Discretisation and numerical tests of a diffuse-interface model with Ehrlich-Schwoebel barrier

Felix Otto ${ }^{1,2}$, Patrick Penzler ${ }^{1,2}$, Tobias Rump ${ }^{1,2}$

Based on joint work with Andreas Rätz ${ }^{2}$, Axel Voigt 2

${ }^{1}$ University of Bonn,
${ }^{2}$ caesar Bonn

Epitaxial growth

(i.e. layer-by-layer growth of a crystalline thin film on a substrate)

Microscopic processes:
nIn deposition of atoms on the terraces
|nt diffusion of adatoms on the terraces
N|w attachment of adatoms to steps
Int detachment of adatoms from steps

Step flow model: Non-dimensionalised BCF model ${ }^{1)}$

for excess adatom density $w=\rho-\rho^{*}$:

$$
\begin{aligned}
-\Delta w & =f & & \text { on terraces } \\
V & =\frac{\partial w^{+}}{\partial \nu}-\frac{\partial w^{-}}{\partial \nu} & & \text { at steps } \\
\left(\begin{array}{rr}
0 & 0 \\
0 & \zeta
\end{array}\right)\binom{\frac{\partial w^{+}}{\partial \nu}}{\frac{\partial w^{-}}{\partial \nu}} & =\binom{w^{+}-\kappa}{-\left(w^{-}-\kappa\right)} & & \text { at steps }
\end{aligned}
$$

Int infinite attachment rate at step up
nminte attachment rate $\sim 1 / \zeta$ at step down

${ }^{1)}$ [Burton, Cabrera, Frank; 1951]

Diffuse-interface model

[OPRRV; Nonlin. 17(2), 2004]
Un Cahn-Hilliard-type equation

$$
\begin{aligned}
\partial_{t} \phi+\nabla \cdot J & =f \\
J & =-M(\phi) \nabla w \\
w & =-\varepsilon \Delta \phi+\varepsilon^{-1} G^{\prime}(\phi)
\end{aligned}
$$

n" asymmetric mobility function

$$
\begin{gathered}
M(\phi)=\frac{1}{1+\varepsilon^{-1} \zeta(\phi)}, \\
\zeta(\phi)=\zeta(p+4)(p+5) \phi^{p+2}(1-\phi)^{2}, \quad p \gg 1
\end{gathered}
$$

to model the Ehrlich-Schwoebel barrier.
multiwell-potential

$$
G(\phi)=18 \phi^{2}(1-\phi)^{2}
$$

periodically extended.

Asymptotic analysis for $\varepsilon \rightarrow 0$ yields $p-\mathrm{BCF}$ model

$$
\begin{aligned}
-\Delta w & =f & \text { on terraces, } \\
V & =\frac{\partial w^{+}}{\partial \nu}-\frac{\partial w^{-}}{\partial \nu} & \text { at steps, } \\
\left(\begin{array}{rc}
\zeta^{+} & \zeta^{m} \\
\zeta^{m} & \zeta^{-}
\end{array}\right)\binom{\frac{\partial w^{+}}{\partial \nu}}{\frac{\partial w^{-}}{\partial \nu}} & =\binom{w^{+}-\kappa}{-\left(w^{-}-\kappa\right)} & \text { at steps, }
\end{aligned}
$$

with

$$
\zeta^{-}=\zeta, \quad \zeta^{+}=\mathcal{O}\left(p^{-2}\right) \quad \text { and } \quad \zeta^{m}=\mathcal{O}\left(p^{-1}\right)
$$

num numerical parameter ε and p :

$$
\begin{array}{|lllll|}
\hline \text { diffuse-interface } & \xrightarrow{\varepsilon \downarrow 0} & p-\mathrm{BCF} & \xrightarrow{p \uparrow \infty} & \mathrm{BCF} \\
\hline
\end{array}
$$

[OPRRV; 2004]

Time discretisation:

Model equation

$$
\partial_{t} \phi+A \phi=0, \quad A \text { positive semi-definite }
$$

	order	theoretical Δt-restriction	amplification factor for (spectrum of A) $\rightarrow \infty$
Euler explicit	first order	high	unbounded
Euler implicit	first order	none	goes to 0
Crank-Nicholson	second order	none	goes to 1
$\theta-$ scheme $^{1)}$	second order	none	uniformly bounded away from 1

$\Longrightarrow \theta$-scheme is right choice
${ }^{1)}$ [Bristeau, Glowinski, Périaux; 1987], [Weikard; 2002]

Time discretisation: θ-scheme

Write diffuse-interface model as

$$
\partial_{t} \phi+F(\phi)=0, \quad F(\phi)=\nabla \cdot\left[-M(\phi) \nabla\left(-\varepsilon \Delta \phi+\varepsilon^{-1} G^{\prime}(\phi)\right)\right]-f
$$

The θ-scheme is given by

$$
\begin{aligned}
\frac{\phi^{k+\theta}-\phi^{k}}{\theta \Delta t} & =-\left(\alpha F\left(\phi^{k+\theta}\right)+\beta F\left(\phi^{k}\right)\right) & t^{k} \\
\frac{\phi^{k+1-\theta}-\phi^{k+\theta}}{(1-2 \theta) \Delta t} & =-\left(\beta F\left(\phi^{k+1-\theta}\right)+\alpha F\left(\phi^{k+\theta}\right)\right) & \underbrace{k+1}_{k+1-\theta} \\
\frac{\phi^{k+1}-\phi^{k}}{\theta \Delta t} & =-\left(\alpha F\left(\phi^{k+1}\right)+\beta F\left(\phi^{k+1-\theta}\right)\right) & \underbrace{}_{k+1}
\end{aligned}
$$

with

$$
\theta=1-1 / \sqrt{2}, \quad \alpha=2-\sqrt{2}, \quad \beta=\sqrt{2}-1
$$

Newton's method in each intermediate step (two Newton steps)

Symmetrisation of time discrete problem via flux

One Newton step in semi-implicit Euler scheme:

$$
\left(\frac{1}{\tau} \mathrm{id}+\nabla \cdot M\left(\phi^{k}\right) \nabla\left(\varepsilon \Delta-\varepsilon^{-1} G^{\prime \prime}\left(\phi^{k}\right)\right)\right)\left(\phi^{k+1}-\phi^{k}\right)+F\left(\phi^{k}\right)=0
$$

\leadsto non-symmetric fourth order problem due to $M\left(\phi^{k}\right)$
How do we get a symmetric problem?
Rewrite as

$$
\begin{gathered}
\frac{1}{\tau}\left(\phi^{k+1}-\phi^{k}\right)+\nabla \cdot J^{k+1}=0 \\
J^{k+1}:=M\left(\phi^{k}\right) \nabla\left[\varepsilon \Delta \phi^{k+1}-\varepsilon^{-1}\left(G^{\prime}\left(\phi^{k}\right)+G^{\prime \prime}\left(\phi^{k}\right)\left(\phi^{k+1}-\phi^{k}\right)\right)\right]
\end{gathered}
$$

J^{k+1} can be characterised as

$$
\left(\frac{1}{M\left(\phi^{k}\right)} \mathrm{id}+\tau \varepsilon(\nabla \nabla \cdot)^{2}-\tau \varepsilon^{-1} \nabla G^{\prime \prime}\left(\phi^{k}\right) \nabla \cdot\right) J^{k+1}=-\nabla w^{k}
$$

\leadsto symmetric fourth order problem
\leadsto discrete (and regularised) version of

$$
\frac{1}{M(\phi)} J=-\nabla w .
$$

Advantages:

n 1 periodic boundary conditions
n 1 Solver: conjugate gradient method
Preconditioner: $M \mapsto M$ (terrace) and $G^{\prime \prime} \mapsto G^{\prime \prime}$ (terrace)
\leadsto linear operator with constant coefficients
\leadsto easy to invert, e.g. by FFT on equidistant grid

Spatial discretisation

Goal: discrete volume conservation preserve symmetric structure
Finite volume scheme in 2-d:

$$
\begin{aligned}
\left(\nabla^{h} \cdot J\right)(i, j)= & \frac{1}{h}\left(J_{x}\left(i+\frac{1}{2}, j\right)-J_{x}\left(i-\frac{1}{2}, j\right)\right. \\
& \left.+J_{y}\left(i, j+\frac{1}{2}\right)-J_{y}\left(i, j-\frac{1}{2}\right)\right) \\
\left(\nabla^{h} \phi\right)_{x}\left(i+\frac{1}{2}, j\right)= & \frac{1}{h}(\phi(i+1, j)-\phi(i, j)) \\
\left(\nabla^{h} \phi\right)_{y}\left(i, j+\frac{1}{2}\right)= & \frac{1}{h}(\phi(i, j+1)-\phi(i, j))
\end{aligned}
$$

Discrete mobility $M=\left(M_{x}, M_{y}\right)$: average of friction ζ

$$
\begin{aligned}
M_{x}\left(i+\frac{1}{2}, j\right) & =\frac{1}{1+\frac{1}{2 \varepsilon}(\zeta(\phi(i+1, j))+\zeta(\phi(i, j)))} \\
M_{y}\left(i, j+\frac{1}{2}\right) & =\frac{1}{1+\frac{1}{2 \varepsilon}(\zeta(\phi(i, j+1))+\zeta(\phi(i, j)))}
\end{aligned}
$$

[Gruen, Rumpf; 2000]

Outlook: Finite element formulation

Goal: local refinement at steps
Weak formulation is given by

$$
\begin{gathered}
\int_{\Omega} K \cdot \widetilde{J}=\int_{\Omega}\left(\nabla \cdot J^{k+1}\right)(\nabla \cdot \widetilde{J}) \\
\int_{\Omega} \frac{1}{M\left(\phi^{k}\right)} J^{k+1} \cdot \widetilde{J}+\int_{\Omega} \tau \varepsilon(\nabla \cdot K)(\nabla \cdot \widetilde{J})+\int_{\Omega} \tau \varepsilon^{-1} G^{\prime \prime}\left(\phi^{k}\right)\left(\nabla \cdot J^{k+1}\right)(\nabla \cdot \widetilde{J})=\int_{\Omega} w^{k}(\nabla \cdot \widetilde{J}) .
\end{gathered}
$$

$$
\Longrightarrow \quad \text { Find } J^{k+1} \in H(\nabla \cdot, \Omega):=\left\{J \in\left(L^{2}(\Omega)\right)^{2} \mid \nabla \cdot J \in L^{2}(\Omega)\right\} .
$$

In terms of the mass and stiffness matrices:

$$
\left(B_{1}+\tau \varepsilon A_{0} B_{0}^{-1} A_{0}+\tau \varepsilon^{-1} A_{1}\right) J^{k+1}=C w^{k} .
$$

Raviart-Thomas element

$H(\nabla \cdot, \Omega)$-conforming elements are the Raviart-Thomas elements ${ }^{1)}$ defined by

$$
\begin{aligned}
& \operatorname{RT}(\mathcal{T}):=\left\{J \in\left(L^{2}(\Omega)\right)^{2} \mid \forall T \in \mathcal{T} \exists a_{T} \in \mathbb{R}^{2} \text { and } b_{T} \in \mathbb{R}:\right. \\
& \left.\forall x \in T J(x)=a_{T}+b_{T} x \text { and } \forall \text { edges } E:[J]_{E} \cdot \nu_{E}=0\right\}
\end{aligned}
$$

Construction of basis functions:

Edge-oriented basis element ψ_{E} is defined by

$$
\psi_{E}(x):= \begin{cases} \pm \frac{|E|}{2\left|T_{ \pm}\right|}\left(x-P_{ \pm}\right) & \text {for } x \in T_{ \pm} \\ 0 & \text { elsewhere }\end{cases}
$$

Nom Normal component is constant along an arbitrary edge $F: \quad \psi_{E} \cdot \nu_{F}(x) \equiv \delta_{E F}$.
${ }^{1)}$ [Raviart, Thomas; 1977]

Accuracy of the diffuse-interface model

Outer solution

Linear convergence in ε :

Why does the diffuse-interface solution lag behind the BCF-solution?

Initial delay:

diffuse-interface density needs time to reach its travelling wave shape

After initial layer, the step has the same speed as the BCF-solution: $V=f L_{x}$. (\sim discrete volume conservation)

1d effect: step bunching

(i. e. width of a terrace goes to zero)

We consider a periodic step train with three terraces:

From BCF model:

ODE for the terrace width l_{i} is given by

$$
\dot{l}_{i}=f\left(\frac{\zeta l_{i+1}+\frac{1}{2} l_{i+1}^{2}}{\zeta+l_{i+1}}-\frac{\zeta l_{i}}{\zeta+l_{i}}-\frac{\frac{1}{2} l_{i-1}^{2}}{\zeta+l_{i-1}}\right)
$$

$$
\begin{gathered}
\zeta=0 \\
\dot{l}_{i}=\frac{f}{2}\left(l_{i+1}-l_{i-1}\right)
\end{gathered}
$$

\Rightarrow step bunching possible

$$
\dot{l}_{i}=f\left(l_{i+1}-l_{i}\right)
$$

\Rightarrow no step bunching
\Longrightarrow Ehrlich-Schwoebel barrier counteracts step bunching under growth.

The ODE system for 3 periodic terraces

$$
\left(\dot{l_{1}}, \dot{l_{2}}, \dot{l_{3}}\right)=L\left(l_{1}, l_{2}, l_{3}\right)
$$

preserves $l_{1}+l_{2}+l_{3}$ and has equidistant steps as stationary point

$$
\left(l_{1}, l_{2}, l_{3}\right)=\left(l^{*}, l^{*}, l^{*}\right)
$$

The eigenvalues of $D L\left(l^{*}, l^{*}, l^{*}\right)$ are

$$
\begin{aligned}
\lambda_{1} & =0 \quad\left(\text { conservation of } l_{1}+l_{2}+l_{3}=3 l^{*}\right) \\
\lambda_{2 / 3} & =-\frac{3 f \zeta^{2}}{2\left(\zeta+3 l^{*}\right)^{2}} \pm i \frac{\sqrt{3} f}{2} \\
\zeta & >0 \Rightarrow \operatorname{Re}\left(\lambda_{2 / 3}\right)<0 \Rightarrow \text { stable }
\end{aligned}
$$

\Longrightarrow Ehrlich-Schwoebel barrier favours equidistant steps under growth.

Vanishing of terraces for $\zeta=0$:

Comparison with the measured lengths of our simulation:

$$
\zeta=0:
$$

time periodic step bunching

$$
\zeta=1:
$$

trend towards equidistant steps

2d effect: step meandering

(i. e. steps do not stay straight)

Consider an equidistant step train, each step perturbed by the same function $h(y)$ of order ε.

How does this perturbation develop in time?

Linear stability analysis for the BCF model yields for each wave vector k

$$
\frac{d}{d t} \hat{h}_{k}(t)=\omega(|k|) \hat{h}_{k}(t)
$$

with the dispersion relation ω depending on f, ζ, L_{x}.

\Longrightarrow Ehrlich-Schwoebel barrier favours step meandering under growth.

How do we get the dispersion relation of the diffuse-interface model?

1. discrete Fourier transformation $\left(\hat{\phi}_{i j}\left(t_{n}\right)\right)_{i j}$ of ϕ in each time step t_{n}
2. vector $H\left(t_{n}\right)$ with components

$$
H_{j}\left(t_{n}\right)=\sum_{i}\left|\hat{\phi}_{i j}\left(t_{n}\right)\right|^{2}
$$

3. growth rate over time interval Δt :

$$
\omega_{t_{n}}(|k|)=\frac{\log \left(\frac{H_{|k|}\left(t_{n}\right)}{H_{|k|}\left(t_{n}-\Delta t\right)}\right)}{2 \Delta t}
$$

$h(y)=\sin \left(2 \pi / L_{y}\right)$, most unstable mode: 1

Linear convergence in ε :

Boundary conditions

Recall that the BCF-w satisfies the boundary conditions

$$
\begin{aligned}
w^{+}-\kappa & =0 & \text { at step up } \\
\zeta \frac{\partial w^{-}}{\partial \nu}+\left(w^{-}-\kappa\right) & =0 & \text { at step down. }
\end{aligned}
$$

So for the two extreme cases $\zeta=0$ and $\zeta \gg 1$ we have

$$
w^{-}=\kappa
$$

and

$$
\frac{\partial w^{-}}{\partial \nu} \approx 0
$$

With deposition $(f=0.1)$ and ES barrier $(\zeta=5)$:
${ }^{\text {IIII*}}$ concave shape due to deposition
num jump at the step due to the ES barrier

III* variation in jump height due to curvature

