{D}$ – вершина $\mathbf{T}_{\mathcal{R}}$. Если \mathcal{R} удовлетворяет условию ровных углов, то граница $\mathbf{T}_{\mathcal{R}}$ в малой окрестности v состоит из n = n(v) отрезков геодезических, пересекающихся в v и разбивающих эту окрестность на 2n(v) секторов. Обозначим $N(\mathcal{R})$ число сторон \mathcal{R} внутри \mathbb{D} . Если G_0 содержит эллиптический элемент порядка 2, то его неподвижная точка считается вершиной \mathcal{R} . Введем следующее условие на \mathcal{R} .

Условие 1. Область $\mathcal R$ удовлетворяет условию ровных углов. Кроме того, либо $N(\mathcal R)\geqslant 5$, либо $\mathcal R$ некомпактна и $N(\mathcal R)\in \{3,4\}$, либо $\mathcal R$ компактна, $N(\mathcal R)=4$ и $\mathcal R$ не имеет пары противоположных вершин v,v', для которых n(v)=n(v')=2.

Обозначим
$$L \log L(X,\mu) = \left\{ f \in L^1 \colon \int |f| \log^+ |f| \, d\mu < \infty \right\}.$$

ТЕОРЕМА 1. Пусть G – неэлементарная фуксова группа, \mathcal{R} – её фундаментальная область, удовлетворяющая условию 1, а G_0 – вышеуказанное множество образующих G. Пусть G действует на вероятностном пространстве Лебега (X,μ) сохраняющими меру преобразованиями. Обозначим $\mathcal{I}_{G_0^2}$ σ -алгебру множеств, инвариантных под действием отображений вида $T_{g_1g_2}$, $g_1,g_2\in G_0$. Тогда для любой функции $f\in L\log L(X,\mu)$ имеет место следующая сходимость при $n\to\infty$:

$$\mathbf{S}_{2n}(f) o \mathsf{E}(f \mid \mathcal{I}_{G_0^2})$$
 почти наверное и в $L^1,$

где $\mathsf{E}(f\mid \mathcal{I}_{G_0^2})$ – условное математическое ожидание f относительно σ -алгебры $\mathcal{I}_{G_0^2}$.

Доказательство теоремы обобщает рассуждения из [3], где сходимость сферических средних установлена для действий свободной группы. Главный шаг в доказательстве теоремы 1 – это построение нового марковского кодирования для фуксовой группы, удовлетворяющей условию 1.

Первые результаты о поточечной сходимости сферических средних для гиперболических по Громову групп были получены К. Фудзиварой и А. Нево [5] при условии экспоненциального перемешивания действия. Удобный метод доказательства эргодических теорем для действий свободных групп, предложенный Р. И. Григорчуком [6],

DOI: https://doi.org/10.4213/rm10099

Работа А. И. Буфетова поддержана грантом Европейского совета по исследованиям (проект № 647133 ICHAOS). Работа А. В. Клименко частично проддержана грантом РФФИ-CNRS № 18-51-15010 и грантом РФФИ № 18-31-20031.

Ж.-П. Тувено (устное сообщение) и в [2], состоит в построении по действию группы некоторого марковского оператора P. Сходимость сферических средних тогда соответствует сходимости его степеней P^nf . Данное в [3] доказательство сходимости в случае свободной группы основано на аргументе "Alternierende Verfahren" Дж.-К. Роты [7], т. е. на сходимости $(P^*)^nP^nf$. Для получения отсюда сходимости $P^{2n}f$ нужно соотношение между P и P^* (см. [3; предложение 3]). Основой для него являются следующие условия симметричности для марковского кодирования на группе G, по которому и строится оператор P.

- 1. Пусть Ξ множество состояний марковской цепи. Существует обращающая время инволюция $\iota:\Xi\to\Xi$, т. е. такая инволюция, что переход $k\to j$ допустим тогда и только тогда, когда допустим $\iota(j)\to\iota(k)$.
- 2. Существуют такие отображения $\gamma,\omega\colon\Xi\to G_0$, что $\omega(\iota(k))=\omega(k)^{-1}; \qquad \gamma(k)=\omega(j)^{-1}\gamma(\iota(j))^{-1}\omega(k), \quad \text{если } k\to j \text{ допустимый.}$
- 3. Существуют подмножества $\Xi_S, \Xi_F \subset \Xi$ такие, что множество допустимых последовательностей $j_0 \to \cdots \to j_{n-1}$, где $j_0 \in \Xi_S, j_{n-1} \in \Xi_F$, биективно отображается на сферу $S(n) \subset G$ отображением $(j_0 \to \cdots \to j_{n-1}) \mapsto \omega(j_{n-1})\gamma(j_{n-2})\cdots\gamma(j_0)$.

Для произвольной фуксовой группы построенное ранее Р. Боуэном и К. Сириес [1], [4] кодирование не удовлетворяет этим условиям. Недавно М. Вротен [8] предложил новый подход, основанный на одновременном рассмотрении множества всеx кратчайших путей, представляющих данный элемент g, которое, очевидно, симметрично. Ключевой шаг в доказательстве теоремы 1 состоит в задании семейства кратчайших путей неприводимой марковской цепью с тривиальной симметрической σ -алгеброй и удовлетворяющей условию симметричности.

Список литературы

[1] R. Bowen, C. Series, Inst. Hautes Études Sci. Publ. Math., **50** (1979), 153–170. [2] А.И. Буфетов, Функц. анализ и его прил., **34**:4 (2000), 1–17. [3] А.І. Bufetov, Ann. of Math. (2), **155**:3 (2002), 929–944. [4] А.І. Bufetov, C. Series, Math. Proc. Cambridge Philos. Soc., **151**:1 (2011), 145–159. [5] К. Fujiwara, A. Nevo, Ergodic Theory Dynam. Systems, **18**:4 (1998), 843–858. [6] Р.И. Григорчук, Динамические системы, автоматы и бесконечные группы, Сборник статей, Труды МИАН, **231**, Наука, МАИК "Наука/Интерпериодика", М., 2000, 119–133. [7] G.-C. Rota, Bull. Amer. Math. Soc., **68** (1962), 95–102. [8] М. Wroten, The eventual Gaussian distribution of self-intersection numbers on closed surfaces, Thesis (Ph.D.), State Univ. of New York, Stony Brook, 2013, 41 pp.; 2014, 43 pp., arXiv: 1405.7951.

А. И. Буфетов (A. I. Bufetov)

Aix-Marseille Université, École Centrale de Marseille, CNRS, Institut de Matématiques de Marseille, Marseille, France;

Математический институт им. В. А. Стеклова РАН E-mail: bufetov@mi-ras.ru

A. B. Клименко (A. V. Klimenko)

Математический институт им. В. А. Стеклова РАН; Национальный исследовательский университет "Высшая школа экономики" E-mail: klimenko@mi-ras.ru

K. Cupuec (C. Series)

University of Warwick, Coventry, UK *E-mail*: c.m.series@warwick.ac.uk

Представлено Ю. С. Ильяшенко Принято редколлегией 03.02.2023