The University of Warwick
Computation and Numerical Analysis for Multiscale and Multiphysics Modelling
EPSRC MATHEMATICS RESEARCH NETWORK
-
-
Menu>>
 
Research Themes : Bibliography
 
........ . ........
 
 
> Home
> Upcoming Events
> Past Events
> Network Program
> Research Themes
  > Theme I
  > Theme II
  > Theme III
  > Bibliography
> Network Members
> Preprints
> Related Links

 


1
BHATE, D.N., KUMAR, A. & BOWER,A. Diffuse interface models for electromigration and stress voiding.
J. Appl. Phys. 87, (2000) 1712-1721.

2
FIDLER, J. & AND SCHREFL,T. Micromagnetic modelling - the current state of the art.
J. Phys. D 33 (2000) 135-156.

3
GIACOMIN, G., LEBOWITZ, J. & PRESUTTI, E. Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, in Stochatic Partial Differential Equations: Six Perspectives. (Ed. Carmona, R. & Rozovskii, B.); Math. Surveys Monogr. 64, Amer. Math. Soc. Providence, R.I. (1999).

4
LOWENGRUB, B. & TRUSKINOVSKY, L. Quasi-incompressible Cahn-Hilliard fluids and topological transitions.
Proc. Roy. Soc. Lond. A 454, (1998) 2617-2654.

5
DEGOND, D., LEMOU, M. & PICASSO,M. Viscoelastic fluid models derived from kinetic equations for polymers.
SIAM J. Appl. Math. 62, (2002) 1501-1519.

6
JOURDAIN, B., LELI`EVRE, T. & LE BRIS, C. Numerical analysis of micro-macro simulations of polymeric fluid flows: a simple case.
M$ ^{\,3}$AS 12, (2002) 1205-1243.

7
LIONS, P.L. & MASMOUDI, M. Global solutions for some Oldroyd models of non-Newtonian flows.
Chin. Ann. of Math. B  21, (2000) 131-146.

8
ÖTTINGER Stochastic Processes in Polymeric Fluids.
Springer, Berlin, 1996.

9
RENARDY, M. An existence theorem for model equations resulting from kinetic theories of polymer solutions.
SIAM J. Math. Anal.  22, (1991) 313-327.

10
M. A. KATSOULAKIS, A. J. MAJDA, AND D. G. VLACHOS. Coarse-grained stochastic processes for lattice systems.
Proc. Natl. Acad. Sci. USA, 100 (2003), 782-787.

11
M. A. NOVOTNY, G. BROWN, AND P.A. RIKVOLD. Large-scale computer investigation of finite temperature nucleation and growth phenomena in magnetization reversal and hysteresis.
J. Appl. Phys., 91 (2002), 6908-6913.

12
D. D. VVEDENSKY. Epitaxial phenomena accross length and time scales
Surface and Interface Anal., 31 (2001), 6908-6913.

13
E.B.TADMOR, M.ORTIZ, R.PHILLIPS. Quasicontinuum analysis of defects in solids,
Phil. Mag. A 73, (1996), 1529-1653

14
R.E. RUDD, J.Q. BROUGHTON. Coarse-grained molecular dynamics and the atomic limit of finite elements.,
Phys. Rev. B 58, (1998), 5893-5896

 
Managing Network Nodes
 
Mathematics Institute , University of Warwick
Deparment of Mathematics , Imperial College
Computing Laboratory , Oxford University
Department of Mathematics, University of Sussex
 
Participating Departments
 
Department of Chemistry , University of Warwick
Center for Scientific Computing, University of Warwick
Department of Physics , University of Leeds
Condensed Matter Theory Group , Imperial College
Department of Engineering , Oxford University
 
........ . ........
© The University of Warwick, 2003. All rights reserved.