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Gibbs measures with double stochastic integrals on a path space
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We investigate Gibbs measures relative to Brownian motion in the case when the in-
teraction energy is given by a double stochastic integral. In the case when the double

stochastic integral is originating from the Pauli-Fierz model in nonrelativistic quantum

electrodynamics, we prove the existence of its infinite volume limit.
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1. Preliminaries

1.1. Gibbs measures relative to Brownian motions

Gibbs measures relative to Brownian motion appeared in 22, where they have been
introduced to study a particle system linearly coupled to a scalar quantum field. A
systematic study of such measures has been started from 6, where by making use of
this measure the spectrum of the so-called Nelson model is investigated. Since then
there has been growing activity and interest in the study of various types of these
measures 4,5,12,13,21.

One way to understand Gibbs measures relative to Brownian motion is to view
them as the limit of a one-dimensional chain of unbounded interacting spins, with
the distance between the spins going to zero. As a simple example, which will be
instructive in what follows, let us take Rd for the spin space, and fix a (finite or
infinite) a priori measure ν0 on Rd as well as smooth, bounded functions V : Rd → R
and W : R × Rd → R. On the lattice εZ ∩ [−T, T ] with spacing ε and n = 2T/ε
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sites, we define the measure νW through

νW(dx−n . . . dxn) =
1
ZνW

∏
|i|≤n

ν0(dxi)e−ε
P
i V(xi)− 1

ε

P
i(xi+1−xi)2+ε2

P
i,j W(j−i,xj−xi).

(1.1)
Here ZνW normalizes νW to a probability measure, and for finite ε, νW is just
a chain of interacting spins. However, the scaling becomes very important when
ε → 0. Then, formally each spin configuration (xi)|i|≤n ∈ εZ ∩ [−T, T ] becomes
a function x(·) on [−T, T ], and the particular scaling of the quadratic term above
gives rise to the term limε→0 ε

∑
i (xi+1 − xi)2/ε2 =

∫ T
−T (dx(s)/ds)2ds. It is this

term that prevents the measure νW from being concentrated on more and more
rough functions when ε→ 0, ensuring continuity of x(t) in the limit. Indeed, when
ν0 is chosen as the Lebesgue measure on Rd, it is not difficult to show that part of
the normalization along with the quadratic term give converge to Wiener measure
W, so that in the limit, ε→ 0, we obtain

νW
T (dB) =

1
ZνW

T

e−
R T
−T V(Bs) ds−

R T
−T ds

R T
−T dtW(Bt−Bs,t−s) dW. (1.2)

Here (Bt)t≥0 is now a Brownian motion, hence we call (1.2) Gibbs measures relative
to Brownian motion. Indeed, the measure appearing in 22 is of the above type, and
most of the subsequent works cited above have been concerned with measures of
the form (1.2).

In this paper we study another type of Gibbs measures, arising from a very
similar discrete spin system. Namely, let us now define

νWM (dx−n . . . dxn)

=
1

ZνWM

∏
|i|≤n

ν0(dxi) exp

(
−ε
∑
i

V(xi)−
1
ε

∑
i

(xi+1 − xi)2

+
∑
i,j

(xi+1 − xi) ·WM (j − i, xj − xi)(xj+1 − xj)

 .(1.3)

Now WM is a d×d matrix, but otherwise the expression looks very similar to (1.1).
The crucial point is, however, that now the scaling of the term involving WM is
different. The ε2 which ensured convergence to a double Riemann integral is gone
by sandwiching ε2WM between (xi+1−xi)/ε and (xj+1−xj)/ε, and replaced by the
increments of the spins themselves. Since these increments will eventually converge
to Brownian motion increments, as discussed above, they are of order

√
ε, so the

scaling is indeed different. So after taking the limit ε→ 0, we informally obtain

νWM

T (dB) =
1

Z
ν

WM
T

e−
R T
−T V(Bs) ds−

R T
−T

R T
−T dBs·WM (Bt−Bs,t−s) dBtdW. (1.4)

As a consequence, taking the limit ε→ 0 yields a double stochastic integral in place
of the double Riemann integral (1.2).
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1.2. Definition of double stochastic integrals

From now on we assume that d = 3 and specify the pair potential WM = W =
W (X, t) = (Wµν(X, t))1≤µ,ν≤3 given by

Wµν(X, t) :=
∫
|ϕ̂(k)|2

2ω(k)
e−ω(k)|t|eik·Xδ⊥µν(k)d3k, (1.5)

where δ⊥(k) = (δ⊥µν(k))1≤µ,ν≤3 is given by

δ⊥µν(k) := δµν −
kµkν
|k|2

. (1.6)

Measures of the type (1.4) with pair potential (1.5) appear in the study of the
so-called non-relativistic quantum electrodynamics, and have been introduced on
a formal level in 10,14,24. However we notice that there are some difficulties in the
expression (1.4): For t > s, the integrand is not adapted to the natural filtration
FT = σ(Br; r ≤ T ), so as a stochastic integral or any of its obvious transformations
the double stochastic integral such as (1.4) does not make sense. So the right-hand
side of (1.4) is just an informal symbol.

In 16 and 18 , however, the firm mathematical definition of (1.4) has been given
through a Gaussian random process associated with an Euclidean quantum field. We
outline it below. A Gaussian random process AE(f) labeled by f ∈ ⊕3L2(R3+1)
on some probability space (QE ,ΣE , µE) is introduced, which has mean zero and
covariance EµE [A(f)A(g)] = q(f, g) given by

q(f, g) :=
1
2

∫
f̂(k, k0) · δ⊥(k)ĝ(k, k0)d3kdk0 (1.7)

for f, g ∈ ⊕3L2(R3+1), where ˆ denotes the Fourier transformation. Let

Kt = ⊕3
µ=1

∫ t

0

jsϕ(· −Bs)dBµs (1.8)

be the ⊕3L2(R3+1)-valued stochastic integral defined in the similar way as standard
stochastic integrals, where js : L2(R3)→ L2(R3+1) denotes the isometry satisfying

(jsf, jtg)L2(R3+1) = (f̂ , e−|t−s|ω ĝ)L2(R3). (1.9)

See Subsection 3.1 for the details.

Definition 1.1. Let W be the pair potential defined in (1.5). The double stochastic
integral is defined by∫ t

0

∫ t

0

dBs ·W (Bt −Bs, t− s)dBt := q(Kt,Kt). (1.10)

We would like to express (1.10) as an iterated stochastic integral in this paper.
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1.3. Main results

Let us define the Wiener measure W on X := C(R; R3), cf. also 23 . Let H0 =
−(1/2)∆. Suppose that f1, ..., fn−1 ∈ L∞(R3) with compact support. Then there
exists a measure W on X such that

(f0, e
−(t1−t0)H0f1 · · · fn−1e

−(tn−tn−1)H0fn)L2(R3)

=
∫
X

f0(Bt0)f1(Bt1) · · · fn(Btn)dW. (1.11)

A path with respect to this measure is denoted by Bt(w) = w(t) for w ∈ X. Note
that Wiener measure is not a probability measure, indeed it has infinite mass. If
P x,t0W denotes the measure of standard Brownian motion starting from x ∈ R3 at
time t0, then∫

X

f0(Bt0) · · · fn(Btn)dW =
∫

R3
dx

∫
C([t0,∞);R3)

f0(Bt0) · · · fn(Btn)dP x,t0W .

Let ψ ∈ L2(R3) be a nonnegative function and we fix it throughout this paper. In
the case of (1.2), the existence of the weak limit of the measure on X,

dνW
T :=

1
ZνW

T

ψ(B−T )ψ(BT )e−
R T
−T ds

R T
−T dtW(Bt−Bs,t−s)e−

R T
−T V(Bs)dsdW,

as T → ∞ has been investigated for various kinds of V and W, and the limiting
measure, νW

∞, proved to be useful to study the ground state ϕg of some particle
system linearly coupled to a scalar quantum field. Namely for a suitable operator
O, we can express the expectation (ϕg,Oϕg) as

∫
X
fOdν

W
∞ with some integrand fO.

So, beyond the existence of a measure of the form (1.4), one is interested in the limit
as T → ∞, at least along a subsequence. In other words, one would like to prove
the tightness of the family of measures (1.4). This is by no means an easy task,
given that there are very few good general estimates on single stochastic integrals,
let alone double integrals.

The purpose of our present paper is to point out that there is at least one
special case where there is a comparatively easy way to construct both the finite
volume Gibbs measure and the infinite volume limit, namely the case when WM =
W = (Wµν)1≤µ,ν≤3 is given in (1.5). Fortunately, this special case is the one that
motivated the whole theory of Gibbs measures with double stochastic integrals. The
main results in this paper are
(1) we give an iterated stochastic integral expression of (1.10);
(2) we show the tightness of the family of measures

1
ZT

ψ(BT )ψ(B−T )e−
R T
−T V (Bs)ds−α2 R T

−T
R T
−T dBs·W (Bt−Bs,t−s)dBtdW

for a general class of V including the Coulomb potential V (x) = −1/|x|, and arbi-
trary values of coupling constant α ∈ R.

There has been recent progress both of the above topics: M. Gubinelli and J.
Lőrinczi 13 employ the concepts of stochastic currents rough paths in order to define
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(1.4) rigorously for finite volume, and use a cluster expansion in order to construct
the infinite volume limit. While these are impressive results, the techniques used are
rather advanced, and the use of cluster expansion comes with strong assumptions
on single site potentials V and coupling constants. The advantage of our methods is
that we can avoid some restrictions needed in 13; in particular we need not restrict
to single site potentials that grow faster than quadratically at infinity, and we need
no small coupling constant in front of the double stochastic integral. In particular
our results include the Coulomb potential which is the most reasonable single site
potential. On the other hand, of course the range of potentials W that is treated in
13 is much greater than ours.

The paper is organized as follows: In Section 2 we will construct the finite
volume Gibbs measure as the marginal of a measure with single stochastic integral
on a larger state space. This construction is well known 25, but has not been carried
out rigorously so far. In Section 3, we rely on the detailed results available about
the Pauli-Fierz model 20,11 in order to show that our family of Gibbs measures is
tight, giving the existence of an infinite volume measure. While we expect that the
general method of enlarging the state space should allow us to define and prove
infinite volume limits for many more models than just Pauli-Fierz, this is not all
straightforward. We will comment on this issue at the end of Section 3.

2. Iterated expression of finite volume measures

In this section we will specify the measure µT that we are working with, and identify
it as the marginal of another measure νT on a larger state space. Let us start by
introducing an infinite dimensional Ornstein-Uhlenbeck process which will serve as
the reference measure for the auxiliary degrees of freedom. Put

ω(k) =
√
|k|2 +m2 (2.1)

for m ≥ 0, and let Xs(f) be the Gaussian random process on a probability space
(Q,Σ,G) labeled by measurable function f = (f1, f2, f3) with mean zero and co-
variance given by

EG [Xs(f)Xt(g)] =
∫

d3k
1

2ω(k)
e−ω(k)|t−s|f̂(k) · δ⊥(k)ĝ(k). (2.2)

Here f̂ denotes the Fourier transform of f and we assume that f̂µ/
√
ω, ĝν/

√
ω ∈

L2(R3), µ, ν = 1, 2, 3.

Remark 2.1. Let Ys(f) be the Gaussian random process on (QE ,ΣE , µE) defined
by

Ys(f) := AE(js(f̂/
√
ω)∨). (2.3)

Then Ys(f) is mean zero and its covariance is

EµE [Ys(f)Yt(f)] = EG [Xs(f)Xt(g)]. (2.4)
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Hence Ys(f) and Xs(f) are isomorphic as Gaussian random processes.

We will now couple G to the Wiener measure W. For this we use a coupling
function ϕ with the assumption below:

Assumption (A):

(1) ϕ̂(k) = ϕ̂(−k) = ϕ̂(k) and
√
ωϕ̂, ϕ̂/ω ∈ L2(R3).

(2) ϕ̂ is rotation invariant, i.e., ϕ̂(Rk) = ϕ̂(k) for all R ∈ O(3).

Let us now define the quantity

J[0,T ](X) :=
∫ T

0

Xs(ϕ(· −Bs)) · dBs.

The proper definition of J[0,T ] reads

J[0,T ](X) := lim
n→∞

n∑
j=1

X(j−1)T/n(ϕ(· −B(j−1)T/n)(BjT/n −B(j−1)T/n)), (2.5)

where the right hand side strongly converges in L2(X×Q;G⊗P x,0W ). This is proved
by showing that the right-hand side of (2.5) is Cauchy by making use of (2.2). In
the same way, we can define

JT (X) :=
∫ T

−T
Xs(ϕ(· −Bs)) · dBs.

The coupling between the Gaussian process and Brownian motion is given by the
measure ν on X ×Q with

dνT =
1
ZT

exp

(
iα
∫ T

−T
Xs(ϕ(· −Bs)) · dBs

)
ψ(B−T )ψ(BT )dW ⊗ dG, (2.6)

where ψ ∈ L2(R3) is an arbitrary nonnegative function, ZT the normalizing con-
stant, and α is a coupling constant. In order to guarantee that the density in (2.6)
is integrable with respect to W, we chose the boundary function ψ to be of rapid
decrease at infinity.

We are now in the position to define our finite volume Gibbs measure. We will
introduce an on-site potential V which we take Kato-decomposable 7, i.e. we require
that the negative part V− is in the Kato class while the positive part V+ is the locally
Kato class 23. This ensures e.g. that

sup
x

EPx,0W

[
exp

(
−
∫ t

0

V (Bs) ds
)]

<∞. (2.7)

Definition 2.1. Let V : R3 → R be Kato-decomposable and α ∈ R a coupling
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constant. Then the measure µVT on X is defined through

dµVT :=
1
ZT

e−
R T
−T V (Bs) dsEG [dνT ]

=
1
ZT

ψ(B−T )ψ(BT )e−
R T
−T V (Bs) dsEG

[
exp

(
iα
∫ T

−T
Xs(ϕ(· −Bs)) · dBs

)]
dW.

(2.8)

We want to show that the measure µVT we just defined is a Gibbs measure with
double stochastic integral as given in Section 1. The key to doing this is the fact that
we will be actually able to calculate the Gaussian integral

∫
Q

exp(iJT (X))dG(X),
and thus are left with an expression involving Brownian motion paths only. In doing
so, we will set α = 1 for a simpler notation.

Let us give the heuristic presentation first. By the standard formula we have

EG [eiJT ] = exp
(
−1

2
EG [J2

T ]
)

(2.9)

and formally, by Remark 2.1, we have

EG [J2
T ] =

1
2

∫ T

−T

∫ T

−T
dBs ·W (Bt −Bs, t− s)dBt, (2.10)

where W is given in (1.5). As it stands, there are problems with the right-hand
side of formal expression (2.10), mainly because the integrand is not adapted. The
resolution is to use symmetry of W and break up the integral into two parts, one
where s < t and one where s > t, which are then proper iterated Itô integrals. This
leaves the diagonal part, which gives a non-vanishing contribution by the unbounded
variation of Bt.

We define the iterated stochastic integral ST by

ST :=
∫

d3k
|ϕ̂(k)|2

2ω(k)

∫ T

−T
eik·BsdBs ·

∫ s

−T
e−ω(k)(s−r)e−ik·Brδ⊥(k)dBr

+T
∫

d3k
|ϕ̂(k)|2

2ω(k)
(2.11)

ST is the well-defined expression that will replace (2.8). The above line of reason-
ing and (2.11) are not new 25, except that (2.11) is usually not written out but
instead just referred to as the double stochastic integral with the diagonal removed.
Nevertheless, (2.11) can be considered as known. However, the derivation above is
mathematically not rigorous, since the ill-defined expression (2.10) appears along
the way. To avoid this, one has to derive (2.11) directly from EG [eiJT ]. This is what
we do in the next theorem.

Theorem 2.1. For almost every w ∈ X, we have

EG [eiJT ] = e−ST . (2.12)



February 27, 2009 9:30 WSPC/INSTRUCTION FILE rev-betzhiros0723

8 Volker Betz, Fumio Hiroshima

Proof. Let us replace the time interval [−T, T ] with [0, T ] for notational conve-
nience. We employ (2.5) and use dominated convergence to get

EG [eiJT ] = lim
n→∞

EG

exp

i
n∑
j=1

X∆j
(ϕ(· −B∆j

)) · δBj


= lim

n→∞
exp

−1
2

EG

 n∑
j=1

X∆j
(ϕ(· −B∆j

)) · δBj

2
 ,

where we set δBj = BjT/n −B(j−1)T/n and ∆j = (j − 1)T/n, j = 1, ..., N . Now

EG

 n∑
j=1

X∆j
(ϕ(· −B∆j

)) · δBj

2

=
∫

d3k
|ϕ̂(k)|2

2ω(k)

n∑
j=1

n∑
l=1

e−|∆j−∆l|ω(k)eik(B∆j−B∆l )δBj · δ⊥(k)δBl

= 2
n∑
j=1

∫
d3k
|ϕ̂(k)|2

2ω(k)
e−∆jω(k)+ikB∆j δBj · δ⊥(k)

(
j−1∑
l=1

e∆lω(k)−ikB∆l δBl

)
(2.13)

+
n∑
j=1

δBj ·
(∫

d3k
|ϕ̂(k)|2

2ω(k)
δ⊥(k)

)
δBj . (2.14)

For the diagonal term in the last line above we note that∫
|ϕ̂(k)|2

2ω(k)
δ⊥µν(k)d3k = δµν

2
3

∫
|ϕ̂(k)|2

2ω(k)
d3k

by the rotation invariance of ϕ̂. Now as n→∞,

n∑
j=1

|δBj |2 → 3T, (2.15)

for almost every w ∈ X. Thus for almost every w ∈ X, we find

lim
n→∞

n∑
j=1

δBj ·
(∫

d3k
|ϕ̂(k)|2

2ω(k)
δ⊥(k)

)
δBj = T

∫
d3k
|ϕ̂(k)|2

ω(k)
.

For the off-diagonal term, we start by noting that by the definition of the Itô integral
for locally bounded functions f, g : R× R3 → R, we can see that

EP 0,0
W

[∫ t

0

ds

∣∣∣∣f(s,Bs)
∫ s

0

g(r,Br)dBr

∣∣∣∣2
]
<∞.
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Hence the stochastic integral of ρ(s) = f(s,Bs)
∫ s

0
g(r,Br)dBr exists and it holds

that

lim
n→∞

n∑
j=1

f(∆j , B∆j )δBj · δ⊥(k)
∫ ∆j

0

g(r,Br)dBr

=
∫ T

0

f(s,Bs)dBs · δ⊥(k)
∫ s

0

g(r,Br) dBr (2.16)

strongly in L2(P 0,0
W ). By the independence of Brownian increments and the fact

that EP 0,0
W

[δBj ]2 = 1/n, EP 0,0
W

[δBj ] = 0, we can estimate the L2(X;P 0,0
W )-difference

of (2.16) and the off-diagonal term:

EP 0,0
W

 n∑
j=1

f(∆j , B∆j )δBj · δ⊥(k)

(∫ ∆j

0

g(r,Br) dBr −
j∑
l=1

g(∆l, B∆l
)δBl

)2

=
n∑
j=1

3∑
µ,ν=1

(δ⊥µν(k))2EP 0,0
W

[
f(∆j , B∆j )

2
]
EP 0,0

W

[
(δBµj )2

]

×EP 0,0
W

(∫ ∆j

0

g(r,Br) dBr −
j∑
l=1

g(∆l, B∆l
)δBl

)2


≤ 9
∥∥f2

∥∥
∞

1
n

3∑
ν=1

n∑
j=1

EP 0,0
W

[∫ ∆j

0

g(r,Br) dBνr −
j∑
l=1

g(∆l, B∆l
)δBνl

]2

. (2.17)

Then the right-hand side above converges to zero as n → ∞ and (2.13) converges
to

2
∫ t

0

dBs ·
(
f(s,Bs)δ⊥(k)

∫ s

0

g(r,Br) dBr

)
strongly in L2(X;P 0,0

W ). By putting f(t, x) = eik·xe−ω(k)t and g(t, x) = e−ik·xeω(k)t,
the proof is finished.

Remark 2.2. It is interesting that we know that |e−ST | = |EG [eiJ ]| ≤ 1 almost
surely. This is not obvious from the iterated integral representation e−ST .

Let us summarize:

Proposition 2.1. Let µVT be the measure on X from Definition 2.1. Then

dµVT =
1
ZT

ψ(B−T )ψ(BT )e−α
2ŜT e−

R T
−T V (Bs) ds dW,

where ŜT is defined by ST with the diagonal part removed:

ŜT :=
∫

d3k
|ϕ̂(k)|2

2ω(k)

∫ T

−T
eik·BsdBs ·

∫ s

−T
e−ω(k)(s−r)e−ik·Brδ⊥(k)dBr.
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Or

ŜT :=
∫ T

−T
Z(s, w) · dBs,

where

Z(s, w) =
∫ s

−T
dBr

(∫
|ϕ̂(k)|2

2ω(k)
δ⊥(k)e−(s−r)ω(k)e−ik·(Br−Bs)d3k

)
.

Remark 2.3. In Proposition 2.1, the diagonal term t

∫
d3k
|ϕ̂(k)|2

2ω(k)
is absorbed

in the normalization constant, since it does not depend on the Brownian path B.
Moreover from Remark 2.2 it follows that

| exp
(
−ŜT

)
| ≤ exp

(
T

∫
d3k
|ϕ̂(k)|2

2ω(k)

)
.

3. The infinite volume limit

3.1. Tightness and the Pauli-Fierz model

The idea of the proof of the infinite volume limit we are about to give is not
straightforward. We will show that it follows from showing that the bottom of the
spectrum of a self-adjoint operator is eigenvalue. Actually, in the case of pair po-
tential W under consideration, associated self-adjoint operator is realized as the
Pauli-Fierz Hamiltonian H in the non-relativistic quantum electrodynamics. Fortu-
nately it is established that H has the unique ground state for not only confining
external potential V , e.g., V (x) = |x|2, but also the Coulomb V (x) = −1/|x|, which
is the most important case.

Let us begin with defining the Pauli-Fierz Hamiltonian with form factor ϕ̂ as
a self-adjoint operator on some Hilbert space H and we will review the functional
integral representation of the C0 semigroup e−tH .

Let F :=
⊕∞

n=0[
⊗n

s L
2(R3 × {1, 2})] be the Boson Fock space. The state space

of one electron minimally coupled with the photon (bose) field is given by

H := L2(R3)⊗F .

We denote the formal kernels of the annihilation operator and the creation operator
on F by a(k, j) and a∗(k, j), respectively, which satisfy the canonical commutation
relations:

[a(k, j), a∗(k′, j′)] = δ(k − k′)δjj′ , [a(k, j), a(k′, j′)] = 0 = [a∗(k, j), a∗(k′, j′)].
(3.1)

The free Hamiltonian in F is defined by

Hf :=
∑
j=1,2

∫
ω(k)a∗(k, j)a(k, j)d3k.

Here dispersion relation ω is given by (2.1). Let us fix a function ϕ̂ satisfying As-
sumption (A) The quantized radiation field A = (A1, A2, A3) with form factor ϕ̂ is
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defined by Aµ :=
∫ ⊕

R3 Aµ(x)d3x, where we used the isomorphism H ∼=
∫ ⊕

R3 L
2(R3) dx

and

Aµ(x) :=
1√
2

∑
j=1,2

∫
eµ(k, j)

(
e−ikx

ϕ̂(k)√
ω(k)

a∗(k, j) + eikx
ϕ̂(−k)√
ω(k)

a(k, j)

)
d3k.

The vectors e(k, j), j = 1, 2, are the polarization vectors. They satisfy e(k, i) ·
e(k, j) = δij and k · e(k, j) = 0. Note that∑

j=1,2

eµ(k, j)eν(k, j) = δ⊥µν(k). (3.2)

(3.2) is of course independent of the choice of polarization vectors and k ·e(k, j) = 0
yields that

3∑
µ=1

∇xµAµ(x) = 0. (3.3)

The Pauli-Fierz Hamiltonian H(0) is defined by

H(0) :=
1
2

(−i∇⊗ 1− αA)2 + 1⊗Hf , (3.4)

where α ∈ R denotes coupling constant. It is established in 17,19 that H(0) is self-
adjoint on D(−∆) ∩D(Hf) and bounded from below. Moreover H(0) is essentially
self-adjoint on any core of −(1/2)∆ ⊗ 1 + 1 ⊗ Hf . We now introduce a class of
external potentials V : R3 → R that we can add to H0.

Definition 3.1. V ∈ K if and only if V = V+−V− such that V± ≥ 0, V+ ∈ L1
loc(R3)

and V− relatively form bounded with respect to−(1/2)∆ with bound strictly smaller
than one.

Let V ∈ K. Then we define H as

H := H(0) +̇ V+ ⊗ 1 −̇ V− ⊗ 1, (3.5)

where ±̇ denotes the quadratic form sum. To see the weak convergence of µVT , we
introduce the assumption below.

Assumption (GS): There exists a ground state ϕg of H.

Example 3.1. Let

V (x) = − C

|x|
+ U(x), (3.6)

where C ≥ 0 is a constant, and U = U+ − U− ∈ Lloc(R3) such that U± ≥ 0,
infx∈R3 U(x) > −∞, U− is compactly supported, and −(1/2)∆ + U has a ground
state φ > 0 with ground state energy −e0 < 0 such that |φ(x)| ≤ γe−|x|/γ with
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some constant γ > 0. Then the ground state of H exists for arbitrary values of α.
See 1 and 2,11. Typical examples are

VCoulomb(x) = − C

|x|
,

Vconfining(x) = |x|2n, n = 1, 2, ...

To construct the functional integral representation of e−tH we introduce
some probabilistic notation which was already mentioned in Section 1. Let{
AE(f)

}
f∈⊕3L2(R3+1)

, denote the Gaussian random process labeled by f ∈
⊕3L2(R3+1) on some probability space (QE ,ΣE , µE) with mean zero and covariance
given by

EµE [AE(f)AE(g)] = q(f, g),

where q(·, ·) is defined in (1.7). We define the isometry js : L2(R3)→ L2(R3+1) by

ĵsf(k, k0) := (e−ik0t/
√
π)
√
ω(k)/(ω(k)2 + |k0|2)f̂(k)

which satisfies (1.9). The crucial identity linking the Pauli-Fierz model to Gibbs
measures is

Proposition 3.1.
(1) For arbitrary f ∈ L2(R3) with f ≥ 0 but f 6≡ 0, it follows that

(ϕg, f ⊗ Ω)H > 0 (3.7)

(2) Let f1, ..., fn−1 ∈ L∞(R3). For −T = t0 ≤ t1 ≤ · · · ≤ tn = T , the Euclidean
n-point green function is expressed as(
ψ ⊗ Ω, e−(t1−t0)H(f1 ⊗ 1) · · · (fn−1 ⊗ 1)e−(tn−tn−1)Hψ ⊗ Ω

)
H

(ψ ⊗ Ω, e−2THψ ⊗ Ω)H
= EµVT

n−1∏
j=1

fj(Btj )


Proof. See 18 for (1). In 15,20 it is established that

(ψ ⊗ Ω, e−(t1−t0)H(f1 ⊗ 1) · · · (fn−1 ⊗ 1)e−(tn−tn−1)Hψ ⊗ 1)H

= EW

ψ(B−T )ψ(BT )

n−1∏
j=1

fj(Btj )

 e−
R T
−T V (Bs)dsEµE

[
e−iα

R T
−T A

E
s ·dBs

] ,
where

AEs,µ := AE
(
⊕3
ν=1 δνµjsλ(· −Bs)

)
, µ = 1, 2, 3,

and λ = (ϕ̂/
√
ω)∨. Since ZT = (ψ ⊗ Ω, e−2THψ ⊗ Ω)H and

e−α
2ST = EG [eiαJT ] = EµT

[
e−iα

R T
−T A

E
s ·dBs

]
,

the lemma follows.
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Remark 3.1. Formally, (2) of Proposition 3.1 can be deduced from using the
Feynman-Kac-Itô formula 9,14,15,20,23,25 but note that integrand AEs depends on
time s explicitly; although this formula would give the Stratonovitch integral∫ T
S
AEs ◦dBs =

∫ T
S
AEs ·dBs− 1

2

∫ T
S
∇·AEs ds instead of the Itô integral

∫ T
S
AEs ·dBs

above, the Coulomb gauge (3.3) allows us to use the Itô integral instead, since
∇x · AE(λ(· − x)) = 0.

By (3.7), we know that the the ground state, ϕg, of H is unique if it exists and,
in particular, (ϕg, f ⊗ Ω)H 6= 0 holds, then we can define the sequence converging
to the normalized ground state ϕg by

ϕtg := ‖e−tH(f ⊗ Ω)‖−1
H e−tH(f ⊗ Ω).

Actually, by virtue of (3.7), we see that

ϕg = s− lim
t→∞

ϕtg. (3.8)

One immediate and useful corollary of (3.8) and Proposition 3.1 is as follows.

Corollary 3.1. Let ρ, ρ1, ρ2 ∈ L∞(R3). Then for t > s,

lim
T→∞

EµVT [ρ(B0)] = (ϕg, (ρ⊗ 1)ϕg)H,

lim
T→∞

EµVT [ρ1(Bs)ρ2(Bt)] = (ϕg, (ρ1 ⊗ 1)e−(t−s)H(ρ2 ⊗ 1)ϕg)He(t−s)E(H),

where E(H) = inf σ(H) denotes the ground stare energy of H.

In order to prove the main theorem, we show a more general formula than (2)
of Proposition 3.1. Let

A(f̂) =
1√
2

3∑
µ=1

∑
j=1,2

∫
eµ(k, j)

(
f̂µ(k)a∗(k, j) + f̂µ(−k)a(k, j)

)
dk.

Define the isometry Jt : F → L2(QE) by the second quantization of js, namely
Jt :A(f̂1) · · ·A(f̂n): Ω =:AE(jtf) · · · AE(jtfn): and JtΩ = 1, where :ξ: denotes the
Wick product of ξ.

Proposition 3.2. Let F,G ∈ H and f1, ..., fn−1 ∈ L∞(R3). For S = t0 ≤ t1 ≤
· · · ≤ tn = T ,

(F, e−(t1−t0)H(f1 ⊗ 1) · · · (fn−1 ⊗ 1)e−(tn−tn−1)HG)H

= EW

n−1∏
j=1

fj(Btj )

 e−
R T
S
V (Bs)dsEµE

[
JSF (BS)e−iα

R T
S
AEs ·dBsJTG(BT )

] .
Proof. See 15,20.

We are now ready to state and prove the main theorem of this paper.

Theorem 3.1. Suppose that Assumption (GS) and (2.7). Then there exists a sub-
sequence T ′ such that the weak limit of µVT ′ as T ′ →∞ exists.
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Proof. By the Prohorov theorem, it is enough to show two facts:
(1) lim

Λ→∞
sup
T
µVT (|B0|2 > Λ) = 0,

(2) for arbitrary ε > 0, lim
δ↓0

sup
T
µVT

 max
|t−s|<δ
−T≤s,t≤T

|Bt −Bs| > ε

 = 0.

Using Corollary 3.1 we have

µVT (|B0|2 > Λ) = (ϕTg , (χ{|x|2>Λ} ⊗ 1)ϕTg )H,

where χD denotes the characteristic function on D. Using the fact that ϕTg → ϕg

strongly as T →∞ and ‖χ{|x|2>Λ}ϕg‖H → 0 as Λ→∞, we get (1). For (2), assume
that |t− s| is sufficiently small. It is enough to show that

EµVT [|Bt −Bs|2n] ≤ |t− s|nD (3.9)

with some constant D independent of T . To apply Propositions 3.1 and 3.2, we have
to truncate the process Bµt as

(Bµt )a(w) :=


−a, Bµt (w) ≤ −a,

Bµt (w), |Bµt (w)| < a,

a, Bµt (w) ≥ a.
and define the truncated multiplication operator hµa , µ = 1, 2, 3, by

hµaf(x) =


−af(x), xµ ≤ −a,
xµf(x), |xµ| < a,

af(x), xµ ≥ a.
Note that

|ha(x)− ha(y)| ≤ |x− y| x, y ∈ R3, (3.10)

for all a ≥ 0. Since hµa is bounded, we can see that by Proposition (3.1),

EµVT
[
|(Bt)a − (Bs)a|2n

]
=

3∑
ν=1

2n∑
k=0

[
2n
k

]
(−1)kEµVT

[
(Bνs )ka(Bνt )2n−k

a

]
=

3∑
ν=1

2n∑
k=0

[
2n
k

]
(−1)k

(
(hνa ⊗ 1)k e−sHϕTg , e

−(t−s)H (hνa ⊗ 1)2n−k
e+tHϕTg

)
H
,

where e+tHϕTg is well defined for t < T . From Proposition (3.2) it follows that

=
3∑

ν=1

2n∑
k=0

[
2n
k

]
(−1)kEW

[ (
hνa(B0)

)k (
hνa(Bt−s)

)2n−k
e−

R t−s
0 V (Bs)ds

× EµE
[
J0e−sHϕTg (B0)e−iα

R T
−T A

E
s ·dBsJt−se+tHϕTg (Bt−s)

]]
= EW

[
|ha(B0)− ha(Bt−s)|2ne−

R t−s
0 V (Bs)ds

× EµE
[
J0e−sHϕTg (B0)e−iα

R T
−T A

E
s ·dBsJt−se+tHϕTg (Bt−s)

]]



February 27, 2009 9:30 WSPC/INSTRUCTION FILE rev-betzhiros0723

Gibbs measures with double stochastic integrals 15

By (3.10) and the Schwartz inequality we can estimate above as

EµVT
[
|(Bt)a − (Bs)a|2n

]
≤ EW

[
|B0 −Bt−s|4n‖e+tHϕTg (Bt−s)‖2H

]1/2
×EW

[
e−2

R t−s
0 V (Bs)ds‖e−sHϕTg ‖2H

]1/2
≤ CV ‖e+tHϕTg ‖H‖e−sHϕTg ‖HEP 0,0

W

[
|B0 −Bt−s|4n

]1/2
,

where CV := supx∈R3 EPxW [e−2
R t−s
0 V (Br)dr] <∞. Finally using the fact

EP 0,0
W

[|Bs −Bt|4n] = C4n|t− s|2n

with some constant C4n, we have

EµVT
[
|(Bt)a − (Bs)a|2n

]
≤ |t− s|n

√
C4nCV ‖e+tHϕTg ‖H‖e−sHϕTg ‖H.

Since ϕTg → ϕg strongly as T →∞, we have

‖e−sHϕTg ‖ → e−sE(H)‖ϕg‖, ‖e+tHϕTg ‖ → etE(H)‖ϕg‖

as T → ∞. Then D := supT
√
C4nCV ‖e−sHϕTg ‖H‖e+tHϕTg ‖H < ∞ follows. Then

we conclude that

EµVT [|(Bt)a − (Bs)a|2n] ≤ D|t− s|n

uniformly in a. Since the left-hand side above monotonously increasing as a ↑ ∞,
the monotone convergence theorem yields (3.9). Thus (2) follows.

Definition 3.2. Let V ∈ K and suppose Assumption (GS). Then the weak limit
of the measure νVT ′ on X is denoted by νV∞.

Using the functional integration of e−tH , it can be show the Carmona type
estimate 8, namely ϕg is spatially localized as follows: if V (x) = |x|2n, then
‖ϕg(x)‖F ≤ C1e

−C2|x|n+1
, and if V (x) = −1/|x|, then ‖ϕg(x)‖ ≤ C3e

−C4|x| for
some constants Cj . We have a corollary.

Corollary 3.2. Assume that ‖ϕg(x)‖F ≤ Ce−c|x|
γ

for some positive constants C, c
and γ. Then ∫

X

ec|B0|γνV∞(dw) <∞. (3.11)

Proof. Let ρm(x) =
{
ec|x|

γ

, ec|x|
γ ≤ m,

m, ec|x|
γ

> m.
Then (ϕg, (ρm⊗1)ϕg)H =

∫
X
ρm(B0)µV∞

follows. By the limiting arguments as m→∞, we have (3.11).
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3.2. Concluding remarks

In this paper we have given one example where we can both make sense of the dou-
ble stochastic integral and obtain the infinite volume Gibbs measure by coupling
Brownian motion to an auxiliary Gaussian measure. The drawback of this partic-
ular example is that the Gaussian space is infinite dimensional, and the associated
Hamiltonian along with the existence of its ground state is non-trivial, and so we
have to rely on a lot of technology. It is conceivable that the same method should
work in a much easier case, namely when the auxiliary Gaussian process is just the
stationary one-dimensional (or n-dimensional) Ornstein-Uhlenbeck process. How-
ever, when trying this approach one notices that on the way we used a lot of special
features of the Pauli-Fierz model and its associated functional integral: for exam-
ple the translation invariance of the coupling ensures that the term arising from
the diagonal does not depend on Bt, which is a feature that cannot be reproduced
in finite volume. So while we believe that a theory of double stochastic integrals
originating from the variance of a Gaussian process could be developed, it is not
altogether straightforward and we leave it as a future project.
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21. J. Lőrinczi and R. A. Minlos, Gibbs measures for Brownian paths under the effect of
an external and a small pair potential, J. Stat. Phys. 105 (2001), 605-647

22. E. Nelson, Schrödinger particles interacting with a quantized scalar field, Proceedings
of a conference on analysis in function space, Ed. W. T. Martin, I. Segal, MIT Press,
Cambridge 1964, p. 87.

23. B. Simon: Schrödinger semigroups, Bull. AMS 7 (1982), 447-526.
24. H. Spohn, Effective mass of the polaron: A functional integral approach, Ann. Phys.

175 (1987), 278–318.
25. H. Spohn, Dynamics of Charged Particles and their Radiation Field, Cambridge Uni-

versity Press, 2004.
26. S. R. S. Varadhan, Appendix to K. Szymanzik, Euclidean quantum field theory, In R.

Jost (ed.), Local quantum theory, 1969.
27. J. Westwater, On Edward’s model for long polymer chains, Commun. Math. Phys. 72

(1980), 131-174.


