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Introduction IAM, University of Bonn

Epitaxial growth

(i.e. layer–by–layer growth of a crystalline thin film on a substrate)

terrace

step

adatom

atom deposition

atom

adatom diffusion

Microscopic processes:

➠ deposition of atoms on the terraces

➠ diffusion of adatoms on the terraces

➠ attachment of adatoms to steps

➠ detachment of adatoms from steps
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Introduction IAM, University of Bonn

Step flow model: Non–dimensionalised BCF model1)

for excess adatom density w = ρ− ρ∗:

−∆w = f on terraces

V =
∂w+

∂ν
− ∂w−

∂ν
at steps





0 0

0 ζ









∂w+

∂ν

∂w−

∂ν



 =





w+ − κ

−(w− − κ)



 at steps

➠ infinite attachment rate at step up

➠ finite attachment rate ∼ 1/ζ at step down
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1)[Burton, Cabrera, Frank; 1951]
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Introduction IAM, University of Bonn

Diffuse–interface model
[OPRRV; Nonlin. 17(2), 2004]

➠ Cahn–Hilliard–type equation

∂tφ+∇ · J = f

J = −M(φ)∇w
w = −ε∆φ+ ε−1G′(φ)

➠ asymmetric mobility function

M(φ) =
1

1 + ε−1ζ(φ)
,

ζ(φ) = ζ(p+4)(p+5)φp+2(1 − φ)2, p À 1

to model the Ehrlich–Schwoebel barrier.
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➠ multiwell–potential

G(φ) = 18φ2(1 − φ)2

periodically extended.
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Introduction IAM, University of Bonn

Asymptotic analysis for ε→ 0 yields p–BCF model

−∆w = f on terraces,

V =
∂w+

∂ν
− ∂w−

∂ν
at steps,

0
@

ζ+ ζm

ζm ζ−

1
A

0
@

∂w+

∂ν

∂w−

∂ν

1
A =

0
@

w+ − κ

−(w− − κ)

1
A at steps,

with
ζ− = ζ, ζ+ = O(p−2) and ζm = O(p−1).

➠ numerical parameter ε and p:

diffuse–interface
ε↓0−−→ p–BCF

p↑∞−−−→ BCF

[OPRRV; 2004]
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Implementation IAM, University of Bonn

Time discretisation:

Model equation

∂tφ+Aφ = 0, A positive semi–definite

theoretical amplification factor
order ∆t–restriction for (spectrum of A)→∞

Euler explicit first order high unbounded

Euler implicit first order none goes to 0

Crank–Nicholson second order none goes to 1

θ–scheme1) second order none uniformly bounded away from 1

=⇒ θ–scheme is right choice

1)[Bristeau, Glowinski, Périaux; 1987], [Weikard; 2002]
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Implementation IAM, University of Bonn

Time discretisation: θ–scheme

Write diffuse–interface model as

∂tφ+ F (φ) = 0, F (φ) = ∇ · [−M(φ)∇(−ε∆φ+ ε−1G′(φ))]− f.

The θ–scheme is given by

φk+θ
− φk

θ∆t
= −(αF (φk+θ) + βF (φk))

φk+1−θ
− φk+θ

(1 − 2θ)∆t
= −(βF (φk+1−θ) + αF (φk+θ))

φk+1
− φk

θ∆t
= −(αF (φk+1) + βF (φk+1−θ))

k

k + θ

k + 1 − θ

k + 1

with
θ = 1 − 1/

√
2, α = 2 −

√
2, β =

√
2 − 1.

➠ Newton’s method in each intermediate step (two Newton steps)
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Symmetrisation of time discrete problem via flux IAM, University of Bonn

Symmetrisation of time discrete problem via flux

One Newton step in semi–implicit Euler scheme:
(

1

τ
id +∇ ·M(φk)∇(ε∆− ε−1G′′(φk))

)

(φk+1 − φk) + F (φk) = 0

; non-symmetric fourth order problem due to M(φk)

How do we get a symmetric problem?

Rewrite as
1
τ (φk+1 − φk) +∇ · Jk+1 = 0

Jk+1 := M(φk)∇
[

ε∆φk+1 − ε−1(G′(φk) +G′′(φk)(φk+1 − φk))
]
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Symmetrisation of time discrete problem via flux IAM, University of Bonn

Jk+1 can be characterised as
(

1

M(φk)
id + τε(∇∇·)2 − τε−1∇G′′(φk)∇·

)

Jk+1 = −∇wk.

; symmetric fourth order problem

; discrete (and regularised) version of

1
M(φ)J = −∇w.

Advantages:

➠ periodic boundary conditions

➠ Solver: conjugate gradient method

Preconditioner: M 7→M(terrace) and G′′ 7→ G′′(terrace)

; linear operator with constant coefficients

; easy to invert, e.g. by FFT on equidistant grid
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Spatial discretization IAM, University of Bonn

Spatial discretisation

Goal: discrete volume conservation
preserve symmetric structure

Finite volume scheme in 2-d:

(∇h · J)(i, j) = 1
h
(Jx(i + 1

2
, j) − Jx(i − 1

2
, j)

+ Jy(i, j + 1
2
) − Jy(i, j − 1

2
))

(∇hφ)x(i + 1
2
, j) = 1

h
(φ(i + 1, j) − φ(i, j))

(∇hφ)y(i, j + 1
2
) = 1

h
(φ(i, j + 1) − φ(i, j))

ii−1 i+1

j−1

j

j+1

Discrete mobility M = (Mx,My): average of friction ζ

Mx(i + 1
2
, j) =

1

1 + 1
2ε

(ζ(φ(i + 1, j)) + ζ(φ(i, j)))
,

My(i, j + 1
2
) =

1

1 + 1
2ε

(ζ(φ(i, j + 1)) + ζ(φ(i, j)))
.

[Gruen, Rumpf; 2000]
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Outlook: Finite element formulation IAM, University of Bonn

Outlook: Finite element formulation

Goal: local refinement at steps

Weak formulation is given by
Z

Ω

K · eJ =

Z

Ω

(∇ · Jk+1)(∇ · eJ)

Z

Ω

1

M(φk)
Jk+1 · eJ +

Z

Ω

τε(∇·K)(∇· eJ)+

Z

Ω

τε−1G′′(φk)(∇·Jk+1)(∇· eJ) =

Z

Ω

wk(∇· eJ).

=⇒ Find Jk+1 ∈ H(∇·,Ω) := {J ∈ (L2(Ω))2 | ∇ · J ∈ L2(Ω)}.

In terms of the mass and stiffness matrices:
(

B1 + τεA0B
−1
0 A0 + τε−1A1

)

Jk+1 = Cwk.
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Outlook: Finite element formulation IAM, University of Bonn

Raviart–Thomas element

H(∇·,Ω)–conforming elements are the Raviart–Thomas elements1) defined by

RT(T ) := {J ∈ (L2(Ω))2 | ∀T ∈ T ∃aT ∈ R
2 and bT ∈ R :

∀x ∈ T J(x) = aT + bTx and ∀ edges E : [J ]E · νE = 0}.

Construction of basis functions:

Edge–oriented basis element ψE is defined by

ψE(x) :=







± |E|
2|T±| (x− P±) for x ∈ T±
0 elsewhere.

ν
E

E

T T
P +
− P+

−

➠ Normal component is constant along an arbitrary edge F : ψE · νF (x) ≡ δEF .

1)[Raviart, Thomas; 1977]
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Accuracy of the diffuse–interface model IAM, University of Bonn

Accuracy of the diffuse–interface model

Outer solution

Linear convergence in ε:
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ε=0.0625

Why does the diffuse–interface solution lag behind the BCF-solution?
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Accuracy of the diffuse–interface model IAM, University of Bonn

Initial delay:

diffuse–interface density needs time to reach its travelling wave shape
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After initial layer, the step has the same speed as the BCF–solution: V = fLx.

(; discrete volume conservation)
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1d effect: step bunching IAM, University of Bonn

1d effect: step bunching

(i. e. width of a terrace goes to zero)

We consider a periodic step train with three terraces:

Lx

l l l1 2 3

0
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1d effect: step bunching IAM, University of Bonn

From BCF model:

ODE for the terrace width li is given by

l̇i = f

(

ζli+1 + 1
2 l

2
i+1

ζ + li+1
− ζli
ζ + li

−
1
2 l

2
i−1

ζ + li−1

)

.

ζ = 0

l̇i = f
2 (li+1 − li−1)

⇒ step bunching possible

ζ = +∞

l̇i = f(li+1 − li)

⇒ no step bunching

=⇒ Ehrlich–Schwoebel barrier counteracts step bunching under growth.
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1d effect: step bunching IAM, University of Bonn

The ODE system for 3 periodic terraces

(l̇1, l̇2, l̇3) = L(l1, l2, l3)

preserves l1 + l2 + l3 and has equidistant steps as stationary point

(l1, l2, l3) = (l∗, l∗, l∗).

The eigenvalues of DL(l∗, l∗, l∗) are

λ1 = 0 (conservation of l1 + l2 + l3 = 3l∗)

λ2/3 = − 3fζ2

2(ζ + 3l∗)2
± i
√

3f

2

ζ > 0 ⇒ Re (λ2/3) < 0 ⇒ stable

=⇒ Ehrlich–Schwoebel barrier favours equidistant steps under growth.
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1d effect: step bunching IAM, University of Bonn

Vanishing of terraces for ζ = 0:

BCF model
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1d effect: step bunching IAM, University of Bonn

Comparison with the measured lengths of our simulation:

ζ = 0:

time periodic
step bunching
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ζ = 1:

trend towards
equidistant steps
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2d effect: step meandering IAM, University of Bonn

2d effect: step meandering

(i. e. steps do not stay straight)

Consider an equidistant step train, each step perturbed by the same function h(y) of

order ε.

Ly

0 L 2 Lx x

step

h(y)
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2d effect: step meandering IAM, University of Bonn

How does this perturbation develop in time?

Linear stability analysis for the BCF model yields for each wave vector k

d

dt
ĥk(t) = ω(|k|)ĥk(t),

with the dispersion relation ω depending on f, ζ, Lx.

ζ = 0 or f = 0 ζ > 0 and f > 0

ω(|k|) < 0 for all |k| ←→ ω(|k|) > 0 for small |k|
⇒ stability ⇒ instability occurs
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=⇒ Ehrlich–Schwoebel barrier favours step meandering under growth.
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2d effect: step meandering IAM, University of Bonn

How do we get the dispersion relation of the diffuse–interface model?

1. discrete Fourier transformation (φ̂ij(tn))ij of φ in each time step tn

2. vector H(tn) with components

Hj(tn) =
∑

i

|φ̂ij(tn)|2.

3. growth rate over time interval ∆t:

ωtn
(|k|) =

log
(

H|k|(tn)

H|k|(tn−∆t)

)

2∆t
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2d effect: step meandering IAM, University of Bonn

h(y)= “white noise”

most unstable mode: 1
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2d effect: step meandering IAM, University of Bonn

h(y)= sin(2π/Ly), most unstable mode: 1

Linear convergence in ε:
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(f = 0.5, ζ = 10, Lx = 7, nx = 2048, ny = 32)
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Boundary conditions IAM, University of Bonn

Boundary conditions

Recall that the BCF–w satisfies the boundary conditions

w+ − κ = 0 at step up

ζ
∂w−

∂ν
+ (w− − κ) = 0 at step down.

So for the two extreme cases ζ = 0 and ζ À 1 we have

w− = κ and ∂w−

∂ν ≈ 0.
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Boundary conditions IAM, University of Bonn

With deposition (f = 0.1) and ES barrier (ζ = 5):

➠ concave shape due

to deposition

➠ jump at the step due

to the ES barrier

➠ variation in jump

height due to curva-

ture
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