

Surface diffusion on stepped surfaces

Axel Voigt

based on joint work with Eberhard Bänsch, Frank Haußer, Omar Lakkis, Bo Li, Felix Otto, Patrick Penzler, Andreas Rätz, Tobias Rump

Crystal Growth Group

a es a r

Stepped surfaces are common in epitaxial growth

STM image of Si(110) steps on a Si(001) vicinal face, [Lagally et al. 1993]

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Crystal Growth Group c a es a r

Simplified atomic picture

Molecular dynamics

identify single events

Transition State Theory compute energy barriers

compute probabilities

Kinetic Monte Carlo perform simulation

Limitations of KMC

time scale: $< \mu s$, length scale: < nmApplications: Nanoelectronic, Photonic, LEDs, ...

metal connects, (F.H. Baumann, Bell Labs),

trench-MOS structure, Quantum-dots(O. Hellmund, RWTH Aachen), (B. Voigtländer, FZ Jülich)

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Towards a continuum description

Diffuse interface

approximate rough steps

Multiwell potential

minimum at terraces $i = 0, \ldots, N$

Ginzburg-Landau free energy

 ρ adatom density, ϕ height function

$$E = \int_{\Omega} \frac{\epsilon^2}{2} |\nabla \phi|^2 + G(\phi) - f(\rho, \phi)$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Phase-field model

evolution equation $\partial_t \phi = -\frac{\delta E}{\delta \phi}$

$$\alpha \epsilon^{2} \partial_{t} \phi = \epsilon^{2} \Delta \phi - G'(\phi) + \frac{\epsilon}{\rho^{*} \mu} (\rho - \rho^{*})$$
$$\partial_{t} \rho = \nabla \cdot (D \nabla \rho) + F - \tau^{-1} \rho - \partial_{t} \phi$$

 ρ^* equilibrium density, μ step stiffness

define mobility function D to account for effects at steps

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

c a es a r

Asymptotic limit $\epsilon \rightarrow 0$, Burton-Cabrera-Frank model

$$\alpha \epsilon^2 \partial_t \phi = \epsilon^2 \Delta \phi - G'(\phi) + \frac{\epsilon}{\rho^* \mu} (\rho - \rho^*)$$
$$\partial_t \rho = \nabla \cdot (D \nabla \rho) + F - \tau^{-1} \rho - \partial_t \phi$$

• diffusion limited, $\epsilon \rightarrow 0$, $\alpha \rightarrow 0$, D = D,

$$\partial_t \rho_i - \nabla \cdot (D \nabla \rho_i) = F - \tau^{-1} \rho_i$$

$$\rho_i = \rho_{i-1} = \rho^* (1 - \mu \kappa_i)$$

$$v_i = [D \nabla \rho_i \cdot n_i]$$
[Rätz,Voigt 2004]

• diffusion limited growth with edge-diffusion, $\epsilon \rightarrow 0$, $\alpha \rightarrow 0$, $D = M_{ed}$,

$$\partial_t \rho_i - \nabla \cdot (D \nabla \rho_i) = F - \tau^{-1} \rho_i$$

$$\rho_i = \rho_{i-1} = \rho^* (1 - \mu \kappa_i)$$

$$v_i = [D \nabla \rho_i \cdot n_i] + \nu \partial_{ss} \kappa_i \qquad [\text{Rätz,Voigt 2004}]$$

c a es a r

Asymptotic limit $\epsilon \rightarrow 0$, Burton-Cabrera-Frank model

$$\alpha \epsilon^2 \partial_t \phi = \epsilon^2 \Delta \phi - G'(\phi) + \frac{\epsilon}{\rho^* \mu} (\rho - \rho^*)$$
$$\partial_t \rho = \nabla \cdot (D \nabla \rho) + F - \tau^{-1} \rho - \partial_t \phi$$

• attachment limited, $\epsilon \rightarrow 0$, $D = M_{es}$

$$\partial_t \rho_i - \nabla \cdot (D\nabla \rho_i) = F - \tau^{-1} \rho_i$$

$$-D\nabla \rho_i \cdot n_i - v_i \rho_i = k_+ (\rho_i - \rho^* (1 - \mu \kappa_i))$$

$$D\nabla \rho_{i-1} \cdot n_i - v_i \rho_{i-1} = k_- (\rho_{i-1} - \rho^* (1 - \mu \kappa_i))$$

$$v_i = [D\nabla \rho_i \cdot n_i] + [\rho_i] v_i$$

[Otto, Penzler, Rätz, Rump, Voigt 2004; Rätz, Voigt 2004]

Sharp interface step flow model

Free boundary problem

$$\partial_t \rho_i = \nabla \cdot (D \nabla \rho_i) + F - \tau^{-1} \rho_i$$

diffusion limited $\rho_{i} = \rho_{i-1} = \rho^{*}(1 + \mu\kappa_{i})$ attachment limited $q_{i}^{+} := -D\nabla\rho_{i} \cdot n_{i} - v_{i}\rho_{i}$ $= k_{+}(\rho_{i} - \rho^{*}(1 + \mu\kappa_{i}))$ $q_{i}^{-} := D\nabla\rho_{i-1} \cdot n_{i} + v_{i}\rho_{i-1}$ $= k_{-}(\rho_{i-1} - \rho^{*}(1 + \mu\kappa_{i}))$

$$v_i = q_i^+ + q_i^- + \partial_s(\nu \partial_s(\mu \kappa_i))$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Numerical Algorithm, Operator Splitting

Discrete time partition: $t_0 < t_1 < \cdots < t_m < \cdots$ free Boundaries $\Gamma_i^m := \Gamma_i(t_m)$, adatom densities $\rho_i^m := \rho_i(t_m)$, decouple adatom diffusion and boundary evolution, use independent grids

- Substep 1: Compute boundaries Γ_i^{m+1} using (Γ_i^m, ρ_i^m)
- Substep 2: Compute adatom densities ρ_i^{m+1} using $(\Gamma_i^{m+1}, \rho_i^m)$

Adatom diffusion on terraces, diffusion limited

• One *continuous* adatom density ρ defined on whole domain Ω Weak formulation of diffusion equation $([\nabla \rho \cdot \vec{n}_i]_i := \nabla \rho_i \cdot \vec{n}_i - \nabla \rho_{i-1} \cdot \vec{n}_i)$

$$\int_{\Omega} \partial_t \rho \phi + \int_{\Omega} D \nabla \rho \cdot \nabla \phi + \sum_{i=1}^N \int_{\Gamma_i} D [\nabla \rho \cdot \vec{n}_i]_i \phi = \int_{\Omega} F \phi - \int_{\Omega} \tau^{-1} \rho \phi.$$

• Boundary conditions at steps incorporated by penalty method ($\epsilon \ll 1$)

$$\int_{\Omega} \partial_t \rho \phi + \int_{\Omega} D \nabla \rho \cdot \nabla \phi + \sum_{i=1}^N \int_{\Gamma_i} \frac{1}{\epsilon} (\rho - \rho^* (1 + \mu \kappa_i)) \phi = \int_{\Omega} F \phi - \int_{\Omega} \tau^{-1} \rho \phi$$

Thus (in a weak sense) $D[\nabla \rho \cdot \vec{n}_i]_i = \frac{1}{\epsilon}(\rho - \rho^*(1 + \mu \kappa_i))$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

 Ω_i

Fi

 Ω_{i-1}

С

Adatom diffusion on terraces, attachment limited

- Adatom densities $\rho_i \neq \rho_{i-1}$ at Γ_i , i.e. **no** global continuous density
- need two degrees of freedom at steps

Strategy: Composite Finite Elements, Extend each ρ_i trivially to the whole domain:

$$\left(\rho_i(x), D_i(x), F_i(x), \tau_i^{-1}(x)\right) = \begin{cases} (\rho_i(x), D, F, \tau^{-1}) & : x \in \overline{\Omega}_i \\ (0, 0, 0, 0) & : x \in \Omega \setminus \Omega_i \end{cases}$$

- *N* diffusion equations on whole domain.
- at each boundary Γ_i we have a value for ρ_i and ρ_{i-1}

Weak formulation, attachment limited

$$\int_{\Omega_{i}} \partial_{t} \rho_{i} \phi + \int_{\Omega_{i}} D \nabla \rho_{i} \cdot \nabla \phi - \int_{\Gamma_{i}} D \nabla \rho_{i} \cdot \vec{n}_{i} \phi + \int_{\Gamma_{i+1}} D \nabla \rho_{i} \cdot \vec{n}_{i+1} \phi + \int_{\Omega_{i}} \tau^{-1} \rho_{i} \phi = \int_{\Omega_{i}} F \phi$$

Using

$$\frac{d}{dt} \int_{\Omega_i(t)} \rho_i = \int_{\Omega_i(t)} \partial_t \rho_i + \int_{\Gamma_i(t)} \rho_i v_i - \int_{\Gamma_{i+1}(t)} \rho_i v_i$$

and kinetic boundary conditions

$$\begin{aligned} & -D\nabla\rho_{i}\cdot\vec{n}_{i}-\rho_{i}v_{i}=\ k_{+}(\rho_{i}-\rho^{*}(1+\mu\kappa_{i})) & \text{on } \Gamma_{i} \\ & D\nabla\rho_{i}\cdot\vec{n}_{i+1}+\rho_{i}v_{i+1}=\ k_{-}(\rho_{i}-\rho^{*}(1+\mu\kappa_{i+1})) & \text{on } \Gamma_{i+1} \end{aligned}$$

yields

$$\frac{d}{dt} \int_{\Omega_i(t)} \rho_i \phi + \int_{\Omega_i(t)} D\nabla \rho_i \cdot \nabla \phi + \int_{\Omega_i(t)} \tau^{-1} \rho_i \phi + \int_{\Gamma_{i+1}} k_- \rho_i \phi + \int_{\Gamma_i(t)} k_+ \rho_i \phi$$
$$= \int_{\Omega_i(t)} F\phi + \int_{\Gamma_{i+1}} k_- \rho^* (1 + \mu \kappa_{i+1})) - \int_{\Gamma_i(t)} k_+ \rho^* (1 + \mu \kappa_i))$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Discretization, kinetic b.c.

Time discretization:
$$\frac{d}{dt} \int_{\Omega_i(t)} \rho_i \phi \longrightarrow \frac{1}{t_{m+1}-t_m} \left[\int_{\Omega_i^{m+1}} \rho_i^{m+1} \phi - \int_{\Omega_i^m} \rho_i^m \phi \right]$$

Using extended variables

$$\left(\rho_i(x), D_i(x), F_i(x), \tau_i^{-1}(x)\right) = \begin{cases} \left(\rho_i(x), D, F, \tau^{-1}\right) & : x \in \Omega_i \\ \left(0, 0, 0, 0\right) & : x \in \Omega \setminus \Omega_i \end{cases}$$

First order implicit in time, finite element method in space

$$\int_{\Omega} \frac{\rho_{i,h}^{m+1} - \rho_{i,h}^{m}}{t_{m+1} - t_{m}} \phi + \int_{\Omega} D_{i} \nabla \rho_{i,h}^{m+1} \cdot \nabla \phi + \int_{\Omega} \tau_{i}^{-1} \rho_{i,h}^{m+1} \phi + \int_{\Gamma_{i+1}} k_{-} \rho_{i,h}^{m+1} \phi + \int_{\Gamma_{i}} k_{+} \rho_{i,h}^{m+1} \phi + \int_{\Gamma_{i+1}} k_{-} \rho_{i,h}^{m+1} \phi + \int_{\Gamma_{i}} k_{+} \rho_{i,h}^{m+1} \phi + \int$$

All integrals over whole domain Ω !

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Integration routines

line integration

$$\int_{T} \lambda \phi \approx \int_{\triangle(DBE)} \lambda_{i} \phi + \int_{\square(ADEC)} \lambda_{i-1} \phi$$
$$= \int_{\triangle(DBE)} \lambda_{i} \phi + \int_{T} \lambda_{i-1} \phi - \int_{\triangle(DBE)} \lambda_{i-1} \phi.$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Free boundary evolution

nonlinear 4th order geometric evolution law

$$v_{i} = \underbrace{-D\nabla\rho_{i} \cdot \vec{n}_{i} - \rho_{i}v_{i} + D\nabla\rho_{i-1} \cdot \vec{n}_{i} + \rho_{i-1}v_{i}}_{\text{mass conservation}} + \underbrace{\partial_{s}(\nu\partial_{s}(\mu\kappa_{i}))}_{\text{edge diffusion}},$$

• diffusion limited: use $D[\nabla \rho \cdot \vec{n}_i]_i = \frac{1}{\epsilon}(\rho - \rho^*(1 + \mu \kappa_i))$ (from penalty method)

$$v_i = \frac{1}{\epsilon} (\rho - \rho^*) - \frac{1}{\epsilon} \rho^* \mu \kappa_i + \partial_s (\nu \partial_s (\mu \kappa_i)).$$

• attachment limited: use $-D\nabla\rho_i \cdot \vec{n}_i - v_i\rho_i = k_+(\rho_i - \rho^*(1 - \mu\kappa_i))$ $D\nabla\rho_{i-1} \cdot \vec{n}_i + v_i\rho_{i-1} = k_-(\rho_{i-1} - \rho^*(1 - \mu\kappa_i))$

$$v_{i} = k_{+}(\rho_{i} - \rho^{*}) + k_{-}(\rho_{i-1} - \rho^{*}) - (k_{+} + k_{-})\rho^{*}\mu\kappa_{i} + \partial_{s}(\nu\partial_{s}(\mu\kappa_{i})).$$

Free boundary evolution

nonlinear 4th order geometric evolution law

$$v_i = f_i - \beta \mu \kappa_i + \partial_s(\nu \partial_s(\mu \kappa_i))$$

parametric finite elements, for MCF [Dziuk 1991] for SD [Bänsch, Morin, Nochetto 2002]

write 4th order PDE as 2nd order system: position vector \vec{x}_i , curvature vector $\vec{\kappa}_i = \kappa \vec{n}_i$, velocity vector $\vec{v}_i = v_i \vec{n}_i$, geometric identity $\vec{\kappa}_i = -\partial_{ss} \vec{x}_i$

$$\vec{\kappa}_{i} = -\partial_{ss}\vec{x}_{i}$$

$$\mu\kappa_{i} = \mu\vec{\kappa}_{i}\cdot\vec{n}_{i}$$

$$v_{i} = f_{i}-\beta\mu\kappa_{i}+\partial_{s}(\nu\partial_{s}(\mu\kappa_{i}))$$

$$\vec{v}_{i} = v_{i}\vec{n}_{i}$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Time discretization

free boundary Γ_i^{m+1} : $\vec{x}_i^{m+1} = \vec{x}_i^m + \Delta t_m \vec{v}_i^{m+1}$

$$\vec{\kappa}_{i} = -\partial_{ss}(\vec{x}_{i} + \Delta t_{m}\vec{v}_{i})$$

$$\mu\kappa_{i} = \mu\vec{\kappa}_{i} \cdot \vec{n}_{i}$$

$$v_{i} = f_{i} - \beta\mu\kappa_{i} + \partial_{s}(\nu\partial_{s}(\mu\kappa_{i}))$$

$$\vec{v}_{i} = v_{i}\vec{n}_{i}$$

geometric quantities \vec{n}_i , ∂_s explicit, unknowns $\vec{\kappa}_i$, $\mu \kappa_i$, v_i , \vec{v}_i implicit

Variational formulation $\int \partial_{ss} uv = -\int \partial_s u \partial_s v$

$$\langle \vec{\kappa}_{i}, \vec{\psi} \rangle - \Delta t_{m} \langle \partial_{s} \vec{v}_{i}, \partial_{s} \vec{\psi} \rangle = \langle \partial_{s} \vec{x}_{i}, \partial_{s} \vec{\psi} \rangle$$

$$\langle \mu \kappa_{i}, \psi \rangle - \langle \mu \vec{\kappa}_{i} \cdot \vec{n}_{i}, \psi \rangle = 0$$

$$\langle v_{i}, \psi \rangle + \langle \nu \partial_{s} (\mu \kappa_{i}), \partial_{s} \psi \rangle + \langle \beta \mu \kappa_{i}, \psi \rangle = \langle f_{i}, \psi \rangle$$

$$\langle \vec{v}_{i}, \vec{\psi} \rangle - \langle v_{i} \vec{n}_{i}, \vec{\psi} \rangle = 0$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Finite element formulation and linear system

nodal bases (ψ_k) and $(ec{\psi}_k^q)$

$$\begin{pmatrix} \vec{M} & 0 & 0 & -\vec{N} \\ 0 & M & -\vec{N_{\mu}}^{t} & 0 \\ -\Delta t_{m}\vec{A} & 0 & \vec{M} & 0 \\ 0 & A_{\nu} + M_{\beta} & 0 & M \end{pmatrix} \begin{pmatrix} \vec{V_{i}} \\ \mu K_{i} \\ \vec{K_{i}} \\ V_{i} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vec{A}\vec{X_{i}} \\ F \end{pmatrix}$$

Schur complement equation for \vec{K}_i, V_i reads

$$S\begin{pmatrix} \vec{K}_i\\ V_i \end{pmatrix} = \begin{pmatrix} \vec{A}\vec{X}_i\\ F \end{pmatrix},$$

$$egin{aligned} S &= egin{pmatrix} ec{M} & 0 \ 0 & M \end{pmatrix} - egin{pmatrix} -\Delta t_m ec{A} & 0 \ 0 & A_
u + M_eta \end{pmatrix} egin{pmatrix} ec{M} & 0 \ 0 & M \end{pmatrix}^{-1} egin{pmatrix} 0 & -ec{N} \ -ec{N}_\mu^{-t} & 0 \end{pmatrix} \ &= egin{pmatrix} ec{M} & -\Delta t_m ec{A} ec{M}^{-1} ec{N} \ ec{M} & M \end{pmatrix} . \ & (A_
u + M_eta) M^{-1} ec{N}_\mu^{-t} & M \end{pmatrix}. \end{aligned}$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Schur complement equations

• solve for V_i

$$\left(\Delta t_m (A_\nu + M_\beta) M^{-1} \vec{N_\mu}^t \vec{M}^{-1} \vec{A} \vec{M}^{-1} \vec{N} + M \right) V_i = F - (A_\nu + M_\beta) M^{-1} \vec{N_\mu}^t \vec{M}^{-1} \vec{A} \vec{X_i}.$$

• solve for $\vec{V_i}$

$$\vec{M}\vec{V}_i = \vec{N}V_i,$$

- update position X_i , assemble again over new interface
- solve for μK_i

$$\mu K_i = -M^{-1} \vec{N}_{\mu} \vec{M}^{-1} \vec{A} \vec{X}_i.$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Numerical tests for isotropic situations

- area conservation for geometric evolution
- comparison with analytic solution for circular domain
- mass conservation

[Bänsch, Haußer, Lakkis, Li, Voigt 2004]

Thermal decay

$$\rho_i''(r) + \frac{1}{r}\rho_i'(r) = 0 \qquad R_{i+1}(t) < r < R_i(t)$$
$$D\rho_i'(R_{i+1}) = k_- \left(\rho_i(R_{i+1}) - \rho^* \left(1 + \frac{\mu}{R_{i+1}}\right)\right)$$
$$-D\rho_{i+1}'(R_{i+1}) = k_+ \left(\rho_{i+1}(R_{i+1}) - \rho^* \left(1 + \frac{\mu}{R_{i+1}}\right)\right)$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Anisotropic decay of a nanomound

Thermal relaxation of a 12-layer mound on a substrate: $200a \times 200a$, a = 0.25nm.

STM snapshots, Si(111) nanomound [Ichimiya et al. 2001]

12, 27, 65, 157, 476, 1330sec [Haußer,Voigt 2004]

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Coarsening and Ostwald ripening, experiments

coarsening of islands; small islands shrink, large islands grow

TiN(001) during annealing [I. G. Petrov et al. 2001]

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Coarsening and Ostwald ripening, simulation

coverage $\phi = 0.085$, $k = 10^4$, $t = 600s, 3000s, 15000s, 1000 \times 1000$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Ostwald ripening - Mean field theory

Lifshitz, Slyozov, Wagner (LSW) reduce Mullins-Sekerka system

 $\Delta u = 0 \quad \text{in } \mathbb{R}^3 \backslash \partial G$ $v = [\nabla u \cdot \vec{n}] \quad \text{on } \partial G$ $u = \kappa \quad \text{on } \partial G$

to equation for radius of each particle R_i . small volume fraction: $u \approx \overline{u}(t)$ away from particle, solve for isolated particle with $u(t, \infty) = \overline{u}(t)$.

$$\dot{R}_i = \frac{1}{R_i^2} (R_i \overline{u}(t) - 1)$$

$$\overline{u}(t) = \frac{\sum_{i;R_i > 0} 1}{\sum_{i;R_i > 0} R_i(t)}$$

distribution of particle radii u(t,r)

 $\int_{r_1}^{r_2} \nu(t, r) dr =$ number of particles with radius in (r_1, r_2)

<u>two-dimensional situation</u> divergence of logarithmic Green's function, introduce screening length

$$\dot{R}_i \approx \frac{1}{\ln(\frac{1}{\phi^{1/2}})} \frac{1}{R_i^2} (R_i \overline{u}(t) - 1)$$

$$\overline{u}(t) = \frac{\sum_{i;R_i > 0} \frac{1}{R_i}}{\sum_{i:R_i > 0} 1}$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Crystal Growth Group

С

a es a r

•

Homoepitaxial Ostwald ripening - Mean field theory

Burton-Cabrera-Frank model yields

$$\dot{R}_i \approx (\overline{\rho} - \rho^*) \frac{Dk}{D + kR_i \ln(\frac{1}{\phi^{1/2}})}$$

$$\overline{\rho}(t) = \frac{\sum_{i;R_i>0} \frac{R_i}{D + kR_i \ln(1/\phi^{1/2})} \rho^*}{\sum_{i:R_i>0} \frac{R_i}{D + kR_i \ln(1/\phi^{1/2})}}$$

Diffusion limited $k\overline{R} \gg D$

$$\dot{R}_i \approx \frac{D}{R_i \ln(\frac{1}{\phi^{1/2}})} (\overline{\rho} - \frac{\nu}{R_i})$$

$$\overline{\rho}(t) = \nu \frac{\sum_{i:R_i > 0} \frac{1}{R_i}}{\sum_{i:R_i > 0} 1} = \nu \overline{\left(\frac{1}{R}\right)}$$

Attachment limited $k\overline{R} \ll D$

$$\dot{R}_i \approx (\overline{\rho} - \frac{\nu}{R_i})k$$

$$\overline{\rho}(t) = \nu \frac{\sum_{i:R_i>0} 1}{\sum_{i:R_i>0} R_i} = \nu \frac{1}{\overline{R}}$$

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Homoepitaxial Ostwald ripening - Mean field theory and Simulation

Diffusion limited

 $\bar{R}(t) = (\bar{R}^3 + K(\phi)t)^{\frac{1}{3}}$

Attachment limited

$$\bar{R}(t) = (\bar{R}^2 + K(\phi)t)^{\frac{1}{2}}$$

400 islands substrate $1000 \times 1000a$ coverage 0.085initial distribution radius and midpoints chosen randomly according to coverage zero asymptotic distribution.

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Homoepitaxial Ostwald ripening, island motion

assumption of mean field theories, that the center of the islands is fixed is not satisfied

Ostwald ripening, island size distribution

Computation for Multiscale Problems in Physics, University of Warwick, April 15-17 2004

Crystal Growth Group c a es a r

More information

http://www.caesar.de/cg