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1 Introduction

For the numerical simulation of microscopic material behaviour like crack-tip studies,
nano-indentation, dislocation motion, etc., atomistic models are often employed. How-
ever, even on the lattice scale, they are prohibitively expensive and, in fact, inefficient.
Even in the presence of defects, the bulk of the material will deform elastically and
smoothly. It is therefore advantageous to couple the atomistic simulation of a defect
with a continuum or continuum-like model away from it. One of the simplest and most
popular examples is the Quasicontinuum (QC) method originally developed by Ortiz,
Phillips and Tadmor in [11] and subsequently improved by many other authors; see [9]
for a recent survey article. The basic idea of the QC method is to triangulate an atom-
istic body as in a finite element method and to allow only piecewise affine deformations
in the computation, thus considerably reducing the number of degrees of freedom. By
taking every atom near a defect to be a node of the triangulation, one obtains a contin-
uum description of the elastic deformation while retaining a full atomstic description of
the defect. We give a detailed description of a version of the QC method analyzed in
this paper in §2.2.

Despite its growing popularity in the engineering community, the mathematical and
numerical analysis of the QC method is still in its infancy. The first noteworthy effort was
by Lin [7] who considers the QC approximation of the reference state of a one-dimensional
Lennard–Jones model. E and Ming [5, 4] analyze the QC method in the context of
the heterogeneous multi-scale method [3], which requires the assumption that a nearby
smooth, elastic continuum solution is available. In [8], Lin analyzes the QC method
for purely elastic deformation in two dimensions without using such an assumption, but
making instead a strong hypothesis (Assumptions 1. and 2. in [8]) on the exact solution
of the atomistic model as well as on its QC approximation. Essentially, it is assumed that
both the exact and the QC solution lie in a region where the atomistic energy is convex.
For lattice domains resembling smooth or convex sets this assumption seems intuitively
reasonable but would be difficult to verify rigorously. For lattice domains with sharp re-
entrant boundary sections or defects we should not expect it to hold. Finally, we would
like to mention the work of Legoll et al. [1] where a multi-scale method similar to the
QC method is analyzed, however only nearest-neighbour interactions in one dimension
are considered which makes it possible to compute the the exact solutions analytically.
Except for the work [1], which we believe is in the unrealistic setting of global energy
minimization (cf. also [15] and the comments in §2.1), none of the previous attempts
were able to consider defects in their analysis of the QC method.

The present work is the first part of an effort to provide a fairly complete approx-
imation theory for the QC method in one dimension. We demonstrate how to derive
optimal a-priori error estimates for stable solutions, i.e., solutions which are strict local
minimizers of the atomistic energy. While the one-dimensional setting allows us to give
complete results with a relatively small effort, we believe that our technique should in
principle extend to higher dimensions. The necessary coercivity estimates would, how-
ever, be much harder to obtain. It would even be far from straightforward to identify
a suitable topology in which to analyze the error. Only for purely elastic deformation



3

of perfect lattices is it clear how to do so (cf. [8]. In order to keep the presentation
simple, we also consider only long-range pair-interaction energies with interaction po-
tentials of Lennard–Jones type, but we believe that this is not a true restriction. A
detailed description of our model problem is given in §2.1.

While, to some extent, our computations to obtain the coercivity are contained in [7]
the novelty of our approach is to look at coercivity and stability with respect to the w1,∞

ε –
norm, a discrete version of the W1,∞ Sobolev norm which we define in §1.1. This makes
it possible to give precise conditions under which local monotonicity assumptions, such
as Assumptions 1. and 2. in [8], are justified. Furthermore, to the best of our knowledge,
the case of defects has not so far been analyzed for a realistic QC model with long-range
interactions.

Probably the most remarkable feature of atomistic models is the multitude of solu-
tions. Already in one dimension, it is fairly straightforward to see for many problems
that the number of solutions is at least as large as the number of atoms in the body.
Therefore, error estimates must necessarily be restricted to local results. Due to the
possibility of fracture, stability of solutions can only ever be obtained with respect to a
discrete version of the W1,∞ norm (cf. §1.1). Hence our entire analysis will be based on
such a topology. The basic idea is to show that if the mesh is able to resolve the exact
solution (this can be measured in terms of the interpolation error) then there exists a
nearby QC solution for which an error estimate holds.

Ultimately, however, we believe that our results are only realistic in the elastic case,
in the sense that we can actually expect to find the QC solution which satisfies the error
estimate that we derive. For example, when an exact solution we wish to approximate is
a fractured state then we can prove under certain conditions that there exists a nearby
QC solution, however, we should not expect to find it numerically. If only one atom lies
on the wrong side of the crack then the error in the discrete W1,∞–norm cannot converge
to zero.

The option to analyze the error in a weaker norm is, at least with our technique,
unavailable due to the lack of monotonicity and stability. Therefore, in the second part
of this work [13], which deals with the a-posteriori error analysis of the QC method in
one dimension, we reverse the role of the exact and the QC solution. We derive bounds
on the residual of the QC solution and show that, if the QC solution is stable and its
residual sufficiently small, there exists an exact solution of the atomistic model for which
we give an a-posteriori error bound.

1.1 Discrete function spaces

It will be notationally convenient to define discrete versions of the usual Sobolov norms.
First, for u = (ui)

N
i=0 ∈ R

N+1, we introduce the discrete derivatives

u′
i =

ui − ui−1

ε
, i = 1, . . . , N and u′′

i =
ui+1 − 2ui + ui−1

ε2
, i = 1, . . . , N − 1,

where ε is a lattice parameter that can be adjusted to the problem at hand and should
roughly be the distance between two neighbouring atoms in an undeformed state. For
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1 ≤ p < ∞, u ∈ R
N+1, 0 ≤ i1 ≤ i2 ≤ N , we define the (semi-)norms

‖u‖�p
ε((i1,i2)) =

(
i2∑

i=i1

ε|ui|p
)1/p

,

|u|w1,p
ε ((i1,i2))

=

(
i2∑

i=i1+1

ε|u′
i|p
)1/p

, and

|u|w2,p
ε ((i1,i2))

=

(
i2−1∑

i=i1+1

ε|u′′
i |p
)1/p

.

For p = ∞, we define the corresponding versions,

‖u‖�∞ε ((i1,i2)) = max
i=i1,...,i2

|ui|,

|u|w1,∞
ε ((i1,i2))

= max
i=i1+1,...,i2

|u′
i|, and

|u|w2,∞
ε ((i1,i2))

= max
i=i1+1,...,i2−1

|u′′
i |.

Sums or maxima taken over empty sets are understood to be zero. If the label ((i1, i2))
is omitted we mean i1 = 0, i2 = N . For reasons that will become apparent below, we
will only require the p = 1 and p = ∞ versions of these (semi-)norms in our analysis.
B(y, R) is understood to be the closed ball, centre y, radius R, with respect to the
w1,∞

ε –semi-norm.

For u, v ∈ R
N+1, we define the bilinear form

〈u, v〉ε =
N∑

i=0

εuivi.

Finally, we fix the notation for derivatives of functionals. Let φ : R
N+1 → R be

differentiable at a point u ∈ R
N+1. We understand the derivative of φ in u as a linear

functional φ′(u) = φ′(u; ·) : R
N+1 → R defined by

φ(u + v) = φ(u) + φ′(u; v) + o(|v|), as v → 0,

where |v| denotes the Euclidean norm of v. Similarly, if φ is twice differentiable at
u ∈ R

N+1, the second derivative of φ at u is a symmetric bilinear form φ′′(u) =
φ′′(u; ·, ·) : R

N+1 × R
N+1 → R defined by

φ(u + v) = φ(u) + φ′(u; v) + φ′′(u; v, v) + o(|v|2), as v → 0.

When φ′ is interpreted as a linear functional we may also write φ′(u; v) = φ′(u)v. Simi-
larly, we shall write φ′′(u)v for the linear functional defined by φ′′(u; v, ·).
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Figure 1: The shape of the atomistic interaction potentials.

2 Model Problem and QC Approximation

2.1 The atomistic model problem

Fix N ∈ N. Each vector y = (yi)i=0,...,N ∈ R
N+1 represents a state of an atomistic body,

consisting of N + 1 atoms. To each such deformation we associate an energy

E(y) =

N∑
i=1

i−1∑
j=0

J(yi − yj).

Upon defining the lattice parameter ε = 1/N , and writing yi instead of εyi we can rescale
the energy to

E(y) =
N∑

i=1

i−1∑
j=0

εJ
(
ε−1(yi − yj)

)
, (2.1)

without changing the problem. We believe that such a scaling highlights the practically
relevant case where ε is small in comparison to the length-scale of the problem.

Typical examples of atomistic interaction potentials are the Lennard–Jones potential
[6],

J(z) = z−12 − z−6, (2.2)

and the Morse potential [10],

J(z) = exp
(
− 2α(z − 1)

)
− 2 exp

(
− α(z − 1)

)
; (2.3)

see also Figure 2.1. More generally, we assume that there exist z0 ∈ [−∞, +∞), zm, zt ∈
R such that z0 < zt/2 < zm < zt, and

J ∈ C3(z0,∞), J ′(zm) = 0, J ′′(zt) = 0,

J(z) → +∞ as z → z0+, J(z) = +∞ ∀z ≤ z0, (2.4)

J ′′(z) ≥ 0 ∀z ∈ (0, zt] and J ′′(z) ≤ 0 ∀z ∈ [zt,∞).
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The condition zt/2 < zm considerably simplifies the analysis and is not a true restriction;
for example, any realistic potential describing a metal would satisfy it. Having said
this, a simple atomistic model such as (2.1) is not normally used for the simulation of
metals, which is the main application of the QC method. However, potentials of the
type (2.2) or (2.3) usually form the basis of more sophisticated atomistic models such
as the embedded atom method [2] or multi-body interaction models. Thus, we believe
that for a theoretical study in one dimension, which is severely restricted in its physical
applicability anyhow, we can justify the use of simpler atomistic models, for the sake of
a simpler presentation.

Before we define what we mean by an atomistic solution, we need to mention that
atomistic deformations are typically only meta-stable states rather than global minimiz-
ers (cf. for example [15, 12]). This can be best seen by considering an atomistic body
which is clamped at the left-hand end with a small deformation applied to the right-
hand end. In that case, the physically observed Cauchy–Born state, the (approximately)
affine deformation, is not the energy minimum. Note, however, that the elastic state is
the correct solution only if we have started from an unfractured reference state.

We consider only a Dirichlet problem, i.e., where the atomistic deformation is fixed
at the endpoints. It would also be possible, and in fact easier, to consider a problem
with a Dirichlet condition at one end and a Neumann condition at the other end of the
interval. We define the set of admissable deformations as

A = {y ∈ R
N+1 : y0 = 0, yN = yD

N} and A0 = {y ∈ R
N+1 : y0 = yN = 0}. (2.5)

Each f ∈ R
N+1 represents a linear body force. The atomistic problem is to find

critical points of the functional E(y) − 〈f, y〉ε in A . From the assumptions we have
made on the interaction potential it follows that E is differentiable at every point which
has finite energy. Thus a critical point y of E(y) − 〈f, y〉 in A with finite energy must
satisfy

E ′(y; v) = 〈f, v〉ε ∀v ∈ A0. (2.6)

If y satisfies (2.6), we say that E ′(y) = f in A .

Elastic deformations are those whose gradient is sufficiently close to zm, in a region
where the energy E is convex. Such solutions exist whenever f is sufficiently small.
More precisely, for each f ∈ R

N+1, we define the dual norm

‖f‖∗ = max
v∈A0

|v|
w

1,1
ε

=1

〈f, v〉ε.

We use this norm in the following sections to measure the distance of applied body
forces. Since we can interpret f as a linear functional, we can extend the definition of
the dual norm to linear maps � : A0 → R by

‖�‖∗ = max
v∈A0

|v|
w

1,1
ε

=1

|�(v)|.
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For future reference, we define the quantities

ρ1(z) =
∞∑

r=2

r|J ′(rz)|, and (2.7)

ρ2(z1, z2) =
∞∑

r=1

r2 min
z1≤z≤z2

J ′′(rzm), (2.8)

which are important in the analysis of existence and stability of elastic deformations.
The quantity ρ1(z) is an estimate for the residual of the affine deformation yi = zi/N
which we use to derive the existence of a reference state. We shall assume throughout
that ρ1 is continuous in a neighbourhood of zm which, for the Lennard–Jones and the
Morse potentials, follows from elementary calculus. The number ρ2(z1, z2) is used to
estimate the infsup constant of E ′′ in the set {z1 ≤ y′

i ≤ z2}. For the analysis of the QC
approximation, we will also use

ρ3(z1, z2) =
∞∑

r=1

r2 max
z1≤z≤z2

|J ′′(rz)|, (2.9)

which is a Lipschitz constant of E ′ in the set {z1 ≤ y′
i ≤ z2}.

2.2 Quasicontinuum approximation

A QC mesh T is defined by choosing indices 0 = t0 < t1 < · · · < tK = N and setting
T = {t0, . . . , tK}. For each k = 1, . . . , K, we set hk = ε(tk − tk−1), the physical length
of the kth element. The set of piecewise affine deformations is given by

S1(T ) =
{
V ∈ R

N+1 : Vi =
tk − i

tk − tk−1
Vtk−1

+
i − tk−1

tk − tk−1
Vtk , if tk−1 ≤ i ≤ tk

}
.

We define the set of admissable QC deformations and QC test functions respectively as

A (T ) = A ∩ S1(T ) and A0(T ) = A0 ∩ S1(T ).

For convenience, we sometimes use the notation V k = Vtk and V
′
k = V ′

tk
for the nodal

values of an S1(T ) function. For our analysis it is also necessary to define the interpolant
Π: R

N+1 → S1(T ) by Πu = (Πui)
N
i=0 and

Πutk = utk , k = 0, . . . , K.

Note that if y ∈ A then Πy ∈ A (T ).
A straightforward Galerkin approximation to (2.6) would be to find critical points of

E(Y ) − 〈Y, f〉 in A (T ). Any such critical point Y ∈ A must satisfy

E ′(Y ; V ) = 〈f, V 〉ε ∀V ∈ A0(T ). (2.10)

However, in view of the long-range atomistic interaction, which, for the purpose of
evaluating the energy and its derivatives still necessitates the computation of very large
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sums, it is helpful to make some further approximations to the energy functional. First,
it is common to replace J by a cut-off potential J̃ , which vanishes outside a certain cut-
off radius ρc. If the deformation gradient is bounded away from zero, then the number
of atoms over which one needs to sum is bounded by a small integer. This purely one-
dimensional effect means that it is unnecessary to make any further (summation-rule
type) approximations to the atomistic energy; thus we define,

Ẽ(Y ) =
N∑

i=1

N−1∑
j=0

εJ̃
(
ε−1(Yi − Yj)

)
.

For the analysis of the coercivity of the QC approximation we will need the quantity

ρ̃2(z1, z2) =
∞∑

r=1

r2 min
z1≤z≤z2

J̃ ′′(rz).

To approximate the body force potential, we can use a so-called summation rule, i.e.,
a discrete version of a quadrature rule. In order to recover the full atomistic problem
in the limit, it is reasonable to employ a trapezium rule. Thus, we define the discrete
bilinear form

〈f, v〉T =

N∑
i=0

εΠ(fv)i.

The full QC approximation to (2.6) is then to find Y ∈ A (T ) satisfying

Ẽ ′(Y ; V ) = 〈f, V 〉T ∀V ∈ A0. (2.11)

3 Elastic Deformation

In the first part of this paper, we consider elastic deformation only. Recalling the
notation of §1.1, we shall prove the following two theorems.

Theorem 1 Let J satisfy the assumptions of §2.1 and, in addition, assume that there
exists an R ∈ (0, min(zm − zt/2, zt − zm)) such that ρ1(zm) < R ρ2(zm − R, zm + R).
Then the following hold:

(a) Coercivity: There exist z1, z2 ∈ R, independent of ε, such that z1 < zm < z2 < zt

and
inf

y∈Ze

inf
u∈A0

|u|
w

1,∞
ε

=1

sup
v∈A0

|v|
w

1,1
ε

=1

E ′′(y; u, v) ≥ 1
2
ρ2(z1, z2) =: c0 > 0, (3.1)

where Ze = {y ∈ R
N+1 : z1 ≤ y′

i ≤ z2, for i = 1, . . . , N}.

(b) Existence: There exist δ1, δ2 > 0, independent of ε such that for every yD
N ∈ R with

|yD
N − zm| < δ1 and for every f ∈ R

N+1 with ‖f‖∗ ≤ δ2, there exists a solution yf

of (2.6) in Ze.
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(c) Stability: Let yf , yg be solutions to (2.6) in Ze ∩ A , corresponding respectively to
the right-hand sides f, g ∈ R

N+1; then

|yf − yg|w1,∞
ε

≤ c−1
0 ‖f − g‖∗.

Theorem 1 is of theoretical relevance in that it gives a relatively sharp condition under
which elastic solutions to (2.6) exist and are stable. It furthermore directly relates the
shape of the interaction potential to the coercivity of the energy. In practise, we would
numerically determine a region where E ′′ is coercive and then prove that it contains
a reference state, using the condition ρ1(zm) < min(zm − z1, z2 − zm)ρ2(z1, z2). We
demonstrate this in §B.

For the formulation and proof of the a-priori error bound, there are several options.
One could simply formulate a QC version of the existence theorem and prove that the
elastic QC solution satisfies an error estimate. However, we find it more illuminating to
make fewer assumptions on the structure of the problem, and impose stronger assump-
tions on a particular solution instead. It should be noted, however, that the conditions
for a QC existence theorem for elastic solutions would be quite similar to the ones we
give below.

For any given f ∈ R
N+1 and a solution y ∈ A of (2.6), we will identify three error

sources: the interpolation error,

E1 = |y − Πy|w1,∞
ε

, (3.2)

the perturbation of the linear form,

E2 = max
V ∈A0(T )
|V |

w
1,1
ε

=1

∣∣〈f, V 〉T − 〈f, V 〉ε
∣∣, (3.3)

and the perturbation of the energy,

E3 = max
Y ∈A (T )∩Ze

max
V ∈A0(T )
|V |

w
1,1
ε

=1

∣∣E ′(Y ; V ) − Ẽ ′(Y ; V )
∣∣. (3.4)

Theorem 2

(a) Let Ze be defined as in Theorem 1; then,

min
Y ∈S1(T )∩Ze

min
U∈A0(T )

|U|
w

1,∞
ε

=1

max
V ∈A0(T )
|V |

w
1,1
ε

=1

E ′′(Y ; U, V ) ≥ ρ2(z1, z2) = c0, and (3.5)

max
Y ∈S1(T )∩Ze

max
U∈A0(T )

|U|
w

1,∞
ε

=1

max
V ∈A0(T )
|V |

w
1,1
ε

=1

E ′′(Y ; U, V ) ≤ ρ3(z1, z2) =: c1. (3.6)
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(b) Let y ∈ Ze∩A be a solution of (2.6) and define R = mini=1,...,N min(z2−y′
i, y

′
i−z1).

Assume, furthermore, that the QC mesh T is sufficiently fine so that

c1E1 + E2 + E3 ≤ c0R. (3.7)

Then, there exists a solution Y ∈ A (T ) ∩ Ze of (2.11) which satisfies

|y − Y |w1,∞
ε

≤ c−1
0

(
(c0 + c1)E1 + E2 + E3

)
.

If ρ̃2(z1, z2) > 0, then the QC solution is unique in A (T ) ∩ Ze.

(c) The error quantities E1, E2, and E3 can be bounded as follows:

E1 ≤ max
k=1,...,K

hk|y|w2,∞
ε ((tk−1,tk)), (3.8)

E2 ≤ max
k=1,...,K

2h2
k

(
|f |w2,∞

ε ((tk−1,tk)) + |f |w1,∞
ε ((tk−1+1,tk)) (3.9)

+|f |w1,∞
ε ((tk−1,tk−1))

)
, and

E3 ≤
∞∑

r=1

r max
z1≤z≤z2

∣∣J̃ ′(rz) − J ′(rz)
∣∣. (3.10)

3.1 Coercivity of the atomistic problem

For this fairly straightforward but tedious analysis it is convenient to rewrite the energy
and its derivatives in the following form. First, we rewrite E as

E(y) =
N∑

i=1

i∑
j=1

εJ

(
i∑

k=j

y′
k

)
. (3.11)

For the moment we will only need E ′′, however, for future reference, we first compute
E ′ which can be written in the form

E ′(y; w) =
N∑

i=1

i∑
j=1

εJ ′

(
i∑

k=j

y′
k

)(
i∑

n=j

w′
n

)

=

N∑
i=1

i∑
j=1

i∑
n=j

εw′
nJ

′(ε−1(yi − yj−1)
)

=

N∑
i=1

i∑
n=1

εw′
n

n∑
j=1

J ′(ε−1(yi − yj−1)
)

=
N∑

n=1

εw′
n

(
N∑

i=n

n∑
j=1

J ′(ε−1(yi − yj−1)
))

=
N∑

n=1

εF ′
n(y)w′

n, (3.12)
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where

F ′
n(y) =

N∑
i=n

n∑
j=1

J ′(ε−1(yi − yj−1)
)

=
N∑

i=n

n−1∑
j=0

J ′(ε−1(yi − yj)
)
.

If E is twice differentiable at a point y, then E ′′(Y ) is most conveniently written in the
form

E ′′(y; v, w) =
N∑

i=1

i∑
j=1

εJ ′′(ε−1(yi − yj−1)
)( i∑

m=j

v′
m

)(
i∑

n=j

w′
n

)

=
N∑

n=1

εw′
n

N∑
i=n

n∑
j=1

i∑
m=j

v′
mJ ′′(ε−1(yi − yj−1)

)

=

N∑
n=1

εw′
n

N∑
i=n

i∑
m=1

n∧m∑
j=1

w′
mJ ′′(ε−1(yi − yj−1)

)

=

N∑
n=1

N∑
m=1

εw′
nv

′
m

(
N∑

i=m∨n

n∧m∑
j=1

J ′′(ε−1(yi − yj−1)
))

=
N∑

n=1

N∑
m=1

εF ′′
nmv′

mw′
n, (3.13)

where

F ′′
nm(y) =

N∑
i=m∨n

n∧m∑
j=1

J ′′(ε−1(yi − yj−1)
)
.

Our aim in this section is to identify a set of deformations,

Ze = {y ∈ A : z1 ≤ y′
i ≤ z2},

with z1 < zm < z2 < zt for which E ′′(y) satisfies the inf-sup condition

min
y∈Ze

min
u∈A0

|u|
w

1,∞
ε

=1

max
v∈A0

|v|
w

1,1
ε

=1

E ′′(y; u, v) ≥ c0 > 0.

For convenience, we have assumed in §2.1 that zm > zt/2, and hence we may assume
here that z1 ≥ zt/2 as well. This implies that

{
J ′′(z) > 0, for z1 ≤ z ≤ z2, and
J ′′(z) ≤ 0, for z ≥ 2z1,

(3.14)

and consequently F ′′
nm ≤ 0 whenever n �= m.

The proof of the inf-sup condition is based on an argument related to row diagonally
dominant matrices. Fix u ∈ A0 and choose p, q ∈ {1, . . . , N} such that u′

p is maximal
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and u′
q is minimal. Since u ∈ A0 we have

∑N
i=1 u′

i = 0 and hence u′
p ≥ 0 and u′

q ≤ 0. We
define the test function v by

v′
i =




1
2
ε−1, if i = p,

−1
2
ε−1, if i = q, and

0, otherwise.

It is clear from the definition of v that v ∈ A0 and |v|w1,1
ε

= 1. Let P = {i : u′
i > 0} and

Q = {i : u′
i < 0}. Using (3.13), we have

E ′′(y; u, v) =
N∑

n=1

N∑
m=1

εF ′′
nm(y)u′

nv
′
m

=
1

2ε

N∑
n=1

εF ′′
np(y)u′

n − 1

2ε

N∑
n=1

εF ′′
nq(y)u′

n

=
1

2
F ′′

pp(y)u′
p +

1

2

∑
n 	=p

F ′′
npu

′
n − 1

2
F ′′

qq(y) −
∑
n 	=q

F ′′
nq(y)u′

n.

Using (3.14), we see that for n �= m we have F ′′
nm(y) ≤ 0. Hence, we obtain

2E ′′(y; u, v) ≥ F ′′
pp(y)u′

p +
∑

m∈P\{p}

F ′′
mp(y)u′

m − F ′′
qq(y)u′

q −
∑

m∈Q\{q}

F ′′
mq(y)u′

m

≥ u′
p

[
F ′′

pp(y) +
∑

m∈P\{p}

F ′′
mp(y)

]
+ (−u′

q)
[
F ′′

qq(y) +
∑

m∈Q\{q}

F ′′
mq(y)

]

≥ |u|w1,∞
ε

N∑
m=1

F ′′
mn(y), (3.15)

where n ∈ {p, q}. Thus, to prove the coercivity estimate (3.1), we need to show that
the matrix (F ′′

nm)n,m=1,...,N is strictly row diagonally dominant; more precisely, we need
to obtain a lower bound on the sum in the last expression. To do so, we split the sum
as follows:

N∑
m=1

F ′′
nm(y) =

n−1∑
m=1

N∑
i=n

m∑
j=1

J ′′(ε−1(yi − yj−1)
)

+
N∑

m=n+1

n∑
j=1

N∑
i=m

J ′′(ε−1(yi − yj−1)
)

+

n∑
j=1

N∑
i=n

J ′′(ε−1(yi − yj−1)
)
.

For all pairs (i, j) with i ≥ j we bound

J ′′(ε−1(yi − yj−1)) ≥ min
z1≤z≤z2

J ′′((i − j + 1)z
)

=: J ′′(i − j + 1),
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which we use to estimate

N∑
m=1

F ′′
nm(y) ≥

n−1∑
m=1

N∑
i=n

m∑
j=1

J ′′(i − j + 1) +

N∑
m=n+1

n∑
j=1

N∑
i=m

J ′′(i − j + 1)

+

n∑
j=1

N∑
i=n

J ′′(i − j + 1). (3.16)

In the first triple-sum, we exchange the order of summation three times to obtain

n−1∑
m=1

N∑
i=n

m∑
j=1

J ′′(i − j + 1) =

N∑
i=n

n−1∑
j=1

n−1∑
m=j

J ′′(i − j + 1)

=

n−1∑
j=1

N∑
i=n

(n − j)J ′′(i − j + 1)

≥
n−1∑
j=1

(n − j)

∞∑
r=n−j+1

J ′′(r),

where we used the fact that J ′′(r) ≤ 0 for r ≥ 2. We change the order of summation
again,

n−1∑
j=1

(n − j)
∞∑

r=n−j+1

J ′′(r) =
∞∑

r=2

J ′′(r)
n−1∑

j=n−r+1

(n − j)

=
1

2

∞∑
r=2

r(r − 1)J ′′(r),

where we used
∑n−1

j=n−r+1(n − j) = r(r − 1)/2. Similarly, for the second triple-sum in
(3.16), we obtain

N∑
m=n+1

n∑
j=1

N∑
i=m

J ′′(i − j + 1) ≥ 1

2

∞∑
r=2

r(r − 1)J ′′(r).

For the third term in (3.16), we have

n∑
j=1

N∑
i=n

J ′′(i − j + 1) ≥
n∑

j=1

∞∑
r=n−j+1

J ′′(r)

=

∞∑
r=1

n∑
j=n−r+1

J ′′(r)

=
∞∑

r=1

rJ ′′(r).
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On combining this with the previously obtained bounds, and recalling the definition
(2.8), we finally arrive at

N∑
m=1

F ′′
nm(y) ≥

∞∑
r=1

r2J ′′(r) = ρ2(z1, z2). (3.17)

Therefore, returning to (3.15), we obtain

max
v∈A0

|v|
w

1,1
ε

=1

E ′′(y; u, v) ≥ c0|u|w1,∞
ε

, (3.18)

where c0 = 1
2
ρ2(z1, z2). We refer to Appendix B for specific values of z1, z2 and c0 for

the Lennard–Jones and the Morse potential.

3.2 Proof of Theorem 1

The proof of Theorem 1 as well as the extension to fracture solutions in §4 rely on a local
existence result which is essentially a simple corollary of the Implicit Function Theorem
(cf. [16, Section 6.6]).

Lemma 3 Let E be given by (2.1) and let ỹ ∈ A satisfy E ′(ỹ) = f̃ in A . Suppose that
there exists a constant c0 > 0 such that, in the set Z = B(ỹ, R) ∩ A , E ′′ satisfies

0 < c0 ≤ min
y inZ

min
u∈A0

|u|
w

1,∞
ε

=1

max
v∈A0

|v|
w

1,1
ε

=1

E ′′(y; u, v). (3.19)

Then, for any f ∈ R
N+1 satisfying ‖f − f̃‖∗ ≤ c0R there exists a unique y ∈ Z such

that E ′(y) = f in A . The solution y satisfies

|y − ỹ|w1,∞
ε

≤ c−1
0 ‖f − f̃‖∗. (3.20)

Proof For t ∈ [0, 1] define ft = (1 − t)f̃ + tf . We seek yt ∈ Z such that E′(yt) = ft. To
this end, assume that for some t ∈ [0, 1) there exists yt ∈ int(Z ) such that E′(yt) = ft and let
t < s ≤ 1.

By the Mean Value Theorem, there exists θ ∈ Z such that E′(ỹ)−E′(yt) = E′′(θ)(ỹ − yt)
and therefore

E′′(θ)(ỹ − yt) = f̃ − ft.

Upon multiplying by v ∈ A0 and using (3.19), we obtain

c0|ỹ − yt|w1,∞
ε

≤ ‖f̃ − ft‖∗ = t‖f̃ − f‖∗ ≤ tc0R. (3.21)

In particular, (3.21) implies that y0 = ỹ.
Since E′′ satisfies (3.19), it follows that E′′(yt) is non-singular. Furthermore, there exists

a neighbourhood of yt where E′′ is Lipschitz continuous. Therefore, by the Implicit Function
Theorem, there exists δ > 0 such that for all s ∈ [t, δ) there is a ys ∈ int(Z ) satisfying
E′(ys) = fs.
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Applying this result with t = 0, we find that there is a T > 0 such that for t ∈ [0, T ) there
exists a solution yt ∈ Z to E′(yt) = ft. Let T be maximal. Since A is finite-dimensional,
there exists a sequence tj ↑ T such that ytj converges to some y ∈ Z . Since ftj → fT and E′ is
continuous in Z , it follows that E′(y) = fT . If T < 1, then by (3.21) y ∈ int(Z ). Therefore,
there exists δ > 0 such that for T ≤ s < T + δ, there is a solution ys to E′(ys) = fs. Since we
assumed that T was maximal, it follows that T = 1.

Using the same argument as the one leading to (3.21) we find that the solution is unique
in Z . �

Lemma 3 gives a clear path to the proof of Theorem 1. We have already established the
necessary conditions for coercivity in the previous section.

To show the existence of a reference state, we define the deformation yD
i = εiyD

N ,
where we assume that z1 < yD

N < z2, and estimate the residual E ′(yD). It is more
convenient to do this in the following alternative representation of E ′:

E ′(y; v) =

N−1∑
n=1

E ′
n(y)vi ∀y ∈ A , ∀v ∈ A0, (3.22)

where

E ′
n(y) =

n−1∑
i=0

J ′(ε−1(yn − yi)
)
−

N∑
i=n+1

J ′((ε−1(yi − yn)
)
, n = 1, . . . , N − 1.

Using the embedding inequality ‖v‖�∞ε ≤ 1
2
|v|w1,1

ε
(cf. Lemma 9) we can estimate

|E ′(y′; v)| ≤
N−1∑
n=1

|E ′
n(y)|‖v‖�∞ε ≤ 1

2

N−1∑
n=1

|E ′
n(y)||v|w1,1

ε
,

which implies that

‖E ′(y)‖∗ ≤
1

2

N−1∑
n=1

|E ′
n(y)|. (3.23)

For y = yD, we have

E ′
n(yD) =

2n−N−1∑
i=0

J ′((n − i)yD
N ) −

N∑
i=2n+1

J ′((i − n)yD
n ),

and, taking absolute values,

|E ′
n(y)| ≤

∞∑
r=n∧(N−n)+1

|J ′(ryD
n )|.

Thus, we can estimate

‖E ′(yD)‖∗ ≤ 1

2

N−1∑
n=1

|E ′
n(yD)| ≤ 1

2

∞∑
n=1

∞∑
r=n+1

|J ′(ryD
N)|

≤ 1

2

∞∑
r=2

r−1∑
n=1

|J ′(ryD
N)| ≤ 1

2

∞∑
r=2

(r − 1)|J ′(ryD
N)| =

1

2
ρ1(y

D
N).
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We now apply Lemma 3 with ỹ = yD and f = 0. Thus, if

1
2
ρ1(y

D
N) ≤ 1

2
ρ2(z1, z2) × min(z2 − yD

N , yD
N − z1), (3.24)

there exists a reference state y∗ ∈ A satisfying (2.6) with f = 0. From the stability
estimate (3.20), we infer that

|y∗ − yD
N |w1,∞

ε
≤ c−1

0 ‖E ′(yD)‖∗ ≤
ρ1(y

D
N)

ρ2(z1, z2)
.

If the inequality in (3.24) is strict, there exists an R > 0 such that {y ∈ A : |y−y∗|w1,∞
ε

≤
R} ⊂ Ze. Thus, for ‖f‖∗ ≤ c0R =: δ, there exists a unique solution to (2.6) in Ze.

To complete the proof of Theorem 1 we only need to show that the numbers z1, z2 sat-
isfying our assumptions exist. This, however, follows immediately from the assumption
that ρ1(zm) < Rρ2(zm − R, zm + R) and that ρ1 is continuous.

3.3 Coercivity of the QC approximation

In order to apply a similar technique as in §3.2 to prove the existence of a QC solution
near an exact solution, we need to show that E ′′ is also coercive in A0(T ), i.e., that
there exists a constant c̃0 > 0 such that, for all Y ∈ Ze ∩ A (T ), we have

inf
U∈A0(T )

|U|
w

1,∞
ε

=1

sup
V ∈A0(T )
|V |

w
1,1
ε

=1

E ′′(Y ; U, V ) ≥ c̃0.

To this end, fix U ∈ A0(T ) and pick p, q ∈ {1, . . . , K} such that U
′
p is maximal and U

′
q

is minimal. Similarly as before, we also let P = {i : U
′
i > 0} and Q = {i : U

′
i < 0}, and

we define

V
′
k =




1
2
h−1

p , if k = p,
−1

2
h−1

q , if k = q, and
0, otherwise.

This gives,

E ′′(Y ; U, V ) =

N∑
n=1

N∑
m=1

εF ′′
nm(Y )U ′

nV ′
m

=
1

2hp

N∑
n=1

tp∑
m=tp−1+1

εF ′′
nm(Y )U ′

n − 1

2hq

N∑
n=1

tq∑
m=tq−1+1

εF ′′
nm(Y )U ′

n

≥
U

′
p

2hp

tp∑
m=tp−1+1

ε
∑
n∈P

F ′′
nm(Y ) −

U
′
q

2hq

tq∑
m=tq−1+1

ε
∑
n∈Q

F ′′
nm(Y ).

Using the estimate (3.17), we obtain

E ′′(Y ; U, V ) ≥
U

′
p

2hp

tp∑
m=tp−1+1

ερ2(z1, z2) −
U

′
q

2hq

tq∑
m=tq−1+1

ερ2(z1, z2)

≥ c0|U |w1,∞
ε

,
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where c0 = 1
2
ρ2(z1, z2), i.e., we have the same inf-sup constant as in the case of the full

test-space A0.
If we now replace E by Ẽ in all the above computations, we obtain instead

min
Y ∈A (T )∩Ze

min
U∈A0(T )

|U|
w

1,∞
ε

=1

max
V ∈A0(T )
|V |

w
1,1
ε =1

Ẽ ′′(Y ; U, V ) ≥ 1
2
ρ̃2(z1, z2). (3.25)

3.4 Proof of Theorem 2

Stimulated by the a-priori error analysis in [14], we begin by rewriting the QC approx-
imation as a fixed-point problem. To this end assume that Y ∈ A (T ) ∩ Ze satisfies
(2.11). Let y ∈ A ∩ Ze be an exact solution and let Πy be its interpolant. We then
have, for all V ∈ A0(T ),∫ 1

0

E ′′(Πy + τ(Y − Πy); Y − Πy, V
)
dτ = E ′(Y ; V ) − E ′(Πy; V ) (3.26)

= E ′(Y ; V ) − Ẽ ′(Y ; V ) + 〈f, V 〉T − 〈f, V 〉ε + E ′(y; V ) − E ′(Πy; V ) =: �Y (V ).

In fact, we see that Y is a solution of (2.11) if, and only if, it solves (3.26) which we
rewrite as a fixed point problem. Let ϕ ∈ A (T ) ∩ Ze. We define the fixed point map
L : A (T ) ∩ Ze → A (T ), Yϕ = L (ϕ) by∫ 1

0

E ′′(Πy + τ(ϕ − Πy); Yϕ − Πy, V ) dτ = �ϕ(V ) ∀V ∈ A0(T ). (3.27)

By the Integral Mean Value Theorem, there exists θ ∈ conv{ϕ, Πy} ⊂ Ze such that∫ 1

0
E ′′(Πy + τ(ϕ−Πy)) dτ = E ′′(θ). Hence, if c0 > 0, the map L is well defined and we

can rewrite (3.27) as

E ′′(θ; Yϕ − Πy, V ) = �ϕ(V ) ∀V ∈ A0(T ).

Upon taking the supremum over all V ∈ A0(T ) with |V |w1,1
ε

= 1 we obtain

c0|Yϕ − Πy|w1,∞
ε

≤ max
V ∈A0(T )
|V |

w
1,1
ε =1

|�ϕ(V )| ≤ c1E1 + E2 + E3,

where c1 is a Lipschitz constant for E ′ in Ze and Ei, i = 1, 2, 3, are defined at the
beginning of §3. Thus, in order for L to map A (T )∩Ze into itself, it is sufficient that

c1E1 + E2 + E3 ≤ c0 min
i=1,...,N

min(Πy′
i − z1, z2 − Πy′

i).

Since Πytk = ytk for k = 0, . . . , K, it follows that

tk∑
i=tk−1+1

εy′
i − hk

(
Πy
)′

k
= 0,
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and hence min(Πy′
i−z1, z2−Πy′

i) ≤ R. We conclude that if (3.7) is satisfied then L maps
A (T ) ∩ Ze into itself. The Implicit Function Theorem implies that L is continuous.
Therefore, by Brouwer’s fixed point theorem, L has a fixed point Y in A (T ) ∩ Ze.
From our discussion above it follows that Y is a solution to (2.11). From (3.25) we see
that if ρ̃2(z1, z2) > 0 then the QC solution is unique in A (T ) ∩ Ze. This concludes the
proof of part (b) of Theorem 2. We are only left to prove the stated bounds on c1, and
Ei, i = 1, 2, 3.

To bound E ′′ in Ze, we compute

|E ′′(θ; U, V )| =
N∑

n=1

N∑
m=1

ε|F ′′
nm(θ)||U ′

n||V ′
m|

≤ |U |w1,∞
ε

N∑
m=1

ε|V ′
m|

N∑
n=1

|F ′′
nm(θ)|

≤ |U |w1,∞
ε

|V |w1,1
ε

max
m=1,...,N

N∑
n=1

|F ′′
nm(θ)|.

We can bound the sum in the last term by a computation identical to that in (3.17)
except that the signs are reversed, and thus we obtain (3.6).

To bound E1 we simply use Theorem 10 with p = ∞. For E2, we use Theorem 10
with p = 1 to estimate

∣∣〈f, V 〉T − 〈f, V 〉ε
∣∣ ≤

N∑
i=1

ε
∣∣Π(fV )i − fiVi

∣∣∣
≤

K∑
k=1

h2
k|Π(fV )|w2,1

ε ((tk−1,tk)).

For i = tk−1 + 1, . . . , tk − 1, using the fact that V ′′
i = 0, we have

(fV )′′i = ε−2(fi+1Vi+1 − 2fiVi + fi−1Vi−1)

=
fi+1 − 2fi + fi−1

ε2
Vi +

fi+1 − fi

ε

Vi+1 − Vi

ε
+

fi − fi−1

ε

Vi − Vi−1

ε
.

Thus, using the discrete Friedrichs inequality (A.2), we obtain,

∣∣〈f, V 〉T − 〈f, V 〉ε
∣∣ ≤

K∑
k=1

h2
k

[
|f |w2,∞

ε ((tk−1,tk))‖V ‖�1ε((tk−1+1,tk−1))

+(|f |w1,∞
ε ((tk−1+1,tk)) + |f |w1,∞

ε ((tk−1,tk−1)))|V |w1,1
ε ((tk−1,tk))

]
≤ max

k=1,...,K
h2

k

(
1
2
|f |w2,∞

ε ((tk−1,tk)) + |f |w1,∞
ε ((tk−1+1,tk))

+|f |w1,∞
ε ((tk−1,tk−1))

)
|V |w1,1

ε
,

which proves the bound (3.9).
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Finally, using (3.12), the bound (3.10) on E3 follows from

|E ′(θ; V ) − Ẽ ′(θ; V )| ≤
N∑

n=1

ε|F ′
n(θ) − F̃ ′

n(θ)||V ′
n|

≤ max
n=1,...N

|F ′
n(θ) − F̃ ′

n(θ)||V |w1,1
ε

,

and a computation that is identical to the one leading to (3.24).

4 Fracture

We now look at a class of solutions of the atomistic model (2.6), with a single defect
— a fracture. To this end, we fix an index ξ ∈ {1, . . . , N} and consider deformations
y ∈ A such that y′

ξ � zt while z1 ≤ y′
i ≤ z2 < zt for i �= ξ. The fracture is the broken

interaction between the two atoms at yξ and yξ−1. Elastic states and fractured states
with a single crack are the only stable steady states in one dimension. If at least two
gradients y′

i, y
′
j are greater than or equal to zt, it can be easilly seen that E ′′(y) has at

least one negative eigenvalue (cf. [13]).
However, even with a single fracture, it should be apparent from the analysis of §3.1

that we cannot expect (3.18) to hold when |u|w1,∞
ε

= |u′
ξ|, since in that case J ′′(u′

ξ) ≈ 0.
We therefore change the norm in which we analyze the error into the norm |·|w1,∞

ε,f
defined

by

|u|w1,∞
ε,f

= max
i=1,...,N

i�=ξ

|u′
i|.

Since we have imposed a Dirichlet condition at both endpoints, | · |w1,∞
ε,f

is indeed a norm

on A0. As was hinted above, we define

Zf = {y ∈ R
N+1 : y′

ξ ≥ zf and z1 ≤ y′
i ≤ z2 for i = 1, . . . , N, i �= ξ},

where the constants zi satisfy z1 < zm < z2 < zt, and zf is sufficiently large (which we
will make precise).

In order to simplify the proofs of coercivity we assume that

J ′′′(z) ≥ 0 for z ≥ zf . (4.1)

This only imposes a typically negligible lower bound on zf .
We shall also need a further measure of stability,

ρ2,f(zf , z1) =
∞∑

r=0

(r + 1)J ′′(zf + rz1).

The definition of ρ2,f does not involve z2 because we have assumed (4.1). The function
ρ̃2,f corresponding to the cut-off potential J̃ is defined analogously. In order to be able
to neglect the effect of long-range interactions across the crack, we assume that

∀ a > 0 ∀ z1 ≥ zt/2 ∃ zD = zD(a, z1) : Nρ2,f

(
N(zD − zt), z1

)
≥ −a. (4.2)
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This would typically involve a growth condition for J ′′, for example, |J ′′(z)| � z−k, for
some k > 3 and z sufficiently large.

Theorem 4 Let J satisfy the assumptions of §2.1 as well as conditions (4.1) and (4.2).
Assume also that there exists R ∈ (0, min(zm − zt/2, zt − zm)) such that 2ρ1(zm) <
Rρ2(zm − R, zm + R). Then the following hold:

(a) Coercivity: There exist z1 < zm < z2 < zt independent of ε, and zf = O(ε−1) such
that

inf
y∈Zf

inf
u∈A0

|u|
w

1,∞
ε,f

=1

sup
v∈A0

|v|
w

1,1
ε

=1

E ′′(y; u, v) ≥ 1
2

(
ρ2(z1, z2) + 2Nρ2,f(zf , z1)

)
=: c0 > 0, (4.3)

where Zf is defined as above.

(b) Existence: There exist δ1, δ2 > 0, independent of ε, such that for every yD
N ∈ R

with yD
N ≥ zm + δ1 and for every f ∈ R

N+1 with ‖f‖∗ ≤ δ2, there exists a solution
yf of (2.6) in Zf .

(c) Stability: Let yf , yg be solutions to (2.6) in Zf ∩A with respective right-hand sides
f and g; then

|yf − yg|w1,∞
ε,f

≤ c−1
0 ‖f − g‖∗.

For the QC error bounds, let E1 = |y − Πy|w1,∞
ε,f

and let E2 and E3 be defined as in §3.

Theorem 5 Let J satisfy the conditions of §2.1 as well as (4.1) and (4.2), and let Zf

be defined as above. Furthermore, assume that {ξ − 1, ξ} ⊂ T .

(a) We have the coercivity and continuity estimates

inf
θ∈Zf

min
U∈A0(T )
|U|

w
1,∞
ε,f

=1

max
V ∈A0(T )
|V |

w
1,1
ε

=1

E ′′(θ; U, V ) ≥ 1
2

(
ρ2(z1, z2) + 2Nρ2,f (zf , z1)

)
=: c0, and (4.4)

max
Y ∈S1(T )∩Zf

max
U∈A0(T )

|U|
w

1,∞
ε,f

=1

max
V ∈A0(T )
|V |

w
1,1
ε

=1

E ′′(Y ; U, V ) ≤ ρ3(z1, z2) =: c1. (4.5)

(b) Suppose that zf > zt is sufficiently large so that c0 > 0 (cf. (4.2)). Let y ∈
Zf ∩A be a solution of (2.6) and define R = mini	=ξ min(z2 − y′

i, y
′
i− z1). Assume

furthermore that the QC mesh T is sufficiently fine so that

c1E1 + E2 + E3 ≤ c0 min
(
R, ε(y′

ξ − zf)
)
. (4.6)

Then, there exists a solution Y ∈ A (T ) ∩ Zf of the QC method (2.11) which
satisfies

|y − Y |w1,∞
ε,f

≤ c−1
0

(
(c0 + c1)E1 + E2 + E3

)
.

If ρ̃2(z1, z2) + 2Nρ̃2,f (zf , z1) > 0 then the QC solution is unique in A (T ) ∩ Zf .
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(c) The error quantities E1 and E2 satisfy the same bounds as in Theorem 2, while E3

is now bounded by

E3 ≤
∞∑

r=1

r max
[

max
z1≤z≤z2

∣∣J̃ ′(rz) − J ′(rz)
∣∣, (4.7)

max
z1≤z≤z2

∣∣J̃ ′(zf + (r − 1)z) − J ′(zf + (r − 1)z)
∣∣].

As we remark in §4.4, the condition (4.6) is not overly restrictive. We may think, for
example that zf = O(ε−1) and y′

ξ ≥ 2zf . In that case, the upper bound required on the
error terms is independent of ε.

4.1 Coercivity of the atomistic problem

For the proof of coercivity in the case of fracture we make use of the fact that the fracture
problem can, to some extent, be seen as a combination of two Neumann problems. Fix
y ∈ Zf and u ∈ A0. Upon multiplying u by (−1), we may assume without loss of
generality that u′

p = |u|w1,∞
ε

. Let P = {i : u′
i > 0} and Q = {j : u′

j < 0} and define

v′
n =




1
2
ε−1, if n = p,

−1
2
ε−1, if n = ξ,

0, otherwise.

In that case,

E ′′(y; u, v) =
N∑

n=1

N∑
m=1

εF ′′
nm(y)u′

nv
′
m

=

N∑
n=1

εu′
n

[
F ′′

np(y)
1

2ε
− F ′′

nξ(y)
1

2ε

]

≥ 1

2

∑
n∈P

u′
nF ′′

np(y) − 1

2

∑
n∈Q

u′
nF ′′

nξ(y).

If we divide the sum over n ∈ P into those indices which lie on the same side of the
fracture as p and the rest, we can estimate F ′′

np ≥ F ′′
nξ for those n which lie on the

opposite side of the fracture from p (compare condition (4.1)). If we assume, without
loss of generality, that p < ξ, we obtain

E ′′(y; u, v) ≥ 1

2

∑
n<ξ

|u′
n|F ′′

np(y) +
∑
n 	=ξ

|u′
n|F ′′

nξ(y) + |u′
ξ|F ′′

ξξ(y).

Since u ∈ A0, we have |u′
ξ| ≤ (N − 1)|u|w1,∞

ε,f
and hence, we obtain

E ′′(y; u, v) ≥ 1

2
|u|w1,∞

ε,f

[∑
n<ξ

F ′′
np(y) +

∑
n 	=ξ

F ′′
nξ(y) + (N − 1)F ′′

ξξ(y)
]
, (4.8)
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For the first sum in (4.8) we can use the same procedure as in the elastic case, i.e,∑
n<ξ

F ′′
np(y) ≥ ρ2(z1, z2),

while the second sum as well as F ′′
ξξ should be practically zero. In this regime the forces

should be so weak that we can make fairly crude estimates. Using assumption (4.1) we
have F ′′

nξ ≥ F ′′
ξξ for all n and hence only need to estimate F ′′

ξξ,

F ′′
ξξ(y) =

N∑
i=ξ

ξ∑
j=1

J ′′(ε−1(yi − yj−1)
)
≥

N∑
i=ξ

ξ∑
j=1

J ′′(zf + (i − j)z1

)

≥
ξ∑

j=1

∞∑
r=ξ−j

J ′′(zf + rz1) =

∞∑
r=0

ξ∑
j=ξ−r

J ′′(zf + rz1)

=
∞∑

r=0

(r + 1)J ′′(zf + rz1) = ρ2,f (zf , z1).

Putting everything together, we obtain

E ′′(y; u, v) ≥ 1
2

(
ρ2(z1, z2) + 2(N − 1)ρ2,f(zf , z1)

)
|u|w1,∞

ε,f
. (4.9)

4.2 Proof of Theorem 4

Note that we cannot use Lemma 3 directly but need to formulate a version specifically
taylored to the set Zf . First, however, we should finalize the question of coercivity. To
this end, let c′0 = 1

2
ρ2(z1, z2), which we assume to be positive, and choose

zf = N
(
zD(αc′0, z1) − zt

)
,

where α ∈ (0, 1) is a ratio that we shall determine in a moment. In that case, (4.3) holds
with c0 = (1 − α)c′0.

Lemma 6 Suppose that yD
N ≥ zD(αc′0, z1). Let ỹ ∈ Zf ∩ A satisfy E ′(ỹ) = f̃ (in the

sense of (2.6)). Let R = minn 	=ξ min(z2 − ỹ′
n, ỹ

′
n − z1) and suppose that ‖f − f̃‖∗ ≤ c0R.

Then, there exists a y ∈ Zf ∩ A such that E ′(y) = f .

Proof If we follow the proof of Lemma 3 we obtain, for some t,

c0|ỹ − yt|w1,∞
ε,f

≤ ‖f̃ − ft‖∗. (4.10)

To show that yt ∈ Zf , note that (4.10) implies that yt ∈ A as well as z1 ≤ y′t,i ≤ z2 for i �= ξ,
and hence

εy′ξ = yD
N −

∑
i	=ξ

εy′i ≥ zD − z2 ≥ zD − zt = εzf .

This implies that yt ∈ Zf . In fact, if z1 < y′t,i < z2 it follows that yt ∈ int(Zf ∩A ) and hence
the proof can proceed as in Lemma 3 without further changes. �
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We can now use Lemma 6 to construct a reference state. Let yD
N be a preliminary

reference state defined as follows,

(yD
i )′ =

{
iεzm, if i < ξ
yD

N − zm(1 − iε), if i ≥ ξ.

As in the elastic case, we estimate the residual of yD. Fix n ∈ N and assume, without
loss of generality, that n < ξ. Since zf ≥ zt and J ′′(z) < 0 for z > zt it follows that J ′

is decreasing in that domain. In particular, we have |J ′(zf + z)| ≤ |J ′(z1 + z)| whenever
z ≥ z1. Using this fact, and otherwise closely following the computations in §3.2, we
have

|E ′
n(yD)| ≤

∞∑
r=n∧(ξ−n)+1

∣∣J ′(rzm)
∣∣.

Summing over n < ξ, we obtain

∑
n<ξ

|E ′
n(yD)| ≤ 1

2

∞∑
r=2

(r − 1)|J ′(rzm)|.

We now add the terms with n ≥ ξ which gives

‖E ′(yD)‖∗ ≤ ρ1(zm). (4.11)

Setting ỹ = yD, f̃ = E ′(ỹ), f = 0 in Lemma 6 we obtain y∗ ∈ Zf , satisfying
E ′(y∗) = 0. We note that

|y∗
i
′ − zm| ≤ c−1

0 ‖E ′(yD)‖∗ ≤ 2
ρ1(zm)

(1 − α)ρ2(z1, z2)
, i �= ξ. (4.12)

If the conditions of Theorem 4 are satisfied, then there exists α > 0, independent of ε,
such that

2
ρ1(zm)

(1 − α)ρ2(z1, z2)
< R,

which implies that y∗ ∈ int(Zf ∩A ). All results of Theorem 4 now follow from another
application of Lemma 6 setting ỹ = y∗ and f̃ = 0. In particular, it is sufficient to assume
that yD

N ≥ zD(αc′0, z1).

4.3 Coercivity of the QC approximation

First of all, we note that the assumption of Theorem 5 allows us to assume that {ξ −
1, ξ} ⊂ T . This is in fact a necessary condition to make an approximation of a fracture
in w1,∞

ε,f possible.

Let Y ∈ Zf and U ∈ A0(T ). Following §4.1 and §3.3 we assume that U
′
p = |U |w1,∞

ε,f

and define the test function V by

V
′
k =




1
2
h−1

p , if k = p
−1

2
ε−1, if k = ξ

0, otherwise.
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Then, assuming again without loss of generality that tp < ξ, and using (4.1), we have

E ′′(Y ; U, V ) =
N∑

n=1

N∑
m=1

εF ′′
nm(Y )U ′

nV ′
m

=
ε

2hp

N∑
n=1

tp∑
m=tp−1+1

F ′′
nm(Y )U ′

n − 1

2

N∑
n=1

F ′′
nξ(Y )U ′

n

≥ ε

2hp

tp∑
m=tp−1+1

[∑
n<ξ

F ′′
nm(Y )U ′

n +
∑

n≥ξ,n∈P

F ′′
nξ(Y )U ′

n

]
−
∑
n∈Q

F ′′
nξ(Y )U ′

n

≥ ε

2hp

tp∑
m=tp−1+1

∑
n<ξ

F ′′
nm(Y )U ′

n − 1

2

∑
n 	=ξ

F ′′
nξ(Y )|U ′

n| −
1

2
|U ′

ξ|F ′′
ξξ(Y ).

We estimate the first term as in §3.3 and the second and third term as in §4.1 which
gives

E ′′(Y ; U, V ) ≥ 1

2
|U |w1,∞

ε,f

(
ρ2(z1, z2) + 2Nρ2,f (zf , z1)

)
,

and thus (4.4). If E is replaced by Ẽ, we have instead

Ẽ ′′(Y ; U, V ) ≥ 1

2
|U |w1,∞

ε,f

(
ρ̃2(z1, z2) + 2Nρ̃2,f (zf , z1)

)
. (4.13)

4.4 Proof of Theorem 5

To prove the QC error estimate we can repeat the fixed point argument of §3.4 almost
verbatim. Only two modifications need to be made. First, as in the existence proof of
§4.2 we need to show that a solution of the linearized problem appearing in the fixed point
argument lies in Zf . This can be done by the same argument as in the proof of Lemma
6, if we choose yD

N sufficiently large. This method was suitable for the existence theorem
where we needed to contruct a reference solution. Now, however, the reference solution
is given by the exact solution y which allows us to follow a more general approach.

As in §3.4 let Yϕ = L(ϕ), then,

ε(Yϕ)′ξ = yD
N −

∑
i	=ξ

ε(Yϕ)′i

=
N∑

i=1

εΠy′
i −
∑
i	=ξ

ε(Yϕ)′i

= εy′
ξ − |Πy − Yϕ|w1,∞

ε,f
.

Hence, in order to guarantee Yϕ ∈ Zf , we require

y′
ξ ≥ zf + N |Πy − Yϕ|w1,∞

ε,f
.
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This may seem an insurmountable requirement at first but remember that y′
ξ is typically

of order N . For |Πy − Yϕ|w1,∞
ε,f

we have the estimate

|Yϕ − Πy|w1,∞
ε,f

≤ c−1
0

(
c1E1 + E2 + E3

)
.

Hence, if (4.6) holds, then we can deduce the existence of a QC solution in the set Zf .

Our second modification of the proof of §3.4 is to compute a new bound for E3. To
this end, we use (3.12) again to estimate

|E ′(θ; V ) − Ẽ ′(θ; V )| =

N∑
n=1

ε|F ′
n(θ) − F̃ ′

n(θ)
∣∣∣|V ′

n|

≤ |V |w1,1
ε

max
n=1,...,N

|F ′
n(θ) − F̃ ′

n(θ)
∣∣∣.

For each n, we have

|F ′
n(θ) − F̃ ′(θ)| ≤

n∑
i=1

N∑
j=n

∣∣J ′(ε−1(θi − θj−1)
)
− J̃ ′(ε−1(θi − θj−1)

)∣∣.
As in the elastic case, we can estimate and rearrange this sum to obtain (4.7).

5 Concluding Remarks

Clearly, the relative completeness of our results was primarily due to the one-dimensional
setting that we have chosen. However, the fundamental approach to error estimation
for the QC method, namely a fixed point argument based on the w1,∞

ε –norm (or its
modifications), can be employed in higher dimensions as well. In fact, it can be seen
that, if we assume coercivity directly, rather than proving it as we have done here,
then, our result concerning the existence of a QC solution near a stable exact solution
carries over immediately. However, the main difference between ellipticity (cf. Lin [8])
and the inf-sup condition which we have employed is that the inf-sup condition does
not automatically translate to subspaces. The natural next step therefore has to be a
detailed investigation of the inf-sup condition in two and three dimensional atomistic
problems, first for regular lattices, and then for several types of defects.

Another fact worth noting is that the w1,∞
ε –norm employed in the elastic analysis is

actually equivalent (in the sense that the constants are independent of ε) to the energy
norm u �→ ‖E ′′(θ)u‖∗, for any θ ∈ Ze. Similarly, the w1,∞

ε,f –norm from the analysis
in §4 is equivalent to u �→ ‖E ′′(θ)u‖∗, for any θ ∈ Zf . This indicates that it may in
principle be possible to unify the analysis of stable critical points. For this purpose, one
would have to check in each case whether E ′′ is Lipschitz continuous with respect to this
linearized energy norm.
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Appendix A Auxiliary Results

In this appendix, we collect some results that are used throughout this paper, and which
are closely related to, and whose formulation and proof do not differ much from, their
corresponding continuum versions.

Lemma 7 Let (gi)
L
i=1 ∈ R

L and
∑L

i=1 gi = 0; then

|gi| ≤ L−1

L∑
k=2

|gk − gk−1|φi,k, i = 1, . . . , L, (A.1)

where φi,k = k − 1 for k = 2, . . . , i and φi,k = L − k + 1 for k = i + 1, . . . , L.

Proof Set ε = 1 and let i ∈ {1, . . . , L}; then

|gi| =

∣∣∣∣∣∣gi − L−1
L∑

j=1

gj

∣∣∣∣∣∣
= L−1

∣∣∣∣∣∣
L∑

j=1

(gi − gj)

∣∣∣∣∣∣
≤ L−1

i−1∑
j=1

|gi − gj | + L−1
L∑

j=i+1

|gi − gj|

≤ L−1
i−1∑
j=1

i∑
k=j+1

|g′k| + L−1
L∑

j=i+1

j∑
k=i+1

|g′k|

= L−1
i∑

k=2

|g′k|
k−1∑
j=1

1 + L−1
L∑

k=i+1

|g′k|
L∑

j=k

1

= L−1
i∑

k=2

|g′k|(k − 1) + L−1
L∑

k=i+1

|g′k|(L − k + 1).

�

Lemma 8 (Discrete Friedrichs and Poincaré Inequalities) Suppose that L ≥ 1,
and that (fi)

L
i=0 ∈ R

L+1 and (gi)
L
i=1 ∈ R

L such that f0 = fL = 0 and
∑L

i=1 gi = 0. For
p ∈ {1,∞} we have

‖f‖�p
ε((0,L)) ≤ 1

2
(εL)|f |w1,p

ε ((0,L)), and (A.2)

‖g‖�p
ε((1,L)) ≤ 1

2
(εL)|g|w1,p

ε ((1,L)). (A.3)

Proof First, we note that all occurances of ε can be removed from the results by simple
cancellation. Furthermore, the inequalities are trivial if L = 1. Thus, we assume without loss
of generality that ε = 1 and L ≥ 2.
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We begin with the case p = 1. To obtain (A.2), consider

L∑
i=0

|fi| =
L−1∑
i=1

|fi|

=
1
2

L−1∑
i=1


∣∣∣ i∑

j=1

(fj − fj−1)
∣∣∣+ ∣∣∣ L∑

j=i+1

(fj − fj−1)
∣∣∣



≤ 1
2

L−1∑
i=1

L∑
j=1

|fj − fj−1|

= L
1
2

(
1 − 1

L

) L∑
j=1

|fj − fj−1|.

To obtain (A.3), we sum inequality (A.1) over i = 1, . . . , L to obtain

L∑
i=1

|gi| ≤ L−1
L∑

i=1

i∑
k=2

|g′k|(k − 1) + L−1
L∑

i=1

L∑
k=i+1

|g′k|(L − k + 1)

= L−1
L∑

k=2

|g′k|
L∑

i=k

(k − 1) + L−1
L∑

k=2

|g′k|
k−1∑
i=1

(L − k + 1)

=
2
L

L∑
k=2

|g′k|(k − 1)(L − k + 1)

≤ 2
L

max
k=2,...,L

(k − 1)(L − k + 1)
L∑

k=2

|g′k|.

For p = ∞, suppose that |fi| = maxj=0,...,L |fj|; then

max
j=0,...,L

|fj| = |fi| ≤
i∑

j=1

|fj − fj−1| ≤ i max
j=1,...,L

|fj − fj−1|.

Similarly, we also have

max
j=0,...,L

|fj| = |fi| ≤
L∑

j=i+1

|fj − fj−1| ≤ (L − i) max
j=1,...,L

|fj − fj−1|,

and therefore,

max
j=0,...,L

|fj | ≤ min(i, L − i) max
j=1,...,L

|fj − fj−1|,

which gives (A.2) with p = ∞.
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Using Lemma 7, we have, for each i = 1, . . . , L,

|gi| ≤ L−1
i∑

j=2

|g′j |(j − 1) + L−1
∑

j=i+1

|g′j |(L − j + 1)

≤ 1
L

max
j=2,...,L

|g′j |
1
2
[
i(i − 1) + (L − i)(L − i + 1)

]
=

1
2L

max
j=2,...,L

|g′j |
[
L2 + L − 2Li + 2i2 − 2i

]
=

1
2L

max
j=2,...,L

|g′j |
[
L(L − 1) − 2(L − i)(i − 1)

]
≤ L

(1
2
− 1

2L

)
max

j=2,...,L
|g′j |.

�
We note that (A.2) and (A.3) are of course valid for any p with constants independend

of ε. Furthermore the optimal Friedrichs constants Cp,L and Poincaré constants C̄p,L in
the cases p ∈ {1, 2,∞} satisfy

C1,L =
1

2
− 1

2L
, C̄1,L =

{
1/2, if L is even,
(1/2) − (1/2L), if L is odd.

,

C∞,L =

{
1/2, if L is even,
(1/2) − (1/2L), if L is odd.

, and C̄∞,L =
1

2
− 1

2L
, and

1

π
= lim

L→∞
C2,L ≤ C2,L = C̄2,L =

1

2L sin(π/(2L))
≤ C2,2 = 8−1/2, C2,1 = C̄2,1 = 0.

In one dimension we also have the following imbedding inequality.

Lemma 9 Let (fi)i=0,...,N ∈ R
N+1 with f0 = fL = 0. Then,

‖f‖�∞ε ≤ 1

2
|f |w1,∞

ε
.

Proof For each i ∈ {1, . . . , N − 1}, we have

|fi| ≤
i∑

j=1

ε|f ′
j | as well as

|fi| ≤
N∑

j=i+1

ε|f ′
j |.

Adding the two inequalities gives the desired result. �
Finally, we combine the estimates of Lemma 8 to obtain the following interpolation

error estimates.

Theorem 10 (Bounds on the Interpolation Error) Suppose that (fi)i=0,...,L ∈ R
L+1

and let

Fi = f0 +
i

L
(fL − f0)
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be the affine interpolant of f . Then, for p ∈ {1,∞},

|f − F |w1,p
ε ((0,L)) ≤ 1

2
(εL)|f |w2,p

ε ((0,L)), and (A.4)

‖f − F‖�p
ε((0,L)) ≤ 1

4
(εL)2|f |w2,p

ε ((0,L)). (A.5)

Proof First note that the grid function f̃ = f − F satisfies f̃0 = f̃L = 0 and therefore∑L
i=1 f̃ ′

i = 0. Inequality (A.4) therefore follows directly from (A.3).
The estimate (A.5) can be obtained by applying first (A.2) and then (A.3),

‖f − F‖�p
ε((0,L)) ≤ 1

2
(εL)|(f − F )′|�p

ε((1,L))

≤ 1
4
(εL)2‖f ′′‖�p

ε((1,L−1))

=
1
4
(εL)2|f |

w2,p
ε ((0,L))

.

�

Appendix B Computation of Coercivity Regions

In this appendix, we demonstrate that our hypotheses can indeed be satisfied. With the
use of simple Matlab scripts it is straightforward to compute possible values for z1, z2

and, in the fracture case, for zf . We have included only the elastic case here since the
additional requirements of the fracture case are very easily met given the fast decay of
most interaction potentials.

We slightly rescale the Lennard–Jones potential so that its minimum lies at z = 1,

J(z) = z−12 − 2z−6.

Hence, we have zm = 1 and zt = (13/7)1/6 ≈ 1.11. If we choose z1 = 0.88 and z2 = 1.06,
we obtain ρ2(z1, z2) ≈ 12.5. Furthermore, we have ρ1(zm) ≈ 0.2 which guarantees the
existence of a reference state for sufficiently small boundary displacements.

The Morse potential is slightly less forthcoming in this respect. First, we note that
zm = 1 and zt = 1+α−1 log(2). If we choose α = 1 in (2.3) we obtain ρ2(zm, zm) ≈ −3.8
and we have therefore no hope of constructing an equilibrium with the technique we
have used. This does not mean that E has no equilibrium in this case. In fact, the mere
existence of a global energy minimum can be easily deduced by a compactness argument.
However, numerical experiments indicate that those equilibria are extremely unstable
and bear no resemblance to the observed equilibria of metallic materials. Furthermore,
there seems to be no convergence of those equilibria to a continuum as N → ∞.

If we make the well steeper, however, we can achieve coercivity. Already for α = 4,
we can choose z1 = 0.9 and z2 = 1.08 to obtain ρ2(z1, z2) ≈ 5.38. Since ρ1(zm) ≈ 0.3
is follows that 0.8 × ρ2(z1, z2) > ρ1(zm) and hence there exists a reference state for
sufficiently small boundary displacements.

Finally, we should note that the steeper the basin of convexity around zm (the larger
α in the Morse potential case) the better the bounds become. The potentials for metals,
in particular, have shapes that correspond to a large α.
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[14] C. Ortner and E. Süli. Discontinuous Galerkin finite element approximation of
nonlinear second-order elliptic and hyperbolic systems. Technical Report NA06/05,
Oxford University Computing Laboratory, 2006.



31

[15] L. Truskinovsky. Fracture as a phase transformation. In R. C. Batra and M. F.
Beatty, editors, Contemporary research in mechanics and mathematics of materials,
pages 322–332. CIMNE, 1996.

[16] E. Zeidler. Nonlinear functional analysis and its applications. I. Springer-Verlag,
New York, 1986. Fixed-point theorems, Translated from the German by Peter R.
Wadsack.


