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1 Introduction

The problems considered in this paper are classical problems of the calculus
of variations that typically arise in the continuum theory of elasticity. In static
models, it is usually assumed that the configuration attained is a global minimum
of an energy functional defined on a suitable Sobolev space. If the energy is to
be physically interesting, then it has to be motion-invariant and therefore cannot
be convex [10]. This poses significant difficulties for the analysis of numerical
discretizations, as the differential operator of the Euler-Lagrange equation is not
monotone and hence Galerkin orthogonality arguments cannot be applied in a
straightforward manner. Some results are known in specific cases (see for example
[9]), but general results are typically for problems that do not quite justify the use
of the term nonlinear elasticity as their applicability is usually severely restricted,
for example to one dimension in [15] or to small deformations in [7].

In this paper, an entirely different technique is used to obtain convergence of
the discrete solutions. This technique, Γ-convergence, is a notion of convergence
of nonlinear functionals which is designed to imply the convergence of minimiz-
ers. Under standard assumptions, one can obtain the strong convergence of the
minimizers of Galerkin discretizations to a solution of the original problem (Sec-
tion 2.2). If the Hessian in this point exists and is positive definite on a certain
subspace of W 1,p(Ω,Rm), then the classical Galerkin orthogonality argument can
be employed again (Section 2.3).

More interesting is the application of this technique to quadrature approxi-
mations of the finite element functionals. This can be done without any a priori

knowledge about the smoothness of the exact or the approximate solutions, which
is usually not available for the problems considered here. Usually, quadrature is
not expected to cause problems, but few theoretical results are actually known in
this setting. Using Γ-convergence, it is possible to formulate sufficient conditions
for quadrature rules, so that the discrete minimizers converge to a minimizer of
the nonlinear functional (Section 3).

While Γ-convergence has been employed in much more difficult settings, such
as the approximation of free-discontinuity problems (see for example [3]), to our
knowledge it has never before been applied to the classical problems of the calcu-
lus of variations which are considered in this paper. While the results of Section
2.2 are known and only the technique is emphasized, the results about quadrature
approximations seem to be novel in this generality.

In the remainder of the introduction, we state a simplified version of the main
result of this paper. Let Ω ⊂ Rn be a piecewise polygonal Lipschitz domain,
ΓN ∪ ΓD = ∂Ω with ΓD being relatively open in ∂Ω. For u ∈ W 1,p(Ω,Rm),
1 < p < ∞, define

E(u) =

∫

Ω

(

W (x, u,∇u) + f(x, u)
)

dx +

∫

ΓN

φ(x, u) dHn−1,
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where W is polyconvex (see Section 4 for a definition) in the third variable and
W , f and φ satisfy the growth conditions (2.6), (2.7), (3.1) and (3.2). In this
case it is well-known [11] that there exists a minimizer u of E in

A0 = {v ∈ W 1,p(Ω,Rm) : v|ΓD
= 0}.

For every h ∈ N, let Th be a simplical mesh of Ω and let Vh be the space of
continuous piecewise polynomial functions of degree d or less with respect to this
mesh. Consider approximations of the integrals appearing in E by quadrature
rules given by (not necessarily conforming) piecewise polynomial interpolation
operators Jb,h, Jf,h and Js,h (as defined in Section 3), i.e., for uh ∈ Vh we define

Eh(uh) =

∫

Ω

(

Jb,hW (x, uh,∇uh) + Jf,hf(x, u)
)

dx +

∫

ΓN

Js,hφ(x, uh(x)) dx.

By the degree of an interpolation operator J , we mean the largest integer k so
that all polynomials q of degree k or less are interpolated exactly, i.e., Jq = q.
The degree of the quadrature rule defined by the interpolation operator J is the
largest integer k so that all polynomials q of degree k or less are integrated exactly
on the domain of interest, i.e.,

∫

K
Jq dx =

∫

K
q dx. For u ∈ W 1,p(Ω,Rm) \Vh, we

set Eh(u) = +∞.
The following theorem follows immediately from Theorem 13 and from the

remarks in Section 4.

Theorem 1 (a) If W is convex in F and the degree of the quadrature rule
defined by Jb,h is d− 1 or higher then (Eh|A0

) Γ(σ1,p)-converges to E|A0
. If

W is polyconvex in F , p > n, and the degree of the quadrature rule defined
by Jb,h is n(d − 1) or higher then (Eh|A0

) Γ(σ1,p)-converges to E|A0
.

(b) If the degree of the interpolation operator Jb,h is d−1 or higher then the fam-
ily (Eh|A0

) is equicoercive in the weak topology of W 1,p, i.e., any sequence
(uh) ⊂ A0 for which (Eh(uh)) is bounded contains a weakly convergent sub-
sequence in W 1,p(Ω,Rm).

(c) If the conditions in (a) and (b) are satisfied then any sequence (uh) of
approximate minimizers of (Eh|A0

) contains a subsequence (uhj
) converging

weakly in W 1,p to a minimizer u of E|A0
and Eh(uh) → E(u). If the

minimum is unique then the whole sequence (uh) converges weakly to u in
W 1,p.

At the end of Section 3, it is mentioned that if in addition to the conditions of
Theorem 1 the piecewise defined functions ∇2uh are uniformly bounded in Lp

(note that this does not imply that uh ∈ W 2,p) then E(uh) → E(u) in item (c)
of the above theorem. In the case of strict convexity or strict polyconvexity this
implies strong convergence of uh to u in W 1,p.
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To put this result into perspective, it should be mentioned that although this
method makes it possible to prove convergence of finite element methods for non-
convex problems under very general conditions, it does so under the assumption
that the global minimizers of the discrete functionals can be computed. As the
discrete functionals may be non-convex, this is in general a nontrivial problem
which is not addressed in this paper.

1.1 Outline of the technique

For demonstration purposes, we consider an abstract and much simplified mini-
mization problem that highlights the general technique presented in this paper.
To this end let X be a Banach space and let F : X → [0,∞] be a weakly lower
semicontinuous, strongly continuous, and coercive functional. A classical example
is presented in Section 2.1. Throughout the paper, F will be said to be coercive
if whenever (uh)h∈N is a sequence in X such that (F (uh)) is bounded, then (uh)
is weakly precompact in X.

To minimize F numerically, we pick a sequence of finite-dimensional subspaces
(Xh)h∈N, such that for every u ∈ X there exist u∗

h ∈ Xh satisfying ‖u∗
h−u‖X → 0

as h → ∞. Since F is continuous, we have

lim
h→∞

F (uh) = F (u).

For every h ∈ N, let uh be a minimizer of F in Xh. If F (v) < ∞ for at least
on v ∈ X then it follows from the last paragraph that the sequence (minXh

F )h is
bounded and, by the coercivity assumption, (uh) is weakly precompact in X. We
can extract a subsequence (uhj

) converging weakly to some u ∈ X. We claim that
F (u) = infX F . Let v be an arbitrary member of X. From the last paragraph,
for each h ∈ N we can obtain v∗

h ∈ Xh such that (v∗
h) converges strongly to v in

X and hence

F (v) = lim
j→∞

F (v∗

hj
) ≥ lim inf

j→∞
F (uhj

) ≥ F (u),

where we also used the weak lower semicontinuity of F . Furthermore, by setting
v = u, we obtain F (uh) → F (u) as h → ∞. Hence we have found a subsequence of
discrete minimizers, converging weakly to a solution of the minimization problem.
We will see later that under stronger conditions uh will converge even strongly
to u in X as h → ∞.

The technique just described is a special case of Γ-convergence. A fairly
general definition is given in Section 1.3.

1.2 Notation

We denote the (n − 1)-dimensional Hausdorff (surface) measure by Hn−1. The
Lebesgue measure of a subset A of Rn is denoted by |A|.
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Let Ω be a Lipschitz domain in Rn. We denote the Sobolev and Lebesgue
spaces of vector-valued functions by W k,p(Ω,Rm) and Lp(Ω,Rm) respectively. If
m = 1, we only write W k,p(Ω) or Lp(Ω). By ∇u we denote the Jacobi matrix of
u, if it exists. If ∇u is piecewise differentiable, then ∇2u denotes this piecewise
derivative. Note that ∇2u may exist, for example for a finite element function,
even if u is not twice (weakly) differentiable.

The norms on the Sobolev and Lebesgue spaces are denoted by ‖ · ‖k,p,Ω and
‖ · ‖p,Ω respectively. If it is clear which domain is used, then it is omitted from
the notation.

We denote convergence in W k,p(Ω,Rm) as follows. (Note that throughout the
paper h ∈ N denotes a discrete parameter.) If (uh) converges strongly to u in
W k,p or Lp we write

uh
k,p
−→ u or uh

p
−→ u

respectively. If (uh) converges weakly to u in W k,p or Lp we write

uh

k,p
−−⇀u or uh

p
−−⇀u.

If F is a functional defined on a metric space X and if A is a subset of X, we
define the restriction of F to A by

F |A(u) =

{

F (u) , if u ∈ A, and
+∞ , if u ∈ X \ A.

The restriction operator is a useful tool to embed the domain of definition of a
functional into a larger space. For example, Dirichlet boundary conditions can
be easily taken into account this way.

If X is a Banach space and F is Fréchet differentiable at a point u, we de-
note the Fréchet derivative at this point by F ′(u) and the directional derivative
in direction ϕ by F ′(u; ϕ). For second-order derivatives we use the notation
F ′′(u; ϕ, ψ), and so on.

In order to simplify the notation, constants in this paper are generally treated
as universal. Normally, we use the symbol c1 for estimates from above and c0 for
estimates from below; these two constants always satisfy 0 < c0, c1 < ∞.

1.3 Γ-Convergence

The convergence proof presented in Section 1.1 is a special case of the so-called
Γ-convergence of (F |Xh

) to F . Γ-convergence was introduced in 1975 by DeGiorgi
and Franzoni [13] to describe the asymptotic behaviour of minimizers of general
nonlinear functionals on topological spaces and has since been a versatile tool for
describing asymptotic limits and approximations [12].

Let us consider the setting where (X, d) is a metric space on which the func-
tionals Fh and F are defined. Reviewing the arguments in Section 1.1, we identify
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three main ingredients to describe the convergence of minimizers of Fh to min-
imizers of F as h → ∞: first, the weak compactness of minimizing sequences;
second, the liminf condition,

lim
h→∞

d(uh, u) = 0 ⇒ F (u) ≤ lim inf
h→∞

Fh(uh); (1.1)

and third, the limsup condition,

∀u ∈ X ∃ (uh) ⊂ X s.t. lim
h→∞

d(uh, u) = 0 and lim sup
h→∞

Fh(uh) ≤ F (u). (1.2)

We say that the sequence (Fh) Γ(d)-converges to F if conditions (1.1) and (1.2)
hold. If it is clear which topology is meant, we do not state the dependence
explicitly. Using the same arguments as in Section 1.1, we obtain the following
result.

Theorem 2 Let (uh) be an approximate minimizing sequence for (Fh), i.e.

lim
h→∞

|Fh(uh) − inf
X

Fh| = 0,

and assume that (Fh) Γ(d)-converges to the functional F . Then the limit point
u of any convergent subsequence of (uh) is a global minimum of F in X and
Fh(uh) → F (u) as h → ∞.

The proof of Theorem 2 is a repetition of the argument given in Section 1.1. It
can also be found in any text book on Γ-convergence (see for example [12]).

The following proposition is trivial but highly useful for technical purposes.
It allows us to consider lower order (weakly continuous) terms separately, using
simpler methods.

Proposition 3 If (Fh) Γ(d)-converges to F and if (Gh) and G satisfy

lim
h→∞

d(uh, u) = 0 ⇒ Gh(uh) → G(u) as h → ∞,

then (Fh + Gh) Γ(d)-converges to F + G. In particular, if G is continuous then
(Fh + G) Γ(d)-converges to F + G.

For further information on Γ-convergence, see [12].

Remark. With slight abuse of notation, we denote the Γ-convergence in the
weak W 1,p topology by Γ(σ1,p) although we actually mean Γ-convergence in the
metric describing weak convergence of sequences. Similarly, when talking about
weakly lower semicontinuous functionals, we always mean sequential weak lower
semicontinuity.
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2 Conforming Galerkin discretizations for en-

ergy minimization problems

2.1 Problem formulation

Fix p ∈ (1,∞) and let Ω be a bounded, polygonal Lipschitz domain in Rn. Let
ΓD ⊂ ∂Ω be relatively open and set ΓN = ∂Ω \ ΓD. Since Hn−1(ΓD) > 0, the
Friedrichs inequality

‖u‖1,p ≤ CF‖∇u‖p (2.1)

holds for all u ∈ A0 = {u ∈ W 1,p(Ω,Rm) : u|ΓD
= 0}. Without this condi-

tion it would either be necessary that the functional E, defined below, satisfies
more stringent growth conditions, or the space of admissible functions has to be
otherwise restricted to guarantee coercivity of E.

We consider functionals of the form E(u) = Eb(u) + Es(u) + Ef (u), where Eb

is the bulk energy,

Eb(u) =

∫

Ω

W (x, u,∇u) dx , (2.2)

and Es is the surface energy,

Es(u) =

∫

ΓN

φ(x, u) dHn−1, (2.3)

where W : Rn × Rm × Rm×n → R is measurable in x and continuous in u and
F , and φ : Rn × Rm → R is Hn−1-measurable in x and continuous in u. Ef is
the potential of the body force,

Ef (u) =

∫

Ω

f(x, u) dx, (2.4)

where f is measurable in x and continuous in u. This term seems to be included
in (2.2), but it is intended to demonstrate how lower order terms can be dealt
with more efficiently, for example if W were independent of u.

Given g ∈ W 1,p(Ω,Rm), we define the set of trial functions (or admissible
functions) to be

A = g + A0 = {u ∈ W 1,p(Ω,Rm) : u|ΓD
= g|ΓD

}.

The topic of this paper is the discretization of the minimization problem

min
A

E. (2.5)

In order for (2.5) to be well-defined we need to impose several conditions on
W , φ and f . In principle, we require weak lower semicontinuity, strong continuity,
and coercivity of E, for which the following set of conditions is a typical example.
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We assume that W is quasiconvex in F , i.e., that for all ϕ ∈ C∞
c (Ω,Rm), y ∈

Rn, u ∈ Rm, and F ∈ Rm×n,

W (y, u, F ) ≤ −

∫

Ω

W (y, u, F + ∇ϕ(x)) dx

holds, and that there exist constants c0, c1 > 0 such that

c0(|F |p − 1) ≤ W (x, u, F ) ≤ c1(1 + |u|p + |F |p). (2.6)

We assume, furthermore, that there exists r, 1 ≤ r < p so that

|f(x, u)| ≤ c1(|u|
r + 1), and

|φ(x, u)| ≤ c1(|u|
r + 1). (2.7)

In this case W 1,p(Ω,Rm) is compactly embedded in Lr(Ω,Rm) and Lr(∂Ω,Rm)
([1]) so that Ef and Es are continuous in the weak topology of W 1,p and do not
affect the coercivity of E.

It is well known ([11]) that under conditions (2.6) and (2.7), (2.5) admits a
(not necessarily unique) solution in W 1,p(Ω,Rm).

Theorem 4 If condition (2.6) holds, then Eb is weakly lower semicontinuous,
strongly continuous and coercive in W 1,p. If conditions (2.7) are satisfied as well
then the same is true for E and hence E admits at least one minimizer in the set
A.

2.2 Discretization

In this section, we prove a variant of the known result that the minimizers of
Galerkin discretizations converge to a solution of the full problem (2.5). We
show that any Galerkin discretization for which the energies can be computed
exactly, for example using piecewise affine finite element spaces, converges. In
Section 3 we extend this analysis to quadrature approximations of the energies.

Let (Vh) be a family of finite-dimensional subspaces of W 1,p(Ω,Rm) which
satisfy the condition

∀u ∈ A0 ∃uh ∈ Vh ∩ A0 : uh
1,p
−→ u. (2.8)

This guarantees that elements of A can be approximated by discrete trial func-
tions, i.e., by elements of Ah, where Ah is defined as

Ah = gh + Vh ∩ A0 = {uh ∈ Vh : uh|ΓD
= gh|ΓD

},

where (gh) is an arbitrary sequence of elements of Vh, converging to g in the strong
topology of W 1,p(Ω,Rm). This result is summarized in the following lemma.
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Lemma 5 (a) If u ∈ A then there exists a sequence (uh) with uh ∈ Ah con-
verging to u in the strong topology of W 1,p(Ω,Rm).

(b) If u /∈ A and uh

1,p
−−⇀u then uh /∈ Ah except for finitely many h.

Proof (a) If u ∈ A then u−g vanishes on ΓD and there exist vh ∈ Vh∩A0, converging
strongly to u − g. Hence uh = vh + gh lies in Ah and converges strongly to u in
W 1,p(Ω,Rm).

(b) If uh ∈ Ah and vh = uh − gh + g ∈ A then

‖uh − vh‖1,p = ‖g − gh‖1,p → 0. (2.9)

Since A is convex and closed, it is also weakly closed and hence any accumulation point

of (vh), and by (2.9) of (uh), must lie in A. ¥

We are now in the position to prove the first convergence result.

Theorem 6 (a) (E|Ah
) Γ(σ1,p)-converges to E|A and is equicoercive in the

same topology. In particular, if (uh) is a sequence of approximate mini-
mizers of (E|Ah

) then there exists a subsequence (uhj
) converging weakly in

W 1,p to a global minimizer u of E|A and E(uh) → E(u).

(b) If W is strictly quasiconvex, in the sense that there exists an ǫ > 0 such
that for all ϕ ∈ C∞

c (Ω,Rm)

W (y, u, F ) + ǫ‖∇ϕ‖p
p ≤ −

∫

Ω

W (y, u, F + ∇ϕ(x)) dx

holds, then uhj

1,p
−→ u.

(c) If E has a unique minimizer in A then in both cases above the complete
sequence converges.

Proof 1. We begin by proving the limsup condition (1.2) of Γ-convergence. Fix
u ∈ W 1,p(Ω,Rm). If u /∈ A then, according to Lemma 5, u /∈ Ah for almost all h.
Hence, E|A(u) = E|Ah

(u) = +∞ for almost all h and (uh) is a recovery sequence for
u. If u ∈ A, then Lemma 5 provides us with a sequence (uh), uh ∈ Ah, converging
strongly to u. The strong continuity of E (compare Theorem 4) implies E(uh) → E(u).
Hence (uh) is a recovery sequence for u.

2. To show the liminf condition (1.1), assume that uh

1,p
−−⇀u. If u /∈ A then, accord-

ing to Lemma 5, uh /∈ Ah for almost all h and hence E|A(u) = lim infh E|Ah
(uh) = +∞.

If u ∈ A, we can assume without loss of generality that uh ∈ Ah (otherwise we ex-
tract a subsequence and if no such subsequence exists the inequality is trivial). Lower
semicontinuity of E implies

E|A(u) = E(u) ≤ lim inf
h

E(uh) = lim inf
h

E|Ah
(uh).
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3. Let (uh) be a sequence of approximate minimizers of (E|Ah
). Since E is coercive,

(uh) is precompact and according to Theorem 2 contains a subsequence (uhj
) converging

to a global minimum u of E|A and E(uh) → E(u). This concludes the proof of (a).

4. The lower-order terms Es and Ef are continuous in σ1,p. Hence Es(uh) → Es(u)
and Ef (uh) → Ef (u) which implies also Eb(uh) → Eb(u). It is a well-known fact [16]
that weak convergence together with convergence of the energy (Eb in this case) implies
strong convergence when W is strictly quasiconvex. This proves (b).

5. The argument that shows convergence of the whole sequence for part (c) is a

standard uniqueness argument. It is easily seen that in (a) we actually have the stronger

result that every subsequence of (uh) has a further subsequence which converges to a

global minimum of E. If that minimum is unique (denoted by u) then every subsequence

of (uh) has a further subsequence converging weakly to u. Now assume that uh does

not converge weakly to u. Then there must exist a subsequence (uhj
) and an element

u∗ of the dual space of W 1,p, such that |〈u∗, uhj
− u〉| ≥ δ > 0 for all h. But since a

subsequence of (uhj
) converges weakly to u, this is a contradiction. ¥

Remarks. 1. One can easily consider more general boundary conditions
than the Dirichlet boundary conditions in this section. It is sufficient that A is
closed and convex and that Ah is chosen in such a way that Lemma 5 holds.
For example, for the obstacle problem (m = 1), an additional condition would

be that u ≥ ψ in Ω. If we pick an arbitrary ψh
1,p
−→ ψ to restrict the discrete

solutions then it is easy to show that Lemma 5 holds again.
2. In the theory of elasticity one is often interested in the convergence of

the stress rather than the convergence of the deformation or the energy. In
the context of Γ-convergence this can be obtained as a corollary to the strong
convergence of minimizers, using growth conditions on the derivatives of W .

2.3 Best approximation error estimates

The strongest result obtainable with Γ-convergence alone is weak convergence of
a subsequence of the discrete minimizers (compare Theorem 6 (a)). However,
in Theorem 6 (b) and (c) we have seen techniques to strengthen this weak re-
sult, using additional information about the problem. In the present section, we
give a heuristic argument, based on assumptions which should by valid in many
applications but are difficult to justify in theory, suggesting that we can in fact
expect optimal convergence rates. To our knowledge, the only results that put
the assumptions used in this section on a firm basis are due to Zhang [18]. They
are, however, restricted in that only small loads and Dirichlet boundary condi-
tions close to the identity are considered. An analysis of Galerkin discretizations
based on these results is given in [7].

Let us assume that we are in the situation where a sequence (uh) of minimizers
of (Eh) converges strongly to a minimizer u of E. If this minimum is essentially
a strict local minimum we have a stronger result than mere convergence. We
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assume that p = 2, where this analysis seems to be most natural. Nevertheless,
the argument is, in principle, not restricted to this value of p.

Suppose that E is uniformly elliptic in some neighbourhood B(u, r) of u in
the sense that there exists a constant c0 > 0 such that for every ϑ ∈ B(u, r),

∀u, v ∈ A : E ′′(ϑ; u − v, u − v) ≥ c0‖u − v‖2
1,2 .

Usually, this property would be of little use as we do not know a priori that
our discrete minimizers will lie in B(u, r). Only, by the results of the previous
sections we can assume conv{u, uh} ⊂ B(u, r) for sufficiently large h.

Now we can use the Galerkin orthogonality argument to obtain a best ap-
proximation result. Let vh ∈ Ah and set

ũh = uh − gh + g and ṽh = vh − gh + g.

so that ũh and ṽh lie in A. Then, for some ϑ1 ∈ conv{u, uh}, we have

E ′(u; u − uh)−E ′(uh; u − uh) =

= E ′(u; u − ũh) − E ′(uh; u − uh) + E ′(u; g − gh)

= E ′(u; u − ṽh) − E ′(uh; u − vh) + E ′(u; g − gh)

= E ′(u; u − vh) − E ′(uh; u − vh)

= E ′′(ϑ1; u − uh, u − vh)

≤ c1‖u − uh‖1,2‖u − vh‖1,2, (2.10)

where c1 is the continuity constant of E ′′ in B(u, r). On the other hand, we have,
for some ϑ2, ϑ3 ∈ conv{u, uh}, due to local uniform ellipticity, that

E ′(u; u − uh)−E ′(uh; u − uh) =

= E ′(u; u − ũh) − E ′(uh; u − ũh)

+E ′(u; g − gh) − E ′(uh; g − gh)

= E ′′(ϑ2; u − uh, u − ũh) + E ′′(ϑ3; u − uh, g − gh)

= E ′′(ϑ2; u − ũh, u − ũh) + E ′′(ϑ2; g − gh, u − uh)

+E ′′(ϑ3; u − uh, g − gh)

≥ c0‖u − ũh‖
2
1,2 − 2c1‖u − uh‖1,2 ‖g − gh‖1,2

≥ c0‖u − uh‖
2
1,2 − 4c1‖u − uh‖1,2 ‖g − gh‖1,2. (2.11)

Combining (2.10) and (2.11) we have the classical best approximation result with
a modification for the approximation of the boundary condition,

‖u − uh‖1,2 ≤
c1

c0

(

min
vh∈Ah

‖u − vh‖1,2 + 4‖g − gh‖1,2

)

for all vh ∈ Ah,

for all sufficiently large h and with constants depending only on u.
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Remark. Unfortunately, for one of the most important classes of stored energy
functions, namely those where W is the quasiconvex envelope of a multiwell
potential, no strict convexity property can possibly hold and hence one cannot
even expect to obtain strong convergence using the methods described in this
paper. It is an open problem whether discrete minimizers of such functionals
converge strongly in general.

3 Quadrature approximations

In this section, quadrature approximations of the integrals are analyzed using Γ-
convergence. The analysis in this section is restricted to the case where W (x, u, F )
is convex in F which is the natural assumption in the arguments used. General-
izations to polyconvex integrands are possible and are discussed in Section 4.

We assume furthermore that, for every h ∈ N, Th contains only simplices,
that Vh is a finite element space of piecewise polynomials whose degree does not
exceed a fixed positive integer d, and that the same quadrature rules are used in
every element. Finally, we require that all elements have a chunkiness parame-
ter γ(K) = diam(K)n/|K| which is uniformly bounded above and below. This
condition needs to be imposed as we frequently use interpolation error estimates
when estimating the error committed in numerical quadrature.

On the reference simplices K̂n and K̂n−1 in respectively n and (n− 1) dimen-
sions, we define quadrature rules by specifying the interpolation nodes

x̂
(b)
q (q = 0, . . . , Q(b)),

x̂
(f)
q (q = 0, . . . , Q(f)), and

x̂
(s)
q (q = 0, . . . , Q(s)).

The weights in the reference simplices, |K̂n|ω
(b)
q , |K̂n|ω

(f)
q , and Hn−1(K̂n−1)ω

(s)
q ,

are obtained by integrating their nodal basis functions. The affine transforma-
tions of the reference nodes x̂

(b)
q , x̂

(f)
q , x̂

(s)
q to an element K (which is a surface

in the case of x̂
(s)
q ) are denoted by x

(b)
q,K , x

(f)
q,K and x

(s)
q,K . These nodes define, in

an obvious way, piecewise polynomial (not necessarily conforming) interpolation
operators Jb,h, Jf,h, and Js,h. The quadrature weights in the element K are

|K|ω
(b)
q , |K|ω

(f)
q , and Hn−1(K)ω

(s)
q respectively. As we are primarily concerned

with the quadrature rule for approximating Eb, to avoid unnecessary indices, we
set x̂q = x̂

(b)
q , xq,K = x

(b)
q,K , ωq = ω

(b)
q and Q = Q(b).

We approximate the energy Eb by an interpolatory quadrature approximation
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Eb,h which is defined as

Eb,h(u) =

∫

Ω

Jb,hW (x, u,∇u) dx

=
∑

K∈Th

|K|

Q
∑

q=0

ωqW (xq,K , u(xq,K),∇u(xq,K)),

if u ∈ Vh and Eb,h(u) = +∞ otherwise. Ef,h and Es,h are defined accordingly
and we set Eh = Eb,h + Ef,h + Es,h.

In order to estimate the quadrature error we will require the growth conditions

∣

∣

∣

∣

∂W

∂x

∣

∣

∣

∣

≤ c1(1 + |u|p + |F |p)

∣

∣

∣

∣

∂W

∂u

∣

∣

∣

∣

≤ c1(1 + |u|p−1 + |F |p−1), (3.1)

∣

∣

∣

∣

∂f

∂u

∣

∣

∣

∣

+

∣

∣

∣

∣

∂φ

∂u

∣

∣

∣

∣

≤ c1(1 + |u|p−1)

∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂φ

∂x

∣

∣

∣

∣

≤ c1(1 + |u|p), and (3.2)

∣

∣

∣

∣

∂W

∂F

∣

∣

∣

∣

≤ c1(1 + |u|p−1 + |F |p−1) . (3.3)

Before we analyze the energy Eh, we need to introduce some terminology. By
the degree of an interpolation operator J , we mean the largest integer k so that
all polynomials q of degree k or less are interpolated exactly, i.e., Jq = q. The
degree of the quadrature rule defined by the interpolation operator J is the largest
integer k so that all polynomials q of degree k or less are integrated exactly on
the domain of interest, i.e.,

∫

K
Jq dx =

∫

K
q dx.

3.1 Liminf and limsup conditions

In this section we study the Γ-limit of the family (Eh), starting with the liminf
condition (1.1) for the leading term.

Lemma 7 Suppose that W is convex in F , that the integration weights ω
(b)
q are

non-negative, that the quadrature rule defined by Jb,h is exact on polynomials of

degree d − 1, and that (3.1) holds. In this case, if uh ∈ Vh and uh

1,p
−−⇀u then

Eb(u) ≤ lim inf
h

Eb,h(uh).
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Proof 1. Suppose that uh
1,p
−→ u. If W = W (F ) we have by Jensen’s inequality

∑

q

ωqW (∇uh(xq,K)) ≥ W (
∑

q

ωq∇uh(xq)) = W

(

−

∫

K
∇uh dx

)

.

This motivates the definition

Fh =
∑

K∈Th

χK −

∫

K
∇uh dx.

We claim that Fh
p
⇀ ∇u. To see this, pick any ϕ ∈ C1(Ω̄,Rm×n) and consider

∫

K
(∇uh − Fh) : ϕ dx =

∫

K
(∇uh − Fh) : ϕ(xK) dx + eK

=

∫

K
∇uh : ϕ(xK) dx − |K|Fh : ϕ(xK) + eK

= eK ,

where eK , the error committed in the piecewise constant approximation of ϕ, can be
estimated by

|eK | ≤ diam(K)

(

1

p′
‖∇ϕ‖p′

p′,K +
2

p
‖∇uh‖

p
p,K

)

.

Summing over K ∈ Th and letting h → ∞ shows that 〈uh, ϕ〉 → 0. Since (Fh) is

bounded in Lp and C1(Ω̄,Rm×n) is dense in Lp(Ω,Rm×n), we obtain Fh
p
⇀ ∇u. Using

the weak lower semicontinuity of continuous convex functionals, this implies

E(u) ≤ lim inf
h

∫

Ω
W (Fh) dx ≤ lim inf

h
Eb,h(uh).

2. Generalizing this result to the case when W depends also on x and u is a mere
technicality. For a fixed K, and for all x ∈ K, we have

W (x, uh(x), Fh|K) ≤
∑

q

ωqW (x, uh(x),∇uh(xq,K)).

Integrating over K,

∫

K
W (x, uh(x), Fh) dx ≤

∑

q

ωq

∫

K
W (x, uh(x),∇uh(xq,K)) dx,

and replacing the integral on the right-hand side by a one-point quadrature rule with
quadrature point in xq,K ∈ K gives

∫

K
W (x, uh(x), Fh) dx ≤

∑

q

|K|ωqW (xq,K , uh(xq,K),∇uh(xq,K)) + eK

=

∫

K
Jb,hW (x, uh(x),∇uh(x)) dx + eK ,
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where the error eK is estimated using an interpolation error estimate and the growth
conditions;

|eK | ≤
∑

q

ωq

∫

K
|W (x, uh(x),∇uh(xq,K) − W (xq,K , uh(xq,K),∇uh(xq,k)|dx

≤ diam(K)

∫

K

∣

∣

∣

∣

∂W

∂x
(x, uh(x),∇uh(xq,K))

∣

∣

∣

∣

+

∣

∣

∣

∣

∂W

∂u
(x, uh(x),∇uh(xq,K))

∣

∣

∣

∣

|∇uh(x)|dx

≤ diam(K) c1(1 + ‖uh‖
p
1,p,K). (3.4)

After summing over K, we have

∫

Ω
W (x, uh, Fh) dx ≤ Eb,h(uh) + eh,

where the error eh tends to zero as h → ∞. As uh
p
→ u, Fh

p
⇀ ∇u, and W is convex in

F we obtain

Eb(u) ≤ lim inf
h

∫

Ω
W (x, uh, Fh) dx ≤ lim inf

h
Eb,h(uh).

¥

The proof of the limsup condition (1.2) makes use of the fact that we can pick
a piecewise affine approximating sequence for which the highest order terms do
not affect the quadrature. We consider two sets of conditions under which (1.2)
holds.

We need to make technical assumptions on the approximation spaces Vh and
on the boundary condition. First, we assume that Vh contains S1

h, the set of
all continuous, piecewise affine functions. Next, we assume that the piecewise
polynomial functions ∇2gh are uniformly bounded in Lp. (We do not assume
here that gh ∈ W 2,p(Ω,Rm).) This assumption is not unnatural. If gh ∈ S1

h

then this condition is automatically satisfied. Choosing a higher polynomial
degree k ≥ 2 only seems to make sense if at least g ∈ W k,p(Ω,Rm) and, in
this case, piecewise polynomial interpolants gh typically satisfy ‖∇2gh‖p,K ≤
|K|C(γ(K), p, n, ‖∇2g‖p,K) (see, for example, [6]).

Lemma 8 If S1
h ⊂ Vh, (∇2gh) is bounded in Lp, and if (3.1) and (3.3) hold then

for every u ∈ A there exists a sequence (uh), uh ∈ Ah, converging strongly to u,
such that

Eb,h(uh) → Eb(u).

Proof Let vh ∈ S1
h ∩A0 such that vh

1,p
−→ u− g and set uh = gh + vh so that uh ∈ Ah

and uh
1,p
−→ u. Since ∇2vh = 0, ∇2uh is bounded in Lp, a fact we can use to estimate
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the quadrature error. For every K ∈ Th we have

∫

K
|Jb,hW (x, uh,∇uh) − W (x, uh,∇uh)|dx

≤ c1 diam(K)

∫

K

(∣

∣

∣

∣

∂W

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂W

∂u

∣

∣

∣

∣

|∇uh| +

∣

∣

∣

∣

∂W

∂F

∣

∣

∣

∣

|∇2uh|

)

dx

≤ c1 diam(K)

∫

K

(

∣

∣

∣

∣

∂W

∂x

∣

∣

∣

∣

+
1

p′

∣

∣

∣

∣

∂W

∂u

∣

∣

∣

∣

p′

+
1

p
|∇u|p +

1

p′

∣

∣

∣

∣

∂W

∂F

∣

∣

∣

∣

p′

+
1

p
|∇2u|p

)

dx

≤ c1 diam(K) (‖uh‖
p
1,p,K + ‖∇2gh‖

p
p,K + |K|) ,

where we used Young’s inequality in the second and the growth conditions in the third

inequality. We sum over K ∈ Th to obtain Eb,h(uh) → Eb(u) as h → ∞. ¥

If the boundary condition is zero, i.e., if gh = g = 0 for all h then the assumptions
to obtain the limsup condition can be weakened. Using a similar proof it can be
easily seen that in this case we do not require the differentiability of W with
respect to F and the growth condition on ∂W/∂F .

Lemma 9 If (3.1) holds then for every u ∈ A0 there exists a sequence (uh),
uh ∈ S1

h ∩ A0, converging strongly to u such that

Eb,h(uh) → Eb(u).

The next Lemma deals with the lower order terms in the spirit of Proposition 3.

Lemma 10 If (2.6) and (3.2) hold and uh

1,p
−−⇀u then

Ef,h(uh) → Ef (u) and Es,h(uh) → Es(u) as h → ∞.

Proof 1. We start off by proving the convergence of Ef,h to Ef in the above sense.
Let ρh = maxK∈Th

diam(K). For fixed uh, using a simple interpolation error estimate,
Hölder’s inequality, and the growth conditions (3.2), we have

|Ef (uh) − Ef,h(uh)| ≤

∫

Ω
|f(x, u) − Jf,hf(x, u)|dx

=
∑

K∈Th

∫

K
|f(x, u) − Jf,hf(x, u)|dx

≤ c1

∑

K∈Th

diam(K)

∫

K

(
∣

∣

∣

∣

∂f

∂x

∣

∣

∣

∣

+

∣

∣

∣

∣

∂f

∂u

∣

∣

∣

∣

|∇uh|

)

dx

≤ ρh c1 (1 + |uh|1,p).

If (uh) converges weakly in W 1,p then ‖uh‖1,p is bounded and hence |Eb,h(uh) −
Eb(uh)| → 0 and furthermore Eb,h(uh) → Eb(u) as h → ∞.
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2. The proof of convergence of the surface energy is in principle the same. Instead
of the above estimate we obtain

|Es(uh) − Es,h(uh)| ≤
∑

e⊂ΓN

diam(e)(Hn−1(e) + ‖uh‖
p
1,p,e). (3.5)

As the range of the trace operator is W 1−1/p,p(∂Ω), ‖uh‖1,p,ΓN
may not be bounded.

However, we can use the inverse inequality

‖uh‖
p
1,p,e ≤ diam(e)−1/p‖uh‖

p
1−1/p,p,e (3.6)

to control it. Inserting (3.6) into (3.5) yields

|Es(uh) − Es,h(uh)| ≤ C ρ
1−1/p
h (1 + ‖uh‖

p
1−1/p,p,Ω),

which again gives the desired result. ¥

3.2 Coercivity and the convergence theorem

Combining Lemmas 7, 8, and 10, it is easy to show that (Eh|Ah
) Γ(σ1,p)-converges

to E|A. We are only left to show that the discrete functionals are coercive.

Lemma 11 Suppose that on each element K ∈ Th, the interpolation operator
Jb,h is at least of degree d − 1. Then there exists a constant c0 > 0, depending
only on the quadrature rule and the polynomial degree d, such that for all uh ∈ Vh

and for all K ∈ Th,
∫

K

Jb,hW (x, uh,∇uh) dx ≥ c0(‖∇uh‖
p
p,K − 1).

Proof First, we transfer the integration to the reference simplex K̂n;
∫

K
Jb,hW (x, uh,∇uh) dx = |K|

∑

q

ωqW (x̂q, uh(x(x̂q)),∇uh(x(x̂q)))

≥ |K|c0

(

∑

q

ωq|∇uh(x(x̂q))|
p − 1

)

.

Due to norm-equivalence in finite-dimensional spaces (or local compactness) there exists
a constant c0 = c0((ωq), (x̂q), d) > 0 such that for all piecewise polynomials uh of degree
d,

∑

q

ωq|∇uh(x(x̂q))|
p ≥ c0

∫

K̂n

|∇uh(x(x̂))|p dx̂.

After transforming the integral back to K, this gives
∫

K
Jb,hW (x, uh,∇uh) dx ≥ |K|c0

∫

K̂n

(|∇uh(x(x̂))|p − 1) dx̂

= c0

∫

K
(|∇uh|

p − 1) dx.
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¥

In order to see that the lower order terms do not affect the coercivity of Eh we
prove growth conditions on Ef,h and Es,h.

Lemma 12 There exists a constant c1 > 0 such that, for all uh ∈ Vh,

|Ef,h(uh)| ≤ c1(‖uh‖
r
r,Ω + 1), and

|Es,h(uh)| ≤ c1(‖uh‖
r
r,∂Ω + 1).

Proof The proof follows that of Lemma 11 almost verbatim except that the estimates
are from above rather than from below. Instead of norm-equivalence one uses the fact
that

(

∑

q

|ω(f)
q ||uh(x(x̂(f)

q ))|r

)1/r

and

(

∑

q

|ω(s)
q ||uh(x(x̂(s)

q ))|r

)1/r

are at least seminorms on the space of polynomials of degree d, which is sufficient to

obtain the result. ¥

Finally, we can state the convergence theorem for quadrature approximations of
Galerkin discretizations.

Theorem 13 (a) Suppose that W is convex in F , the quadrature rule defined
by Jb,h is of degree d−1 or higher, where d is the maximal polynomial degree
in Vh, that S1

h ⊂ Vh, and that (3.1) and (3.2) hold. Suppose also that either
(∇2gh) is uniformly bounded in Lp and that (3.3) holds or that gh = g = 0
for all h. Then the family (Eh|Ah

) Γ(σ1,p)-converges to E|A.

(b) If the degree of the interpolation operator Jb,h is d − 1 or higher then the
family (Eh|Ah

) is equi-coercive in the weak topology of W 1,p(Ω,Rm) and
hence any sequence of approximate minimizers contains a subsequence which
converges weakly to a minimizer of E|A.

Proof The proof of Γ-convergence is completely contained in the Lemmas of Section
3.1. To prove coercivity, note that Lemmas 11 and 12 imply that

Eh(uh) ≥ c0(‖∇uh‖
p
p − 1) − c1(‖uh‖

r
r + ‖uh‖

r
r,∂Ω + 1)

≥ c0‖uh‖
p
1,p − c1(‖uh‖

r
1,r + 1),

using also Friedrichs’ inequality (2.1) and the embedding of W 1,r(Ω,Rm) in Lr(∂Ω,Rm).
It is now easy, using Young’s inequality, to obtain

‖uh‖
p
1,p ≤ c1(Eh(uh) + 1),

where c1 does not depend on h or uh. ¥

Remarks. 1. Unfortunately, it is not easy to establish strong convergence in
this case, since using the techniques from the previous sections we would require
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an estimate on |Eh(uh) − E(uh)| which does not seem easy to obtain. It is not
clear whether minimizers of Eh are approximate minimizers of E unless additional
regularity of the discrete minimizers is known. Compare also with the remarks
at the end of Section 4.

2. Lemma 11 is sharp in the sense that if Jb,h is of a lower degree then
there exist discrete functions for which Eh remains bounded but which do not
contain weakly convergent subsequences. This can be seen, for example, on easily
constructed counterexamples in one dimension, using a P2 finite element space
and a midpoint rule to approximate the Dirichlet integral, where such functions
can be chosen to be minimizers of Eh.

4 The polyconvex case

4.1 Hyperelasticity

Assume for the sake of notational simplicity that W depends only on F . One
of the conditions for a physically realistic stored energy function of an elastic
material is that

W (F ) → ∞ as det F → 0+, and

W (F ) = +∞ if det F ≤ 0. (4.1)

Typical examples of stored energy functions which satisfy this condition but
retain the weak lower semicontinuity property of the energy functional are poly-
convex stored energy functions. W is polyconvex if there exists a convex function

Φ : RD → R,

where D is the dimension of M(Rm×n), M(F ) being the vector of the minors of
F , so that

W (x, u, F ) = Φ(x, u,M(F )).

There are several sets of conditions on Φ that guarantee the well-posedness of
the minimization problem. We consider here a relatively simple case; we assume
that p > n and that

c0(|F |p + γ(det F ) − 1) ≤ W (F ) ≤ c1(|F |p + γ(det F ) + 1) (4.2)

where γ is convex and bounded below. In this case, Theorem 4 remains true [17].
However, E is not continuous and hence the approximation problem (compare

Lemma 5) is a much more difficult one. We would need to be able to show that
any u ∈ A for which E(u) is finite can be approximated by uh ∈ Ah so that
E(uh) remains bounded as well. Under these conditions, E is continuous along
the sequence (uh). It is anything but straightforward, however, to construct such
a sequence. If uh is any sort of approximation of u, it is not clear whether E(uh)
is even finite.

For further information on polyconvex energies, see for example [2, 10, 17].
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4.2 Quadrature approximations of polyconvex energies

If we neglect condition (4.1) and assume that W satisfies the usual growth condi-
tions then the theory of Section 3 can be carried through for polyconvex W with
only minor modifications. The proofs of the limsup condition (Lemmas 8 and 9)
and the coercivity (Lemma 11) remain unchanged (as they would for any stored
energy function satisfying the growth conditions). After replacing W by its con-
vex representation Φ, we can repeat the arguments which prove the Γ-convergence
of (Eh) to E. The crucial difference is that the order of the quadrature rule has
to be raised so that all minors of ∇uh are integrated exactly as well. If the order
of the quadrature rule defined by Jb,h is at least n(d − 1) then for a polyconvex
stored energy function W , Lemma 7 and Theorem 13 remain true as well. This
might not be a great restriction in two dimensions, as to achieve coercivity of
the discrete functionals the number of quadrature points is the same as what is
required to integrate the determinant exactly. In higher dimensions, however,
this seems unnecessarily expensive.

Let us review the crucial part of the argument, which fails for the polyconvex
case when a lower order quadrature rule is employed. As

∑

q ωq = 1, we can use
the convexity of Φ to obtain

Φ(
∑

q

ωqM(∇uh(xq,K))) ≤
∑

q

ωqΦ(M(∇uh(xq,K))) =
∑

q

ωqW (∇uh(xq,K).

M is not linear, but a polynomial of degree n; for example in two dimensions,
it contains the determinant det∇uh. To proceed with the argument, we would
have to show that

(δh − det∇uh)
p/2

−−⇀0, (4.3)

where

δh =
∑

K∈Th

χK

(

∑

q

ωq det∇uh(xq,K)

)

.

It is easy to find weakly convergent sequences (uh) for which (4.3) fails if the
quadrature rule is of order strictly less than 2(d − 1).

Condition (4.3) seems to be also necessary to obtain the liminf condition (1.1).
For the same examples for which (4.3) fails the quadrature approximations of the
quasi-affine functional

E(u) =

∫

Ω

det∇u dx

do not Γ-converge to E. It is also straightforward to find counterexamples to the
liminf condition, when γ is strictly convex; for example if

E(u) =

∫

Ω

(

ǫ| det∇u|p/2 + det∇u
)

dx
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then for sufficiently small ǫ and the same examples as before, the liminf condition
fails again.

Note, however, that this does not imply that minimizers of Eh|Ah
do not

converge to a minimizer of EA. In fact, if we sharpen the proof of Theorem 2,
we find that it is sufficient that the liminf condition (1.1) holds for minimizers of
the discrete functionals Eh|Ah

. A regularity result for minimizers of the discrete
functionals, for example stating that the sequence (∇2uh) is uniformly bounded
in Lp would be sufficient to extend the convergence result to polyconvex energies.
In this case, we would also obtain an estimate on |Eh(uh) − E(uh)| which could
be used to obtain the strong convergence of minimizers. Unfortunately, such a
theory seems to be lacking at present.
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