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Isotropic Liquid Phase
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Nematic Liquid Crystal Phase
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Smectic-A Liquid Crystal Phase
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Example Results: rod-plate mixtures

Left: isotropic (I) phase for e = 20, 1/20 mixture.

Right: nematic (N+) phase for e = 20, 1/20 mixture.
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Example Results: rod-plate mixtures

Left: nematic (N−) phase for e = 20, 1/20 mixture. Right: biaxial

(B) phase, but with demixing, for e = 20, 1/20 mixture.
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Example Results: rod-plate mixtures
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Where can simulation contribute?

➤ Computer simulation + liquid-state theories = insight.

➤ Molecular structure → liquid crystalline (LC) behaviour.

➤ Complements experimental synthesis and characterization.

➤ BUT: LC properties very sensitive to molecular details.

➥ simulation faces a tough challenge.
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Where can simulation contribute?

➤ Testing continuum theories of liquid crystals:

➥ density-functional theories;

➥ Landau-de Gennes theories;

➥ elastic theories;

➥ hydrodynamics.

➤ Computing phenomenological coefficients for the above theories

and linking them with molecular structure.

➤ Describing molecular-scale effects, behaviour near surfaces and

defects, which cannot be modelled properly in the continuum

picture.
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Molecular Models

➤ For specific experimental systems:

➥ atomic detail, empirical potentials [1, 2];

➥ and/or ab initio calculations [3, 4, 5];

➤ For more generic behaviour and method development

➥ coarse-grained molecular models

We shall concentrate on the latter: but realistic modelling is no longer

beyond the range of laboratory computers.
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Coarse-grained modelling

Basic shapes: describe the basic nematic, smectic, etc. liquid crystals

➤ ellipsoids of revolution of length A, width B;

➤ spherocylinders of overall length L+D, width D.

Additional contributions:

➤ attractive forces [6, 7, 8, 9, 10];

➤ biaxiality [11, 12], nonlinearity [13];

➤ flexibility [14, 15];

➤ dipolar forces [16];

➤ hydrogen bonds [17].
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Theoretical Approaches

Unifying feature: approximate free energy functional of simple

functions of particle positions and orientations, e.g.

➤ the local single-particle density,

➤ the orientational order tensor,

➤ the direction of orientational ordering.

Variational problem: minimize the free energy with respect to all

possible variations of these functions.
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Oseen-Frank elastic theory

The Oseen-Frank [18, 19] free energy FOF is a functional of the
position-dependent liquid crystal director n(r):

FOF
[

n(r)
]

=

∫

V

d3r fb(r) +

∫

S

d2s fs(s)

fb(r) =
1
2
K11

(

∇ · n
)2
+ 1
2
K22

(

n · ∇ × n
)2
+ 1
2
K33

(

n ×∇× n
)2

fs(s) =
1
2
Wθ sin

2 θ where cos θ = n · ns .

➤ an integral, over sample volume V , of a bulk free energy density

➥ splay (K11), twist (K22), bend (K33) elastic constants.

➤ an integral, over surface S, of a surface free energy density

➥ surface anchoring strength Wθ, preferred orientation ns .
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Landau - de Gennes theory

The Landau and de Gennes [20] free energy FLdG is based on the
2nd-rank order tensor Q(r):

FLdG[Q(r)] =
∫

V

d3r fb(r) +

∫

S

d2s fs(s)

fb(r) = κ |∇Q|2 + aTr
[

Q2
]

− bTr
[

Q3
]

+ c
{

Tr
[

Q2
]}2

fs(s) = wTr [Q−Qs ]2

➤ One-constant elastic behaviour (the squared gradient term);

➤ Leading terms in a free energy expansion, which would give a

phenomenological description of the bulk I-N transition;

➤ Surface anchoring term, involving the preferred order tensor Qs

at the surface.
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Onsager theory

The Onsager [21] free energy FOns depends on the single-particle
density ̺(A), where A represents position and orientation

FOns[̺(A)] = kBT
∫

dA ̺(A)
[

ln ̺(A)Λ3 − 1 + u(A)/kBT
]

− 1
2
kBT

∫∫

dA dB ̺(A)̺(B) f (A,B)

➤ Single particle entropy of mixing plus external field u(A).

➤
The Mayer function f (A,B) = e−v(A,B)/kBT−1 is related
directly to the intermolecular pair potential v(A,B).
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Onsager theory

➤ Forerunner of modern density functional theories [22, 23, 24, 25].

➤ Above expression is only valid for low densities, but is not

restricted to smooth variations of ̺(A)

➥ which would lead to a gradient expansion

➤ May be (empirically) extended to higher densities [26, 27, 28].

G. Cinacchi, F Schmid J. Phys: Cond. Matt, 14, 12223 (2002)
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Bulk elastic constants

Long-wavelength deformations of the director field n(r) are described

by the Oseen-Frank free energy FOF. Simulation can provide values of
the coefficients K1, K2, K3 in this expression. Define

Qαβ(k, t) =
∑

i

(

3

2
uiα(t)uiβ(t)−

1

2
δαβ

)

eik·r i(t) α, β = x, y , z

and choose coordinates so that n(r) = (0, 0, 1), and k = (k1, 0, k3).

Then δQ13 ∝ δn1, δQ23 ∝ δn2, and

W13(k1, k3) ∝ 〈|Q̂13(k)|2〉−1 ∝ K1k21 +K3k23
W23(k1, k3) ∝ 〈|Q̂23(k)|2〉−1 ∝ K2k21 +K3k23
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Bulk elastic constants

Gay-Berne potential, κ = 3, κ′ = 5:
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Anchoring and interfaces

Nematic-solid interface Nematic-isotropic interface

➤ anchoring technology;

➤ theoretically subtle;

➤ computationally tough.

➤ simple fluid-fluid interface;

➤ interesting basic questions;

➤ simulate with great care.
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Surface anchoring

Surface anchoring coefficient:

W measures resistance of sur-

face to director deformation.

Extrapolation length:

λ = K33/W by fitting director

profiles to elastic theory.

Results:

➤ Elastic theory fits quite

well, except near the walls.

➤ Extrapolation length λ is of

order one molecular length.
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Onsager Theory

Direct minimization of the Onsager

free energy functional, with essen-

tially no adjustable parameters, re-

produces these director profiles very

well, even in the wall regions

where the elastic theory is inac-

curate.
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Section 5: Anchoring and Interfaces 5-4

Fluctuations in confined geometry

➤ Large length- and time-scale fluctuations of the director n(r) can

also be described by the phenomenological elastic theory.

➤ In slab geometry, fluctuation amplitudes can be expanded:

δn(r) ∝
∑

q⊥,qz

eiq⊥·r⊥
[

δn(+)(q⊥, qz)e
iqz rz + δn(−)(q⊥, qz)e

−iqz rz
]

,

➤ This is parametrized by the dimensionless quantities

χ = qzL ; ξ = WL/K = L/λ ; λ = extrapolation length.

➤ Confinement in the z direction, with finite anchoring energy W ,

gives an uneven discrete spectrum qz .

➤ In simulations, measure Qαz(r) ∝ δnα(r)
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Molecular simulations

➤ Monte Carlo of hard ellip-

soids, A/B = 15 between

two hard parallel confining

walls.

➤ Homeotropic anchoring.

➤ Wall separations:

Lz/A = 3.29, 4.11, 4.93.
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Elastic boundary position

Where is it correct to place

the elastic boundary?

➤ L = Lz + 2Lw.

➤ Lw

➥ characterizes wall;

➥ independent of Lz .

Test the ratios
〈

|Qαz(Lz)|2
〉

〈

|Qαz(L′z)|2
〉
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Anchoring variation with order parameter

Expected behaviour:

➤ λ ∝ Q−2.
➤ K ∝ Q2.
➤ Hence W ∝ Q4.
Surprise! With changing

density and Q, the structure

of the surface layer changes.
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Nematic-Isotropic Interface

Nematic and isotropic phases in co-

existence, at a solid wall, A/B =

15. We see nematic wetting: a

thick film of nematic is adsorbed,

with various specified anchoring

conditions, here in the plane of the

interface.

order parameter: λ+;

scaled number density: ρA2B;

film thickness: determined by dis-

tance from coexistence µ−µIN
or total number N.
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Section 5: Anchoring and Interfaces 5-9

Competing boundaries

At the equilibrium I-N interface,

planar alignment is favoured; at the

solid wall, this may not be so.

Director rotates:

➤ θ = 0◦, normal to wall;

➤ θ = 30◦, 60◦, tilted.

➤ θ = 90◦, in plane of wall.

Profiles determined by:

➤ anchoring W at wall;

➤ anchoring W at interface;

➤ elastic constant K33 in film.
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Interface snapshots

Solid surface anchoring at θ = 0◦ and θ = 90◦.

Multiscale Problems in Physics, 15 April 2004 c©M P Allen 2004



Section 5: Anchoring and Interfaces 5-11

Interface snapshots

Solid surface anchoring at θ = 30◦ and θ = 60◦.
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Surface Tension

For a planar interface, normal to the z-direction, a microscopic

expression for surface tension γ is:

γ =

∫ ∞

−∞
dz [PN − PT(z)] ≡

∫ ∞

−∞
dz π(z) .

➤ PN = Pzz = P is the normal component of pressure tensor P;

➤ PN is independent of z throughout the system;

➤ PT(z) = Pxx(z) = Pyy(z) is the transverse component of P;

➤ PT varies with z near interfaces;

➤ Far from the interface, PT(z) = PN = P .
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Surface Tension Profiles
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Capillary waves

The Onsager theory neglects capillary wave fluctuations of the

interface; these are also suppressed in computer simulations with

insufficient transverse box dimensions. However, they may be

detected by using larger boxes and doing a block-size analysis.

Considering the deviation h(x, y) = zint(x, y)− z̄int of the interfacial
position from its averaged position, and disregarding the bending

rigidity of the interface, the capillary wave Hamiltonian is given by

HCW =
γ

2

∫

dxdy

[

(

∂h

∂x

)2

+

(

∂h

∂y

)2
]

=
γ

2

∑

q

q2|h(q)|2

where γ is the interfacial tension and the second step follows by

Fourier transformation.
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Simulation Results

➤ We studied a system of N = 115200 soft ellipsoids with

A/B = 15, in a periodic box with dimensions

➥ Lx = Ly ≡ L ≈ 150B = 10A
➥ Lz ≈ 300B = 20A.

➤ A nematic-isotropic film system was prepared and allowed to

stabilize: 1.2× 106 MD steps were allowed for equilibration, and
about 2.0× 106 MD steps to collect data.

➤ In order to study the interfacial position fluctuations, we split our

system into columns of block size ℓ× ℓ, height Lz .
➤ Interface position zint(x, y) in each column estimated and used to

calculate interface widths and positions as a function of ℓ.
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Interface position distribution

From HCW, and equipartition,
〈

|h(q)|2
〉

= kBT/γq
2

so local interface position fluctua-

tions should be Gaussian

P (h) = (2πs2)−1/2 exp(−h2/2s2)
s2 = 〈h2(x, y)〉

=
1

4π2

∫

dq〈|h(q)|2〉

= (kBT/2πγ) ln (qmax/qmin)

qmax ∼ 2π/ℓ, qmin ∼ 2π/L.
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Interface width

Squared interfacial width, W 2

also depends on block size ℓ:

W 2 = W 2
0 + (π/2)s

2

= W 2
0 + (kBT/4γ) ln

(

qmax

qmin

)

qmax ∼ 2π/A, qmin ∼ 2π/ℓ.
➤ Our results are consistent

with capillary wave theory

➤ This gives an estimate of

γAB/kBT ∼ 0.24.
10 20 50 100 200

block size l / B

40

50

60

70

80

90

W
2 /B

2

N. Akino, F. Schmid, MPA, Phys. Rev. E, 63, 041706 (2001)



Section 5: Anchoring and Interfaces 5-18

Anisotropy of Capillary Waves

➤ We also study

the difference in

the capillary wave

spectrum parallel

and normal to the

director.

➤ Typical results are

shown in the figure

for ℓ = L/8.

q
2

1 
/ |

h(
q)

| 2

q parallel to director
q perpendicular to director

The low-q behaviour is consistent with the value of γ deduced from

the interface width. From the figure it seems that the capillary wave

spectrum is anisotropic at higher values of q.
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Colloidal Suspensions

Macroparticles (solid or liquid) introduced into liquid crystals

considerably influence their electro-optical properties. Experiments.

➤ A macroparticle distorts the director dis-

tribution;

➤ effective long-range interaction between

macroparticles;

➤ new supermolecular structures, e.g.

threadlike structures consisting of

macroparticles.

For homeotropic boundaries, topological mismatch between local

director on surface and uniform director at large distances creates a

hedgehog director configuration around particle.

Multiscale Problems in Physics, 15 April 2004 c©M P Allen 2004
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Director Structures

Phenomenological theories predict two defect structures. We show

director field streamlines around a spherical macroparticle.

Satellite (dipole) Saturn ring (quadrupole)
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Molecular Dynamics Simulations

➤ N = 64, 000–1, 000, 000

➤ Ellipsoidal molecules

➥ Width B = 1

➥ Length A = 3

➥ Nematic liquid crystal phase

➤ Spherical Macroparticle

➥ Diameter D = 6 . . . 30

➤ Homeotropic (normal) anchoring

➤ Parallel MD algorithm

A

B

D
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Ring defect: snapshot
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Ring defect: density

Ring defect stable for D ≤ 20. We show slices through density map ρ:
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Ring defect: order

We measure orientational order S, for various particle diameters D.

Here are slices in the θ = π direction. The disclination ring position is

given by the minimum in S. More structure appears as D increases.
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Ring size

Phenomenological theory:

rring ≈ 0.6D
Simulation results:

rring = −0.33 + 0.582D.
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Satellite defect: snapshot
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Satellite defect: density

Satellite defect stable for D = 30. Slices through density map:

0 5 10 15

r - (D/2)

0

0.5

1

1.5

2

 ρ
 

θ = π
θ = π / 2
θ = 0 

0.5
0.4
0.3
0.2
0.1
0.0

θ

Multiscale Problems in Physics, 15 April 2004 c©M P Allen 2004



Section 6: Colloid particles in Liquid Crystals 6-10

Satellite defect: order

➤ Centre of defect core is located at rsat ≈ 0.7D.
➤ Theory predicts rsat ≈ 0.6D.
➤ Highly structured defect region (not a point defect!)
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Satellite to ring conversion

➤ For D = 20 satellite evolves spontaneously into ring.

➤ We follow the off-centre ring position with time.
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Two Macroparticles

➤ Ellipsoidal molecules A, B.

➥ Width B = 1

➥ Length A = 3

➤ Spherical macroparticles

➥ Diameter D = 6

➥ Separation R = 9 . . . 15

➤ Observe distortion of director

field

➤ Measure effective force be-

tween particles

R

D

D

θ
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Order Map: R = 9.0
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Order Map: R = 9.5
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Order Map: R = 10.0
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Order Map: R = 10.5
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Order Map: R = 11.0
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Order Map: R = 11.5
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Order Map: R = 12.0
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Order Map: R = 15.0
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Elastic Interaction Potential

Theoretical prediction based on elastic theory:

U ∝ R−5
[

9− 20 cos 2ψ + 35 cos 4ψ
]

where ψ = π/2− θ.

➤ Valid asymptotically as R→∞
➤ Proportionality constant depends on elastic constants

➤ Angular dependence is independent of elastic constants

➤ potential has minima with respect to angular variation at

ψ = 1
2
arctan(4

√
3) ≈ ±41◦, that is at θ ≈ 49◦, 131◦.

Ruhwandl et al Phys. Rev. E, 55, 2958 (1997)



Section 6: Colloid particles in Liquid Crystals 6-22

Radial Force
➤ Component of force along ra-

dial direction

➥ line of centres

➤ Dominated by solvent molecule

packing

➤ Highly structured for θ 6= 90◦

➤ Structure melted for θ = 90◦
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Tangential Force

➤ Component of force along tan-

gential direction

➥ perpendicular to line of cen-

tres

➤ Solvent effects at small separa-

tion

➤ Some hint of elastic behaviour

at large separation

➤ Curves are a single-parameter

fit (strength) to U
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