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1 Introduction

The aim of this paper is to develop two-sided a posterior: error bounds for finite element
approximations of constant-density, viscous, steady, incompressible quasi-Newtonian
flows. Partial differential equations with nonlinearities of the kind considered herein
arise in a number of application areas, including geophysical models of the lithosphere,
as well as chemical engineering, particularly in the modelling of the flow of pastes and
dies.

Suppose that Q is a bounded Lipschitz domain in R¢, d > 2, scaled so that || = 1,
and, for r € (1,00), let 7' = r/(r—1). The fluid, whose motion in €2 is due to an external
body force f € [L™(2)]¢, has velocity u and kinematic pressure p. For ease of exposition,
u will be assumed to satisfy a homogeneous Dirichlet boundary condition; more general
boundary conditions will be addressed in Remark 24. The strong form of the governing
equations is

V-0 = f, in €, (1.1)
V-u = 0, in, (1.2)
u = 0, on 02 =T,

where
o(z,u) = k(z, le(u)|)e(u) — pI

is the stress tensor, I denotes the dxd identity matrix, and the strain tensor e(u) €
is defined by its components

e(u)ij_§(8xj+8xi)’ ,7=1,...,d.

dxd
yImim

Here d;‘n‘fm denotes the set of all symmetric real-valued d x d matrices. The function &

is the viscosity coefficient that characterizes the nonlinear viscosity model of the flow.
Equation (1.1) is the momentum equation of the flow and (1.2) is the continuity equation
in its usual form for a constant-density incompressible fluid.

The weak formulation of the boundary value problem requires finding the functions
u €V and p € Q such that

a(u,v) +b(p,v) = (f,v) VveyV, :
b(g,u) = 0 Vg € Q, (1.5)

where V = [W,"(Q))¢, Q = L7 (Q) = L™ (Q)/R,
o(wv) = [ holeDetu) e bav) =~ [ (V) gde
Q Q
We shall adopt the following structural hypothesis on the viscosity coefficient.

Assumption (A): We assume that k € C(Q x (0,00)) and that, given r € (1,00) as
above, there exist constants « € [0, 1] and ¢, K3, K5 > 0 such that, for all z € Q,
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(A1)  Ki[(t+s)*(1+t+s)7]2(t — s) < k(z,t)t — k(x,s)s  forallt >s>0;
(A2)  k(z,t) < Ko[t*(1+t)'=2]"=2  for all t > 0, and
k(z,t)t — k(z,s)s| < Ko[(t+ 8)*(1+t +s)' ") 2|t — s

for all s,¢ > 0 satisfying [(s/t) — 1| < e.

For the sake of notational simplicity, we shall write k(-) instead of k(z,-). The
parameter « in (A) measures the degree of singularity/degeneracy in k(-) for a given
value of 7 € (1,00)\{2} in the sense that the closer « is to 1 the more singular/degenerate
k(-) is, for r < 2, respectively r > 2. When r = 2, ¢ — k(t)t is uniformly monotone and
globally Lipschitz continuous. For example:

(a) the power-law model with k(t) = 2ut" 2 corresponds to o = 1; when 7 = 2, this
reduces to k(t) = 2pu, yielding the Stokes equations which govern the stationary
flow of a viscous incompressible Newtonian fluid;

(b) the Carreau law k(t) = koo + (ko — koo)(1 + M2)0=2/2 with ko > koo > 0, A > 0,
6 € (1,00) corresponds to a = 0 with r = @ if k,xc =0, and r =2 if § € (1,2] and
ks > 0.

We equip the spaces V and Q with the norms
IVllv = lleW)lltr@) and lallq = inf llg + el (q),

and recall from [1] that the bilinear form b(-, -) satisfies the following inf-sup condition:
there exists a positive constant ¢y such that

inf sup M > ¢ Vg € Q. (1.6)
€Qvev lqllallvllv
In Section 2, we shall assume that the finite element subspaces V; and Qj, of the spaces
V and Q satisfy an analogous inf-sup condition, with inf-sup constant ¢ > 0.
The fact that || - [|v is a norm on V is a consequence of Korn’s inequality (cf. [16,
19]) which asserts the existence of a constant C' = C(r,d,2), 1 < r < oo, such that

||V||W1,7‘(Q) < CHG(V)”U(Q) Vv € V. (17)

In the sequel, for the sake of notational simplicity, we shall suppress the dependence of
all constants on r, d and §2; in particular, we shall write C or ¢ instead of C(r,d, 2).

The definition of the norm on Q reflects the fact that in the case of Dirichlet boundary
condition on 0f) the pressure in the model is determined only up to an additive constant.
Let V' denote the dual space of V and let Q' be the dual space of Q; the spaces V' and
Q' have the norms

f,V gaq
v = sup Y and Jgllgr = sup 29
vEV ||V||V qeQ ||‘Z||Q
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Here, in the definition of || - ||y, (-, -) denotes the duality pairing between V' and V, and
in the definition of || - ||/ it signifies the duality pairing between Q' and Q; as the choice
of spaces over which the duality pairings act will always be clear from the context we
have chosen not to indicate them explicitly in our notation (-, -).

Over the last decade, there has been considerable interest both in the mathematical
analysis of quasi-Newtonian flow problems of this kind and in their finite element ap-
proximation. The existence and uniqueness of solutions to the boundary value problem
(1.4), (1.5) was studied by Baranger and Najib [5] and Barrett and Liu [7]. In partic-
ular, it is known that (1.4), (1.5) has a unique solution (u,p) € V x Q. Concerning
the a priori error analysis of finite element methods for quasi-Newtonian flow equations,
we refer to Baranger and Najib [5], Du and Gunzburger [14], Sandri [21], Barrett and
Liu [7,8], Barrett and Bao [6], and Bao [3]. Baranger and El Amri [4] were the first
to pursue the a posteriori error analysis of conforming finite element approximations
to a quasi-Newtonian flow in the case of the Carreau law. Subsequently, Simms [23]
considered the a posterior: error analysis of Fortin’s element for conforming mixed finite
element approximations of quasi-Newtonian flow problems and, more recently, Sandri
[22] studied the a posteriori error analysis of conforming mixed finite element approxi-
mations of the power-law model and derived a posteriori upper bounds for the case of
1 < r < 2. In fact, Sandri’s upper bounds on the error in the velocity and the pres-
sure will emerge from our analysis for the special case of k(t) = 2ut™™2 1 < r < 2;
similarly, the upper bounds of Baranger and El Amri [4] are arrived at by selecting
k(t) = koo + (ko — koo)(1 + M2)=2/2 1 < 9 < 2. For nonconforming finite element
methods, Padra [20] derived a posteriori upper bounds for Fortin—Soulie [15] piecewise
quadratic approximations of quasi-Newtonian flows. In the case of Carreau-type non-
linearities in two space dimensions, Bao and Barrett [6] developed a posteriori upper
bounds based on the linear nonconforming element of Kouhia and Stenberg [18] which
involves continuous piecewise linear approximation for one velocity component and a
discontinuous linear Crouzeix—Raviart element for the other in tandem with piecewise
constant approximation of the pressure. More recently, Carstensen and Funken [11] es-
tablished two-sided a posterior: error bounds for quite a general class of conforming and
nonconforming finite element methods for steady quasi-Newtonian flows, albeit under a
stronger structural hypothesis than Assumption (A): the function k£ was assumed to be
uniformly monotone and uniformly Lipschitz-continuous, which corresponds to taking
r = 2 in Assumption (A). A posteriori upper bounds for the power-law model were
also considered by Verfiirth in [25], as an example of his general error analysis for finite
element approximations of nonlinear variational problems.

The purpose of the present paper is to develop two-sided a posteriori error bounds,
under Assumption (A), for (V,Q)-conforming finite element approximations to (1.4),
(1.5), for the entire range of r € (1,00). A distinctive feature of problem (1.4), (1.5)
is that, in general, there is no value of r > 1 other than r = 2 such that the nonlinear
differential operator is both uniformly monotone and uniformly Lipschitz-continuous in
the Sobolev norm || - ||yy1.r (). Hence, following the work of Barrett and Liu [7, 8], we shall
rely here on uniform monotonicity and local Lipschitz continuity properties in Sobolev
quasi-norms. Our a posteriori upper bounds first appeared, in a somewhat different
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form, in the unpublished technical report [9].

The paper is structured as follows. In Section 2 we state the finite element discretisa-
tion of the boundary-value problem. In Section 3, we establish some preliminary results
which will then be used in Sections 4 and 5 to derive our a posteriori bounds on the
error of the approximations u, and pj, in the norms || - ||y and || - ||q, respectively, in
terms of residual functionals and computable finite element residuals. The main results
of the paper are the following a posteriori upper and lower bounds on the error.

Theorem 1 Let (u,p) € V x Q denote the solution to (1.4), (1.5), and let (un,pp) €
Vi x Qp be its finite element approzimation defined by (2.2), (2.3). Then, there erist
positive constants C' and ¢ depending on K1, Ky, ¢y, cy, 1, ||f||v such that

R/ !
la = wal§ + 1o — pull? < € (IISUNY + 19:115) (1.8)

R/ ! R
¢ (IS + 19215 ) < llw—wa ¥ + 1o — pn |13 (1.9)

where S1 and Sy are residual functionals which are computably bounded; further, Ry =
max{r,2}, R, = min{r, 2}, a = max{r’,2}, where 1/ry+1/r}, = 1, 1/r. +1/R, = 1,
1/a+1/a" =1 and ¢} is the constant from the discrete inf-sup condition.

We substantiate the phrase computably bounded in the previous theorem by further
bounding S; and S, in terms of computable residuals to deduce the following result.

Theorem 2 Let (u,p) € V x Q denote the solution to (1.4), (1.5), and let (un,pp) €
Vi X Qn denote its finite element approzimation defined by (2.2), (2.3). Then, there
exist positive constants Cy and cp,, depending on K1, Ko, ¢, ¢y, 7 and f, such that

Ry

||u—uh||§U+||p—ph||g < Cy (Z hi | Tlr R ( Uh;ph])”y )
TeTh
Ry
/ ’ !
+ Z he || eI B([un, pa)) |1 &) +[IV-u, ||fr(9)

E€ép,0

!
U

+ (Z Wy | R ([un, pa]) = T Rer ([n, pa)) ||£”“'(T)> T

T€ETh
+ 1 > el In([un, pal) = Medis([un, pa)) I ) (1.10)
E€é&n.0
and
(Zh I Rer([wn, o)) [l ) + 1 D hell Is(un, a)) I s
TeTh Ecéh
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a' R a
+[[V-uy, ||LT(Q) <llu—wy "+ lp—pnllg

Ry,
+ (Z hTTI ” RT([uhaph]) - HTRT([uh,ph]) ”;r’(T))
TeT
Ry
+ Z hg || JE([uh:ph]) - HEJE([uhaph]) ”ilr’(E) s (111)
Ee€&n,n

where Rr([un, pr]) is the element-residual of the strong form of the momentum equa-
tion, Jg([up,pr]) is the jump of the normal component of the stress tensor across an
element-face E in the triangulation, V - vy, is the residual of the continuity equation,
and Ry = max{r,2}, r, = min{r, 2}, 1 = max{r’, 2}, 1/ry +1/ry; =1, 1/rR. +1/r; =1,
1/a+1/a" = 1. Further, o denotes the set of all element-faces internal to 2, and Ty,
15 the set of all elements in the triangulation of §2.

Remark 3 We observe that Ry, = a', and therefore all the bounds can be expressed in
terms of the two symbols: Ry and Ry, and of their duals; nevertheless, we prefer to use
different symbols for the powers of the pressure error and of Sy to stress the fact that
this power s the same in the upper and the lower estimates.

In Section 6 we present some numerical results on uniform grids to investigate the
robustness and effectivity of our error bounds. In Section 7 we implement the error
bounds in a simple adaptive algorithm whose performance is exhibited on several model
problems.

We adopt the following notational conventions.

Notation 4 When the letter C' appears in a mathematical formula without further
qualifications, it 1s understood to mean a positive constant, independent of the dis-
cretization parameter h. For any &n > 0: &€ 3 n <= 3JC > 0:¢& < Cn;
§xn < {Inandn 3 ¢E.

2 Finite element approximation

For the sake of simplicity of presentation, we shall henceforth suppose that Q C R? is a
bounded polyhedral domain and that {7},0 is a shape-regular family of subdivisions
of 2 consisting of d-dimensional open simplexes T € 7T}, each of which is an affine image
of the open unit simplex

T={i=(d1,...,8) €R : 0<dy<1,i=1,....d, 0< & +...+i5<1}.

For any T € 7T;, we denote by £(T) the set of its (d — 1)-dimensional faces (for d = 2
edges); we denote by &, = Uy £(T) the set of all faces of 7. Moreover, we define

Eno={F€&, : EZ0N}.
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Suppose that V, C V is a finite element space consisting of continuous piecewise
polynomial d-component vector-functions defined on the triangulation 7, of 2 and Q) C
Q is a finite element space consisting of continuous or discontinuous piecewise polynomial
functions defined on 7T,. We shall assume that the pair (Vy, Q) satisfies the following
inf-sup condition: there exists a positive constant ¢, independent of the discretisation
parameter h > 0, such that

b(Qha Vh) li

inf sup > ¢ (2.1)

€Qn vievy, [anllqllvallv

The finite element approximation of our model problem has the following form: find
u, € V; and p, € Qp such that

a(uh, Vh) + b(ph, Vh) = (f, Vh) VVh c Vh, (22)
b(gn,up) = 0 Van € Qn.

Under the stated hypotheses problem (2.2), (2.3) has a unique solution (up, ps) in Vi, xQj,
(cf. [4,7]).
For each T €7}, and for each E € &, we define:

W = U TI, (ZJT = U T’, (:)E = U T’.

{T": Eeg(T")} {T": 8TNOT'#0} {T": ENOT"#0}

Note that the set wg is the union of d-dimensional elements that share the (d — 1)-
dimensional face E, whereas the sets Wy and @g are unions of elements that share at
least one point with 7" or E, respectively.

For each E € &, we consider a unit vector ng such that ng is orthogonal to E. Given
any E € &pq and any ¢ with ¢, € C°(1”) for all 7" € wg, we denote by [¢]; the jump
of ¢ across E along the orientation of ng.

If the minimal angle of the family {7,}r>0 is bounded away from zero, there exist
constants, only dependent on the smallest angle in the triangulation, such that: |7 | <
hi., NT € Ty, hy < hg, VE € £(T), | T | < h%,, VT € wp.

Let us denote by E the (d — 1)-dimensional reference face, i.e. the face of T spanned
by the vertices numbered 0,...,d — 1. Moreover, let BT (%,9) be the usual reference
element bubble function and let Z;E be the usual reference face bubble function [26].
Let A\;, 2 =0,...,d, be the barycentric coordinates on the reference element; then, the
reference element bubble function is IA)T = (d + 1)4+! Hi:O,..,d Ai, and the reference face
bubble function is by = d? [Tizo,..q 1 A5 cf [13,26].

Let Fy : T — T be the invertible affine mapping that maps T onto T. We then
define the element bubble function by by by = l;T o Frl.

Given any E € &0, let Ty and T, be the two elements of 7, such that wg = TyUT;
we enumerate the vertices of Ty and 7}, in such a way that the vertices of E' are numbered
first. Let T be one of the elements T} and 7T}, assume that E has vertices ay, ..., a4_; and
denote by a, the barycentre of the element T'; let us partition 7" into d+ 1 d-dimensional
simplexes Ty, . .., T, with T, having E as a face (see Figure 1, right). Let Fg p : T T,
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~ oS X1
a, E a X,

X,

Figure 1: The mapping Fir : T T, Figure 2: The support of the function bg

be the invertible affine mapping that maps the reference element T onto the element Tj.
Then, we define the face bubble function bg by gluing together the two bubble functions:

_ 7. —1 _ 7. —1
bE,Tﬁ = bE o FE’Tﬁ’ bE,Tb - bE ° FE,TI,:

each one being nonzero only on T2ﬂ and T3, respectively. Finally, let us define the set
&g = T} UT} (the shaded area in Figure 2, right). For the boundary face E that belongs
to the element T only, we naturally identify by with bgr = IA)E o FE?,IT.

With this definition of face bubble functions we have a set of orthogonal functions,
in the sense that the intersection of the supports of two different face bubble functions
is the empty set. This property is also true for the set of element bubble functions.

Moreover, for the reference face E we define the extension operator P : P;i(E) —
P; (T) which extends a polynomial of degree ¢ defined on the face E toa polynomial of
the same degree defined on T with constant values along lines orthogonal to E. Then,
we define the extension operator Pg : P;(E) — P;(wg) which extends a polynomial of
degree ¢ defined on the edge E to a piecewise polynomial of the same degree defined on
the patch wg as follows:

PE(')|Tﬁ =Pz ( o FTri|E) OFJTu1|E and ’PE(.)‘Tb =Pz ( OFT»'@) o Fﬁl‘E

The image of P;(E) under the extension operator Pg is a subset of C°(wg ), but it is
not contained in the function space C!(wg ).

In the following we shall have to collect all the d-dimensional simplexes belonging to
some set wg, so let us define

EOZ{TQEC?)EZEEE}L’Q}.

Besides, we denote by I, : V — V, the quasi-interpolation operator [10, 12, 24] which
possesses the following approximation properties.
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Lemma 5 Let T €7}, and E €&, be arbitrary; then,
|0 = Inv [y 3P 10 e Yo e W (@r), 0<k<I<1, (2.4)
v —Inv ”LT(E) 2 hg' YT K |W1w(a;E) Vo e W (@p ), (2.5)

where the suppressed constants on the right-hand sides of these inequalities depend only
on the smallest angle in the triangulation.

3 Quasinorms in Sobolev spaces

For oo € [0,1] and ¢ € [0, 00), we define
Eo(t) =t*(1+ 1)
Hence,

EL) = (a+t)(1+1)"**t and Z!(t) = —a(l —a)t* 3(1+t)" !

e

Therefore, for any « € [0,1], t — Z4(t) is a strictly monotonic increasing function of
t € [0,00); in particular, ¢t — Z4(t) and t — Z;(t) are affine functions of ¢ € [0, c0).
Furthermore, for a € (0,1), t — Z,(t) is a strictly concave function of ¢ € (0,00). The
following Jensen-type inequality is easily proved by using Holder’s inequality and the
triangle inequality in L"(€2): for any r € [1,00), o € [0,1], and all w € L"(2),

(/| [Eauw(x)\)rda) <z ((|Q| [w@ran)’ )

According to our simplifying assumption from the start of the paper, |Q2| = 1; hence,

[EallwDllr@ < Ealllwllire) (3.1)

for all r € [1,00), a € [0,1], and all w € L"(Q).
We recall the following result from the paper of Barrett and Liu [7].

Lemma 6 Let k satisfy assumption (A1) for r € (1,00) and o € [0,1]. Then, for all
My, M5 in Rng and § > 0, we have that

Kq[Za (| M|+ [Mo])]" ™27 My = Mo < (k(| M [) My — k(| M) My) : (M1 = Ma). (3.2)

Let k satisfy assumption (A2) for r € (1,00) and o € [0,1]. Then, for all My, Ms in
dxd —and 6 > 0, we have that

ymm

k(| M) My — k(| Ma|) M| < Ko[Ea(|Mi| + | Ma|)]" 20| My — My|' . (3.3)

Next, we introduce the notation

V[ ) = /[ua v)[+le(w)DIZle(v)PdQ,  v,w e [WH(Q)Y 1 <r < oo
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Proposition 7 Suppose that r € (1,00), a € [0,1] and w € [WH(Q)]%; then, the
following hold:

(i) [V|wira)y > 0 for all v € WY (Q)]%. In particular, when v € V = W (Q)]4,
|V|(w,r,a) = 0 if, and only if, v=10;

(i1) (Quasi-triangle-inequality): there exists a constant C = C(r) such that
Vi + Vol wira) < C ([Vilwira) + [Val(wira))
for all vi,vy € [WhT(Q)]4;

(i1i) For 1l <r <2,
2/r —_ —r
VI iy < e llr) < Eallle®) L) + le)lr@)I®™ [V]iwr

for all v € [Wh(Q)]°.
For2 <r < oo,

leM)I7a) < Wl < Eallle)llur@) + ) @) le(v) 1)
for all v € [WhT(Q)]e.

Part (i) of this proposition follows from the definition of | - (w,r ) and Korn’s in-
equality. Part (ii) has been proved in the paper of Barrett and Liu [8]. The proof of (iii)
is based on a straightforward application of Holder’s inequality and Jensen’s inequality
(3.1). Properties (i) and (ii) in Proposition 7 are the axioms of quasi-norm. Thus, for
w eV =[WY(Q)]% |- |(wra) IS a quasi-norm on V. Property (iii) relates the Sobolev
norm || - [|v = |- [wtr(q) to the quasi-norm | - |(w,ra)-

Now, we show the uniform monotonicity and local Lipschitz continuity of the semi-
linear form af(-,-) with respect to the quasi-norm.

Lemma 8 Suppose that r € (1,00) and define the constants Cy = 27" 2K, and Cs =
lr=2l/max{2r'} ¢, - then, fori=1,2, and all vy, vy, w in 'V,

a(vi, vy — Vo) — a(va, vi — vy) > Cy|vy — vz\ (Vi) (3.4)

min{1, ,}
(vi,r,a) [

|a(v1, W) = a(vs, W)| < Csvi—vy| a([Vallv + v )7 wlly. (3.5)

Proof. To prove (3.4), we use (3.2) with 6 = 0, and M; = e(v;), i = 1,2. Hence, we
deduce that, for any v,vy € V,

CL(V1, Vi — V2 V2, Vi — V2)

> Kl/\ ) — e(ve) *[Ea(le(v)] + le(v2) )] *dQ. (3.6)



Two-sided a posteriori error bounds for quasi-Newtonian flows 11

We note that, for : =1, 2,
1
5 (le(vi—vo)| +e(vi)]) < le(v)[ + le(va)| < 2 (le(vi = vo)| +le(vi)l) . (3.7)
Suppose that 1 < r < 2; then, (3.6), the second inequality in (3.7) and the definition
of the quasi-norm | - |(v; ) imply that
a(vi, vi — Vo) — a(va, vi — v2) > 272K |vy — Vo] 1=1,2,

(vi,r,a),
and hence (3.4) with C, = 2" 2K, for 1 <r < 2.
Similarly, when 2 < r < oo, the first inequality in (3.7) and the definition of the
quasi-norm | - |(y,r) imply that

a(vi, vi — Vo) — a(va, vi — v2) > 22 T Kq|vy — Vo] 1=1,2,

(viyrya)?
and hence (3.4) with C, = 227"K; for 2 < r < co.
To show (3.5), we apply Holder’s inequality, the fact that |le(w)||. ) = ||w|v, and
the inequality (3.2) with M; = e(v;), i = 1, 2; hence, we deduce that

|a(vi, w) —a(va, w)| = / (k(le(vi)De(vi) — k(le(vz)])e(v2)) : e(w)dQ2

Q

) 1/r!
< ( [ et etn) = blletva)e(va) dsz) Iwllv
1/r’

< K, ( / |e<v1>—e(vQ)|<1-5>T’[Ea<|e<vl>|+|e<vQ>|>1<r-2+6>r’dﬂ) Iwllv. (3.8

Let 1 < r <2 and define 6 =1 — (2/7"); then (1 —0)r' =2, (r—2+4§)r' =r —2.
Therefore, using the first inequality in (3.7),

2/r

a(v1,w) — a(ve, w)| < 207 Kylvy — o7

)“W”Vﬂ 1 =1,2,

which is (3.5) with C3 = 2@2=/" K, for 1 < r < 2.
Now, let 2 < r < oo and hence ' = r/(r—1) € (1, 2); we shall use Holder’s inequality
in the integral on the right-hand side of (3.8). Thus, we take § = 0, split

Ealle(vi)| + e(va) )27 = [Ealle(va) | + e(va) )] 7 [Ealle(v)] + le(v) )] 7

and group the first factor on the right with |e(v,) —e(v2)|". The application of Holder’s
inequality with exponents = 2/r" and §' =2/(2—1"), 1/8+ 1/5" = 1, corresponding
to the factors

e(v1) — e(va)|" Ealle(v1)] + e(va))] 272 and [Ea(le(v))] + e(va))]™ 272,

respectively, yields

1/2
a(vi,w) —a(ve.w)| < K ( / \e(vo—e(v2>|2[5a<|e(v1)|+\e(v2)w—2d9)

= (r=2)r' 2 (2—r')/(2r")
X(/Q[:a(|€("1)|+|€(‘fz)|)] 2 2—r'dQ)

[wllv-
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As =20 2 —p 227,"1 = %, using the second inequality in (3.7) we get that

—_ r—2)/2
la(vi, w) = a(va, W)| < Cslvi =Vl IEale(v)] + lev2) DI o) Iwlly

for all vi, vy in V, with C3 = 2072/2K,. On noting (3.1), the triangle inequality for the
|| ||.7 () norm, and that ¢ — Z,(¢) is monotonic increasing, we have (3.5) for 2 < r < oo.
U

Next, we show that the solutions to problems (1.4), (1.5) and (2.2), (2.3) can be
bounded in terms of ||f||y-.

Lemma 9 Let (u,p) € V x Q and (up, pr) € Vi, X Qp denote the solutions to problems
(1.4), (1.5) and (2.2), (2.3), respectively, and let r € (1,00); then

lally < G (& I, lIplle < 5 (Ilfllv' + Ky(H o G‘l)(,%Hva')), (3.9)

lullv < G 1IE),  lpnlla < 3 (Ifllv + Ko(H 0 G (% 1fllv) ), (3.10)

!
€o

where ¢y and ¢y are the inf-sup constants from (1.6) and (2.1), respectively, and G and
H are continuous strictly monotonic increasing functions defined on [0, 00).

Proof. Taking v =u in (1.4) and using (1.5), we have that
a(u,u) = (f,u) = (f,u) < |[f[lv[[u]ly.

Now, using (3.2) with M; = e(u), My =0, 6 = 0 and (iii) of Proposition 7 with w = 0,
we obtain

t-[Ea(®)) % 1<r<2,

ol ) 2 Kilufy ) > Killuly Glulvi - G = { 4/ ter

Since G : t — G(t) is continuous and strictly monotonic increasing on [0, 00), its inverse
function G~! is continuous and strictly monotonic increasing on [0, 00). Hence,

lullv < Gz lIflv).
To bound ||p||q, note that, by the inf-sup condition (1.6),

blp, v)

<
COHPHQ = ‘Sllelg ||V||V

On the other hand, from (1.4), and using using (3.3) with M; = e(u), My =0, 6 = 0,
and (iii) of Proposition 7 with w = 0, we obtain

b(p,v) = (f,v) —a(u,v) = (f,v) — a(u,v) < [[f|lv|v|v + K2H([[u][v)[[v]lv,
where

-1, 1<r<2,
H(t) - { t- [Ea(t)]r—2’ 2 S 7,
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and therefore,
collplle < lIfllvr + K2H ([Jullv).

Clearly, H : t — H(t) is continuous and strictly monotonic increasing on [0, c0). To-
gether with our earlier bound |[ju|ly < G_l(KLl||f||V:), this proves (3.9); the proof of
(3.10) is identical, except that (2.1) is used instead of (1.6). O

Remark 10 As|(f,w)| = [(f,w)| < ||f||v||w]||v and, by Hélder’s inequality, |a(v,w)| <
Ko H(||[v]Iv)||wllv and [b(q, w)| < |lqllqllw|v, it follows, using (3.10), that

(£, w) — a(up, W) — b(pp, W] §<1 + c%)(”f”w + Ky(H o G‘l)(K%||f||V/)> Wl

Hence, for £ € [L7(Q)]* fized, and the corresponding unique solution (up,pp) of (2.2),
(2.3) in Vi, x Qn C V x Q thereby also fized, w — (f,w) — a(up, w) — b(pn, W) is a
bounded (and therefore continuous) linear functional on V; as such, it belongs to V'. It is
this element of V' that we denote by Si. Similarly, for u, € Vi, CV fized, ¢ — b(q, up)
is a bounded (and therefore continuous) linear functional on Q, and as such, it belongs
to Q'; it is this element of Q' that we denote by Ss.

Using vi = u and vy = uy, in (3.4) and (3.5), together with the bounds on ||u||y and
||up||lv from Lemma 9, we obtain the following result.

Lemma 11 Let (u,p) € VX Q and (up, pr) € Vi X Qp denote the solutions to problems
(1.4), (1.5) and (2.2), (2.3), respectively, and suppose that r € (1,00); then,

a(u,u —up) —a(up,u—uy) > Chlu — uh|%u,r,a); (3.11)
min{1,2}
aa,w) — aw, w)| < Culu — w ey (3.12)

where Cy = C5270 3 (2, o G ()™, and Cy = Cy(Ky,7), C3 =
C3(Kso,r) are as in Lemma 8.

4 The a posterior: error upper bound

We begin by bounding the norms ||u — us||v and [[p — px||q of the error in the approxi-
mations to the velocity and the pressure by the norms of the residual functionals S; € V'
and Sg € Q' defined below. We shall complete the a posteriori error analysis by showing
that ||S1||v+ and ||Sq||q/ can, in turn, be bounded in terms of computable residuals.
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4.1 Upper bound on the error in terms of residual functionals

We define S; € V' by
(S1,w) = (f,w) — a(up, w) — b(pp, W) Vw e V. (4.1)
Similarly, we define S, € Q' by

(S2,q) = —=b(q,wn)  VgeQ. (4.2)

The existence of the functionals S; and Sy as elements of V/ and Q’, respectively, is the
consequence of Remark 10 following Lemma 9.

For 1 < r < oo the reflexive Banach space V is continuously and densely embedded
into the reflexive Banach space [L7(€2)]%. Hence, [L™ (Q)]%, the dual space of [L7(Q)]%,
is continuously and densely embedded into V’. In particular, f € [L™(Q)]* can be
identified with an element of V' (also denoted f for the sake of notational simplicity) via
(f,w) = (f,w) for all w € V. Hence, the definitions (4.1) and (4.2) imply that

a(up, w) + b(pp,w) = (f—S;,w) Vw eV,
blg,un) = (=S2,q) Vg e Q.

On subtracting these from (1.4) and (1.5), respectively, we obtain

a(u,w) —a(up, w) +b(p —pp,w) = (Si,w) Vw eV, (4.3)
blgu—u) = (S2,9) Vg € Q. (4.4)

Proposition 12 Let (u,p) € VxQ denote the solution to (1.4), (1.5), and let (uy, pp) €
Vi X Qp denote its finite element approzimation defined by (2.2), (2.8); then, there ezists
a positive constant C = C(Ky, Ky, co, 1, ||f||v) such that
2 Ry A
u= e < C(ISIRY + [S:0% + ISl ISaller) (4.5)
lp—palla < C(ISUIV + u = unlfura) » (4.6)
where Ry = max{r, 2}, 1 = max{r',2}, 1/ry+1/ry, =1, 1/a+1/a" = 1.
Proof. According to the inf-sup condition (1.6), identity (4.3), the definition of the
norm || - ||y and (3.12), we have that

min{l,%}

CO||p_ph||Q < ||S1||V' +C4‘u_uh|(u,r,a) ’ (47)
and hence (4.6) on noting that min{1, 2} = 2min{3, -} = 2/a.
On the other hand, taking w = u — uy, in (4.3), then using (4.4) with ¢ = p — p,
(3.11), and the definitions of the norms || - [[y» and || - ||q/, we get that

Colu = up[fypa) < [IS1llvllu — unllv + [IS2llerlIp = palla- (4.8)
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Multiplying (4.8) by ¢y and then eliminating cg||p — ps||q using (4.7) gives

coCalu —Wnffyr ) < collSullvllu—upllv + [ISillvIS2lle

min{1,2}
+C4l|S2llqr[u = anly 1 0 (4.9)
Part (iii) of Proposition 7, with v = u — u;, and w = u implies that
. max{0.2=" min{1,2
hu = wally < [Eallla = wally + Jul)I™ 5 ju - w ol (410)
Also, recalling from Lemma 9 that
lullv <G (& lIfllv) and  [lusllv < GTH(% [Ifllv)
gives
[u = wllv + [Jullv < 2([ullv + [[usllv) < 4G (Z [IEllv)- (4.11)
Hence, (4.10) and the fact that ¢ — =Z,(¢) is monotonic increasing on [0, c0) imply that
max T - m -r min{l,%}
lu = wplly < 2224027H(5, 0 G (A lv) ™5 Hu — wa [y

We substitute this into the right-hand side of (4.9) to eliminate ||u — uy||v; thus,

mln{l,r}
=g < C(ISilIvIu = wli” + ISiv IS llo
min{1,%}
+ [S2ller [ = wal ey ) - (4.12)

where C' = C(K1, Ky, co, 1, ||f]|v7) is a positive constant. We apply Young’s inequality

1/s+1/d=1, 1<s<oo, a,b>0, >0,

to the first and the third term on the right-hand side of (4.12), with a = C||S:||v
and s’ = 2/min{1,2/r} = max{r,2} in the case of the first term and a = C||Ss||¢
and s’ = 2/min{1,2/r'} = max{r’,2} in the case of the third term, and take ¢ > 0
sufficiently small so as to hide the term ¢(1/max{r, 2} +1/max{r’, 2})|u— uh|%uma) thus
resulting from the right-hand side of (4.12) into |u— uh|%uma) appearing on the left-hand
side of (4.12); any ¢ € (0, 1) will suffice. Hence we deduce that

R/ !
u=wifre < C (IS +IISiIvIS o + 1S:0) (4.13)

where ry = max{r,2}, a = max{r',2}, 1/rRy+1/r; = 1, 1/a+1/a" = 1, and C is a
constant depending only on K, Kj, co, 7, ||f]|v- O

Proposition 13 Let (u,p) € VXQ denote the solution to (1.4), (1.5), and let (uy, pp) €
Vi X Qp denote its finite element approzimation defined by (2.2), (2.8); then, there exists
a positive constant C = C (K1, Ko, co, 1, ||f||v') such that

R/ !
lu—u [+ llp-palis < C (IS111% + IS1NY + IS:11F + St v 82l ), (4.14)

where Ry = max{r, 2}, 1 = max{r’,2}, 1/ry+1/r, =1, 1/a+1/a" =1.
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Proof. Part (iii) of Proposition 7 with v.= u — u, and w = u, (4.11) and (4.13)
imply that

R! !
[u— w3 < € (ISiRY + ISt ISallr + 1182115 ) (4.15)

For the error in the pressure, substitution of (4.13) into the right-hand side of (4.6)
yields

R/ !
Ip—palld < € (ISi1% + IS116 + 112118 + ISullvlSaller) - (436)

Inequalities (4.15) and (4.16) simply yield (4.14) and that completes the proof of Propo-
sition 13. 0
In the special case of a power-law model, k(t) = 2ut" 2 with r € (1,2), the bounds
(4.15) and (4.16) collapse to those of Sandri [22].
The a posteriori error bounds stated in Proposition 13 can be simplified, thus leading
to Theorem 14.

Theorem 14 Let (u,p) € V x Q denote the solution to (1.4), (1.5), and let (up,pn) €
Vi X Qp denote its finite element approzimation defined by (2.2), (2.3). Then, there
exists a positive constant C depending on Ky, Ks, co, ¢, 1, ||£||v: such that

R R! !
o= wl[& + [l = pull < C (ISR + 192115 . (4.17)
where Ry = max{r, 2}, 1 = max{r’,2}, 1/ru+1/ry, =1, 1/a+1/a" = 1.

Proof. By virtue of (4.1) and Remark 10,
IS:llv < (14 2 ) (Il + ettt o GG ).
Thus, on noting that r;; = min{r’, 2} < max{r’,2} = a, we have that
IS + 18113 = 181115 (1+1ISilI% ™) < ClISily, (4.18)
where C = C (K1, Ky, ¢y, 1, ||f]|v). Also, by Young’s inequality and (4.18),

! R/ !
IS lSaller < TS + SISl < 0 (ISuS + ISa0), (419)

where C = C(K,, Ky, ¢y, 1, ||f]||v'). Hence, (4.18), (4.19), together with (4.15) and (4.16)
of Proposition 13, yield the a posteriori error bound (4.17). O

4.2 Upper bound on the error in terms of computable residuals

Since ||S1||ys and ||Sz||qr can be bounded in terms of the following residuals:

Rr([up, pn]) = V- (k(z,[e(un)]) e(un)) = Vp+1£lp VI €T
Jo([un,pr]) = [Pe- (K (2, e(un)]) e(an) —pn g VE € &ng
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and V - uy, we can easily obtain the desired a posteriori upper bound in terms of com-
putable quantities stated in the first part of Theorem 2. Before doing so, we need to
introduce two operators, [Ir and Il which associate to a given function u, defined on
an element 7" or on a face F, a suitable polynomial approximation on 7" or FE, respec-
tively. In particular, we can consider these approximations as being related to numerical
quadrature formulae.

Theorem 15 Let (u,p) € V x Q denote the solution to (1.4), (1.5), and let (uy,pp) €
Vi X Qp denote its finite element approzimation defined by (2.2), (2.3). Then, there
exists a positive constant Cy depending on K, Ks, co, cy, 1, |||y and on the minimal
angle of the triangulation such that

=
R g
[u—w|" +lp—prllqg < Cu (Z Wy (| Tl Rer ([wn, pa) 17 (T))
TET,

/i
RU
»

! !
1 D helTede(fn o) [T | + 1V -l

Eeéh,n
Rl
(Zh | R ([u, pa]) — HTRT([Uh,ph])ng(T))
TeTh
Ry,
S kel Is(n pa) ~ Meds (o) v | |0 (420)
Eeép,0

where Ry = max{r, 2}, 2 = max{r’,2}, 1/ry+1/r; =1, 1/a+1/a" = 1.
Proof. We deduce from (1.4) and (1.5) that, for all w € V and all ¢ € Q,

a(u,w) — a(up, w) + b(p —pp,w) = (f,w)—a(uy,w)—0b(pp,w), (4.21)
blg,u—uy) = —b(q,up). (4.22)

Adding (4.21) to (4.22) and using (2.2) with v, = I, w yields

a(u, w) — a(un, w) + b(p — pr, W) + b(g, u — uy)
={(f,w — Iyw) — a(up, w — Iyw) — b(pp, w — Iyw)} — b(q,up), (4.23)

for all w € V and all ¢ € Q.
We proceed by decomposing the inner product (-,-), the semilinear form a(-,-) and
the bilinear form b(-,-) as sums of integrals over elements 7" € T, and integrating by
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parts over each element T" € 7Tp; thus,

a(u,w) — a(up, w) + b(p — pp,w) + b(g,u — up,) = Z /Tf (w — Iyw)dQ2

TET,
=3 [ hlietwn) et - etw ~ hrw)a
TeT, Y T
+ WV - (W — I,w)dQ + (V - up)qdQ
Z £ fi -
= > [ (49 (s(letwn) elw) ~ Vi) - (v~ Fyw)a
TeT;, /T
=Y [ [k(le(un))e(up)nr — pang] - (w — Iyw)dT
Ter, Jor
+ (V : uh) dQ)
A
= Z Rr([un, pal) -(w — I,w)dQ
TeT, VT
- Z /EJE([uhaph])‘(W—IhW)dP
+ Z (V- up) q¢dQ,
TeT, VT
= Z / rRr([up, pr)) «(w — Iyw)dS2
TeT;, VT
+ Z /(RT([uhaph]) — Ry ([up, pr])) - (w — Iyw)d2
TeT, VT
- Z /EHEJE([uh:ph]) «(w — Iyw)dl’
B Z /E(JE([uhaph]) - HEJE([uh,,ph])) . (W — Ihw)df‘
+ ) [ (V) qd®, (4.24)
TeT VT

where ny is the unit outward normal vector to the boundary 0T of the simplex T' € Tp,.
As w — Iw = 0 on 0, parts of 0T which intersect 0€2 can be omitted from the region
of integration. Hence, only faces ' C 0T internal to €2 need to be considered in detail.

Let E C Q2 be a (d —1)-dimensional face shared by elements 7}; and 7;,. Then, during
the summation ), and surface integration Jop - --dT, the face E will be traversed
twice: once in the course of integration over 07T} and then in the course of integration
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- ~
N F

Figure 3: A face E shared by elements T; and 7| in the triangulation and the unit
outward normal vector ﬁTﬂ = Ny to the boundary 0T} of T}, in the case d = 2

over 0T, (cf. Figure 3).
Since during the two passes through E = 0T;NJT, the orientation of the unit
outward normal changes, we get the jump

[Vlg = v -y lory,ne + v - fgy lo1,n0 = V- A [, 00 — V * o |o 1, na-

If we write the sum >_ .,  of the jumps UpJr([up, pr]) as D orcr Do peg(rynn We need
to introduce a factor %, due to the fact that in the double summation over 7' € 7, and
E € £(T) N2 each face E has been counted twice:

> [ Mea(io, ) (v = how)dr=3 3" 3" [ Mase(un ) (w = ).

E€&n 0 TeTy, E€E(T) N2

On expressing the right-hand side of (4.23) in terms of [IzRr([up, pr]), LeJe([un, pr))
and V - uy, we obtain the following error representation formula:

a(u, w) — a(up, w) + b(p — pp, W) + b(g,u — uy)

-y / TRy ([un, pul) - (w — [w)dQ

TeT, VT

+ Z /T(RT([uhaph]) — Ry ([up, prl)) - (W — Iw)dQ

TET;,

-2 /EHEJE([uhaph])'(W—IhW)dP

E€&n n

B Z /E(JE([uh;ph]) —HpJe([up,pa]) - (W — Iyw)dD

Ee€é&p,0

+ Z /TV -up (g + ¢)dQ (4.25)

TeTh
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for all w € V, all ¢ € Q, and all ¢ € R; here we made use of the fact that

cZ/V-uth:c/V-uth:c/ u,-ndl' =0
T Q a0

TeTh

for all ¢ € R since uy|sq = 0.
Applying Hélder’s inequality to each of the terms on the right-hand side of (4.25)
and then taking the infimum over all ¢ € R, we have that

a(u,w) — a(up, w) + b(p — pp, W) + b(g,u — up)
< IR ([un, pu)) e oy W = Inew ey

TET,
+ Z | Rr([un, pr]) — UrRer ([un, pal) [l (o |W — LW ||Lr )
TET,
+ Z | MeJe([un, pal) ”L’“'(E)”W — Iyw||ur(m)
E€&na
+ Y 113e(un, pal) = eI e ([un, pal) I g W = Tnwllr o)
E€&nn
+ S ey inf g + el (4.20
TET,

for all w € V and all ¢ € Q.
Applying (2.4) and (2.5) in (4.26) and using Hélder’s inequality for finite sums, we
have that

a(u,w) — a(up, w) + b(p — pp, W) + b(g,u — uy)

1/r!
<C (Z 1 || Ty Rer ([un, pa]) ||;;,(T)> e ——

TET,

1/r!
+C (Z 1| R ([Wn, pa]) — TR ([Un, pi)) ||;;,(T)> [Wlwie o)

TET,
1/r!

+C | Y byl Tedp([us, pa)) [l Wi (@)

E€én,n

1/r’

+C Y0 hall 3u(n pa)) = MeT o i) [y | W lwery

Eeénn

1/r
+ (Z IV - ||L’“(T)> ile]nfg llg + cllLr o (4.27)
TET
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for all w € V and all ¢ € Q. Inequality (4.27) implies that

a(u,w) — a(up, w) + b(p — pp, w) + b(g,u — uy,)

<c (Z B | TR ([un, pa)) ||;;,(T)>

TeTh

e

+ (Z hg:“ RT([uhaph]) - HTRT([uh:ph]) ||£,r’(T)>

TET;,

1
o

+ Z hT” HEJE([uhaphD ||£’T’(E)

E€&h 0

e

+ Z hr|| I ([un, pr]) — eI ([un, pa)) ||£,"(E) (W[ wir (o)

Ee€&p,0
7
+ (Z IV -y, ||£’(T)) igﬂg||Q+c||L’“'(Q) (4.28)
TET,

for all w € V and all ¢ € Q. Taking ¢ = 0 in (4.28) and then the supremum over all
w eV =[W;"(Q)), using (1.7), and recalling that ||e(w)]||i-@) = ||w]|lv, we get

a(u,w) — a(up, w) + b(p — pp, W)
wev [wlv

1 L

<C (Zh’%ll TRy ([un, pal) ||£’,,(T)> Y bl M ([an, pa) ]

TeTh E€&p.0

3

+ (Z W | R ([wn, pa]) — e R ([n, pa)) ||£IT’(T)> T

TeTy

+{ D hrll 3u(unpa) —Tedp((un o)) [T | |- (4:29)

E€é&n,0

On the other hand, taking w = 0 in (4.28) and then the supremum over ¢ € Q yields

b(Qa u— uh) <

1/r
sup AL 1~ Un) IV - up |[f . (4.30)
b Talla (ZT v

Let us bound the norms ||S1||v+ and [|Ss||q. We begin by noting that (1.4) and (4.1)
imply that

(S1,w) = a(u,w) — a(uy, w) + b(p, w) — b(pp, Wp).
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Hence,
S — afupw) + (o — o
[S1[lv = sup Suw) _ sup a(u, w) — a(un, w) + b(p — pn, W)
wev [Wlv  wev [wllv

Applying (4.29) to the right-most expression in this chain, we deduce that

1 —

ISl < (Zh | LR [uh,ph1>||Lr(T)+ S bl T ([, )

TET, Ee&nn

1
ol

(Z W | R ([un, pr]) — TrRe (s, pa)) ”i’r’(T))

TETh

+| D hell3s(un pa) —Mede (o)) 50 | |- (4.31)

Ee&n 0

Analogously, by (4.2),

Sa, —b(g,u b(g,u—u
||S2||Q, _ < 2 q) o (C] h) = sup (C] h)

wcq lala — qeq  llallq ecq  lldllq

and therefore, by (4.30),

1/r
Saller < (Z||V‘uh||£’(T)> : (4.32)

TET,

Combining inequalities (4.31), (4.32) and (4.17) we get the stated bound. O

5 The a posteriori lower bound on the error

In this section we prove the lower bounds stated in Theorems 1 and 2.

5.1 Lower bound on the error in terms of residual functionals

The following inequalities can be easily obtained by recalling the definitions of || u ||y (),
IVl and [le(u)[|.(,)

||V‘u||Lr(w) < ||u||wlm(w)a (5.1)
[V-u ||Lr(w) < le(u) ||Lr(w)7
le) llpry < Clrd)[[ullyire,-
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Theorem 16 Let (u,p) € V x Q denote the solution to (1.4), (1.5), and let (uy,pp) €
Vi X Qp denote its finite element approzimation defined by (2.2), (2.3). Then, there
exists a positive constant ¢ depending on Ky, Ko, r, ||f||v such that

R/ ! R
¢ ([IS:llv+ + IISQIISI] < [lu—w llv" +1p =2 llg (5.4)

where R, = min{r, 2}, 1 = max{r’,2}, 1/ro+1/ry, =1, 1/a+1/a" =1, and S; and S,
are the residual functionals defined by (4.1) and (4.2) which are computably bounded.

Proof. Starting from the definition of || Sy ||y, we get

[[S1[lv: = sup (51, w) < a(u, w) = a(us, ) + sup b(p — pn, w)
wev [[Wllv 7 wev |w]lv wev  |wllv

(5.5)

The second term on the right-hand side in (5.5) can be bounded, by applying (5.2), in
the following way:

b — D — Dn VW r
(p — pn, W) < I ||Q I L () <

sup < P—Dullg-
wev [ Wly wev | w @
Next, we use (3.12) in (5.5) to get
mln{l }
ISl < Calu=tp|pay™ +1Ip—pnllg- (5.6)

Now let us consider separately the two cases 1 <r < 2 and r > 2.
First suppose that 1 < r < 2. Using (i47) of Proposition 7 we have

2
lu—u, |(u,r,a) < |le(u—uy) ”L?“(Q)

and we conclude that

2

[S1lly: < Calu—up|i,, o+ P —prllq

<

< Culle(u—up) g+ 12— prllg-

On recalling the definition

r—2

. 1 max{0,%5
Oy = (0 gmax(o 75 }[ oG-l (Eufnv,)]

from Lemma 11 we get

ISy 1l < Cslle(u =) [l )+ |2 = Pallg -

Now suppose that r > 2. Again, using (i4i) of Proposition 7 we have

r—2

—_ 2
[u =ty < [:a(He(u—uh)||Lr(m+||€(U)I|er)) le(u—un) [l (q) -
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On considering

le(w—un) [y o) + T e(@) |y < 2(1[e(n) L) + [l e() [lLr (@)

1
<467 — /
<467 (111

r—2
r—2 [— - 1 ?
0=y <27 20067 (S0 )] @ un) o

Recalling the definition of Cy we get

we have

|| Sl ||V’ S 04 ‘ u—1u, |(u,r,a) + ||p — Pn ||Q
< Cs|le(un =) [l + [P —pnlg

r—2
where C5 = C5 4772 [Ea oG1 (K% Il f ||V,>]
The proof can be easily completed by bounding the norm of S as follows

S —b b —
”SQHQ’ = sup < 2aq> _ (qa uh) = sup (qau uh)
q llalle  qeq  llallq q  lldllq
= [|V-(u=up) [l g < lle(@—up) [0y = [0 —un|ly-

5.2 General results

Before proving our lower bounds in terms of computable residuals, we recall some results

A

from [25] and [26]. Let us denote by V. € Wh(T)NL®(T) and V; ¢ W™ (E) NL*(E)
two arbitrary finite-dimensional spaces of functions defined over the reference element
T and on the reference face E , respectively, and let Vy = {ngS o Fnl - (;AS € V;} and
Ve ={poF;' : ¢V T €y} Thespaces V; and V can be thought of as being
related to the approximations introduced by suitable quadrature formulas; thus, they
are supposed to be finite-dimensional (e.g. consisting of polynomials of a fixed degree).
The theory below can be applied to more complex situations without significant changes.

Lemma 17 There are constants which only depend on the spaces V4 and Vg, v and the
minimal angle of T € Ty, such that the following inequalities hold for all wy € Vi and
all Wg € VE

f ’UJTbT’UTdQ
||wT||Lr’(T) 3 sup Tb— < [lwr ”L’“'(T)’ (5.7)

vreve | TUT||Lr(T)

f wg ¥y (bg) vedl'

lwg i@ 3 sup =2 2 . < Nwr [l i), (5.8)

vEEVE ” EVE ||L7”(E)
hpt | brwr [y 3 | v (brwr) || (o 3 bt [ brwr || gy, (5.9)
hp 105 Pe(we) ey X 1V 0ePe(w) Iy Zhe |05Pe(wE) [l 1y, (5.10)

1
r

| bePE(wE) ”L’“(T) 3 hillws ”L"(E) : (5.11)
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Here and below yg(bg) denotes the trace of bg on the face E.

Lemma 18 There are constants which only depend on the space V, r and the minimal
angle of T € Ty, such that the following inequality holds for all wg € Vg:

1

| V(e Pewe)) Il g,y = hp™ Nl llrgs, - (5.12)

Proof. The relation

_ 1
7

|V (be Pe(we)) -y Z he™ | we g
can be easily derived from (5.10) and (5.11), while the inequality

1
-

hg" 1wE [l S 11V (e Pe(we)) |l

comes from the application of the trace inequality

_1 1-1
172 (be) we |1 5y X b |08 Pe(wE) l|pr () +he | V(0 Pe(wE)) |- (7

together with (5.10) and the norm equivalence ||, (bg) wE ||;» ) = || wE |lrz)- Then,
the statement of the lemma follows from the regularity assumption for 7j,.

Any vr € Vp and by will be assumed to be extended by 0 to Q outside 7. Similarly,
any vg will be assumed to be identically zero on &, o outside E and any by will be
supposed to be identically zero on Q outside Wg.

Let v € Vp, v = ZTGTh vp and by, = ZTeTh br; then, we define the following
negative-order norms:

fT UbTUT dQ
U ||| w—1,0 = sup , 5.13
||| |||w Lr(T) vp €V ” brur ||w1w(T) ( )
Jo, ubg, v dQ
lullw-10¢y = sup S (5.14)

vEUreT;, VT ” bThU ||W1”"(Q) '

Similarly, let vg € Vg, v =) g,  Pr(ve) and bg, o = > pce.  br; then, we define

uy,(bg)vgdl
il gy = sup dzelelbevedl 5.15)
W " (E) vpeve || 0 Pe(vE) ||W1,r(&E)
> [ unsbea0) ar
E E
lull, -2 = sup (5.16)
W (Ena) vEUreg; o Vi H bey o HWI”"(Q)
Remark 19 The definition of the norm | . mw’%”'(E) is motivated by the observation
that I dr
i/ UVE
hi lullpr gy = sup  —5° ,

€L E) by g |lpr(m
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that for vg € Vg C L7(E), by (5.12) and the equivalence of || . ||y...
W(l),T(CZ)E)f

) 0 |. |W1,T(&E) on

1
p

108 [|Lr ) = 1| b8 Pe(vE) llwir @,

and that, for u in a finite-dimensional subspace of L" (E),
L’
hig [ ullye gy < [ wl

1 .
W (B)

Lemma 20 Let u € W=7 (Q); then,

(Z ||IU|||€v1,r'(T)) < lullw-sr ey < el - (5.17)

TeTh
Further, let u be such that || u |”W_L,’,,/(E) < 00 for all E in Epq; then
o
D [ < lwlly-20 - (5.18)
Eegna e W Ena)

Proof. To prove the first inequality in (5.17), let us consider an arbitrary € € (0, 1).
By our definition of ||  ||yy-1.(yy, for each T there exists a vy € Vr with || bror |lyir iy =
1 such that

/ ubpop A9 > (1= &) [y oy -
T

Let us define

v=Y Nl i bror € Wi (Q).
TeTy

It follows from these definitions that

S luliy-rr < —Zm I / ubpor A0

TeT TEeTh

1
= /ude
]_—5 Q

1
< by 1o llwie -

Moreover,

1 1

T r(r'—1
|v ||W1,r(n) = (Z v ||w1,r(T)> = (Z |”“|||V‘(,71,TI)(T) | brvr ”(Nl,’“(T))
TeTy TeTs
1
—1)
- (Z lu HIW””(T> .

TETh
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If we substitute this relation into the previous one, observing that r(r' — 1) = ' and
1/r=1-1/r" we get

1
’

’ " 1
(Z mecv-wm) <l iy

TeTh

Since ¢ € (0,1) is arbitrary this proves the first inequality in (5.17). The second follows
trivially from our definitions.

To prove the inequality (5.18), let us consider an arbitrary ¢ € (0,1). By our
definition of || u \H ~dt for each E € &, there exists a function vy € Vg with

| br Pe(ve) ||W1’T(wE) 1 such that

[ uretb) e dr > (=)l -

Let us define
r'—1 1,r
= , W (Q).
v= 3 lulyy, bePolve) € Wy ()

E€én,n

It follows from our definitions that

v r—l
D DT L S 1 s / w7, (bg) v dT

E€&h,n Eegh Q

= Z/ME

EEEh Q

ul

Moreover, thanks to the orthogonality of the face bubble functions, we have

10l oy -

_ L
W7 (En,0)

T

lollwiry = | Do Mol | =1 2 lu ||| ||bEPE(UE)||W1r o)

E€é&p,n E€&hn

=| > lu HI iy

E€&nn

(E)

If we substitute this relation into the previous one, on observing that r(r' — 1) = 7’ and
1/r=1-=1/r" we get

=

,r,l
< - .
3 (L. < ol L] B

E€&na

Since ¢ € (0, 1) is arbitrary, this proves the inequality (5.18). O
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5.3 Lower bound on the error in terms of computable residuals

The results of using Propositions 22 and 23 and inequality (5.23) in this section have
been collected in the following theorem:

Theorem 21 Let (u,p) € V x Q denote the solution to (1.4), (1.5), and let (ap,pn) €
Vi X Qp denote its finite element approzimation defined by (2.2), (2.3). Then, there
exists a positive constant ¢y, depending on Ky, Ko, r, ||f||v: and on the minimal angle of
the triangulation such that

!
7
R, Ry

cr <Zhffr’||HTRT([uhaPh])||£r'(T)) + D el Tes([vnpa)) I g

TeT;, Ecéhn

!
R
IV - wn ey | <l —wn I+ 1 = pa I3

Ry
+ (Z hTT, | R ([up, pr)) — e R ([un, prl) ||£TI(T))
T€ETh
Ry

7

+{ Y= el Is(un ) = Mede(npa)) 7 | (5:19)

E€&ha

where Ry, = min{r, 2}, 1 = max{r’,2}, 1/r.+1/ry =1, 1/a+1/sa" = 1.

5.3.1 Lower bound on the error in terms of the residual
First, we state the lower bound on the error in terms of the element momentum residual.

Proposition 22 Under the hypotheses of Theorem 21,

Ry,
(Z || Az Tl R ([un, p]) ||£r'(T)> Slu—u[5"+lp—pullg
TeTy
Ry,
+ (Z Wi | R ([un, prl) — e R ([, pa]) ||£r'(T)> , o (5:20)
TeTy,

where Ry, = min{r, 2}, a = max{r’,2}, 1/re.+1/r; =1, 1/a+1/a" = 1.

Proof. We begin by applying the vectorial analogue of the lower bound of (5.7) with
wrp = hy IrRr([up, pr]) and of the upper bound of (5.9) with wy = v, and noting
that || V(br vr) ||LT(T) < [|brvr ”WLT(T); thus,

hr TR ([up, pp)) -br vr dQ
| hr e R ([un, pu)) |y 3 sup Jz hr Tl R ([us, pa)) -br v
T Tervel
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Jr Rz ([up, ps]) -br vr dQ < Jr TRy ([un, pp)) -br v dQ

—~

< sup
vre[Vrld | V(b vr) 11y vre[Vr]d | o7 v ||y (ry

= m HTRT([uhaph]) H‘W*L”'(T) .
Now we apply Lemma 20 to deduce that

1 1

(Z | b TirRer ([un, 1)) ||£’~m) 3 (Z || Tt Rer ([, pa]) |||9’V_1,~m)

TeTh TETh

Z IR ([un, pr])
TeTh

)

W-L(T,)

where we have used definition (5.14) with v =} ;- vy and by, = > . br
Applying integration by parts and noting that each br vanishes on 97, and using
equations (1.4) and (1.5), we get:

1 / Z R ([up, pa]) b7, v dQ
r ’ e,
(Z || hT HTRT([uh,ph]) ||LT'(T)> rﬁ sup || br v ”
TeT, vEUreT, [Vr]d Th wir(Q)
/ S Rer([un, pal) -b; v 4
< sup QreT,
B veUreT;, [Vr]¢ || b’ﬁt v ”Wl ()

> / (HrRer([un, pal) — Rr([un, pr])) - by vr dQ

T sup TETs

veUreT;, [Vr]¢ ” bTh v ||W1,T(Q)
Z/ z, le(up)) e(up)) = Vp +f) - by vy dQ
< TETy,
= sup
VEUTGTh [Vr]d || bﬂl v ||W1 m(Q)

> / (HyRer ([un; pa]) = R ([Un, pal)) - bp v dQ2

+  sup TET,

vEUreT, [Vr]? ” bTh v ||W1sT(Q)
> " a(u,br vr) + b(p, br vr) — a(up, by vr) — b(ps, br vr)
_ sup TET
VEUTG’Th [VT]d || b771, v ||VV1 T(Q)

S [ (MR p1D) = R (. D) - br v d0

TET

+ sup

veUreT;, [Vr]¢ ” b77L v ||W1,7‘(Q)
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S sup a(u’ bTh V) - a(ufh bTh V) + sup b(p — Dn, bTh V)
veUrer;, [Vr)¢ || b7, v ||W1 (Q) veUreT, [Vr)d | b7, v ||W1 (Q)
S [ (Re(un, i) = R ) - br v d0
+ sup TETn
” bTh v ”Wl,r(Q)

veUreT, [Vr]?

The second term on the right-hand side can be bounded, by applying (5.1), in the

following way:
[P —=pnllg | V(b7 v) ||Lr(Q)

b(p — pn, b
(P = prbrv) sup
[Vr]d | by, v ||w1,r(g) veUrer, [Vr)d | by, v ”wl,r(g)

< llp=pullg-

sup
VGUTETh

(5.21)

The third term can be bounded by applying Holder inequalities and the first inequality
n (5.9) as follows:

> / (TIy R ([un, pr)) — R ([up, pr)) - by v dQ

sup TET,
veUreT, [Vr)d || bTh v ”WLT(Q)
Z hT || HTRT([uh7ph]) - RT([uh7ph]) ||LT'(Q) H h’;le vr L7(Q)
< sup TET
B veUreT;, [Vr]d || bTh v ||W1:T(Q)
1
< (Z W || iz Rer ([uh, ph]) — R ([un, p)) ||£r’(n)>
VEUTeTh [VT} TET;,
1
-1 T
(Z H hy"br vr L’(Q))
TET
| b7, v ||w1,r(n)

Next, we observe that (5.9) gives

(Z | hgtbr v

TeTh

1

1
ir(T)> = (Z ” v(bT VT) ||£T(T))
TET,

1

1
= (Z ||bTVT|KN1=T(T)) = (”bThV”:Nl”'(Q)>T = 167 ¥ llwir(q)

TETh

and thus we get

Z/ HTRT([uh’ph]) RT([uhaph])) bTVT dQ2

TET

sup

veUreT;, [Vr]¢ | br, v ||W1,7‘(Q)
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1
(Zh [ iz Rz ([un, pn]) — R ([tn, pr]) ||£’r’(n)) :

TeT
Now, we apply (3.5), (5.3), (5.21) and the last inequality to deduce that

1

” min4 1,5
S\ b TR ([, 1) [ (T) S Cilu—u [ = g
€Th

(Z Ky || e R ([un, pr)) — R ([un, pr)) ||£'~(Q)>T . (5.22)
TETh

The inequality (5.20) can be obtained by an argument similar to the one used in the
proof of Theorem 16 after equation (5.6). O

5.3.2 Lower bound on the error in terms of the divergence of the velocity

Applying equations (1.5) and (5.2) we get

V- gy = [V-(un—1) [l
< lle(u—up) [l ) = lu—unlly (5.23)

5.3.3 Lower bound on the error in terms of the jumps

Next, we show how the jumps Jgz([un, ps]) on each internal element-face E bound the
error from below.

Proposition 23 Under the hypotheses of Theorem 21,
Ry,

!

hi || Meds([un, pal) I 3 e =) [I5¥g) + 12— prllT o)
(E) @)

E€é&p,0

+ Y kel Ip(un,pal) — Tede(npal) [T @ | - (5:24)

E€&hq
where Ry, = min{r, 2}, a = max{r’,2}, 1/re.+1/r; =1, 1/a+1/a" = 1.
Proof. We begin by applying the lower bound from (5.8) in which we use wg =
By 3 ([, pil) wn, (5.12) and || V(bg Pe(vi)) @ p) = 1108 PE(VE)) llyy1r (g, to de-
duce that

H hé’ HEJE([uhaph]) fE HEJE([uhaph]) /YE(bE) ve dl’

sup

L7 (E) ™y e[V | V(b Pe(vE)) ||Lr(fz,E)
[gJe([ug, prl) - bg)vg dl’
,5 sup fE E E([ h h]) f)/E( E) E _ ”l HEJE([uh,ph]) ||| a1
vg€E[Vg)d ||bE PE(VE) ||W1,7‘(&E) W ' (E)
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Now we apply definition (5.15) and Lemma 20 to get that

1
ol

3

T’

I LF (TR NP IS D WA b ()1 (P
Ee&n 0 Ee&n 0

< Z JE([uhaph]) ’

Beeno Wi%’r'(c‘fh,n)

where we used definition (5.16) with v.=3"5, . Pg(ve) and bg, , = > peg,  bE-

Hence, on applying integration by parts and noting that supp by C @y and vanishes
on all the faces of the element T € &p C T, different from E, so the trace v,,.(bg Vi) is
non-zero only on E, we get:

1

7J

1 r’
B I , H
> | ni meas () |,
EEEh,Q
Z / JE([uhaph]) Ve (bShQ V) dl’
< sup E€&n 0 B
~ vEUEegy, Vel H bera v HWM(Q)
Z /(HEJE([uhaph]) — I5([un, pal)) - V5 (bey o v) dT
E€é&p,a B
+ sup
v€UEeg), oVE]? H bfh,ﬂ v lew(ﬂ)
3 / op (15 - (&, e(un) ) e(r) —pn 1)) - 7yn (b V) A2
Teﬁj’ ar
= sup
VEUreg;, o[VE] ” bera v HWM(Q)
3 / (T ([, pn)) = T, p1])) - 75 (bey o v) AT
E€é&p,a E
+ sup
v€UEeg), oVE]? H bgh,ﬂ v HWLT(Q)
52 [0 (0 el ew) T ) 00
TeTy T
= sup
VEUBeg, o Vel ” bea vV lew(n)
> / (s 5 ([un, pul) — Io(n p1])) - 75 (bey o v) AT
E€&n 0 E
+ sup

UEUEegh,Q[VE]d H bgh,ﬂ v HWM(Q)
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Y | V(k (@, le(un)]) e(un) =pn D)) - (b, o v) A2

TeTe T
= sup
vEUEEgh,Q[VE]d H bgh,ﬂ v HWU(Q)
> [ frbe v dQ
TeTe o T
” bfh,ﬂ v lew(n)
D | (K (@ le(un)]) e(un) —paT)) : V(bg, , v) A
TeTe /T
+ sup
VEUEgeg, o Vel H bera v ”wl,r(n)
Z / f 'bé‘h,Q v dQ2
e T
” bfh,n v HWM(Q)
> [ (edeun i) - 3e (o)) -7 (b0 ¥) dF
E€én.n B
+ sup
vEUEegy, o [Ve]d ” bgh,n v HWM(Q)

After applying equation (1.4) we get

Z R ([un, pn]) -bg, o v dQ

\z\l —

o " TeT? T
Z H hy UpJe((un, ps)) . = sup h ;
E€gha L7(®) V€Ureg), o[VEl? [ bena v HWT(Q)
+ sup a(uh’ bgh,Q V) - a(u, bé‘h,n V)
VEUEESh,Q [VE}d H bgh,ﬂ v HWI,’I‘(Q)
b(pr — p,bg, , V

vEUpegy, Vel H bEh,n v ”Vvl,r(g)

5> [ (Me3uu, i)~ 2w ul) - (B0 ¥) T

E€éhn

+ sup
vEUEeg), o[VE]? ” bfh,n v HWLT(Q)

(5.25)

Now, write the integral over € in the first term of (5.25) as a sum of integrals over the
elements 7', then apply Holder’s inequality first to the integral over T" and then to the
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sum over T, to get

/RT uhaph]) bEhQVdQ Z/RT uh’ph]) bEhQVdQ

TET TETh
= Z/HTRT([uhaph])'bEh,Qv dQ
TeT;
+ 3 [ Rellmn )~ TR (s, ) -, v 092
TeT;
< Z |hTHTRT([uhaph] ||LT ||h lehQ L (T)
TET
1
+ ) Il hr (R ([un, pr]) = TrRer([wn, pal)) Nl 1y | 27 ben g v Lr (1)
TeT;
L' 1
< (Z || A Tz R ([un, ph)) ||£T'(T)) (Z | hytbey o v ir(T)>
TETh TETh

Next, we observe that (5.9) gives

+ (Z | ier (Rer ([wn, pr]) — R ([n, pa)) ”;’T'(T)) (Z ” hr 1b£ho LT(T)> T :
TeTh
(Z [ 7' bey v

TeTh
L"'(T) (Z ”V bShQ L7 ( )
TeTh TeTy,

T N
- (Z Hbgh,nvn;w,rm) S (T S LS P

TeTh

1
r

and deduce that

> / Rer ([0, pn]) -bey o v
TeTY .,
sup N (Z | hr Tz R ([uh, pr]) ||L~<T)>

ve Ugeg, o [VE] H bera v ”Wl”(ﬂ) TET,

1
o

+ (Z | Ar(Rer ([us, pr]) — xR ([Un, pa])) ||£,’“'(T)> T :

TETh

Moreover, applying Holder inequalities and equation (5.12) we get

Z /HEJE [uh,ph]) JE([uhaph])) ’YE(bEhQ )dF

E€é&nn

sup
UEUEegh,Q[VE} ” bgh,ﬂ v HVVW(Q)
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Z | I e ([un, pr]) — Ip([un, pa)) [l &) |7z (bera v)

L"(E)
S sup E€&nn
vEUpeg), oVl ” bgh,ﬂ v ||W1’T(Q)
Z h I T3 i ([un, pal) = T ([0, pa) Nl (i || Dena v ||W17T(L%E)
E€é&n,n
= sup
VEUEeg), olVE]? ” bey o v HWM(Q)

< | Y kel Ie(unprl) — TeIe((un, pa) ||£ITI(E)

E€&n 0

Now, we apply (3.5) to the second term of (5.25) and the same argument as the one
used in (5.21) to the third term in (5.25) to deduce that

3=

" hellTeTe(un o) I | 3 (Z || ey TR ([un, pa)) ||£'~(T))

Ecé&nn TETh

i\‘ —

+ (Z | hr(Rr([up, pr]) — HrRr([un, prl)) ||£’r’(T)>

TET;,

+ " hell 3p(un, pal) — e, pal) I s

E€&nn
min 1, 7
0 u=w 57 o= pally.

Finally we use inequality (5.22) to get
i,

r minq 1,
S b Tpdn(unon) v | 326 u—un [ 4 p = pilg

Eeén,n

3=

+ (Z [l oz (R ([un, pn]) — Hr R ([un, pal)) ||£IT'(T)> r

TeTh

e

+1 > hellIs(un pa)) — Deds([un a)) [T

E€é&p,a

and the desired result then follows by arguing in exactly the same way as in the proof
of Theorem 16. O
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6 Numerical results on uniform grids

In this section we report some numerical results to test the behaviour of our estimates
with respect to the meshsize h and the parameter 7.

Remark 24 For the sake of simplicity, the analysis presented in the previous sections
concerned homogeneous Dirichlet boundary conditions. It is straightforward to extend
the previous analysis to the case of mized Dirichlet—Neumann boundary conditions. In
fact, let us consider the boundary I' split into a relatively closed Dirichlet section I'p with
ITp| > 0 and a relatively open Neumann section Ty = I'\I'p. On the Neumann boundary
we tmpose the value of the normal stress o -n = g. In this case the pressure is defined
uniquely rather than up to a constant value only, and therefore || p||q is simply || p ||L,:(Q)
instead of inf.cr ||p + c||LT/(Q). In the previous a posteriori error estimates erpressed
in terms of computable residuals we need to add terms on the boundary faces E C I'y
sitmilar to the jump terms defined on the internal faces. This can be achieved very simply
by adding to the internal face-jumps the quantities Jg([up, pr]) = |0 -1 —g|r defined on
the Neumann boundary faces and the corresponding approzimations pJg([uy, pr]). In
the following, we introduce the notation Enory = EnaUEnN where Enn = {E € &,
E € T'x}, so as to amalgamate the terms arising on Neumann boundary faces with the
terms which appear on internal faces.

In the tables corresponding to the different test problems we report the following
computable residuals and jumps involved in our error bounds:

Rres = Y A TrRe([un, pal) I 1),

TET
R.jumps = Z hE‘ || HEJE([thph]) ||£’J(E)’
Eegna,ry
Recont = ||V -uylf g,

the errors of our approximate solutions:
EVh = |[u—u,ly =|e(u—-uy) ||£’“(Q):
Eph = [lp—pullg-
and the two effectivity indices corresponding to the upper and the lower bounds:
R/, Ry

eil = (Zhffr’||HTRT([uhaph])||£r'(T)) +1 D el Tede(funpa) I @

TETs Eegna,ry

1

! 3 5
IV - wn i/ [la = w5+ o= pa 3]

=
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R/ RL

ell = (Zh | Ty Rer ([, p)) Il (T)) +1 Y. helTeds(un,pa)) |5 s

TETs, E€énary

1 1
! 3 R 2
+||V'uh ||fT(Q):| / [||u_uh||vL+||p_ph||g]

All of our numerical solutions are obtained using quadratic finite elements for the
velocity components and linear finite elements for the pressure. All the integrals involved
in the computation of the residuals and of the true errors are computed with quadrature
formulas exact for polynomials of degree seven, so we assume that the approximations of
the residuals can be neglected with respect to the other terms. The systems of nonlinear
equations are solved by Newton’s method supplemented by a line-search globalization
method. The Jacobi matrix is preconditioned by the ILUT incomplete LU factorization
with drop-tolerance. Failure is declared if the residual of the nonlinear system is greater
than 1.0E-10 after 200 iterations. The code is based on the libMesh [17] and PETSc [2]
libraries.

6.1 Problem 1: cavity flow

The first numerical results we report are obtained on a cavity-like problem in which the
flow exhibits a counterclockwise vortex whose centre moves toward the right-vertical wall
when increasing r or # in the experiments performed on the power-law and the Carreau
law, respectively.

For these test problems the domain €2 is the unit square, we impose the exact value
of the normal stress on left-vertical wall and homogeneous Dirichlet boundary conditions
for the velocity on the other parts of the boundary of the domain. The exact solution is

given by
u(z,y) = (1—cos <2w>>sin(2wy),

e*—1
) 7w (e** —=1)\ 1 —cos(2my)
— QT 2
v(z,y) ae sm( o1 ) o1
) 7w (e*® — 1)\ sin (27 y)
= 2 “Tsin | 2
p(z,y) Tae 1n< | ) a1

where the parameter « has to be replaced by 7 in the experiments for the power-law and
by € in the experiments for the Carreau law. The centre of the vortex is located at the
point zc = (1/a)log (£52), ye = 1/2. The two components of the forcing function are
chosen so that the reported expressions for u, v and p are the exact solution when the
function k(-) corresponds to the power-law or to the Carreau law, respectively.

The strong nonlinearity imposed a limitation on the range of values of the parameters
r, i, A for which convergence of the nonlinear problem could be observed on all four
grids in our refinement sequence.
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Table 1: Problem 1, power-law: r=1.8
dofs R.res | R.jump R.cont E.Vh E.ph eiU | eil
295 85.55 2.428 | 4.555E45 | 5.262E45 1.06 0.4476 | 0.9305
1091 | 4.812 | 0.07042 9114 1.11E+4 | 0.04197 | 0.5403 | 0.9065
4195 | 0.2334 | 0.001307 151.7 189.2 0.001678 | 0.6698 | 0.8962
16451 | 0.01061 | 2.214E-5 3.592 4.472 7.108E-5 | 0.8266 | 0.8975
Table 2: Problem 1, power-law: r=2.0
dofs R.res | R.jump R.cont E.Vh E.ph eiU | eil
295 57.42 2.985 1.269E+5 | 1.338E+5 | 1.145 | 0.9739 | 0.9739
1091 | 4.444 0.1383 3887 4269 0.06381 | 0.9548 | 0.9548
4195 | 0.3003 | 0.003729 90.54 102.7 0.003573 | 0.9406 | 0.9406
16451 | 0.01925 | 9.059E-5 2.148 2.425 2.139E-4 | 0.9454 | 0.9454
We start by considering the power-law problem, where k(t) = 2ut"2. The com-

putations are performed on quasi-uniform triangulations with 70, 294, 1190 and 4774
elements obtained by successive uniform refinement, and with 4 = 1.0E — 3. From the
last two columns of Tables 1-3 we can clearly see the mismatch between the upper and
the lower bounds when r # 2 and that e.i.L is weakly dependent on the meshsize while
e.i.U displays a non-negligible dependence on the meshsize.

Tables 4, 5 report the results obtained on the same grid in the case of the Carreau
law, k(t) = koo + (ko — koo) (1 4+ X2)0=2/2 with ke, = 1, kg = 2, A = 1.0E — 5, the choice
of this small value of A being due to the very strong nonlinearity in this test problem;
with larger values of A we were unable to achieve convergence of the Newton iteration
on all four uniform meshes considered. Since k., # 0, we have r = 2, so e.i.U=e.i.LL for
all values of . As expected, the effectivity indices are essentially independent of the
meshsize.

Table 3: Problem 1, power-law: r=3.0

dofs R.res R.jump R.cont E.Vh E.ph eiU | eiL
295 38.44 6.68 1.009E+4 | 7136 1.53 0.2678 | 1.279
1091 5.244 0.8402 720.6 577.4 0.231 0.3869 | 1.14
4195 | 0.704 0.0516 4.793 4.219 | 0.02315 | 0.9228 | 1.154
16451 | 0.09149 | 0.003797 | 0.08016 | 0.07207 | 0.002735 | 1.97 | 1.145




Two-sided a posteriori error bounds for quasi-Newtonian flows

Table 4: Problem 1, Carreau law: #=1.2

dofs | R.res | R.jump R.cont E.Vh E.ph eiU | eilL
295 147.1 40.43 0.4206 0.9132 0.559 11.3 | 11.3
1091 | 11.55 2.462 0.02627 0.06653 | 0.02635 | 12.29 | 12.29
4195 | 0.7757 | 0.1445 | 0.001715 | 0.004457 | 0.00136 | 12.59 | 12.59
16451 | 0.0522 | 0.008775 | 0.0001095 | 0.0002839 | 7.863E-5 | 12.98 | 12.98
Table 5: Problem 1, Carreau law: #=2.0
dofs | R.res | R.jump | R.cont E.Vh E.ph eiU | eiL
295 | 466.5 140 1.487 3.662 1.551 10.8 | 10.8
1091 | 36.31 9.31 0.1019 0.2314 0.07375 | 12.24 | 12.24
4195 | 2.721 | 0.5778 | 0.006635 | 0.01731 | 0.003741 | 12.53 | 12.53
16451 | 0.1771 | 0.03433 | 0.0004272 | 0.001147 | 0.0002166 | 12.47 | 12.47
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7 Numerical results on adapted grids

In this section we present some results obtained by using the residual-based a posteriori
bounds to adapt the meshes. We are mainly interested in the power-law model for
which we have a degenerate viscosity law, but we also consider a Carreau law problem
with ks = 0, as it is in these two cases that the sharpness of our estimates is most
difficult to ensure in practice. Due to the dependence of the effectivity indices on the
meshsize observed in some of our numerical experiments on uniform grids, we believe
that these estimates should not be used for reliable and accurate control of the true
error. Nevertheless, they provide useful information for the purposes of mesh-adaptivity
aimed at improving the results of a computation. Moreover, due to the strong singularity
introduced by the power-law model with » < 2, we noticed occasional strong oscillations
of the residual IIrRy([uy, pp]) in the domain. For these reasons we chose a very simple
and somewhat crude adaptive algorithm: we compute, separately, for each element
T € Ty, the two quantities
/ ’ 1 /
Runom,r = Iy || TlrRer ([Wh; pa]) [l1 () + 5 > he | TeIe((un, pa]) I
Eceg(T)NEpn
+ D

Ecg(T)NERN

hi (| e s ([an, pu]) 1 gy

and Reont,r = ||V -y [|i-(7)- Then we sort each of the two vectors and we split our
marking stage into two distinct steps. First we select for refinement a fixed percentage of
the elements having the largest values Ryom, m; we then do the same for Reont, T separately.
Second, we select for coarsening a fixed percentage of the elements having the smallest
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value Rmom,T, respectively Reont v- We then explicitly mark for refinement the elements
which have been selected for refinement according to at least one of their values Rmom,T
or Reont, T and we explicitly mark for coarsening the elements which have been selected for
coarsening according to both Ryom T and Reong, 7. All the elements marked for refinement
are then refined, but the elements marked for coarsening are coarsened only if this
operation is compatible with the action we have to perform on the neighbouring elements,
i.e. if none of the neighbouring elements have to be refined and if all children of a given
parent element are marked for coarsening. To make the adaptive process more flexible
we allow the presence of hanging nodes in the refined meshes.

To test the behaviour of our adaptive method we consider a linear problem [11, 26]
and we apply our adaptive method to it. The problem has the following exact solution
in polar coordinates:

u(r,@) = ((I+a)sin(@)w(e) + cos(d)ws(9))
v(r,¢) = 1% (=(1+a) cos(d)w(@) + sin(¢)wy(¢)),
p(r¢) = 1 ()" w(6) + wess(0)

-« ’
w(p) =

sin((1—a)¢) cos(aw)
l-a

sin((14+)¢) cos(aw) cos((14a)¢) —

o + cos((1—a)9),

where o = 856399/1572864 and w = 37 /2. The forcing function f is identically zero, the
viscosity coefficient is 4 = 1 and the computational domain €2 is the L-shaped domain
Q=(-1,1)2\10,1]x[-1,0].

In the linear case (r = 2) our estimates collapse to the classical estimates for the
Stokes problem by Verfiirth. In Table 6 we report the results obtained by performing
seven adaptive steps. We start by marking for refinement 40% of the elements having
the largest values Ryom 1 and Reont, v and by marking for coarsening 4% of the elements
having the smallest values Rmom, T and Reont,7- In each adaptive iteration we divide by
two these percentages. These are the values that we shall use in all of our adaptive
test problems. The reduction of the refinement percentage of the elements is motivated
by the fact that increasing the total number of the active elements and keeping this
percentage fixed would result in adding more and more elements in each iteration and
this makes the solution of the resulting nonlinear systems increasingly more difficult. In
Figures 4, 5 we report the initial and the final mesh. This adaptive method can lead
to a small over-refinement due to the fact that it deals separately with the momentum
residual and the continuity residual even when one of these is much smaller than the
other. We postpone to a future study the development of an improved marking strategy;
for the moment, this appears to be the simplest approach for dealing with the different
powers of the two residuals in the upper and lower bounds. The nonoptimality of the
marking strategy is probably the cause of the moderate increase of the effectivity index
we observe in Table 6 under mesh refinement. Nevertheless, the resulting final mesh in
Figure 5 displays a clear refinement around the re-entrant corner and is quite clean away
from it.

The geometries that we consider for the remaining adaptive tests are two channels
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Table 6: Linear adaptive test problem: error estimators and true errors during the

adaptive process

dofs | R.res | R.jump | R.cont E.Vh E.ph | eiU | ei.L
259 | 18.34 | 12.48 0.6418 1.045 3.575 | 2.609 | 2.609
654 | 8.689 | 5.851 0.2977 | 0.4892 | 1.688 | 2.611 | 2.611
1240 | 4.109 | 2.741 0.1387 | 0.2287 | 0.7926 | 2.616 | 2.616
1835 | 2.017 | 1.309 0.0653 | 0.1079 | 0.3732 | 2.655 | 2.655
2232 | 1.057 | 0.6438 | 0.03108 | 0.05149 | 0.1765 | 2.756 | 2.756
2482 | 0.6188 | 0.3375 | 0.01509 | 0.02511 | 0.08412 | 2.982 | 2.982
2629 | 0.4326 | 0.2018 | 0.007636 | 0.01286 | 0.04094 | 3.454 | 3.454

41

Figure 4: Linear adaptive test problem: Figure 5: Linear adaptive test problem, fi-

starting mesh

nal mesh
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Figure 6: Geometry of the domain ()4 Figure 7: Geometry of the domain €,
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Figure 8: Exact velocity profiles for fully developed power-law flows

of unit height and five units long each, with a cavity in the lower wall which is either
one or two units deep (called domains ©; and €, respectively); see Figures 6 and 7.

7.1 Adaptive problem 1: power-law

In this test problem we impose the exact velocity profile for the fully developed power-law
flow (Figure 8) at the inflow and the exact values of the normal stress for a fully developed
flow at the outflow, and we consider two values of r, one giving a singular viscosity

coefficient (r = 1.3) and the other giving a possibly degenerate viscosity coefficient
(r =3.3).

7.1.1 Singular case r = 1.3

The computations are performed with the following parameters for the power-law
model: =13, p = 1.0E — 2.
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Table 7: Adaptive problem 1, power-law, » = 1.3, €;: error estimators during the

adaptive process

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

635

2.7314E-03

6.7143E-08

4.5333E-01

5.1941E-01

4.5606E-01

1479

4.5745E-05

2.4162E-08

2.3615E-01

2.4639E-01

2.3620E-01

3294

3.9160E-05

7.7523E-09

1.1584E-01

1.2527E-01

1.1588E-01

2645

3.4372E-06

2.8258E-09

5.7967E-02

6.1088E-02

5.7970E-02

7836

8.7147E-07

1.3763E-09

3.5581E-02

3.7259E-02

3.5582E-02

9437

6.5104E-07

7.0604E-10

2.4311E-02

2.5766E-02

2.4312E-02

10339

6.6626E-07

3.7340E-10

1.9093E-02

2.0548E-02

1.9093E-02

Table 8: Adaptive problem 1, power-law, r = 1.3,
adaptive process

10

QQZ

error estimators during the

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

753

2.7953E-03

1.0252E-07

4.5013E-01

5.1248E-01

4.5292E-01

1961

4.7504E-04

3.7595E-08

2.1887E-01

2.4592E-01

2.1935E-01

4384

5.1211E-05

1.0806E-08

1.0146E-01

1.1095E-01

1.0152E-01

7478

4.2915E-06

4.2163E-09

5.2594E-02

5.5584E-02

9.2598E-02

10532

9.0763E-07

2.0577E-09

2.9338E-02

3.0797E-02

2.9339E-02

12766

2.2048E-06

1.0515E-09

1.8854E-02

2.1013E-02

1.8856E-02

14082

5.1441E-07

5.4362E-10

1.4126E-02

1.5223E-02

1.4126E-02

107 |

—— tot.R.U
tot.R.L

~

N

10
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tot.R.L
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10000
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Figure 9: Adaptive problem 1, power-law,
r = 1.3: total residuals during the adaptive
process on {2y

Figure 10: Adaptive problem 1, power-law,
r = 1.3: total residuals during the adaptive
process on {2y
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Figure 13: Adaptive problem 1, power-law, Figure 14
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Adaptive problem 1, power-law,
pressure surface on the final mesh

on the domain €2,

r = 1.3: pressure surface on the final mesh r =1.3

Figure 15: Adaptive problem 1, power-law, Figure 16
on the domain €2,
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Figure 17: Adaptive problem 1, power-law, Figure 18: Adaptive problem 1, power-law,
r = 1.3: u velocity component on the final r = 1.3: u velocity component on the final
mesh on the domain 2 mesh on the domain €2,

_05 I I I I I I I I I | 05 I I I I I

Figure 19: Adaptive problem 1, power-law, Figure 20: Adaptive problem 1, power-law,
r = 1.3: u velocity component profile on r = 1.3: u velocity component profile on
the final mesh on the domain €2, the final mesh on the domain €2,
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Figure 21: Adaptive problem 1, power-law, Figure 22: Adaptive problem 1, power-law,
r = 1.3: u velocity component profile on r = 1.3: u velocity component profile on
the final mesh on the domain €);; detail in the final mesh on the domain {25; detail in
the lower part of the cavity the lower part of the cavity

Figure 23: Adaptive problem 1, power-law,
r = 1.3: u velocity component on the final
mesh on the domain {2y; detail in the lower
part of the cavity

Figure 24: Adaptive problem 1, power-law,
r = 1.3: pressure profile on the final mesh
on the domain €29
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In Table 7 we report the residuals R.res, R.jumps and R.cont in the same way as in
the tables of the previous section, and the quantities

7

i 08
tot.R.U = (Z h’"T' | Iy R ([us, p1)) ||£I"(T)>

TeTy
By
’ !
+ Z he || eI e([us, ph)) ||£T'(E) +[|V-u ||fr(n)
Ecéharry
Ry
tot.R.L = (Z h || TR ([wn, pa)) (17 (T)
TeTs
Ry

! !
+ Z he || HeJEe([un, ph]) ||£T'(E) +[V-u, ||fr(n)

E€é&p.a,ry

obtained on the domain €2y, and in Table 8 we report the same quantities obtained on
(25. The main difference between these two problems is that in the second case the
solution exhibits a very slow clockwise vortex inside the cavity. In Figures 9 and 10 we
plot the last two columns of the Tables 7 and 8. We can see that the two total residuals
stay very close to each other throughout the adaptive process. In Figures 11 and 13 we
show the starting mesh and the final mesh produced by the adaptive algorithm applied
on the domain €2y, while in Figures 12 and 14 we show the starting mesh and the final
mesh produced by the adaptive algorithm applied on the domain €2,.

In the adapted grids of Figures 13 and 14 we have a strong refinement around the
two upper corners of the cavity. We can also see mesh refinement along the centre-
lines of the inflow and of the outflow channels where |Vu,|"? > 1. In other words,
refinement along the centre-lines of the inflow and outflow channel appears to be caused
by the singularity in the nonlinear viscosity model when the velocity gradient vanishes.
In these parts of the domain the flow is essentially the fully developed flow that displays
a vanishing gradient in the centre of the channel.

In Figure 14 we can also recognise a refined region inside the cavity containing the
center of the vortex that we have in the lower part of the cavity. This refinement is not
present in the solution corresponding to the domain 2; where this vortex is absent. In
Figures 19 and 20 we report the profiles of the v component of the velocity on the two
domains. The point of view is from the inflow direction. In Figure 21 we show a zoom
into this profile and we can see that on {2; the first component of the velocity vanishes
towards the bottom of the cavity while remaining nonnegative. In Figure 22 we show
a detail of the profile of u in the lower part of the cavity of the domain 2y and we see
the negative values of u in the lower part of the clockwise vortex at the bottom of the
cavity. We can also notice that these values are very small due to the fact that the
very small values of the derivatives of the velocity give rise to very large values of the
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Table 9: Adaptive problem 1, power-law, » = 3.3, €;: error estimators during the

adaptive process

S. Berrone and E. Sili

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

635

3.9478E-02

1.7220E-02

5.0579E-02

2.2058E-01

1.7841E-01

1396

1.3360E-02

7.0335E-03

2.2530E-02

1.2078E-01

1.0383E-01

2692

5.8042E-03

3.1175E-03

9.9591E-03

7.0128E-02

6.2291E-02

4548

3.0093E-03

1.5369E-03

4.6169E-03

4.2957E-02

3.8836E-02

6217

1.8593E-03

8.9001E-04

2.1729E-03

2.7076E-02

2.4539E-02

7780

1.3605E-03

6.0682E-04

1.0273E-03

1.7417E-02

1.5583E-02

8597

1.1390E-03

4.6404E-04

4.8882E-04

1.1453E-02

9.9512E-03

Table 10: Adaptive problem 1, power-law, r = 3.3, {25: error estimators during the

adaptive process

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

753

4.4187E-02

1.8418E-02

5.1408E-02

2.2811E-01

1.8225E-01

1735

1.3432E-02

7.1411E-03

2.3395E-02

1.2328E-01

1.0618E-01

3328

5.4933E-03

3.0068E-03

1.0377E-02

7.1253E-02

6.3765E-02

0122

2.8715E-03

1.5320E-03

4.8263E-03

4.3861E-02

3.9863E-02

7073

1.7598E-03

8.6224E-04

2.2704E-03

2.7605E-02

2.5181E-02

8684

1.2657E-03

5.5847E-04

1.0757E-03

1.7710E-02

1.6007E-02

9569

1.0330E-03

4.2030E-04

5.1128E-04

1.1575E-02

1.0210E-02

viscosity coefficient. From Figure 23 we can see that the refined region inside the cavity
corresponds to the region where we have strong changes in the curvature of u exactly
where the first component of the velocity changes from positive to negative values.

In Figure 24 we report the pressure profile; the point of view is from the bottom of
the cavity. We can see that the pressure singularities in the top corners of the cavity
are well detected in our adapted solution thanks to the strong refinement of the mesh
in these regions.

7.1.2 Nonsingular case r = 3.3

In this case we take r = 3.3; the geometry, the starting grid as well as all the adaptive
parameters are unchanged.

In Tables 9 and 10 we report the residuals and the error estimators as in the previous
cases. In Figures 25 and 26 we plot the last two columns of the Tables 9 and 10; again
the upper and the lower total residuals are very close to each other. In Figures 27 and 28
we show the final meshes produced by the adaptive algorithm. In Figures 27 and 28 we
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r = 3.3: final mesh on the domain {2,
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Figure 30: Adaptive problem 1, power-law,
r = 3.3: u velocity component on the final
mesh on the domain €2,

Figure 29: Adaptive problem 1, power-law,
r = 3.3: pressure surface on the final mesh
on the domain €2,
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r = 3.3: u velocity component profile on 7 = 3.3: u velocity component profile on
the final mesh on the domain € the final mesh on the domain €)y; detail in

the lower part of the cavity
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Figure 33: Adaptive problem 1, power-law, Figure 34: Adaptive problem 1, power-law,
r = 3.3: u velocity component on the final r = 3.3: pressure profile on the final mesh
mesh on the domain €2y; detail in the lower on the domain

part of the cavity

can clearly see a strong refinement in the centre of the channel where the velocity profile
of the fully developed flow displays large values of the higher derivatives (Figure 8) and
a vanishing gradient giving a degenerate viscosity instead of a singularity of the viscosity
coefficient as in the previous case of r = 1.3.

In Figures 29 and 30 we report the pressure and the u component of the velocity
obtained on the final mesh on the domain €2,.

In Figures 31-33 we show several details of the u component of the velocity. The
vortex in the lower part of the cavity is, in this case, much stronger than when r = 1.3,
but it does not display the same strong changes in curvature as for r = 1.3. Moreover the
slope of the u component of the velocity is almost constant and nonzero in the transition
region between positive values and negative ones. The velocity in this region seems to
be easy to capture by our quadratic elements without requiring any special refinement.

In Figure 34 we report the pressure profile to show how the singularities in the upper
corners of the cavity are well described on our final adapted mesh.

7.2 Adaptive problem 2: Carreau law

In this problem we consider the same geometries as in the previous problem, but we
change the viscosity model to the Carreau law. The computations are performed with
the following parameters: § = 1.3 or 0§ = 3.3, koo = 0, kg = 3.0E — 2, A = 1.0F — 4.
Instead of k., we consider the more interesting case with k., = 0 here, because we then
have r = 6 # 2 and we can therefore observe a mismatch between the upper and the
lower estimate. For the Carreau problem we cannot impose the exact solution for the
fully developed flow at inflow and outflow, since it is unknown to us. Instead, we impose
a parabolic velocity profile at the inflow and the associated homogeneous Neumann
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Table 11: Adaptive problem 2, Carreau law, r = 1.3, {2;: error estimators during the

adaptive process

S. Berrone and E. Siili

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

635

3.2467E-06

4.9681E-07

3.1933E-01

3.2349E-01

3.1933E-01

1517

2.5058E-06

3.9348E-07

1.2489E-01

1.2859E-01

1.2489E-01

2776

2.2925E-06

3.5780E-07

5.2025E-02

9.5579E-02

5.2028E-02

4177

2.2115E-06

3.4362E-07

2.4489E-02

2.7982E-02

2.4492E-02

0238

2.1263E-06

3.3652E-07

1.3776E-02

1.7215E-02

1.3779E-02

0983

1.9428E-06

3.3118E-07

9.7409E-03

1.3074E-02

9.7432E-03

6473

1.6579E-06

3.2734E-07

8.0746E-03

1.1239E-02

8.0766E-03

Table 12: Adaptive problem 2, Carreau law, r = 1.3, {25: error estimators during the

adaptive process

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

753

7.3488E-06

6.2609E-07

3.3244E-01

3.3808E-01

3.3245E-01

1780

3.9394E-06

4.8279E-07

1.2542E-01

1.2984E-01

1.2542E-01

3161

3.2687E-06

4.3335E-07

5.2211E-02

5.6306E-02

5.2215E-02

4740

2.9818E-06

4.1090E-07

2.3741E-02

2.7686E-02

2.3744E-02

6005

2.7517E-06

3.9726E-07

1.3171E-02

1.6996E-02

1.3174E-02

6841

2.4426E-06

3.8740E-07

9.1061E-03

1.2773E-02

9.1089E-03

7352

2.0055E-06

3.7732E-07

7.5109E-03

1.0941E-02

7.5133E-03

boundary condition at the outflow. The inconsistency between the flow that we have
inside the outflow channel and the outflow boundary condition is responsible for the
refinement at the outflow that we can observe in Figures 37, 38, 41, 42. We can clearly
see that the region refined by the adaptive method around the cavity is detached from
the refined region at the outflow.

721 Casefl=r=1.3

First we take # = r = 1.3. In Tables 11 and 12 we report the residuals and the error
estimators, as in the previous cases. In Figures 35 and 36 we plot the last two columns of
these tables and we can see that tot.R.U and tot.R.L tend to behave smoothly, though in
a slightly different way, during the adaptive mesh-refinement process, due to the different
powers of the residual and the jump-terms in the upper and lower bounds.
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Figure 35: Adaptive problem 2, Carreau Figure 36: Adaptive problem 2, Carreau
law, r = 1.3: total residuals during the law, r = 1.3: total residuals during the
adaptive process on {2y adaptive process on {29

Figure 37: Adaptive problem 2, Carreau Figure 38: Adaptive problem 2, Carreau
law, » = 1.3: final mesh on the domain €2, law, » = 1.3: final mesh on the domain 2,
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Table 13: Adaptive problem 2, Carreau law, r = 3.3, 2;: error estimators during the

adaptive process

S. Berrone and E. Sili

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

635

1.8150E-02

1.3670E-02

1.3975E-01

3.3523E-01

3.0967E-01

1378

8.5208E-03

5.8908E-03

9.5805E-02

2.5577E-01

2.4344E-01

2682

3.6463E-03

2.5735E-03

6.7845E-02

2.0203E-01

1.9645E-01

3997

1.8907E-03

1.2514E-03

4.8327E-02

1.6256E-01

1.5967E-01

2083

1.2081E-03

7.5233E-04

3.4401E-02

1.3170E-01

1.2987E-01

2825

9.5309E-04

5.4282E-04

2.4441E-02

1.0696E-01

1.0555E-01

6218

8.5824E-04

4.6508E-04

1.7275E-02

8.6784E-02

8.5537E-02

Table 14: Adaptive problem 2, Carreau law, r = 3.3, {9: error estimators during the

adaptive process

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

753

2.0934E-02

1.5544E-02

1.4227E-01

3.4320E-01

3.1430E-01

1701

8.6839E-03

6.1584E-03

9.7525E-02

2.5882E-01

2.4614E-01

3071

3.7983E-03

2.6329E-03

6.8755E-02

2.0383E-01

1.9807E-01

4582

1.9100E-03

1.2637E-03

4.8854E-02

1.6364E-01

1.6072E-01

0911

1.1582E-03

7.0644E-04

3.4759E-02

1.3242E-01

1.3068E-01

6732

8.8642E-04

4.8792E-04

2.4693E-02

1.0750E-01

1.0620E-01

7244

7.8052E-04

4.0658E-04

1.7386E-02

8.6981E-02

8.5859E-02

7.2.2 Caseff=r=23.3

In this last case we only change 6 and take § = 3.3. Otherwise all parameters have
the same values as in the previous experiment. In Tables 13 and 14 and in Figures 39
and 40 we report the residuals and the error estimators, as in the previous cases. Here
the total residuals corresponding to the upper and the lower bounds do not display the
mismatch seen for » = 1.3. Figures 41 and 42 report the final meshes obtained by the
adaptive process. We can see strong refinement around the corners of cavity and around
the outflow edge due to the boundary condition.

7.3 Adaptive problem 3

Our final adaptive test-problem is Problem 1 considered in Section 6, again with the
power-law model. The adaptive strategy we apply is the same as in the previous two
problems of this section with the same adaptive parameters. In Tables 15 and 16 we
compare the residuals with the exact errors and we report the effectivity indices as in
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Figure 41: Adaptive problem 2, Carreau Figure 42: Adaptive problem 2, Carreau

law, r = 3.3: final mesh on the domain 2,

Table 15: Adaptive problem 3, » = 1.8: residuals, true errors and effectivity indices

during the adaptive process

law, » = 3.3: final mesh on the domain 2,

dofs | R.res R.jump R.cont E.Vh E.ph e.i.U e.i.lL

295 | 85.47 2477 | 4.628E45 | 5.345E45 | 1.058 | 0.4473 | 0.9307
700 | 5.665 | 0.09718 | 1.617E+4 | 1.957E+4 | 0.05453 | 0.525 | 0.909
1523 | 0.9629 | 0.01355 2500 3059 0.007893 | 0.5789 | 0.9042
2328 | 0.3489 | 0.003932 779 967.7 0.003183 | 0.6125 | 0.8974
3265 | 0.1704 | 0.001871 350.2 441 0.001386 | 0.6356 | 0.8914
3908 | 0.1183 | 9.977E-4 207.8 264.8 8.91E-4 | 0.65 | 0.8861
4270 | 0.09899 | 7.506E-4 143.9 184.9 6.873E-4 | 0.6605 | 0.8826
4511 | 0.08815 | 7.031E-4 133.9 171.9 6.23E-4 | 0.6634 | 0.8829
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Table 16: Adaptive problem 3, » = 3.0: residuals, true errors and effectivity indices
during the adaptive process

dofs | R.res | R.jump | R.cont | E.Vh E.ph eiU | eiL
295 | 38.67 | 6.793 | 1.045E+4 | 7471 1.524 | 0.2647 | 1.273
716 | 5.533 | 0.8902 801.6 632.9 | 0.241 | 0.3827 | 1.146
1471 | 1.283 | 0.1366 99.41 67.78 | 0.04777 | 0.5809 | 1.174
2527 | 0.6185 | 0.05649 30 20.81 | 0.02137 | 0.7045 | 1.161
3625 | 0.3794 | 0.03065 9.625 6.879 | 0.01231 | 0.8468 | 1.153
4422 | 0.286 | 0.02421 7.138 5.026 | 0.01007 | 0.8939 | 1.153
5106 | 0.2339 | 0.01914 4.797 3.345 | 0.008414 | 0.9621 | 1.157
5487 | 0.2097 | 0.01566 4.046 2.747 | 0.007243 | 1.003 | 1.166

Section 6, for the two values r = 1.8 and r = 3.0, with 4 = 1.0F — 3. We can see in
Table 16 that the lower effectivity index e.i.L. and the upper effectivity index e.i.U are
both quite close to 1.

8 Approximate computation of ||hrIlrRy([ug, pa))||; - )
In this section we wish to propose an heuristic approximation of the norm of the residual
in each triangle that avoids the computation of second derivatives of the approximate
solution and of first derivatives of the viscosity function k(.) required in the computation
of V -0 by the product rule for differentiation. This approximation can be useful when
the viscosity model is the power-law and the computational domain contains large regions
where the gradient of the solution is very small (which is usually the case when 1 < r <
2). The approximation is based on the inequalities (5.7) that imply

hr 11 uy, brv dQ2
||hTHTRT([uh,ph,]) ||LT’(T) = sup ‘fT T TRT([ h ph]) TV ‘

vEVT | brv ||LT(T)

(8.1)

The previous relation holds for every finite-dimensional function space Vg such that
rRr([un, pr]) € Vr. We can avoid the computation of the first and second derivatives
referred to above by observing that

/HThTRT([uhaph])bTUdQ = /hTRT([uhaph])bTUdQ
T T
+ hr (/ HTRT([uhaph])bTUdQ_/RT([uhaph])bTUdQ>
T T
~ / hr(f + ¥ -on)brv A9
T

= / hT(f bTU — Op . V(bTU)) dQ2
T
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obtained by integration by parts and exploiting the fact that by vanishes on OT’; here
on = k(le(uy)|)e(uy) — ppl. Noting that

/ hT(be’U — Op V(bTU)) dQ = / hTHT(f bTU — Op V(bTU)) dQ2
T T

+ hp (/T(fb;rv — oy, 2 V(brv)) dQ —/

T

Ma(gbr0 —on  V0rv)

~ / hTHT(f bTU — Op - V(bTU))
T

then motivates us to use the following approximation:

| fT hT H’]’(be - O'thT) dQ‘

: (8.2)
167 Wl

|| hr e Rer (U, pr)) ||LT'(T) ~

which can be viewed as an approximation of the norm of the residual if the residual is
constant on each element.

In what follows, we shall compare the residuals obtained by the exact and this ap-
proximate computation of || hy TR ([us, pa]) || for power-law flows with r = 1.3
and 7 = 3.3. When 1 < r < 2 the viscosity coefficient &(.) is singular and sometimes the
internal residual can display strong oscillations in parts of the computational domain
where the velocity gradient vanishes; this is, most probably, due to the fact that in the
computation of the residual we need to evaluate the quantity k(| Vuy |) = 2u|Vu, |72
and its partial derivatives in these regions. We present some computations performed
with the following parameters: 2y, p = 5.0E'—2, r = 1.3, with the initial refinement per-
centage set to 40%, the initial coarsening percentage set to 4% and the reduction-factor
in these percentages equal to 3 in each refinement step.

As before, In Tables 17 and 18 we compare the residuals during the adaptive steps
obtained by exact computation of the norm of the residual on the one hand and with
approximate computation of the norm of the residual as proposed above on the other.

In Figures 43 and 44 we compare the final meshes obtained with the two methods.
The meshes are quite similar, but the approximate computation of the residuals gives
cleaner meshes in the outflow channel where, despite the singularity of k(.), the solution
is quite easy to capture on a grid that is coarse around the centre-line of the channel.

In Figures 45 and 46 we compare the total residuals during the adaptive process and
in Figures 47, 48 and 49 we plot the maximum over the triangles of all the residuals,
their mean-values and their root-mean-square (r.m.s.). We can notice the markedly
oscillatory behaviour of the exactly computed residuals.

In the following we report the corresponding tables and figures obtained with the
same parameters but on the domain €2,. In Tables 19 and 20 we compare the residuals
during the adaptive steps. In Figures 50 and 51 we compare the final meshes obtained
with the two methods.

In Figures 52 and 53 we compare the total residuals during the adaptive process.
Clearly, a more regular behaviour of the total residuals is observed during the adaptive
process when we use the approximation proposed above. In Figures 54, 55 and 56 we
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Table 17: Adaptive problem 1, power-law, r = 1.3, {2;: error estimators during the

S. Berrone and E. Sili

adaptive process, exact computation of the norm of residuals

dofs R.res R.jump R.cont tot.R.U tot.R.L

635 | 2.9191E+00 | 7.1759E-05 | 4.5333E-01 | 2.1051E400 | 3.3725E400
1479 | 4.8889E-02 | 2.5823E-05 | 2.3615E-01 | 4.9211E-01 | 2.8507E-01
2792 | 5.5945E-02 | 9.1856E-06 | 1.2777E-01 | 3.9677E-01 | 1.8372E-01
3854 | 6.3930E-03 | 3.5964E-06 | 7.6642E-02 | 1.7682E-01 | 8.3039E-02
4249 | 1.2689E-03 | 2.2270E-06 | 5.7644E-02 | 1.0614E-01 | 5.8915E-02
4370 | 8.6905E-04 | 1.7808E-06 | 5.1195E-02 | 9.2074E-02 | 5.2066E-02
4452 | 2.4884E-04 | 1.1530E-06 | 4.8946E-02 | 7.2469E-02 | 4.9196E-02

Table 18: Adaptive problem 1, power-law, r = 1.3, {2;: error estimators during the

adaptive process, approximate computation of the norm of residuals

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

635

5.6523E-04

7.1759E-05

4.5333E-01

4.9726E-01

4.5397E-01

1525

1.1391E-04

2.5889E-05

2.3435E-01

2.5712E-01

2.3449E-01

2733

2.0579E-05

9.0263E-06

1.2840E-01

1.3996E-01

1.2843E-01

3579

9.7671E-06

3.8928E-06

7.7996E-02

8.6052E-02

7.8009E-02

3906

6.4137E-06

2.5198E-06

6.0753E-02

6.7371E-02

6.0762E-02

4032

4.1799E-06

1.8161E-06

5.3974E-02

5.9506E-02

5.3980E-02

4098

3.0807E-06

1.3769E-06

5.1659E-02

5.6491E-02

5.1664E-02

plot the maximum of all the residuals, their mean-values and their root-mean-square;
again we can see that the approximate computation of the norm of the internal residual
in each element leads to a more regular decrease of all quantities considered. Moreover,
in these cases, using this approximation, the values of the residuals in each element are of
the same order of magnitude as the jumps, and in this way an adaptive method based on
the values of Rmom,r takes into account in roughly equal measure the two contributions
from the momentum equation to the total residual.

We conclude this section by reporting some results obtained on the domain €2, with
r = 3.3, all other parameters being kept fixed.

In Tables 21 and 22 we compare the residuals during the adaptive steps. In Fig-
ures 57 and 58 we compare the total residuals during the adaptive process. We clearly
observe that in this case there isn’t a noteworthy difference between the approximate
computation of the norm of the residual inside each element and its exact computa-
tion. In Figures 59, 60 and 61 we plot the maximum, the mean-values and the root-
mean-square of all the residuals; again the approximation and the exact computation of
|| Ar xR ([un, pr]) |1, 1y lead to very similar behaviour.
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Figure 43: Adaptive problem 1, power-law,
r = 1.3, Q;: final mesh, exact computation
of the norm of the residual
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Figure 45: Adaptive problem 1, power-law,
r = 1.3, €;: total residuals during the
adaptive process with exact computation of
the norm of the residual

Figure 44: Adaptive problem 1, power-law,
r = 1.3, ;: final mesh, approximate com-
putation of the norm of the residual
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Figure 46: Adaptive problem 1, power-law,
r = 1.3, Q: total residuals during the
adaptive process with approximate compu-
tation of the norm of the residual

Table 19: Adaptive problem 1, power-law, r =

adaptive process, exact computation of the norm of residuals

dofs R.res R.jump R.cont tot.R.U tot.R.L

753 | 2.3691E4-00 | 7.6790E-05 | 4.5948E-01 | 1.9611E+00 | 2.8287E+00
1876 | 5.8274E+02 | 2.7811E-05 | 2.2828E-01 | 1.9132E+01 | 5.8297E+402
3526 | 7.3828E-03 | 8.6622E-06 | 1.1770E-01 | 2.2609E-01 | 1.2510E-01
4657 | 4.2256E-03 | 3.3978E-06 | 6.6718E-02 | 1.4993E-01 | 7.0947E-02
5139 | 3.6371E-03 | 1.8743E-06 | 4.8855E-02 | 1.2598E-01 | 5.2493E-02
5330 | 6.2730E-04 | 1.4039E-06 | 4.1957E-02 | 7.7206E-02 | 4.2586E-02
5444 | 5.2900E-02 | 7.4092E-07 | 3.9338E-02 | 2.9835E-01 | 9.2239E-02

1.3, €2y error estimators during the
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Figure 47: Adaptive problem 1, power-law, Figure 48:
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values of the residuals on the elements
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Figure 49: Adaptive problem 1, power-law,
r = 1.3, )y, comparison of the r.m.s. values
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Table 20: Adaptive problem 1, power-law, r = 1.3, €y: error estimators during the

adaptive process, approximate computation of the norm of residuals

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

753

5.3628E-04

7.6790E-05

4.5948E-01

5.0303E-01

4.6009E-01

1836

9.0085E-05

2.7704E-05

2.3103E-01

2.5249E-01

2.3114E-01

3205

2.4234E-05

9.0347E-06

1.1825E-01

1.3036E-01

1.1828E-01

4209

1.1778E-05

3.6115E-06

6.7637E-02

7.6024E-02

6.7652E-02

4590

6.0203E-06

2.1222E-06

5.0265E-02

5.6569E-02

5.0273E-02

4700

3.9801E-06

1.4403E-06

4.2932E-02

4.8163E-02

4.2937E-02

4766

2.4446E-06

1.2373E-06

4.0850E-02

4.5297E-02

4.0854E-02

61

Figure 50: Adaptive problem 1, power-law, Figure 51: Adaptive problem 1, power-law,

r = 1.3, y: final mesh, exact computation
of the norm of the residual

3

10 . . . !
: —— tot.R.U
tot.R.L

10" ¢

10 ¢
10" ¢

10-17 \\J

10°

0 1000 2000 3000 4000 5000 6000
dof

Figure 52: Adaptive problem 1, power-law,
r = 1.3: total residuals during the adaptive

process on {2, with exact computation of
the norm of the residual

r = 1.3, 29: final mesh, approximate com-
putation of the norm of the residual
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Figure 53: Adaptive problem 1, power-law,
r = 1.3: total residuals during the adaptive
process on {2y with approximate computa-
tion of the norm of the residual
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Figure 54: Adaptive problem 1, power-law, Figure 55: Adaptive problem 1, power-law,
r=1.3, €}y, comparison of the maximal val- r=1.3, {23, comparison of the mean-values
ues of the residuals on the elements of the residuals on the elements
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Figure 56: Adaptive problem 1, power-law,
r=1.3, Qy, comparison of the r.m.s. values
of the residuals on the elements
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Table 21: Adaptive problem 1, power-law, r = 3.3, {25: error estimators during the
adaptive process, exact computation of the norm of residuals

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

753

4.4480E-01

1.8540E-01

5.1408E-02

7.9570E-01

5.8422E-01

1735

1.3521E-01

7.1885E-02

2.3395E-02

3.0980E-01

1.8966E-01

2765

6.1687E-02

3.2629E-02

1.0412E-02

1.5719E-01

9.1938E-02

3597

3.9233E-02

1.9285E-02

4.8769E-03

9.8226E-02

0.4734E-02

3915

3.2138E-02

1.4516E-02

2.3732E-03

7.2317E-02

3.6698E-02

3992

3.0427E-02

1.2860E-02

1.4677E-03

6.2465E-02

2.9179E-02

4026

2.9346E-02

1.2016E-02

1.1904E-03

5.8254E-02

2.6307E-02

Table 22: Adaptive problem 1, power-law, r = 3.3, {25: error estimators during the
adaptive process, approximate computation of the norm of residuals

dofs

R.res

R.jump

R.cont

tot.R.U

tot.R.L

753

9.9332E-02

1.8540E-01

5.1408E-02

4.5024E-01

3.0095E-01

1767

4.8424E-02

7.1868E-02

2.3395E-02

2.2299E-01

1.4287E-01

2729

2.4523E-02

3.3637E-02

1.0424E-02

1.2108E-01

7.7455E-02

3473

1.5932E-02

1.9903E-02

4.9006E-03

7.5660E-02

4.7198E-02

3835

1.2693E-02

1.4986E-02

2.3889E-03

5.3444E-02

3.0901E-02

3912

1.2035E-02

1.3324E-02

1.4828E-03

4.4657E-02

2.3839E-02

3946

1.1525E-02

1.2479E-02

1.2054E-03

4.1024E-02

2.1226E-02
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Figure 57: Adaptive problem 1, power-law,
r = 3.3: total residuals during the adaptive
process on {2, with exact computation of
the norm of the residual

10

2000 2500 3000 3500

dof

_5200 1 ObO 1 500 4000
Figure 58: Adaptive problem 1, power-law,
r = 3.3: total residuals during the adaptive
process on {2, with approximate computa-

tion of the norm of the residual
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Figure 59: Adaptive problem 1, power-law, Figure 60: Adaptive problem 1, power-law,
r=3.3, {1y, comparison of the maximal val- r=3.3, {25, comparison of the mean-values

ues of the residuals on the elements of the residuals on the elements
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Figure 61: Adaptive problem 1, power-law,
r=3.3, {0y, comparison of the r.m.s. values
of the residuals on the elements
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9 Concluding remarks

We presented a general framework for energy-norm-based a posterior: error analysis for
conforming mixed finite element approximations to quasi-Newtonian flow models. As
has been noted in the Introduction, Proposition 13 and Theorem 14 recover a number
of known a posteriori bounds from the literature; they also provide new bounds for a
very general class of quasi-Newtonian flow models.

When r = 2, we have Ry = R}, = R, = R, = a1 = s’ = 2; then, (1.8) of Theorem 14
collapses to the a posteriori error bound of Barrett and Bao [6] for inf-sup-stable mixed
finite element approximations of Carreau-type quasi-Newtonian flows, the linear Stokes
problem being a special case [26]. For r # 2, the bound (1.8) represents a generalization
of several earlier results (cf. [4] and [20], in particular).

The validity of Propositions 12 and 13 and of the lower bounds is independent of
whether or not the pair of spaces (V}, Q) is inf-sup stable in the sense of (2.1): it is
only in the transition from Proposition 13 to Theorem 14 that made use of the bound on
|lpn|l@ from (3.10) which relied on (1.6). Indeed, suppose that problem (1.4), (1.5) has
been approximated by the following finite element method: find u, € Vj, and p, € Q)
such that

a(up, vp) + b(pn,vi) = (f,vp) Vv, € Vi,
b(gn,upn) = cnlqn,pn) Van € Qn,

where c¢(+,-) is a bilinear form on Q) x Q satisfying c,(qn,qn) > 0, g € Qp (the
discretisation (2.2), (2.3) being a special case with c,(gn,pn) = 0 for all ¢, € Qp). A
number of pressure-stabilised finite element discretisations of (1.4), (1.5) are of this form.
It is then easy to see that the bound on ||uy||y from (3.10) still holds irrespective of (2.1),
and, if instead of assuming (2.1) we suppose that the sequence (||ps||g)r>0 is bounded,
independent of A, then, once again, Theorem 14 follows from Proposition 13 in exactly
the same way as before.

In some of our numerical experiments we observed variation of the effectivity indices
with the meshsize, which suggests that there is scope for further sharpening of the a pos-
teriori bounds. Nevertheless, in none of the adaptive numerical experiments performed
did this lack of robustness lead to unreasonable meshes. In fact, in all cases considered
we obtained satisfactory meshes, suggesting that these estimates lead to an acceptable
mesh adaptation strategy.

The fact that in some circumstances the quantities tot.R.U and tot.R.L exhibited
identical behaviour during the adaptive process while in other cases a smooth diverging
trend of the two quantities was observed, is probably due to the different rates of decay
of the momentum residuals (R.res and R.jump) and the continuity residual (R.cont).
Indeed, when the residuals R.res and R.jump do not decrease as fast as R.cont, as in the
Carreau law problem with r = 1.3, we observe such a diverging behaviour of the upper
and lower effectivity indices.
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