

Slides from talk given July 19th, 2011 at BIFD 2011, Barcelona

Regimes of sitional Pipe Flow (From the work of many)

Regimes of sitional Pipe Flow

(From the work of many)

Two Fields:

Turbulent fluctuations

DNS of puff

Hof, Lemoult

 $x \longrightarrow$

Two Fields:

Two Fields:

Physical Ideas

(Laufer (60's), Wygnanski et al. (70's), Sreenivasan et al. (70's -80's), Hof et al., Eckhardt et al (00's))

- Sharp upstream front (turbulent energy extracted from laminar shear)
- Reverse transition on downstream side of puff (modified shear)cannot sustain turbulence)
- No reverse transition on downstream side of slug
- Slow recovery following excitation

(mean shear recovers slowly)

- State of recovery controls susceptibility to excitation
- Turbulence is locally transient (chaotic saddle)

$$\partial_t q + U \partial_x q = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right) + \partial_{xx} q$$

$$\partial_t u + U \partial_x u = \epsilon_1 (1 - u) - \epsilon_2 u q - \partial_x u$$

Reaction-Advection-Diffusion Equation

$$\partial_t q + U \partial_x q = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right) + \partial_{xx} q$$

$$\partial_t u + U \partial_x u = \epsilon_1 (1 - u) - \epsilon_2 u q - \partial_x u$$

Reaction-Advection-Diffusion Equation

Step-by-step Explanation

$$\partial_t q + U \partial_x q = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right) + \partial_{xx} q$$

 $\partial_t u + U \partial_x u = \epsilon_1 (1 - u) - \epsilon_2 u q - \partial_x u$

First consider model without spatial derivatives.

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

The model reduces to ODEs for the local dynamics

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

The model reduces to ODEs for the local dynamics

This is the core of the model. It describe how turbulence and mean shear behave locally in space.

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Consider first the *u*-dynamics (mean shear)

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Then the q-dynamics (turbulence)

Cubic q equation, so 3 branches:

- upper (stable)
- lower (unstable)
- laminar (stable)

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Parameter r "Reynolds number"

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Parameter r "Reynolds number"

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Parameter r "Reynolds number"

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Blue and red curves intersect at fixed points: $\dot{u} = \dot{q} = 0$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Blue and red curves intersect at fixed points: $\dot{u} = \dot{q} = 0$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$

$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Blue and red curves intersect at fixed points: $\dot{u} = \dot{q} = 0$

Beyond critical value r_c two more fixed points appear.

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

Blue and red curves intersect at fixed points: $\dot{u} = \dot{q} = 0$

Beyond critical value two more fixed points appear.

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\dot{q} = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right)$$
$$\dot{u} = \epsilon_1 (1 - u) - \epsilon_2 u q$$

$$\partial_t q + U \partial_x q = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right) + \partial_{xx} q$$

$$\partial_t u + U \partial_x u = \epsilon_1 (1 - u) - \epsilon_2 u q - \partial_x u$$

Returning to the full model, consider the role of the spatial derivatives

$$\partial_t q + U \partial_x q = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right) + \partial_{xx} q$$
$$\partial_t u + U \partial_x u = \epsilon_1 (1 - u) - \epsilon_2 u q - \partial_x u$$

Downstream advection by mean flow (parameter *U*)
$$\partial_t q + U \partial_x q = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right) + \partial_{xx} q$$

$$\partial_t u + U \partial_x u = \epsilon_1 (1 - u) - \epsilon_2 u q - \partial_x u$$

Diffusive coupling of the turbulent field (turbulence excites adjacent laminar flow)

$$\partial_t q + U \partial_x q = q \left(u + r - 1 - (r + \delta)(q - 1)^2 \right) + \partial_{xx} q$$

$$\partial_t u + U \partial_x u = \epsilon_1 (1 - u) - \epsilon_2 u q - \partial_x u$$

Left-Right symmetry breaking (other forms possible, but this is simplest)

U

q

U

Homework 1) verify that the PDE model has all physical properties, except last. 2) show puffs correspond to excitability and slugs to bistability.

PDE model captures essence of puff-slug transition, but turbulence is too simplistic. Need Complex and Locally Transient Turbulence. PDE model captures essence of puff-slug transition, but turbulence is too simplistic. Need Complex and Locally Transient Turbulence.

Model Turbulence with Chaotic Map

Model Turbulence with Noise

Map Model

(c.f. Chate, Manneville et al., Vollmer et al.)

Simulations of Map Model

Comparison with Reality

Comparison with Reality Model Reality PDE, MAP, or SPDE experiment or (replotted from direct numerical simulation published and to-be-(various sources) published sources)

Direct Numerical Simulation

Barkley, Phys. Rev. E 84, 016309 (2011)

PDE Model

Barkley, Phys. Rev. E 84, 016309 (2011)

Direct Numerical Simulation

Barkley, Phys. Rev. E 84, 016309 (2011)

MAP Model (chaos)

Barkley, Phys. Rev. E 84, 016309 (2011)

Direct Numerical Simulation

Barkley, Phys. Rev. E 84, 016309 (2011)

SPDE Model (noise)

Barkley, ETC13 (to appear)

Unpredictable Decay of Turbulence

Decay is Memoryless

Giving rise to exponential lifetime distributions

(co-moving frame, log scale)

Puff Splitting is Memoryless Giving rise to exponential lifetime distributions

Critical Point

Decay and splitting lifetimes cross giving rise to a critical point

Space-time plots of Energy (co-moving frame, log scale)

(Colour online) Genesis of a slug from the edge state at Re = 3000. (a) E_{roll} (b) E_{streak} (scales as in figure 12).

You get the point by now

You get the point by now

These models do not capture:

KFractal Basin Boundaries

Sustained Model Turbulence

Sustained Model Turbulence

2 Types of Slugs: Weak & Strong

Fractal Basin Boundary

Not enough variables in current model to (naturally) get a fractal basin boundary

Extension to Other Shear Flows

Limited model of plane Couette flow

Localize and Spatially Periodic Turbulent-Laminar Patterns (See ETC13 Proceedings)

Thanks:

PMMH (Physiqe et Mecanique des Milieux Heterogenes) L. Tuckerman (PMMH), Dave Moxey (Warwick), K. Avila, M. Avila, A. de Lozar, B. Hof (Gottingen)

Other Approaches:

C. Marschler and J. Vollmer (Gottingen) M. Sipos, N. Goldenfeld (UIUC) Allhoff, Eckhardt (Marburg) Alexander Morozov (Edinburgh)

Available Publications (see my web page):

- Moxey and Barkley, PNAS **107**, 8091 (2010)
- Avila, et al, Science **333**, 192 (2011)
- Barkley, Phys. Rev. E 84, 016309 (2011)
- Barkley, proceedings of ETC13
- EZ-Pipe v0.3
- This talk