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IntroductionIntroduction

The dendrite is a ubiquitous feature during the solidification of 
metallic melts.  The importance of this type of solidification 
morphology is reflected in the large volume of literature devoted 
to understanding dendritic growth. This has its origins in the 
observation by Papapetrou (1935) that the dendrite tip is a 
paraboloid of revolution and the analytical solutions of Ivantsov 
(1947) which showed that a parabolid of revolution was in deed a 
shape preserving solution to the thermal diffusion equation for an 
isothermal dendrite growing into its undercooled parent melt.  
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Introduction - Models of Dendrite Tip RadiusIntroduction - Models of Dendrite Tip Radius
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Analytical theories of dendritic growth generally relate the Peclet 
number  
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to undercooling ∆T, rather the velocity, V, or tip radius, R, individually. 
    Many models have been put forward to explain why this degeneracy 
is broken in nature and, for a given material, V, can always uniquely be 
related to ∆T.  The most successful of these is the theory of microscopic 

solvability, the principal prediction of which is that capillary 
anisotropy breaks the Ivantsov degeneracy via the relationship
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For a sharp interface model the equations to be solved are
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Equation (2) is simply the balance of heat fluxes across the 
interface, while Equation (3) is the moving interface version of 
the Gibbs-Thomson equation with local interface temperature, Ti, 
with anisotropic capillary length and attachment kinetics 
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Anisotropy & Phase-FieldAnisotropy & Phase-Field
In phase-field modelling anisotropy can be introduced by letting the 
width of the diffuse interface be anisotropic. Evolution of the phase 
variable, φ, is given by (e.g Wheeler et al. (1993))
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while evolution of the dimensionless temperature, u,  TuTT m ∆+=
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Where m, α and ∆ are material dependant constants,   
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Where γ  is the anisotropy parameter and ε is a constant related to the 

interface thickness.  
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Phase-Field Simulation of Dendritic GrowthPhase-Field Simulation of Dendritic Growth
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Anisotropy & Phase-FieldAnisotropy & Phase-Field

However, in virtually all cases the differential equations that arise 
in phase field are solved using finite difference or finite element 
methods utilising regular meshing.  This introduces an additional 
implicit anisotropy due to the periodicity of the mesh.  The nature 
of the implicit anisotropy will depend upon the mesh used, but 
even for a simple square grid it does not follow that the implicit 
anisotropy will have simple 4-fold symmetry.  

This implicit anisotropy can seriously impede the study of low 
anisotropy features such as doublons and ‘dendritic seaweed’. 
Such structures play an important role in rapid solidification 
research.
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Phase-Field Simulation of Doublon GrowthPhase-Field Simulation of Doublon Growth
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Phase-Field Simulation of Doublon GrowthPhase-Field Simulation of Doublon Growth
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The Dense-Branching ‘Seaweed’ MorphologyThe Dense-Branching ‘Seaweed’ Morphology

Simulation

Experiment in CBr4-C2Cl6 
analogue casting system
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Repeated tip-splitting or doublon formation leads to the creation 
of the ‘seaweed’ morphology
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Experimental Solidification ResearchExperimental Solidification Research
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Solidification is generally regarded as a two stage process;

In order to study the growth stage of this process it is necessary 
to control nucleation.  This requires great care as any solid matter 
in contact with the melt can act as a heterogeneous nuclei.  Such 
heterogeneous nuclei commonly include;

Nucleation

Growth

High melting point impurities

Oxide films

The container !



Experimental Solidification ResearchExperimental Solidification Research

University of Leeds, Institute for Materials Research

The first of these can be overcome by using high purity materials 
while the second can be alleviated by working under ultra-clean 
conditions in an inert or reducing atmosphere.  However, to 
overcome the final condition we need to utilise containerless 
processing techniques.  These include;

Electromagnet, electrostatic or acoustic levitation

Free-fall processing, e.g. drop-tubes

µ-gravity processing such as parabolic flight or orbital 
experimentation (e.g. Tempus facility aboard ISS).  
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Containerless Processing via Electromagnetic LevitationContainerless Processing via Electromagnetic Levitation



Leeds Levitation/Fluxing ApparatusLeeds Levitation/Fluxing Apparatus
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Leeds Levitation/Fluxing ApparatusLeeds Levitation/Fluxing Apparatus
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Ultra-high Purity Cu at Ultra-high Purity Cu at ∆∆T = 280 KT = 280 K
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Seaweed Morphology Seaweed Morphology 
Comparison of Model & Experiment (?)Comparison of Model & Experiment (?)
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Ultra-high Purity Cu at Ultra-high Purity Cu at ∆∆T = 280 KT = 280 K
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Phase-Field Simulation of Mixed Dendritic/Doublon GrowthPhase-Field Simulation of Mixed Dendritic/Doublon Growth
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Phase-Field Simulation of Mixed Dendritic/Doublon GrowthPhase-Field Simulation of Mixed Dendritic/Doublon Growth
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Correlation with Recalescence VelocityCorrelation with Recalescence Velocity
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Spontaneous Grain RefinementSpontaneous Grain Refinement

Non grain refined droplet Grain refined droplet
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Grain Refinement by MaterialGrain Refinement by Material



Implicit AnisotropyImplicit Anisotropy

Implicit anisotropy seems to be much more severe in solutal than 
in thermal phase-field models.  Our initial suspicion was that this 
was due to the difference in length scale between the thermal and 
solutal boundary layers.  Typically the thermal boundary layer, ξ, 

will be large relative to the dendrite tip radius, R, (typically ξ  > 
10R), whereas the solutal boundary layer will be small relative to 
R  (ξ  > R/10), We conjectured that because the solutal boundary 
layer see far fewer grid cells, the directionality introduced by the 
grid is greater.  
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Implicit AnisotropyImplicit Anisotropy
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To understand the origins of the implicit anisotropy we have 
adopted the following methodology.  A phase-field model has 
been used to grow a small circular region of solid.  The departure 
of the solid from a true circle has been measured and an opposing 
4-fold anisotropy has been added to the model to correct the 
shape of the solid.  When the solid grows exactly as a circle, the 
implicit anisotropy is taken to be equal to the introduced 
anisotropy to first order.  



Implicit AnisotropyImplicit Anisotropy
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Implicit AnisotropyImplicit Anisotropy
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Implicit AnisotropyImplicit Anisotropy

University of Leeds, Institute for Materials Research



Implicit AnisotropyImplicit Anisotropy
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On the basis that the implicit anisotropy, γi, is related to the width 
of the solute boundary layer we first investigated the dependence 
of γi on the diffusion coefficient, Dl.  No dependence was found. 



Implicit AnisotropyImplicit Anisotropy
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Implicit AnisotropyImplicit Anisotropy
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Implicit AnisotropyImplicit Anisotropy
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Comparison of Thermal & Solutal ModelsComparison of Thermal & Solutal Models
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Comparison of Thermal & Solutal ModelsComparison of Thermal & Solutal Models
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Implicit AnisotropyImplicit Anisotropy
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Consequently we believe that the strong implicit anisotropy seen 
in solutal phase-field models may be due to the ‘discontinuity’  in 
both C and D.  Note that the transport equation contains both ∇C 

and ∇D terms which are ‘smeared out’ over the thin interface 
region.  Both of these terms can be potentially very large in the 
interface region.  It appears to be that as these large derivatives 
sample a very small number of grid points that this is what 
produces the observed implicit anisotropy in the solutions.  



Implicit AnisotropyImplicit Anisotropy
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The implicit anisotropy is not a simple 4-fold function, so it is not 
easy to simply introduce a compensating anisotropy to cancel out 
the implicit anisotropy introduced by the grid.  When this is 
attempted complex periodic structures result. 



Implicit Anisotropy (with cancelling) Simple Square MeshImplicit Anisotropy (with cancelling) Simple Square Mesh
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Implicit Anisotropy (with cancelling) Simple Square MeshImplicit Anisotropy (with cancelling) Simple Square Mesh
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Implicit AnisotropyImplicit Anisotropy

University of Leeds, Institute for Materials Research

Simply making the computational mesh finer is a very crude (& 
computationally expensive) answers to the implicit anisotropy 
problem.    Note that as explicit solvers are still widely used in 
phase field the time-step often scales as 1/(δx)2, so that the actual 

work involved to evolve through a given time scales as (δx)4.  
Mitigating techniques could include:

Adaptive meshing (more grid points in the interface region)



Adaptive MeshingAdaptive Meshing
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Implicit AnisotropyImplicit Anisotropy
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Simply making the computational mesh finer is a very crude (& 
computationally expensive) answers to the implicit anisotropy 
problem.    Note that as explicit solvers are still widely used in 
phase field the time-step often scales as 1/(δx)2, so that the actual 

work involved to evolve through a given time scales as (δx)4.  
Mitigating techniques could include:

Adaptive meshing (more grid points in the interface region)

Implicit solvers (larger time steps on fine meshes)

Multiple rotated grids (anisotropy cancelling)

Unstructured grids ? (no implicit anisotropy)





The Phase-Field ModelThe Phase-Field Model

Our phase-field model is based on that of Wheeler et al. (1993). 
Evolution of the phase variable, φ, is given by 
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The Phase-Field ModelThe Phase-Field Model
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As in many formulations of the phase-field method anisotropy is 
introduced by letting the interface width be anisotropic.   
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In the asymptotic limit of a sharp interface the interface temperature, u, 
is given by    

By comparison with the standard form of the Gibbs-Thomson condition 
for a moving interface with capillary and kinetic anisotropies, γd and γk  
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We see that our model leads to a fixed ratio, γd / γk = (k2-1)/2 = 15/2







Feather Grains & Twin DendritesFeather Grains & Twin Dendrites
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The formation of ‘feather grains’ is a significant problem in the DC 
casting of commercial Al alloys. 

Crystallographic investigations by Henry et al. have shown that feather 
grains in Al-alloys are twinned dendritic structures. 

Either of these morphologies 
might be brought about by a 
situation where the capillary and 
kinetic anisotropies are 
differently directed. 
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Effect of Varying Effect of Varying γγkk

γd, γk > 0

γk < 0



An Anisotropy Competition in Thermal GrowthAn Anisotropy Competition in Thermal Growth
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γγkk and Twin Formation and Twin Formation

Competition between oppositely directed capillary and kinetic 
anisotropies can result in a low effective anisotropy, giving rise to 
doublons, even though both γd and γk are relatively high. 

Boettinger et al.  have speculated that doublons may play an important 
role in the formation of feather grains. 

Small crystallographic misorientation is present between adjacent 
doublon arms, as evidenced in the recent observation of a frozen-in 
‘seaweed’ morphology in as-solidified Cu. 


