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Figure 5.3: Space-time figures demonstrating a relationship between directed percolation and pipe flow. In each
case, the initial condition is an isolated puff, and Re is instantaneously set to 2,700 (top) and 1,700 (bottom).
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Figure 5.3: Space-time figures demonstrating a relationship between directed percolation and pipe flow. In each
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Physical Ideas
( Laufer (60’s),  Wygnanski et al. (70’s), Sreenivasan et al. (70‘s -80’s), Hof et al., Eckhardt et al (00’s)   )
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• Sharp upstream front
(turbulent energy extracted from 
laminar shear) 

• Reverse transition on 
downstream side of puff
(modified shear cannot sustain turbulence) 
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PDE Model
∂tq + U∂xq = q

�
u+ r − 1− (r + δ)(q − 1)2

�
+ ∂xxq

∂tu+ U∂xu = �1(1− u)− �2uq − ∂xu

Reaction-Advection-Diffusion Equation
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PDE Model
∂tq + U∂xq = q

�
u+ r − 1− (r + δ)(q − 1)2

�
+ ∂xxq

∂tu+ U∂xu = �1(1− u)− �2uq − ∂xu

First consider model without spatial derivatives.



ODEs
q̇ = q

�
u+ r − 1− (r + δ)(q − 1)2

�

u̇ = �1(1− u)− �2uq

The model reduces to ODEs for the local dynamics
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The model reduces to ODEs for the local dynamics

regime (Re ≲ 3000) irregular sequences of tur-
bulent and laminar phases are created (25). How-
ever, at lower Reynolds numbers (Re ≈ 2000)
sufficiently strong continuous perturbations cause
plug-shaped velocity profiles that are unable to
sustain turbulence (26) and lead to relaminariza-
tion. Hence, for large disturbance levels contin-
uous perturbations may fail to trigger turbulence
at low Reynolds numbers. To avoid such prob-
lems, in the present study an impulsive perturba-
tion was chosen, consisting of a water jet injected
through a circular hole of 0.2D in the pipe wall
250D downstream of the inlet. The duration of
the perturbation was adjusted for each set of mea-
surements (8 to 20 ms, corresponding to advec-
tion of approximately 1 to 2.5D at the mean flow

velocity), ensuring that only one single puff was
generated from each perturbation. Different am-
plitudes were tested, and the results were found to
be independent of the perturbation strength. In
relation to the mass flow in the pipe, typical in-
jection rates were about 2.5%. To establish that
results were independent of the perturbation, ad-
ditional measurements were carried out by using
an obstacle to impulsively disturb the flow. A
thin wire (0.8 mm in diameter and 10 mm in
length) was inserted into the pipe 150D from the
inlet. The wire was held against the pipe wall and
aligned with the pipe axis by using a small mag-
net attached to the outside of the pipe. When
against the wall, the disturbance created by the
wire is too small to trigger turbulence for the Re

investigated.When the wire wasmoved azimuth-
ally along the pipe wall by approximately 0.5 to
1mm in a time interval of about 0.1 s (correspond-
ing to advection of about 10D, based on themean
flow speed), a single turbulent puff was triggered.

After triggering disturbances, the flow was
monitored by two downstream pressure sensors
(fig. S1). The first one, located 300D from the
inlet, confirmed that each perturbation results in
the creation of a single puff. The second one,
which can be positioned at various distances L
from the perturbation, was used to distinguish
cases in which multiple puffs arrive (Fig. 1A)
from those in which only the single puff arrives
(Fig. 1B) or no puff arrives. This is a direct mea-
surement of whether the turbulent fraction in the
flow has increased, remained constant, or de-
creased during downstream propagation.

Simulations. To complement experiments
and gain insights into the underlying spread of
turbulence, we have carried out extensive nu-
merical simulations. Two independent numerical
codes have been used; one is a spectral-element
Fourier code (27) that solves the Navier-Stokes
equations in Cartesian coordinates (DNS1), and
the other is a hybrid spectral finite-difference
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Fig. 1. Puff splitting in experiment and numerical simulation. (A and B) Pressure signals from the ex-
periment are used to distinguish the case of (A) a split puff from (B) a single puff. A splitting is registered if
the signal has peaks separated by 20D or more and if between peaks the signal drops by at least 30%. The
flow between the two puffs does not recover to the fully developed laminar profile. (C) Space-time
diagram from numerical simulation using the hybrid spectral finite-difference code (DNS2) at Re = 2300
showing the splitting process. The square of the cross-sectional average of streamwise vorticity is plotted
on a logarithmic scale in a co-moving reference frame (speed Up = 0.929U) and 100D of the 150D
simulation domain are shown. The upstream edge of a puff is relatively well defined, whereas the
downstream edge is fuzzy and fluctuates. After a splitting, the two puffs propagate downstream, separated
by an approximately constant distance, and generate a twin-peaked pressure signal (A). (D) Visualization
of puff splitting in a cross-sectional (x, y) plane, with red as positive and blue as negative streamwise
vorticity on a linear scale, from the same run as (C) and showing 75D. At t = 0, Re is impulsively changed
from 2200 to 2300. Snapshots (from bottom to top) were taken at t = 500, 990, 1010, 1110, and 1600.
Once the puff extends far enough and the vorticity decays in its central section, a new puff emerges.
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Fig. 2. Spreading of turbulence in numerical sim-
ulation. Space-time diagram at (A) Re = 2300 and
(B) Re = 2450 from numerical simulation (DNS2),
showing how turbulence proliferates starting from
a localized puff at Re = 2200 as initial condition.
The cross-sectional average of streamwise vorticity
squared is plotted on a logarithmic scale in a co-
moving reference frame at speed 0.947U and 0.94U,
respectively. At Re = 2300, the expansion process is
dominated by discrete steps, corresponding to puff
splits, whereas at Re = 2450, expansion is more
smooth, more rapid, and individual puffs are no
longer easily identified.
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local region

This is the core of the model.
It describe how 

turbulence and mean shear behave locally in space.
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ODEs
q̇ = q

�
u+ r − 1− (r + δ)(q − 1)2

�

u̇ = �1(1− u)− �2uq

Consider first the u-dynamics (mean shear)
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u̇ > 0

u̇ < 0
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Hagen-Poiseuille
flow
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q̇ > 0

q̇ < 0

Then the q-dynamics (turbulence)

Cubic q equation,
so 3 branches:
• upper (stable)
• lower (unstable)
• laminar (stable) 
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∂tq + U∂xq = q
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u+ r − 1− (r + δ)(q − 1)2
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∂tu+ U∂xu = �1(1− u)− �2uq − ∂xu

Returning to the full model, 
consider the role of the spatial derivatives
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∂tq + U∂xq = q

�
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∂tu+ U∂xu = �1(1− u)− �2uq − ∂xu

Downstream advection
by mean flow
(parameter U)

U
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Diffusive coupling of
the turbulent field

(turbulence excites
adjacent laminar flow)
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(other forms possible, but this 

is simplest)



PDE Model
∂tq + U∂xq = q

�
u+ r − 1− (r + δ)(q − 1)2

�
+ ∂xxq

∂tu+ U∂xu = �1(1− u)− �2uq − ∂xu

Puffs corresponds to excitability
2

occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-

q

q

u

u u

x x

(d)(c)

(a)

qnull

unull unull
qnull

(b)
qnull
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FIG. 2. (Color online) The distinction between puffs and slugs seen
as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is

qn+1
i+1 = F (qni + d(qni−1 − 2qni + qni+1), u

n
i ), (3)

un+1
i+1 = un

i + �1(1− un
i )− �2u

n
i q

n
i − c(un

i − un
i−1), (4)

where qni and un
i denote values at spatial location i and time

n. This model is essentially a discrete version of Eqs. (1)-(2),

r < rc
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�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
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u+ r − 1− (r + δ)(q − 1)2
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+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-

q

q

u

u u

x x

(d)(c)

(a)

qnull

unull unull
qnull

(b)
qnull

qnull

FIG. 2. (Color online) The distinction between puffs and slugs seen
as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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ble fixed point corresponds to stable turbulence. Solution snapshots
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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FIG. 2. (Color online) The distinction between puffs and slugs seen
as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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ble fixed point corresponds to stable turbulence. Solution snapshots
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
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ble fixed point corresponds to stable turbulence. Solution snapshots
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-

q

q

u

u u

x x

(d)(c)

(a)

qnull

unull unull
qnull

(b)
qnull

qnull

FIG. 2. (Color online) The distinction between puffs and slugs seen
as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
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ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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as the difference between excitability and bistablilty in Eqs. (1)-(2).
Phase planes show nullclines at (a) r = 0.7 and (b) r = 1. The fixed
point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
show (c) a puff at r = 0.7 and (d) a slug at r = 1. These solutions
are plotted in the phase planes with arrows indicating increasing x.

tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is
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occurs [7, 16, 17, 19]. New puffs are spontaneously gener-
ated downstream from existing ones and the resulting pairs
move downstream with approximately fixed separation. Fur-
ther splittings will occur and interactions will lead asymptoti-
cally to a highly intermittent mixture of turbulent and laminar
flow [5, 7]. At yet higher Re, turbulence is no longer confined
to localized patches, but spreads aggressively in so-called slug
flow [6, 17], as illustrated in Fig. 1(c). The asymptotic state is
uniform, featureless turbulence throughout the pipe [7].

Models for these dynamics will be based on the following
known physical features. At the upstream (left in Fig. 1) edge
of turbulent patches, laminar flow abruptly becomes turbulent.
Energy from the laminar shear is rapidly converted into turbu-
lent motion and this results in a rapid change to the mean shear
profile [6, 26]. In the case of puffs, the turbulent profile is not
able to sustain turbulence and thus there is a reverse transi-
tion [6, 27] from turbulent to laminar flow on the downstream
side of a puff. In the case of slugs, the turbulent shear profile
can sustain turbulence indefinitely; there is no reverse transi-
tion and slugs grow to arbitrary streamwise length [6, 17]. On
the downstream side of turbulent patches the mean shear pro-
file recovers slowly [27], seen in the behavior of u in Fig. 1.
Crucially, the degree of recovery dictates how susceptible the
flow is to re-excitation into turbulence [26].

These are the characteristics of excitable and bistable me-
dia [28, 29]. In fact the puff in Fig. 1(a) bears a close resem-
blance to an action potential in a nerve axon [30]. Linearly
stable parabolic flow is the excitable rest state, turbulence is
the excited state, and the mean shear is the recovery variable
controlling the threshold for excitation. Thus, I propose to
model pipe flow as a generic excitable and bistable medium
incorporating the minimum requisite features of pipe turbu-
lence. The models are expressed in variables q and u depend-
ing on distance along the pipe.

Consider first the continuous model

qt + Uqx = q
�
u+ r − 1− (r + δ)(q − 1)2

�
+ qxx, (1)

ut + Uux = �1(1− u)− �2uq − ux, (2)

where r plays the role of Re. U accounts for downstream
advection by the mean velocity, and is otherwise dynamically
irrelevant since it can be removed by a change of reference
frame. The model includes minimum derivatives, qxx and ux,
needed for turbulent regions to excite adjacent laminar ones
and for left-right symmetry breaking.

The core of the model is seen in the q-u phase plane in
Fig. 2. The trajectories are organized by the nullclines: curve
where u̇ = 0 and q̇ = 0 for the local dynamics (qxx = qx =
ux = 0). For all r the nullclines intersect in a stable, but ex-
citable, fixed point corresponding to laminar parabolic flow.
The u dynamics with �2 > �1 captures in the simplest way
the behavior of the mean shear. In the absence of turbulence
(q = 0), u relaxes to u = 1 at rate �1, while in response to
turbulence (q > 0), u decreases at a faster rate dominated by
�2. Values �1 = 0.04 and �2 = 0.2 give reasonable agree-
ment with pipe flow. (See the Appendix Sec. 1 a.) The q-
nullcline consists of q = 0 (turbulence is not spontaneously
generated from laminar flow) together with a parabolic curve
whose nose varies with r, while maintaining a fixed intersec-
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point (1, 0) corresponds to parabolic flow. In (b) the additional sta-
ble fixed point corresponds to stable turbulence. Solution snapshots
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tion with q = 0 at u = 1+δ, (δ = 0.1 is used here). The upper
branch is attractive, while the lower branch is repelling and
sets the nonlinear stability threshold for laminar flow. If lam-
inar flow is perturbed beyond the threshold (which decreases
with r like r−1), q is nonlinearly amplified and u decreases in
response.

The (excitable) puff regime occurs for r < rc � �2/(�1 +
�2), Figs. 2(a) and (c). The upstream side of a puff is a trig-
ger front [28] where abrupt laminar to turbulent transition
takes place. However, turbulence cannot be maintained lo-
cally following the drop in the mean shear. The system relam-
inarizes (reverse transition) on the downstream side in a phase
front [28] whose speed is set by the upstream front. Following
relaminarization, u relaxes and laminar flow regains suscep-
tibility to turbulent perturbations. The slug regime occurs for
r > rc, Figs. 2(b) and (d). The nullclines intersect in addi-
tional fixed points. The system is bistable and turbulence can
be maintained indefinitely in the presence of modified shear.
Both the upstream and downstream sides are trigger fronts,
moving at different speeds, giving rise to an expansion of tur-
bulence. A full analysis will be presented elsewhere.

While Eqs. (1)-(2) capture the basic properties of puffs and
slugs, the turbulence model is too simplistic to show puff
decay and puff splitting. Evidence suggests that pipe turbu-
lence is locally a chaotic repeller [31]. Hence a more realistic
model, within the two-variable excitability setting, is obtained
by replacing the upper turbulent branches in Fig. 2 with a
wedged-shaped region of transient chaos, illustrated in Fig. 3.
Outside this region q decays monotonically. The model is

qn+1
i+1 = F (qni + d(qni−1 − 2qni + qni+1), u

n
i ), (3)

un+1
i+1 = un

i + �1(1− un
i )− �2u

n
i q

n
i − c(un

i − un
i−1), (4)

where qni and un
i denote values at spatial location i and time

n. This model is essentially a discrete version of Eqs. (1)-(2),

r > rc

Slugs corresponds to bistability

sustained 
turbulence

expands

Homework
1) verify that the PDE model has all 
physical properties, except last.
2) show puffs correspond to 
excitability and slugs to bistability.



PDE model captures essence of 
puff-slug transition, 

but turbulence is too simplistic.
Need Complex and Locally 

Transient Turbulence. 



PDE model captures essence of 
puff-slug transition, 

but turbulence is too simplistic.
Need Complex and Locally 

Transient Turbulence. 

Model Turbulence 
with Chaotic Map

Model Turbulence 
with Noise

SO



Map Model

3

q

u

transient
chaos

R

(a)

f(q)

qα(u,R)

(b)

FIG. 3. (Color online) Illustration of the discrete model. (a) Local
dynamics in the u-q phase plane. Within a wedge-shaped region q
undergoes transient chaos, while outside it decays monotonically to
q = 0. The region varies with R as indicated. (b) Map used to
produce transient chaos. Parameter α (which depends on u and R),
is the lower boundary separating monotonic and chaotic dynamics.

except with chaotic q dynamics generated by the map F .
The map F is based on models of chaotic repellers in shear

flows [23, 32]. Consider the tent map f given by

f(q) =






γq if q < Q1

2q − α if Q1 ≤ q < 1

4 + β − α− (2 + β)q if 1 ≤ q < Q2

γQ1 if Q2 ≤ q

(5)

with Q1 = α/(2− γ) and Q2 = (4+β−α− γQ1)/(2+β).
Parameter α marks the lower boundary separating chaotic and
monotonic dynamics, Fig. 3(b), while γ sets the decay rate to
the fixed point q = 0. For β > 0 (β < 0) the map generates
transient (persistent) chaos within the tent region. The map
is incorporated into the pipe model by having the threshold α
depend on u as well as on a control parameter R, via

α = 2000(1− 0.8u)R−1. (6)

The factor (1 − 0.8u) generates the desired wedged-shaped
region, while 2000 sets the scale of R to that of Re. Finally,
the map F is given by k iterates of f , i.e. F = fk; with k = 2
used here. (See the Appendix Sec. 1 b.) This has the effect of
increasing the Lyapunov exponent within the chaotic region.

The only important new parameter introduced in the dis-
crete model is β since it quantifies a new effect – spontaneous
decay of local turbulence for β > 0. Suitable values for others
are: �1 = 0.04 and �2 = 0.2 as before, γ = 0.95, c = 0.45 and
d = 0.15. (See the Appendix Sec. 1 b.) As shown in Fig. 1,
for β = 0.4 the model shows puffs, puff splitting, and slugs
remarkably like those from full DNS. The model parameter R
nearly corresponds to Reynolds number Re.

While positive β is ultimately of interest, to better connect
the two models consider first β negative, e.g. β = −0.4. A
transition from puffs to slugs occurs as R increases and the
wedge of chaos crosses the u-nullcline. One finds a noisy ver-
sion of the continuous model in Fig. 2. (See the Appendix
Fig. 8.) If splittings of turbulent patches occur, they are ex-
ceedingly rare. At β ≈ 0, (including even β = −0.1), chaotic
fluctuations in q cause occasional splitting of expanding tur-
bulence. Puffs at lower R are clearly metastable, persisting for
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FIG. 4. (Color online) Three regimes of pipe flow from simulations
of the discrete model (3)-(6). Space-time diagrams (time upward)
illustrate (a) decaying puff at R = 1900, (b) puff splitting at R =
2200, and (c) slug formation from an edge state at R = 3000. For
ease of comparison with published work on pipe flow, solutions are
shown in a frame co-moving with structures. Turbulence intensity q
is plotted with q = 1.8 in white. In (a) and (b) the scale is linear with
q = 0 in black, while in (c) the scale is logarithmic with q ≤ 10−3 in
black. Dimension bars indicate space and time scales. The top space
scale applies also to (b).

long times before decaying. However, splitting and decay are
unrealistically infrequent if β is too small. Setting β >∼ 0.1
gives realistic behavior, as seen in Fig. 1 where β = 0.4.
(See also the Appendix Fig. 9.) Note that the splitting of ex-
panding turbulent patches and the decay of localized puffs are
caused by the same process - the collective escape from the
chaotic region of a sufficiently large streamwise interval to
bring about local relaminarization. This is precisely the sce-
nario described by extreme fluctuations [33]. In the case of
puffs, this results in puff decay, while in the case of splitting,
laminar gaps open whose sizes are then set by the recovery of
the slow u field.

Figure 4 further illustrates how well the discrete model
captures the three regimes of transitional pipe flow. Space-
time plots show puff decay, puff splitting, and slug flow. In
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with r like r−1
), q is nonlinearly amplified and u decreases in response.

The (excitable) puff regime occurs for r < rc � �2/(�1+�2), Figs. 2(a) and (c). The upstream

side of a puff is a trigger front (Tyson & Keener, 1988) where abrupt laminar to turbulent

transition takes place. However, turbulence cannot be maintained locally following the drop

in the mean shear. The system relaminarizes (reverse transition) on the downstream side in

a phase front (Tyson & Keener, 1988) whose speed is set by the upstream front. Following

relaminarization, u relaxes and laminar flow regains susceptibility to turbulent perturbations.

The slug regime occurs for r > rc, Figs. 2(b) and (d). The nullclines intersect in additional fixed

points. The system is bistable and turbulence can be maintained indefinitely in the presence of

modified shear. Both the upstream and downstream sides are trigger fronts, moving at different
speeds, giving rise to an expansion of turbulence.

2.3. SPDE model
While the PDE model captures the essence of the puff-slug transition, the model of turbulence

is too simple to capture features such as puff decay and puff splitting. In Barkley (2011), a

more realistic model was obtained by employing a tent map to mimic shear turbulence. The

map was designed to give a local phase-space structure similar to the nullcline picture for the

PDE seen in Fig. 2, with the exception that the upper turbulent branch is instead a region

of transient chaos. This approach was motivated by the view that shear turbulence is locally

a chaotic saddle (Eckhardt et al., 2007) and it naturally extends previous ideas of modeling

chaotic transients with maps (Chaté & Manneville, 1988; Bottin & Chaté, 1998; Vollmer et al.,
2009). The resulting model has the advantage of being deterministic, as is fluid flow, at least at

the level of the Navier-Stokes equations.

Here I consider an alternative approach and model turbulence as noise. This is at the other

extreme from the low-dimensional map. Here the dynamics is infinite dimensional and not

deterministic. The simplest approach is to apply noise to the q equation and assume it is

proportional to q itself. This leads to the following stochastic PDE (SPDE) model:

∂tq + U∂xq = q
�
u+ r − 1− (r + δ)(q − 1)

2
�
+ ∂xxq + σqη, (3)

∂tu+ U∂xu = �1(1− u)− �2uq − ∂xu. (4)

where η = η(x, t) is Gaussian noise. The parameter σ controls the noise strength. In reality,

shear turbulence has significant correlations on the scale of a puff, but these correlations are not
considered here and η(x, t) taken here to be space-time white.

A large advantage of modeling the effect of turbulence through a noise term is that one has a

direct connection to the simple PDE model. Moreover, analysis of the SPDE is likely to be easier

than analysis of the deterministic map model. The price is the loss of deterministic dynamics.

Figures 3 and 4 show the regimes of transitional pipe flow from simulations of Eqs. (3)-(4).

The deterministic parameters are as before: �1 = 0.04, �2 = 0.2, and δ = 0.1. The noise

strength is σ = 1.4. Figure 3 shows solution snapshots in terms of the model variable q and

u. Puffs, puff splitting, and slugs are found very similar to those observed in full DNS (see

Fig. 1) and in the deterministic map model (see Barkley, 2011). The dynamics of the different
regimes is seen in the space-time plots of Fig. 4. At low r, puffs are metastable. They persist

for long times before abruptly decaying. For intermediate r, puff splitting occurs. New puffs are
spontaneously nucleated downstream of existing puffs and the system evolves to an intermittent

mixture of turbulent and laminar phases. At larger r, slugs are observed which differ from the

deterministic PDE mainly in that they first occur at larger r and the upper branch is noisy

rather than constant. An investigation of the lifetime statistics of puff decay and puff splitting

in the SPDE is currently underway.

While all three regions shown in Figs. 3 and 4 strongly resemble their counterparts in full DNS

and experiment, the splitting regime is particularly significant and worthy of further comment.

Stochastic PDE (SPDE)

η is space-time white Gaussian noise

Barkley, ETC13 (to  appear)
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Summary of Models
PDE: Simple, yet contains most physical 
features. Captures essence of puff-slug 
transition.
Map: Deterministic, low-dimensional 
dynamics. Local turbulence explicitly 
chaotic saddle. Discrete space and time.
SPDE (Noise): Infinite-dimensional, but 
random dynamics. Connected to PDE. 
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Unpredictable Decay of Turbulence
At low Re turbulence is transient. 

Minute changes in initial conditions results in 
wildly different decay times.

The code uses Fourier modes in downstream and azimuthal
direction and Chebyshev polynomials in the radial direction,
and a projection method to eliminate the pressure. The simu-
lations on pipe segments presented in this section are carried
out with n Fourier modes in azimuthal and m Fourier modes
in downstream direction, where !n! /Nmax+ !m! /Zmax!1 with
Nmax=16 and Zmax increasing from 14 for the “short” pipe of
length 5D to Zmax=25 and Zmax=45 for the “medium” "L
=9D# and “long” "L=15D# pipes, respectively. Conse-
quently, we consider up to 33 Fourier modes in azimuthal
direction. In downstream direction up to 31 modes are con-
sidered for the short, 51 for the medium, and 91 for the
longest pipe. We use 49 Chebyshev polynomials for the ex-
pansion in the radial direction. This moderate resolution re-
sults from a compromise of accurate representation of the
dynamics and maximum simulation speed, required for good
statistics. The statistical data presented in this work is based
on following approximately 3500 trajectories which required
more than 60 CPU years on a 2.4 Ghz AMD Opteron pro-
cessor based Linux cluster.

A. Features of individual trajectories

Consider a perturbation of the laminar Hagen-Poiseuille
flow applied at time t=0. The evolution of the initial condi-
tion u!"t=0# can be followed in time until it decays or reaches
the maximum integration time in a simulation or leaves the
pipe in an experimental setup. Figure 1 shows the evolutions
of two sets of five different but similar initial conditions
each. As an indicator for the turbulent intensity, we take the
energy of the three-dimensional structures

E3D = $ %
m!0

&
Vol

v!n,m
2 dV'($&

Vol
4"1 − r2#2dV' , "5#

where v!n,m
2 denotes the "n ,m#-Fourier mode if the perturba-

tion field v! =u! −2"1−r2#e!z is decomposed into Fourier modes
in azimuthal "m# and axial "n# direction. The energy content
of the streamwise modulated Fourier modes is normalized by
the kinetic energy of the laminar profile. The energy stored in
the streamwise invariant mode is not taken into account since
without it a decay towards laminar flow can be detected
more reliably. A decay is first initiated by the reduction of
transverse fluctuations captured by the energy in streamwise
modulated Fourier modes. As a result, there are no longer
vortical structures feeding energy into streamwise fluctua-
tions. Consequently, large scale deformations of the laminar
parabolic profile such as those characterized by streamwise
invariant modes are slowly damped out. Thus, since E3D best
captures the initial step of a decay, it is a well suited indica-
tor for the turbulent intensity when studying lifetime statis-
tics.

Since a flow field only asymptotically reaches the laminar
profile exactly, “decay” is defined as reaching a situation
where perturbations of the laminar profile are so small that
the further evolution follows an exponential drop off. Any
perturbation is therefore characterized by a lifetime that
slightly depends on the chosen criterion to detect being close
to the laminar profile. Technically, one introduces a cutoff
threshold either on the kinetic energy stored in the deviation

from the laminar profile )*u! −2"1−r2#e!z*2dV, or on the ki-
netic energy "5# stored in streamwise invariant Fourier
modes only. The threshold on these energies is chosen such
that the further evolution can be described by the linearized
equations, so that the system cannot return to the turbulent
dynamics. The lifetime then is defined as the time it takes to
reach this target region around the laminar profile.

B. Ensemble dependence

Now consider an ensemble of several different but similar
perturbations. The collection of individual lifetimes can be
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7505002500
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FIG. 1. "Color online# Each panel shows the simulated evolution
of five similar but different initial disturbances each at Re=1900 in
a periodic pipe of length L=15D. Plotted is the kinetic energy of the
deviation from the laminar profile that is stored in the streamwise
varying Fourier modes, Eq. "5#. In the top panel "a# initial condi-
tions are constructed from a modulated Zikanov mode discussed in
the main text. The five initial conditions differ by less than 0.5% in
energy content. The perturbations first grow in energy and show an
overshoot before directly decaying towards laminar flow or settling
down to the turbulent state. They then suddenly decay without any
prior indication and the energy of the perturbation decays mono-
tonically. The chosen criterion for decay is based on the energy
threshold E3D"5#10−5. In the bottom panel "b#, initial conditions
are constructed by varying the energy content of a turbulent flow
field shown in Fig. 2 by less than 0.5%. Except for differences in
the short time behavior, the dynamics is quite similar to the one
observed for Zikanov-type initial conditions: the trajectory either
decays directly or settles down to the turbulent state from which it
spontaneously returns to laminar flow.
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Lifetime statistics in transitional pipe flow

Tobias M. Schneider1,* and Bruno Eckhardt1,†
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!Received 7 May 2008; published 23 October 2008"

Several experimental and numerical studies have shown that turbulent motions in circular pipe flow near
transitional Reynolds numbers may not persist forever, but may decay. We study the properties of these
decaying states within direct numerical simulations for Reynolds numbers up to 2200 and in pipes with lengths
equal to 5, 9, and 15 times the diameter. We show that the choice of the ensemble of initial conditions affects
the short time parts of lifetime distributions, but does not change the characteristic decay rate for long times.
Comparing lifetimes for pipes of different length we notice a linear increase in the characteristic lifetime with
length, which reproduces the experimental results when extrapolated to 30 diameters, the length of an equi-
librium turbulent puff at these Reynolds numbers.

DOI: 10.1103/PhysRevE.78.046310 PACS number!s": 47.27.Cn, 47.52.!j, 47.10.Fg, 05.45.Jn

I. INTRODUCTION

In several shear flows such as plane Poiseuille, plane Cou-
ette #1,2$, and also pipe flow #3–7$ turbulent dynamics is
observed for flow speeds where the laminar profile is still
stable against infinitesimal perturbations. In such a situation
a finite amplitude perturbation is required to drive the system
from laminar to turbulent flow #3,8$, and one might expect
that also for the converse process, returning from the turbu-
lent dynamics to the laminar one, a sufficiently large pertur-
bation on top of the turbulent dynamics should be required.
Several observations in direct numerical simulations and ex-
periments show, however, that turbulent motion returns to
the laminar flow suddenly and without any noticeable pre-
cursor or perturbation #9–12$. From the point of view of
nonlinear dynamics such a behavior suggests that the turbu-
lent state does not correspond to a closed off turbulent attrac-
tor but rather to an open turbulent chaotic saddle #9,11,13$.
One can then assign to each initial flow state a lifetime, i.e.,
the time it takes for this state to return to the laminar profile.
The lifetime is a valuable observable that has also been used
to extract information about states on the border between
laminar flow and turbulence #14,15$. We will here use it to
extract information about the turbulent dynamics itself,
thereby extending the work reported in Ref. #11$.

Experiment and simulations show that neighboring trajec-
tories can have vastly different lifetimes, so that the lifetime
is rather unpredictable and depends sensitively on the initial
perturbation, see, e.g., Refs. #10,11,16$. This strong sensitiv-
ity on initial conditions is consistent with observations on
other transiently chaotic systems and suggests that rather
than looking for the unpredictable behavior of individual tra-
jectories, it is better to look for more reliable and stable
properties derived by averaging over ensembles of initial
conditions. Prominent among such properties is the distribu-
tion of lifetimes, obtained from many runs with similar but
not identical initial conditions. The theoretical prediction for
a hyperbolic saddle is that the probability of decay is con-

stant in time and independent of when the flow was started,
giving for the distribution of lifetimes an exponential, as in
radioactive decay #17–19$. Other functional forms are pos-
sible as well !see, e.g., Refs. #20,21$", but for the most part
observations in transitional shear flows are compatible with
an exponential #1,11,22–25$.

An exponential distribution is characterized by a charac-
teristic decay rate or a characteristic lifetime " which is the
time interval over which the survival probability drops by
1 /e. How this lifetime varies with Reynolds number is cur-
rently under debate #22,26,27$. If " diverges at a finite Rey-
nolds number, there is a critical value Rec above which tur-
bulent flow does not relaminarize but persists forever. Such a
divergence would imply that the system undergoes a transi-
tion from a transient chaotic saddle to a permanently living
chaotic attractor in some form of “inverse boundary crisis”
#28$. However, if " does not diverge, turbulence in a pipe
remains transient for all Re. The chaotic saddle does not
close to form an attractor and the turbulent “state” stays dy-
namically connected to the laminar profile even at Reynolds
numbers higher than the ones where “natural transitions” are
reported to occur. This might open up new avenues for con-
trolling turbulent motion.

The prediction of an exponential distribution of lifetimes
is an asymptotic one, valid for long times. On short times the
distributions may follow a different functional form, as evi-
denced by the nonexponential parts in almost all distribu-
tions published so far. Moreover, the results may depend on
additional parameters, such as an aspect ratio or the length of
the pipe. The dependence on these parameters has not been
studied so far. It is our purpose here to discuss some of these
effects for transitional pipe flow.

We begin in Sec. II with a survey of previous experimen-
tal and numerical results. Section III then is devoted to an
analysis of three effects: the dependence on the ensemble of
initial conditions in Sec. III B, the variation of the character-
istic lifetime with Re in Sec. III C, and the variation with the
length of the pipe in Sec. III D. We conclude with a summary
and outlook in Sec. IV.

II. SURVEY OF RESULTS

As usual, the mean downstream velocity %u&, the diameter
D of the pipe and the viscosity # of the fluid can be com-
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1Max Planck Institute for Dynamics and Self-Organization, 37073 Göttingen, Germany
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The onset of shear flow turbulence is characterized by turbulent patches bounded by
regions of laminar flow. At low Reynolds numbers localized turbulence relaminarizes,
raising the question of whether it is transient in nature or becomes sustained at a
critical threshold. We present extensive numerical simulations and a detailed statistical
analysis of the lifetime data, in order to shed light on the sources of the discrepancies
present in the literature. The results are in excellent quantitative agreement with
recent experiments and show that turbulent lifetimes increase super-exponentially
with Reynolds number. In addition, we provide evidence for a lower bound below
which there are no meta-stable characteristics of the transients, i.e. the relaminarization
process is no longer memoryless.

1. Introduction
The development of turbulence in shear flows poses a challenge of great theoretical

and practical relevance (Grossmann 2000; Eckhardt et al. 2007). Since the seminal
work of Reynolds (1883) on the onset of turbulent fluid motion in a circular pipe, this
system has remained a paradigm for transition without linear instability, i.e. subcritical
transition. Here, the boundary that separates the laminar flow from turbulence
depends not only on the Reynolds number (Re) but also on the characteristics
of ambient and external perturbations. In particular, the threshold in perturbation
amplitude that must be exceeded to trigger transition scales as Re−γ , with γ ∈ [1, 2]
depending on the perturbation details (Hof, Juel & Mullin 2003; Peixinho & Mullin
2007; Mellibovsky & Meseguer 2009). Thus, if great care is taken to minimize all
sources of disturbances, the flow can be kept laminar up to Re as large as 105

(Pfenniger 1961).
Brosa (1989) showed that even long times after turbulence is initially triggered,

relaminarization to Hagen–Poiseuille flow may occur. Faisst & Eckhardt (2004)
systematically studied the probability of a turbulent trajectory surviving up to time t ,
given by the survivor function

S(t) = P (flow is turbulent at T ! t). (1.1)

They concluded that relaminarization occurs suddenly and the process is memoryless,
i.e. lifetimes are exponentially distributed with S(t) = exp[t/τ ], where τ is the

† Email address for correspondence: mavila@ds.mpg.de

Giving rise to exponential lifetime distributions
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Figure 4. (a) Survivor function at Re = 1860 obtained from sample sizes n= 50 (squares) and
200 (circles). The solid (dashed) line is the curve exp[(t − t0)/τ ] for n= 50 (200), where τ
has been estimated from (4.3). The shaded area between the two dotted lines corresponds to
the confidence interval (4.4) for n= 50. (b) Survivor function of turbulent lifetimes at several
Reynolds numbers. For clarity, only part of the Re investigated is shown.

5. Lifetime scaling with Re: the transient nature of puff turbulence
In order to shed light on the discrepancies in scaling of turbulent lifetimes present

in the literature, we have extended the Reynolds number range in the numerical
simulations up to Re = 1900. The results are presented in figure 4(b), showing survivor
functions at several Re in a logarithmic scale. The sample sizes have subsequently been
increased until each data set unambiguously showed the exponential distribution. In
particular, between 200 and 500 simulations were run for Re ∈ [1720, 1880], whereas
at Re = 1900 only 100 cases were simulated due to the computational costs incurred
in very long time integrations. In addition, the simulations at Re = 1900 were stopped
when 96 puffs had decayed, leaving only four survivors at t∗ $ 6500.

From the survivor functions in figure 4(b) escape rates κ = 1/τ have been estimated
using (4.3) and are shown by black circles on a logarithmic scale in figure 5. Confidence
intervals at the 95 % level, obtained from (4.4), have been plotted and may be
regarded as error bars due to sample size. The results of the high-resolution runs
and reductions from Re =2200, 1925 and 1900 to Re = 1860 fall within the 95 %
confidence interval of the default case and are only shown in the inset to avoid
overlapping the figure. Overall, the results are in excellent quantitative agreement
with the experimental relaminarization probabilities of Hof et al. (2008), shown by
squares. With increasing Re, κ decreases extremely fast, corresponding to a super-
exponential increase in turbulent lifetimes. It is worth noting that the measurements
of Hof et al. (2008) extend up to Re = 2050, with their super-exponential fit providing
a very good approximation over the full data set.

The agreement with the simulations of Willis & Kerswell (2007) is very good
for Re = 1740, 1780, 1820. For Re ! 1720, we have shown that the lifetimes are not
exponentially distributed (vertical line). The discrepancy at Re = 1860 is attributed
mainly to statistical uncertainty. There τtrue was estimated with 40 simulations, of
which only 28 had decayed when truncated at t∗ $ 1000. The upper end of their
confidence interval is close to the experimental value of Hof et al. (2008) and the
present computations, although there is still a small difference. We remark, for
example, that had the 40 initial conditions i ∈ [90, 130] of figure 2(a) been used
here to estimate τtrue , the result would be compatible with the estimate provided by
Willis & Kerswell (2007). The escape rates and confidence intervals shown in figure 5
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The Onset of Turbulence in Pipe Flow
Kerstin Avila,1* David Moxey,2 Alberto de Lozar,1 Marc Avila,1 Dwight Barkley,2,3 Björn Hof1*

Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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The Onset of Turbulence in Pipe Flow
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Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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regime (Re ≲ 3000) irregular sequences of tur-
bulent and laminar phases are created (25). How-
ever, at lower Reynolds numbers (Re ≈ 2000)
sufficiently strong continuous perturbations cause
plug-shaped velocity profiles that are unable to
sustain turbulence (26) and lead to relaminariza-
tion. Hence, for large disturbance levels contin-
uous perturbations may fail to trigger turbulence
at low Reynolds numbers. To avoid such prob-
lems, in the present study an impulsive perturba-
tion was chosen, consisting of a water jet injected
through a circular hole of 0.2D in the pipe wall
250D downstream of the inlet. The duration of
the perturbation was adjusted for each set of mea-
surements (8 to 20 ms, corresponding to advec-
tion of approximately 1 to 2.5D at the mean flow

velocity), ensuring that only one single puff was
generated from each perturbation. Different am-
plitudes were tested, and the results were found to
be independent of the perturbation strength. In
relation to the mass flow in the pipe, typical in-
jection rates were about 2.5%. To establish that
results were independent of the perturbation, ad-
ditional measurements were carried out by using
an obstacle to impulsively disturb the flow. A
thin wire (0.8 mm in diameter and 10 mm in
length) was inserted into the pipe 150D from the
inlet. The wire was held against the pipe wall and
aligned with the pipe axis by using a small mag-
net attached to the outside of the pipe. When
against the wall, the disturbance created by the
wire is too small to trigger turbulence for the Re

investigated.When the wire wasmoved azimuth-
ally along the pipe wall by approximately 0.5 to
1mm in a time interval of about 0.1 s (correspond-
ing to advection of about 10D, based on themean
flow speed), a single turbulent puff was triggered.

After triggering disturbances, the flow was
monitored by two downstream pressure sensors
(fig. S1). The first one, located 300D from the
inlet, confirmed that each perturbation results in
the creation of a single puff. The second one,
which can be positioned at various distances L
from the perturbation, was used to distinguish
cases in which multiple puffs arrive (Fig. 1A)
from those in which only the single puff arrives
(Fig. 1B) or no puff arrives. This is a direct mea-
surement of whether the turbulent fraction in the
flow has increased, remained constant, or de-
creased during downstream propagation.

Simulations. To complement experiments
and gain insights into the underlying spread of
turbulence, we have carried out extensive nu-
merical simulations. Two independent numerical
codes have been used; one is a spectral-element
Fourier code (27) that solves the Navier-Stokes
equations in Cartesian coordinates (DNS1), and
the other is a hybrid spectral finite-difference
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Fig. 1. Puff splitting in experiment and numerical simulation. (A and B) Pressure signals from the ex-
periment are used to distinguish the case of (A) a split puff from (B) a single puff. A splitting is registered if
the signal has peaks separated by 20D or more and if between peaks the signal drops by at least 30%. The
flow between the two puffs does not recover to the fully developed laminar profile. (C) Space-time
diagram from numerical simulation using the hybrid spectral finite-difference code (DNS2) at Re = 2300
showing the splitting process. The square of the cross-sectional average of streamwise vorticity is plotted
on a logarithmic scale in a co-moving reference frame (speed Up = 0.929U) and 100D of the 150D
simulation domain are shown. The upstream edge of a puff is relatively well defined, whereas the
downstream edge is fuzzy and fluctuates. After a splitting, the two puffs propagate downstream, separated
by an approximately constant distance, and generate a twin-peaked pressure signal (A). (D) Visualization
of puff splitting in a cross-sectional (x, y) plane, with red as positive and blue as negative streamwise
vorticity on a linear scale, from the same run as (C) and showing 75D. At t = 0, Re is impulsively changed
from 2200 to 2300. Snapshots (from bottom to top) were taken at t = 500, 990, 1010, 1110, and 1600.
Once the puff extends far enough and the vorticity decays in its central section, a new puff emerges.
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Fig. 2. Spreading of turbulence in numerical sim-
ulation. Space-time diagram at (A) Re = 2300 and
(B) Re = 2450 from numerical simulation (DNS2),
showing how turbulence proliferates starting from
a localized puff at Re = 2200 as initial condition.
The cross-sectional average of streamwise vorticity
squared is plotted on a logarithmic scale in a co-
moving reference frame at speed 0.947U and 0.94U,
respectively. At Re = 2300, the expansion process is
dominated by discrete steps, corresponding to puff
splits, whereas at Re = 2450, expansion is more
smooth, more rapid, and individual puffs are no
longer easily identified.
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Figure 3: Probability distributions for a puff to remain in equilibrium. P is the probability
that a puff will split before time t. Hence the plotted quantity 1 − P is the probability that a
puff remains a single localized puff up to time t. The numerical distributions at Re = 2300 and
Re = 2350 are obtained from all first splitting times in ensembles of simulations using both the
spectral-element Fourier code (DNS 1) and the hybrid spectral finite-difference code (DNS 2).
Experimental distributions at Re = 2195 and 2255 are obtained from statistics collected from
fixed downstream locations L converted to time by the Re dependent mean puff propagation
speed Up. All distributions are of the form exp(−(t − t0)/τ), as illustrated by the dashed
lines, where t0 is a development time for splitting to take place (t0 ≈ 150 for DNS, while
for experiment t0 is nearer to 100 and has greater uncertainty.) The exponential form of the
distributions indicates that splitting is a memoryless process with characteristic time τ .
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Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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The Onset of Turbulence in Pipe Flow
Kerstin Avila,1* David Moxey,2 Alberto de Lozar,1 Marc Avila,1 Dwight Barkley,2,3 Björn Hof1*

Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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Shear flows undergo a sudden transition from laminar to turbulent motion as the velocity
increases, and the onset of turbulence radically changes transport efficiency and mixing
properties. Even for the well-studied case of pipe flow, it has not been possible to determine at
what Reynolds number the motion will be either persistently turbulent or ultimately laminar.
We show that in pipes, turbulence that is transient at low Reynolds numbers becomes sustained
at a distinct critical point. Through extensive experiments and computer simulations, we were able
to identify and characterize the processes ultimately responsible for sustaining turbulence. In
contrast to the classical Landau-Ruelle-Takens view that turbulence arises from an increase in
the temporal complexity of fluid motion, here, spatial proliferation of chaotic domains is the
decisive process and intrinsic to the nature of fluid turbulence.

The seemingly simple question as to when
the flow down an ordinary pipe turns tur-
bulent dates back to the pioneering study

of Osborne Reynolds in the late 19th century (1).
Reynolds proposed that below a critical velocity,
pipe flows are always laminar, whereas above
that critical velocity turbulence prevails, given
the right initial conditions. The observation that
this critical point can be expressed in a dimen-
sionless form was the basis of one of the central
concepts in fluid dynamics: the Reynolds number
(Re = UD/n, where U is the mean velocity, D is
the pipe diameter, and n is the kinematic viscos-
ity). Curiously, although Reynolds similarity has
proved to be valid throughout fluid mechanics
the value of the critical point in pipe flow has been
debated ever since. In an early attempt to deter-
mine its value (2), Reynolds rewrote the equations
of motion, separating quantities into average and
fluctuating parts—a method that is now called the
Reynolds decomposition. This contribution is gen-
erally regarded as the foundation of modern tur-
bulence research, but it has failed to clarify the
value of the critical point in pipe flow. Values
reported in contemporary textbooks and journal

papers vary widely, typically ranging from 1700 to
2300 (3–5), and occasionally even values in
excess of 3000 (6) are quoted.

One circumstance that complicates this prob-
lem is that laminar pipe flow is stable to infin-
itesimal perturbations (7, 8), and therefore in
order to trigger turbulence, a disturbance of finite
amplitude is required (1, 3, 9). What makes mat-
ters even more difficult is that at low Re, tur-
bulence is transient. Here, turbulence occurs in
the form of localized patches called puffs (10)
that are embedded in the surrounding laminar
flow and decay according to a memoryless pro-
cess (that is, independent of their previous history)
(11). The rapid increase in lifetime with Re has led
to various proposed values for a critical point at
which the lifetime would diverge and turbulence
would become sustained (4, 12, 13). However,
more detailed studies (14–18) have shown that
the lifetime of individual puffs remains finite and
only approaches infinity asymptotically with Re.
Qualitatively, this behavior is reminiscent of the
dynamics of a class of model systems called
coupled map lattices (19). Here, individual lattice
points can exhibit transient chaotic dynamics but
eventually settle to a stable laminar fixed point.
Because of the spatial coupling, these systems
exhibit a statistical phase transition as the control
parameter is increased. Below the critical point,
eventually all siteswill end up in the laminar phase,
whereas above there is always a nonzero fraction
of chaotic sites, and with increasing control pa-
rameter the fraction of laminar (nonchaotic) sites
quickly diminishes. Analogies to fluid flows have

been pointed out in a number of studies (20–23)
that indicate the potential relevance of the spatial
dynamics for the long-term behavior in fluid sys-
tems. In a numerical study of pipe flow, Moxey
and Barkley (24) observed that at Re ≈ 2300 tur-
bulent puffs delocalize, and the turbulent fraction
increases, which is in qualitative agreement with
this picture. However, the stochastic nature of the
spatial coupling was not taken into account, and
the extremely long time-scales intrinsic to the flow
could not be resolved in the simulations. In this
work, we determined the critical point in pipe flow
and quantified the relevant process sustaining tur-
bulence in linearly stable shear flows.

Long-pipe experiments. Determining the point
at which the proliferation of turbulence outweighs
its decay and turbulence eventually becomes sus-
tained requires that the time scales of both decay
and spreading processes be captured. Because tur-
bulent puffs move downstream at approximately
the mean flow velocity, a long pipe is required to
observe long time-scales. Using a precision glass
tube with a relatively small diameter (D = 4 T
0.01 mm) and overall length of 15 m, a total di-
mensionless length of 3750D is achieved. The
pipe is composed of 14 sections joined by ma-
chined perspex connectors that provide an ac-
curate fit. A smooth inlet together with careful
alignment of the individual pipe sections allows
the flow to remain laminar up to Re = 4400. De-
viations in Re were kept below T5 throughout
each set of measurements, which extended over
periods of up to 45 hours. This precision was
achieved with stringent control of both the pres-
sure difference driving the flow and the fluid (wa-
ter) temperature (T0.05 K). A detailed description
of the experimental setup can be found in (16).

Starting from a fully developed laminar flow
allows us to induce turbulence in a controlled
manner and quantify the spreading rate at some
downstream position. The experimental proce-
dure is to create a single turbulent puff close to
the pipe inlet and to monitor any changes in the
turbulent fraction at downstream positions. It is
important that a perturbation is chosen that effi-
ciently triggers turbulence. In many earlier studies,
such as (10, 25), turbulence was induced by in-
sertion of a static obstacle close to the pipe inlet.
Such obstacles provide a continuous perturbation,
and at high Reynolds numbers the flow down-
stream is fully turbulent, whereas in the transitional
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Critical point. To determine the critical point
for the onset of sustained turbulence, we com-
pared the time scale for turbulence to spread with
the time scale for turbulence to decay. The de-
pendence of the mean splitting time on Re is
plotted in Fig. 5. From each experimental data
point in Fig. 4, the mean time t was obtained and
plotted (Fig. 5, right branch, colored symbols),
together with the single superexponential fit
(Fig. 5, solid line). In order to obtain t from the
experimental probabilities, a formation time of t0 =
100 was considered [uncertainties in t0 = (50,150)
are included in the error bars]. Because in exper-
iments observation times are generally large, the
uncertainties in t0 are negligible compared with
statistical errors.

Additionally, t values from simulations are
included in Fig. 5 (black solid triangles), showing
that results from both numerical codes are in
excellent agreement with the experimental data.
From ensemble simulations, we can obtain di-
rectly the times for each split and a maximum
likelihood estimate of t from the memoryless
character of the splitting process (17, 33). The
rapid increase in splitting times makes it in-
feasible to obtain t numerically at low Re.

The left branch in Fig. 5 summarizes pre-
viously measured mean lifetimes for turbulent
decay (15, 17, 18), together with a single super-
exponential fit for mean lifetimes. The intersec-
tion at Re ≈ 2040 marks where the mean lifetime
is equal to themean splitting time, and to the right
of the intersection, splittings outweigh the decay
of puffs. Analyzing the data in terms of the tur-
bulent fraction results in the same critical point
(fig. S5), confirming the procedure applied here.

Typically in statistical phase transitions, crit-
ical points are not identical to the exact balance

point of two competing processes because of
correlations. For example, in the standard contact
process (34, 35) the spreading (contamination)
rate of an active phase has to outweigh its decay
(recovery) rate by a ratio of about 3 before the
active phase becomes sustained. Although in the
present case the long time scales make it im-
possible to measure other signatures of criticality
such as scale invariance, the superexponential
scaling of the two processes ensures that the crit-
ical point will be almost indistinguishable from
the intersection point. For an increase in Re of 10
(or 0.5%) above the critical point, the splitting
rate already outweighs the decay rate by a factor
of 4. Therefore, the difference between the inter-
section point and the critical point is of the same
order as the experimental uncertainty in Re, and
2040 T 10 provides a close estimate of the critical
point for the onset of sustained turbulence.

Conclusion. The complexity of the transition
process encountered in pipe flow is common to
many shear flows, including Couette, channel,
duct, and boundary layer flows. In all of these
flows, turbulence is found despite the stability of
the base flow and first takes the form of localized
patches, which are transient. The key to the ap-
proach here to determine the onset and sustain-
ment of turbulence has been to separate the
analysis of decay and proliferation mechanisms,
and this approach should be equally applicable
even though details of these mechanisms may dif-
fer from case to case. In all of these flows (analo-
gous to our findings for pipe flow), the spatial
coupling of transiently chaotic domains may give
rise to the sustainment of turbulence (23), breaking
with the classical view that turbulence arises through
an increase in temporal complexity (36, 37). The
intermittently alternating laminar and turbulent re-

gions encountered in pipe flow just above criti-
cality are intrinsic to the problem and place pipe
flow in the larger theoretical framework of spatio-
temporal intermittency (19, 38) and nonequilibrium
phase transitions in which universal scaling prop-
erties may be expected (20, 35, 39). Although in
the present study the spatial interaction is relatively
simple because of the clear separation of adjacent
puffs, further above the critical point (Re ≳ 2400)
the dynamics quickly become increasingly com-
plicated, with domains merging and annihilating.
To comprehend this increasing spatial complexity
is a challenge for future studies and is key to our
understanding the onset and nature of turbulence.
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Fig. 5. Mean lifetime of
a puff before decaying or
splitting. Solid colored sym-
bols correspond to experimen-
tal splitting measurements.
Measurements downstream
of jet injection are at dif-
ferent distances L as indi-
cated in Fig. 4. Measurements
downstream of an obsta-
cle perturbation are at L =
1700. The solid black tri-
angles show the character-
istic splitting time obtained
from direct numerical sim-
ulations using the spectral-
element Fourier code (DNS1)
and the hybrid spectral finite-
difference code (DNS2). The
solid curve is given by t = exp[exp(−0.003115 Re + 9.161)] and approximates the Re-dependence of
mean time until a second puff is nucleated and the turbulent fraction increases. This curve was obtained
by fitting the data sets with distances L = 1664, 2100, and 3380, whereas results from shorter pipes
were not fitted because of the stronger influence of the uncertainty in t0. The dashed curve is given by t =
exp[exp(0.005556 Re − 8.499)] and approximates the Re-dependence of the mean time until turbulence
decays and the flow relaminarizes. Both curves correspond to superexponential scaling with Re and have a
crossover at Re = 2040 T 10, determining the transition between transient and sustained turbulence in
pipe flow in the thermodynamic limit.
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Transition to uniform turbulence in cylindrical pipe flow occurs experimentally via the
spatial expansion of isolated coherent structures called ‘slugs’, triggered by localized
finite-amplitude disturbances. We study this process numerically by examining the
preferred route in phase space through which a critical disturbance initiates a ‘slug’.
This entails first identifying the relative attractor – ‘edge state’ – on the laminar–
turbulent boundary in a long pipe and then studying the dynamics along its low-
dimensional unstable manifold, leading to the turbulent state. Even though the fully
turbulent state delocalizes at Re ≈ 2300, the edge state is found to be localized over the
range Re = 2000–6000, and progressively reduces in both energy and spatial extent
as Re is increased. A key process in the genesis of a slug is found to be vortex
shedding via a Kelvin–Helmholtz mechanism from wall-attached shear layers quickly
formed at the edge state’s upstream boundary. Whether these shedded vortices travel
on average faster or slower downstream than the developing turbulence determines
whether a puff or a slug (respectively) is formed. This observation suggests that slugs
are out-of-equilibrium puffs which therefore do not co-exist with stable puffs.

Key words: pipe-flow boundary layer, transition to turbulence, turbulence simulation

1. Introduction
The laminar flow of a Newtonian fluid inside a straight pipe of circular cross-

section is known to undergo a transition to turbulence as the flow rate is increased,
producing a dramatic rise in skin friction. Reynolds (1883) was the first to identify
the ‘Reynolds’ number Re := UD/ν as the sole controlling parameter for the flow,
where U is the bulk velocity, D the diameter and ν the kinematic viscosity. Reynolds
reported that the transition typically occurs for Re ≈ 2000, a commonly quoted value
in textbooks and widely reproduced ever since (critical Re reported vary across the
range 1760–2300, e.g. Binnie & Fowler 1947, Lindgren 1958, Leite 1959, Wygnanski &
Champagne 1973 and Darbyshire & Mullin 1995). Reynolds was also aware that if
extra care was taken to reduce the amplitude of disturbances at the inlet, transition
could be delayed (reportedly to ≈12 000), emphasizing the dependence of transition
on the ambient noise level present and hence the inherently finite-amplitude nature
of the process. By way of confirmation, Pfenniger (1961) managed to keep the flow
laminar in a very well controlled experiment until Re ≈ 105.
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Figure 13. (Colour online) Genesis of a slug from the edge state at Re =3000. (a) Eroll and
(b) Estreak (scales as in figure 12).

in the laminar zone just upstream of the active region, as a sign that they actually
travel at a slower velocity. During the later stage of their evolution, the vortices are
frequently ejected from the vortex sheet, with no sign of clear temporal periodicity,
and migrate towards the centreline. In the latest stage of their evolution, the vortices
break down, generating a new turbulent motion which rapidly fills the laminar zone
located directly upstream of the TE interface and surrounded by the vortex sheet.
As a consequence, the TE interface delimiting the laminar flow from the turbulent
flow has moved upstream relative to the turbulent zone. Meanwhile, the dynamics
at the LE and its propagation has stayed unchanged. This results in a streamwise
elongation of the active region, whose origin is clearly the shear instability near the
TE. The global elongation of the turbulent structure results from a sequence of such
repeated vortex ejection events (see video online).
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Figure 13. (Colour online) Genesis of a slug from the edge state at Re =3000. (a) Eroll and
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in the laminar zone just upstream of the active region, as a sign that they actually
travel at a slower velocity. During the later stage of their evolution, the vortices are
frequently ejected from the vortex sheet, with no sign of clear temporal periodicity,
and migrate towards the centreline. In the latest stage of their evolution, the vortices
break down, generating a new turbulent motion which rapidly fills the laminar zone
located directly upstream of the TE interface and surrounded by the vortex sheet.
As a consequence, the TE interface delimiting the laminar flow from the turbulent
flow has moved upstream relative to the turbulent zone. Meanwhile, the dynamics
at the LE and its propagation has stayed unchanged. This results in a streamwise
elongation of the active region, whose origin is clearly the shear instability near the
TE. The global elongation of the turbulent structure results from a sequence of such
repeated vortex ejection events (see video online).
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Figure 16. (Colour online) Genesis of slug from the edge state at Re =4500. (a) Eroll and
(b) Estreak (scales as in figure 12). The resolution is (60, 48, 384).

vortical motion associated to the edge state at Re = 6000 was shown in figure 6 to
be off-centred and predominantly located in one angular sector near the pipe wall.
Consequently, its linear instability phase (intensification of the vorticity gradients
across the vortex sheet), as well as the nonlinear phase (roll-up and destabilization
of the vortex sheet) are also very localized near that wall. Visualizing the vorticity
in an (s, z)-plane again reveals the repeated formation of KH vortices. This calls
for a detailed study of the dynamical evolution of these coherent structures, and an
exploration of their possible relation to hairpin vortices (see, for instance, Adrian
2007). The average size of these vortices appears smaller than those found at
Re = 3000. These vortices instantaneously break down to generate a localized pocket
of turbulence near the wall, visually analogous to the formation of spots in flat
boundary layers. As the roll-up process repeats itself over time, turbulent motions
invade the pipe not only in the axial direction but also azimuthally, until the whole
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FIG. 3. (Color online) Illustration of the discrete model. (a) Local
dynamics in the u-q phase plane. Within a wedge-shaped region q
undergoes transient chaos, while outside it decays monotonically to
q = 0. The region varies with R as indicated. (b) Map used to
produce transient chaos. Parameter α (which depends on u and R),
is the lower boundary separating monotonic and chaotic dynamics.

except with chaotic q dynamics generated by the map F .
The map F is based on models of chaotic repellers in shear

flows [23, 32]. Consider the tent map f given by

f(q) =






γq if q < Q1

2q − α if Q1 ≤ q < 1

4 + β − α− (2 + β)q if 1 ≤ q < Q2

γQ1 if Q2 ≤ q

(5)

with Q1 = α/(2− γ) and Q2 = (4+β−α− γQ1)/(2+β).
Parameter α marks the lower boundary separating chaotic and
monotonic dynamics, Fig. 3(b), while γ sets the decay rate to
the fixed point q = 0. For β > 0 (β < 0) the map generates
transient (persistent) chaos within the tent region. The map
is incorporated into the pipe model by having the threshold α
depend on u as well as on a control parameter R, via

α = 2000(1− 0.8u)R−1. (6)

The factor (1 − 0.8u) generates the desired wedged-shaped
region, while 2000 sets the scale of R to that of Re. Finally,
the map F is given by k iterates of f , i.e. F = fk; with k = 2
used here. (See the Appendix Sec. 1 b.) This has the effect of
increasing the Lyapunov exponent within the chaotic region.

The only important new parameter introduced in the dis-
crete model is β since it quantifies a new effect – spontaneous
decay of local turbulence for β > 0. Suitable values for others
are: �1 = 0.04 and �2 = 0.2 as before, γ = 0.95, c = 0.45 and
d = 0.15. (See the Appendix Sec. 1 b.) As shown in Fig. 1,
for β = 0.4 the model shows puffs, puff splitting, and slugs
remarkably like those from full DNS. The model parameter R
nearly corresponds to Reynolds number Re.

While positive β is ultimately of interest, to better connect
the two models consider first β negative, e.g. β = −0.4. A
transition from puffs to slugs occurs as R increases and the
wedge of chaos crosses the u-nullcline. One finds a noisy ver-
sion of the continuous model in Fig. 2. (See the Appendix
Fig. 8.) If splittings of turbulent patches occur, they are ex-
ceedingly rare. At β ≈ 0, (including even β = −0.1), chaotic
fluctuations in q cause occasional splitting of expanding tur-
bulence. Puffs at lower R are clearly metastable, persisting for
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FIG. 4. (Color online) Three regimes of pipe flow from simulations
of the discrete model (3)-(6). Space-time diagrams (time upward)
illustrate (a) decaying puff at R = 1900, (b) puff splitting at R =
2200, and (c) slug formation from an edge state at R = 3000. For
ease of comparison with published work on pipe flow, solutions are
shown in a frame co-moving with structures. Turbulence intensity q
is plotted with q = 1.8 in white. In (a) and (b) the scale is linear with
q = 0 in black, while in (c) the scale is logarithmic with q ≤ 10−3 in
black. Dimension bars indicate space and time scales. The top space
scale applies also to (b).

long times before decaying. However, splitting and decay are
unrealistically infrequent if β is too small. Setting β >∼ 0.1
gives realistic behavior, as seen in Fig. 1 where β = 0.4.
(See also the Appendix Fig. 9.) Note that the splitting of ex-
panding turbulent patches and the decay of localized puffs are
caused by the same process - the collective escape from the
chaotic region of a sufficiently large streamwise interval to
bring about local relaminarization. This is precisely the sce-
nario described by extreme fluctuations [33]. In the case of
puffs, this results in puff decay, while in the case of splitting,
laminar gaps open whose sizes are then set by the recovery of
the slow u field.

Figure 4 further illustrates how well the discrete model
captures the three regimes of transitional pipe flow. Space-
time plots show puff decay, puff splitting, and slug flow. In
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Abstract. Basin boundaries are the boundaries between the basins of attraction

of coexisting attractors. When one of the attractors breaks up and becomes a

transient repelling structure the basin boundary also disappears. Nevertheless,

it is possible to distinguish the two types of dynamics in phase space and to

define and identify a remnant of the basin boundary, the edge of chaos. We

here demonstrate the concept using a two-dimensional (2D) map, and discuss

properties of the edge of chaos and its invariant subspaces, the edge states.

The discussion is motivated and guided by observations on certain shear flows

like pipe flow and plane Couette flow where the laminar profile and a transient

turbulent dynamics coexist for certain parameters, and where the notions of

edge of chaos and edge states proved to be useful concepts to characterize the

transition to chaos. As in those cases we use the lifetime, i.e. the number of

iterations needed to approach the laminar state, as an indicator function to track

the edge of chaos and to identify the invariant edge states. The 2D map captures

many of the features identified in laboratory experiments and direct numerical

simulations of hydrodynamic flows. It illustrates the rich dynamical behavior in

the edge of chaos and of the edge states, and it can be used to develop and test

further characterizations.

3
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Figure 2. The map in the y-direction. (a) The function g(y; b) for b = 6, and
the trajectory of y = 0. For all b the maximum of g(y; b) is at (y, g(y; b)) =
(1; 2). Moreover, g(2; b) = g(0; b) = 2/(1 + b) such that the attractor of the map
always lies in the interval [2/(1 + b); 2]. (b) Bifurcation diagram of the map
g(y; b). As in figure 1 green dots represent points on the attractor, and the red
lines mark two unstable fixed points of particular interest.

In summary, depending on the parameter values, the x-map shows the coexistence of a
stable laminar state with one of three possible types of non-laminar dynamics: another fixed
point, a chaotic attractor, or a chaotic saddle. The coexistence of a stable laminar fixed point
at x = −2 with a transient chaotic dynamics in the map for a > 4 mimics the coexistence of
a transient turbulent dynamics with a linearly stable laminar steady flow. The direct domain of
attraction of the laminar state at x = −2 is bounded towards positive x by an unstable fixed point
at x = 0.

2.2. Dynamics in y

The y-dynamics represents the motion within the energy shell. In the simplest case it is globally
attracting towards a globally stable fixed point. Then only the x-dynamics matters, and it
represents the dynamics along its unstable direction. In order to model the motion in the energy
shell we consider a unimodal (i.e. a single-humped) map of Lorentzian type (figure 2(a)) that
maps large |y| towards the region y � 1,

yn+1 = g(yn; b) , (2a)

with

g(y; b) = 2
1 + b (y − 1)2

. (2b)

In its first iteration the map collects all initial conditions into the interval [0, 2]. In this interval
the map can have up to three fixed points yp. For the discussion of the properties of the map
and the fixed points, it is convenient to solve the fixed point equation for the parameter and
to study

b0(yp) = 2 − yp

yp (yp − 1)2
. (3)

By evaluating db0/dyp = 0 one verifies that there is a saddle-node bifurcation at the critical
value ycr = (3 −

√
5)/2 � 0.382. This corresponds to the parameter value bcr ≡ b0(ycr) � 11.09.
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turbulent variable, as in Vollmer et al.
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Figure 1. The map along the x-direction. (a) The red line shows the function
f (x; a) for a = 3.8, and the green lines indicate the evolution of two trajectories
starting at x = ±0.1, respectively. The maximum of the map is always at x =
1/2, and, irrespective of the value of a, it takes the value f (x = 1/2; a) = a/4.
The initial condition 0.1 approaches the chaotic attractor in [ f (1/2); f 2(1/2)] =
[0.18; 0.95], and the one starting at −0.1 approaches the fixed point at x = −2.
(b) Bifurcation diagram of the map f (x; a). Green dots represent points on either
of the two attractors of the map, and the red lines unstable fixed points.

the turbulent one at x > 0. It is unstable. These features are contained in the one-parameter map
(figure 1(a))

xn+1 = f (xn; a) (1a)

with

f (x; a) =
�

a x (1 − x) for x > x∗ ≡
�
1 −

√
1 + 8/a

��
2,

−2 else. (1b)

Here x∗ is the leftmost intersection between the constant value −2 for x < x∗, and the quadratic
part at x > x∗. With this choice the map is continuous.

The bifurcation diagram for this map is shown in figure 1(b). We will only be interested
in parameter values a > 1/3 where x∗ > −2. In this case the map has a stable fixed point at
x = −2, which absorbs all initial conditions starting outside the interval [0, 1]. Over the interval
x ∈ [0, 1] the map coincides with the logistic map and shows its familiar bifurcation diagram.
For all 1/3 < a < 1 there are stable fixed points at x = −2 and x = 0. In addition, there is an
unstable fixed point at xs = 1 − 1/a, which lies between −2 and 0. At a = 1 the fixed point
xs crosses x = 0, and the two fixed points change stability in a transcritical bifurcation. For
a > 1 the point x = 0 is unstable, and xs is a stable fixed point. At a = 3 the fixed point
xs undergoes a first period doubling, and subsequently follows the period-doubling route to
chaos. Beyond a � 3.59 there are chaotic bands extending from f (1/2; a) = a/4 down towards
f 2(1/2; a) = f (a/4; a) = (a/2)2 (4 − a).

At a = 4 the chaotic band generated by the period doubling collides with the unstable fixed
point at x = 0, leading to a boundary crisis (Grebogi et al 1982, 1983a, 1987, Ott 2002). For
a > 4 some points near the maximum of the parabola are mapped outside the interval [0, 1] and
the attractor turns into a chaotic saddle. All points except for a Cantor set of measure zero will
eventually map outside the interval and then be attracted to the laminar fixed point at x = −2.
The Cantor set contains an infinity of orbits which follow a chaotic dynamics and never leave
the interval (cf Ott 2002, Tél 1990).
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Extension to Other Shear Flows
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Limited model of plane Couette flow

Localize and Spatially Periodic
Turbulent-Laminar Patterns
(See ETC13 Proceedings)
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