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Abstract. Hypoelliptic diffusion processes can be used to model a variety of phenomena in appli-
cations ranging from molecular dynamics to audio signal analysis. We study parameter estimation
for such processes in situations where we observe some components of the solution at discrete times.
Since exact likelihoods for the transition densities are typically not known, approximations are used
that are expected to work well in the limit of small inter-sample times ∆t and large total observation
times N∆t. Hypoellipticity together with partial observation leads to ill-conditioning requiring a
judicious combination of approximate likelihoods for the various parameters to be estimated. We
combine these in a deterministic scan Gibbs sampler alternating between missing data in the unob-
served solution components, and parameters. Numerical experiments display asymptotic consistency
of the method when applied to simulated data. The paper concludes with application of the Gibbs
sampler to molecular dynamics data.
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1. Introduction. In many application areas it is of interest to model some compo-
nents of a large deterministic system by a low dimensional stochastic model. In some
of these applications, insight from the deterministic problem itself forces structure on
the form of the stochastic model, and this structure must be reflected in parameter
estimation. In this paper, we study the fitting of stochastic differential equations
(SDEs) to discrete time series data in situations where the model is a hypoelliptic
diffusion process,1 and also where observations are only made of variables that are
not directly forced by white noise. Such a structure arises naturally in a number of
applications.

One application is the modeling of macro-molecular systems [16] and [18]. In its
basic form the molecule is described by a large Hamiltonian system of ordinary differ-
ential equations (ODEs). If the molecule spends most of its time in a small number of
macroscopic configurations then it may be appropriate to model the dynamics within,
and in some cases between, these states by a hypoelliptic diffusion. While this phras-
ing of the question is relatively recent, under the name of the ”Kramers problem” it
dates back to [22] with a brief summary in section 5.3.6a of [13]. Another application,
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1Meaning that the covariance matrix of the noise is degenerate, but the probability densities are
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audio signal analysis, is referred to in [15] where a continuous time ARMA model is
used.

We consider SDE models of the form
{

dx = ΘA(x)dt + CdB
x(0) = x0

(1.1)

where B is an m-dimensional Wiener process and x a k-dimensional continuous process
with k > m. A : R

k −→ R
l is a set of (possibly non-linear) globally Lipschitz force

functions. The parameters which we estimate are the last m rows of the drift matrix,
Θ ∈ R

k×l, and the diffusivity matrix C which we assume to be of the form

C =

[
0
Γ

]
∈ R

k×m

where Γ ∈ R
m×m is nonsingular.

It is known that under the above hypotheses on A and C, a unique L2-integrable
solution x(·) exists almost-surely for all times t ∈ R

+, see e.g. Theorem 5.2.1 in
[27]. We also assume that the process defined by (1.1) is hypoelliptic as defined in
[26]. Intuitively, this corresponds to the noise being spread into all components of the
system (1.1) via the drift.

The structure of C implies that the noise acts directly only on a subset of the
variables which we refer to as rough. It may then be transmitted, through the coupling
in the drift, to the remaining parts of the system which we refer to as smooth2. To
distinguish between rough and smooth variables, we introduce the notation x(t)T =
(u(t)T , v(t)T ) where u(t) ∈ R

k−m is smooth and v(t) ∈ R
m is rough. It is helpful to

define linear functions P : R
k → R

k−m by Px = u and Q : R
k → R

m by Qx = v.
We suppose that the smooth component of a sample path is observed at N + 1

equally spaced points in time, {xn = x(n∆t)}N
n=0, and we write xT

n = (uT
n , vT

n ) to
separate the rough and smooth components. Also, for any sequence (z1, . . . , zN ), N ∈
N we write ∆zn = zn+1−zn to denote forward differences. Our interest is in parameter
estimation for all of Γ and for entries of those rows of Θ corresponding to the rough
path, on the assumption that {un}N

n=0 are samples from a true solution of (1.1); such a
parameter estimation problem arises naturally in many applications and an example
is given in section 7. It is natural to consider N∆t = T � 1 and ∆t � 1. It is
important to realize that, for continuous time observations, the diffusion coefficient Γ
can be found from the quadratic variation of a single path on [0, T ], any T > 0, see
e.g. Theorem 2.8.6 in [7]. For Θ, however, the estimates are strongly consistent only
as T → ∞. These two facts will be reflected in the parameter estimation for discrete
time observations.

The sequence {xn}N
n=0 defined above is generated by a Markov chain. By ex-

panding the random map xn 7→ xn+1 in powers of ∆t, and retaining the leading order
contributions to the mean and to the variance in each component of the equation, one
obtains

xn+1 ≈ xn + ∆tΘA(xn) +
√

∆tR(∆t; Θ)ξn (1.2)

where xn ∈ R
k, ξn ∈ R

k is distributed as N (0, I) and R(∆t; Θ) ∈ R
k×k . Because of

the hypoellipticity, R(∆t; Θ) is invertible, but the zeros in C mean that is is highly

2We do not mean C∞ here, but they are at least C1
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ill-conditioned for 0 < ∆t � 1. In fact we have:

R(0; Θ) =

[
0 0
0 Γ

]
. (1.3)

We refer to expressions of the form (1.2) as statistical models and we will use them
to approximate the exact likelihood, L(u, v|Θ, ΓΓT ), of the path u, v given parameter
values Θ and ΓΓT .

Given prior distributions for the parameters, p0(Θ, ΓΓT ), the posterior likelihood
can be constructed as follows:

L(v, Θ, ΓΓT ) = L(v,Θ,ΓΓT ,u)
L(u)

= L(u, v|Θ, ΓΓT )p0(Θ,ΓΓT )
L(u)

(1.4)

In principle, this can be used as the basis for Bayesian sampling of (Θ, ΓΓT ), viewing
v as missing data. However, the exact likelihood of the path is typically unavailable.
In this paper we will combine judicious approximations of this likelihood to solve
the sampling problem. The approximations that we use, LE and LIT , are found from
(1.2), in the case of LE by replacing R(∆t; Θ) with R(0; Θ) given by (1.3). Thus LE is
found from an Euler-Maruyama approximation of (1.1). The approximate likelihood
LIT arises from retaining further terms in the Itô-Taylor expansion to ensure that
noise is propagated into each component of the map (1.2).

The questions we address in this paper are:
1. How does the ill-conditioning of the Markov chain xn 7→ xn+1 affect pa-

rameter estimation for ΓΓT and for the last m rows of Θ in the regime
∆t � 1, N∆t = T � 1 ?

2. In many applications, it is natural that only the smooth data {un}N
n=0 is

observed, and not the rough data {vn}N
n=0. What effect does the absence

of observations of the rough data have on the estimation for ∆t � 1 and
N∆t = T � 1?

3. The exact likelihood is usually not available; what approximations of the
likelihood should be used, in view of the ill-conditioning?

4. How should the answers to these questions be combined to produce an effec-
tive method to sample the distribution of parameters Θ, ΓΓT and the missing
data {vn}N

n=0?
To tackle these issues, we use a combination of analysis and numerical simulation,

based on three model problems which are conceived to highlight issues central to the
questions above. We will use analysis to explain why some seemingly reasonable
methods fail, and simulation will be used both to extend the validity of the analysis
and to illustrate good behavior of other methods.

For the numerical simulations, we will use either exact discrete time samples of
(1.1) in simple linear cases, or trajectories obtained by Euler-Maruyama simulation
of the SDE on a temporal grid with a spacing considerably finer than the observation
time interval ∆t.

At this point, we introduce some notation to simplify the presentation. Firstly,
given an invertible matrix R ∈ R

n×n we introduce a new norm using the Euclidean
norm on R

n by setting ‖x‖R = ‖R−1x‖2 for vectors x ∈ R
n. Also, we will occasion-

ally refer to a lilkelihood L(B) as a function of some parameters B not mentioning
the complementary parameter set C. This is understood to refer to the conditional
likelihood L(B|C) whenever the parameter set C is clear from the context.
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In section 2 we will introduce our three model problems and in section 3 we study
the performance of LE to estimate the diffusion coefficient. Observing and analysing
its failure in the case with partial observation leads to the improved statistical model
yielding LIT which eliminates these problems; we introduce this in section 4. In
section 5 we show that LIT is inappropriate for drift estimation, but that LE is
effective in this context. In section 6, the individual estimators will be combined
into a Gibbs sampler to solve the overall estimation problem with asymptotically
consistent performance being demonstrated numerically. Section 7 contains a simple
application to molecular dynamics and section 8 provides concluding discussion.

1.1. Literature review. The primary novelty of our work is that it concerns hy-
poelliptic diffusions where only smooth components are observed. We set our work
in context. First, we review parameter estimation for (1.1) in continuous time. We
assume that the observation is compatible with (1.1) in that, if the observed path is
x(t)T = (u(t)T , v(t)T ), then

u̇ = PΘA(x), u(0) = Px(0); (1.5)

furthermore, if only u(t) is observed, then we assume that (1.5) determines v(t)
uniquely. (In situations where compatibility fails it is necessary to add observational
noise to the solution of (1.5) and to estimate it.)

Once v is determined uniquely we have

dv = QΘA(x) + ΓdB, v(0) = Qx(0). (1.6)

The covariance matrix ΓΓT can be estimated by noting that

1

T

N−1∑

n=0

(vn+1 − vn)(vn+1 − vn)T → ΓΓT as N → ∞ (1.7)

with T = N∆t fixed [7].
The Girsanov formula shows that the path space likelihood for (1.6) is propor-

tional to

exp

(∫ T

0

Γ−1QΘA(x(s))Γ−1dv(s) − 1

2

∫ T

0

∥∥Γ−1QΘA(x(s))
∥∥2

ds

)
.

This can be used as the basis for various estimation procedures, one of them being the
maximum likelihood estimator for the lower rows of Θ which is found by maximizing

Θ̂ = argmaxΘ

(∫ T

0

Γ−1QΘA(x(s))Γ−1dv(s) − 1

2

∫ T

0

∥∥Γ−1QΘA(x(s))
∥∥2

ds

)
(1.8)

over Θ. Such estimators are consistent as T → ∞. In the linear case, where A is just
the identity, the maximum likelihood estimate for the whole of Θ is given by

Θ̂ = [

∫ T

0

dxxT ][

∫ T

0

xxT dt]−1. (1.9)

This is proved to be consistent as T → ∞ in [3]. Note, then, that diffusion parameters
can be estimated from arbitrarily short pieces of trajectory, whereas drift parameters
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require long time intervals. A discussion of continuous time parameter estimation for
linear hypoelliptic diffusions with multiplicative noise is given in [20].

In practice, observations are typically made in discrete time. There is substan-
tial literature on parameter estimation in this context, much of it concerned with
estimation of ϕ in problems of the form

dv = a(v, ϕ)dt + Γẇ, v(0) = v0, (1.10)

where ΓΓT is everywhere invertible. In some cases, a is allowed to depend on the
entire path {v(s)}s∈[0,t] and then the hypoelliptic problem (1.6) is a special case. We
now discuss the literature available when only discrete time observations of v, the
rough variable, are given. Note that, for most of this paper, we assume that the
v-data is hidden and only u in (1.1) is observed. Thus although u can be eliminated
from (1.1), and an equation written for v in the form (1.10) with a depending on the
entire path of v on [0, t], the existing literature on discrete time observations of (1.10)
does not apply to the case we consider here, where v is not observed. Nonetheless we
overview what is known.

One approach is to form continuous time estimators, using the generalization of
(1.8) to (1.10). If ϕ appears linearly and only in a, not γ, then the continuous time
estimator can be calculated from Riemann and stochastic integrals of v(t). These
continuous time estimators can be approximated by quadrature, assuming the time
increment between observations, ∆t, is small, and estimates of ϕ̂ obtained in this
manner, see [21] for details. An alternative, when ∆t is small, is to approximate
the likelihood of the discrete time Markov chain generated by sampling (1.10) at
rate ∆t. This approach is considered in [32, 14, 5, 11] with several of these papers
studying the Euler approximation, generating a Gaussian likelihood, as we do in this
paper. Theorems about convergence of parameter estimates typically consider the
limit ∆t → 0 with N∆t → ∞ [11]. Alternatively one may consider ∆t → 0 with
N∆t = T � 1 and estimate the bias due to finite T .

In [5] functionals of the Brownian bridge are used to build up the approximation;
in [30] related ideas are used in a Bayesian approach to parameter estimation for
discretely observed diffusions.

When the time increment between observations, ∆t, is not small then O(1) errors
can enter parameter estimates unless the discrete time likelihood is carefully approx-
imated. One way to do this is by fine Monte Carlo simulation between observation
points, see [28]. Another approach, leading to closed formulas and using Hermite
polynomials, may be found in [1]. In [5] functionals of the Brownian bridge are used
to build up the approximation; in [30] related ideas are used in a Bayesian approach
to parameter estimation for discretely observed diffusions. Recent work of Beskos et
al uses exact sampling of a diffusion process to address this issue, see [8]. A review of
estimation for discretely observed diffusion processes, and a discussion of martingale
estimating functions, can be found in [2].

2. Model Problems. To study the performance of parameter estimators, we have
selected a sequence of three Model Problems ranging from simple linear stochastic
growth through a linear oscillator subject to noise and damping to a nonlinear oscilla-
tor of similar form. All these problems are hypoelliptic diffusions and we will present
them in detail in the next three subsections. Their general form is given as the second
order Langevin equation

{
dq = pdt,
dp = (−γp + f(q)) dt + σdB

(2.1)
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where f is some (possibly nonlinear) force-function and the variables q and p are
scalar.

2.1. Model Problem I: Stochastic Growth. Here, x = (q, r)T satisfies

{
dq = rdt
dr = σdB.

(2.2)

The process has one parameter, the diffusion parameter σ, that describes the size of
the fluctuations. In the setting of (1.1) we have

A(x) = x , Θ =

[
0 1
0 0

]
, C =

[
0
σ

]

and u = q, v = r. The process is Gaussian with mean and covariance

µ(t) =

[
1 t
0 1

] [
q0

r0

]
and Σ(t) = σ2

[
t3/3 t2/2
t2/2 t

]
.

The exact discrete samples may be written as

{
qn+1 = qn + rn∆t + σ (∆t)3/2

√
12

ζ
(1)
n + σ (∆t)3/2

2 ζ
(2)
n ,

rn+1 = rn + σ
√

∆tζ
(2)
n ,

(2.3)

with ζ0 ∼ N (0, I) and {ζn}N
n=0 being i.i.d.

2.2. Model Problem II: Harmonic Oscillator. As our second model problem
we consider a damped harmonic oscillator driven by a white noise forcing where
x = (q, p)T :

{
dq = pdt
dp = −Dqdt − γpdt + σdB.

(2.4)

This model is obtained from the general SDE (1.1) for the choice

A (x) = x, Θ =

[
0 1

−D −γ

]
, C =

[
0
σ

]

and u = q, v = p. The process is Gaussian and the mean and covariance of the
solution can be explicitly calculated.

2.3. Model Problem III: Oscillator with trigonometric potential. In the third
model problem, x = (q, p)T describes the dynamics of a particle moving in a potential
which is a superposition of trigonometric functions and in contact with a heat bath
obeying the fluctuation-dissipation relation, see [23]. This potential is sometimes used
in molecular dynamics in connection with the dynamics of dihedral angles – see section
7. The model is

{
dq = pdt,
dp = (−γp −∑c

j=1 Dj sin(q) cosj−1(q))dt + σdB.
(2.5)
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This equation has parameters γ, Di, i = 1, . . . , c and σ. It can be obtained from the
general SDE (1.1) for the choice

A

([
q
p

])
=




sin(q)
sin(q)cos(q)

...
sin(q) cosc−1(q)

p




, Θ =

[
0 . . . 0 1

−D1 . . . −Dc −γ

]
, C =

[
0
σ

]

and u = q, v = p. No explicit closed-form expression for the solution of the SDE is
known in this case; the process is not Gaussian.

3. Euler Statistical Model. In this section, the Euler-Maruyama approximation
to (1.1) is used to generate a statistical model and associated likelihood. Using this
likelihood to estimate the diffusivity works whenever observations of both the smooth
and the rough components are available. However, it yields O(1) errors in the partially
observed case; this is demonstrated analytically for Model Problem I and the results
are extended by means of numerical experiments.

3.1. Statistical Model. If the force function A(·) is nonlinear, closed-form ex-
pressions for the likelihood are in general unavailable. To overcome this obstacle, one
can use a discrete time statistical model. The Euler model is commonly used and we
apply it to a simple linear model problem to highlight its deficiencies in the case of
partially observed data from hypoelliptic diffusions.

The Euler-Maruyama approximation of the SDE (1.1) is

Xn+1 = Xn + ∆tΘA(Xn) +
√

∆tCξn (3.1)

where ξn ∼ N (0, I) is an i.i.d. sequence of k-dimensional vectors with standard
normal distribution. This corresponds to (1.2) with R(∆t; Θ) replaced by R(0; Θ)
from (1.3). Thus we obtain

{
Un+1 = Un + ∆tPΘA(Xn)

Vn+1 = Vn + ∆tQΘA(Xn) +
√

∆tΓξn

}
(3.2)

where now each element of the i.i.d. sequence ξn is distributed as N (0, I) in R
m. This

model gives rise to the following likelihood:

LND(U, V |Θ, ΓΓT ) =
∏N−1

n=0

exp(− 1
2
‖∆Vn−∆tQΘA(Xn)‖2

Γ)√
2π|ΓΓT |

δ
(

Un+1−Un

∆t − PΘA(Xn)
)

. (3.3)

The Dirac mass insists that the data is compatible with the statistical model, i.e. the
V path must be given by numerical differentiation (ND) of the U path. To estimate
parameters we will use the following expression:

LE(U, V |Θ, ΓΓT ) =
∏N−1

n=0

exp(− 1
2
‖∆Vn−∆tQΘA(Xn)‖2

Γ)√
2π|ΓΓT |

, (3.4)

where we assume that {un}, {vn} are related through numerical differentiation when
the Euler model is used to estimate missing components.
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3.2. Model Problem I. The Euler statistical model for this model problem is

{
Qn+1 = Qn + Rn∆t,

Rn+1 = Rn + σ
√

∆tξn.
(3.5)

Here, {ξn} is an i.i.d. N (0, 1) sequence. The root cause of the phenomena that we
discuss in this paper is manifest in comparing (2.3) and (3.5). The difference is that
the O((∆t)3/2) white noise contributions in the exact time series (2.3) do not appear
in the equation for Qn. We will see that this plays havoc with parameter estimation,
even though the Euler method is pathwise convergent.

We assume that observations of the smooth component only, Qn, are available.
In this case the Euler method for estimation (3.5) gives the formula

Rn =
Qn+1 − Qn

∆t
(3.6)

for the missing data. In the following numerical experiment we generate exact data
from (2.3) using the parameter value σ = 1. We substitute Rn given by (3.6) into (3.4)
and find the maximum likelihood estimator for σ in the case of partial observation.
In the case of complete observation we use the exact value for {Rn}, from (2.3), and
again use a maximum likelihood estimator for σ from (3.4).

Using N = 100 timesteps for a final time of T = 10 with σ = 1 the histograms
for the estimated difffusion coefficient presented in the middle column of Figure 3.2
are obtained. The top row contains histograms obtained in the case of complete
observation where good agreement between the true σ and the estimates is observed.
The bottom row contains the histograms obtained for partial observation using (3.6).
The observed mean value of Eσ̂ = 0.806 indicates that the method yields biased
estimates. Increasing the final time to T = 100 (see left column of graphs in Figure
3.2) or increasing the resolution to ∆t = 0.01 do not remove this bias.

Thus we see that, in the case of partial observation, σ̂ contains O(1) errors which
do not diminish with decreasing ∆t and/or increasing T = N∆t.

3.3. Analysis of why the missing data method fails. Model Problem I can be
used to illustrate why this method fails. We first argue that the method works without
hidden data. The log-likelihood function given in (3.4) yields the following expression
in the case of stochastic growth:

logLE(σ) = −2N log σ − 1

σ2∆t

N−1∑

n=0

(∆rn)2

where ∆ is the forward difference operator. The maximum of the log-likelihood func-
tion gives the maximum likelihood estimate,

σ̂2 =
1

N∆t

N−1∑

n=0

(∆rn)2. (3.7)

In the case of complete data, (2.3) gives

σ̂2 =
σ2

N

N−1∑

n=0

(ζ(2)
n )2. (3.8)
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Fig. 3.1. Estimates of σ using Euler Model for Model Problem I.
Top row: fully observed process; bottom row: partially observed process.

By the law of large numbers, σ̂2 → σ2 almost surely as N → ∞. This shows that the
method works when the complete data is observed.

Let us consider what happens when r is hidden. In this case, rn is estimated by

r̂n =
qn+1 − qn

∆t
.

But since qn is generated by (2.3) we find that

r̂n =
rn+1 + rn

2
+ σ

√
∆t√
12

ζ(1)
n

and

∆r̂n =
∆rn+1

2
+

∆rn

2
+ σ

√
∆t√
12

(
ζ
(1)
n+1 − ζ(1)

n

)

=
σ
√

∆t

2

(
ζ
(2)
n+1 + ζ(2)

n +
1√
3
ζ
(1)
n+1 −

1√
3
ζ(1)
n

)

When ∆r̃n is inserted in (3.7) it follows that

σ̂2 =
σ2

4N

N−1∑

n=0

(
ζ
(2)
n+1 + ζ(2)

n +
ζ
(1)
n+1 − ζ

(1)
n√

3

)2

=
σ2

4N

[N−1∑

n=0

(
ζ
(2)
n+1 +

ζ
(1)
n+1√

3

)2

+

N−1∑

n=0

(
ζ(2)
n − ζ

(1)
n√
3

)2

+ 2

N−1∑

n=0

(
ζ(2)
n − ζ

(1)
n√
3

)(
ζ
(2)
n+1 +

ζ
(1)
n+1√

3

)]
.
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The random variables {ζn}N
n=0 are i.i.d with ζ0 ∼ N(0, I). So, by the law of large

numbers, σ̂2 → 2
3σ2 almost surely as N → ∞. Furthermore, the limits hold in

either of the cases where either N∆t = T or ∆t are fixed as N → ∞. This means that
independently of what limit is considered, a seemingly reasonable estimation scheme
based on Euler approximation results in O(1) errors in the diffusion coefficient. 3

4. Improved statistical model. The failure of the Euler model to estimate paths
having the correct quadratic variation is caused by not propagating the noise to the
smooth component of the solution. A new statistical model is thus proposed which
propagates the noise using what amounts to an Itô-Taylor expansion, retaining the
leading order component of the noise in each row of the equation. The model is used
to set up an estimator for the missing path using a Langevin sampler from path-
space which is then simplified to a direct sampler in the Gaussian case. Numerical
experiments indicate that the method yields the correct quadratic variation for the
simulated missing path.

The model is motivated using our common framework the Model Problems I, II
and III, namely (2.1). The improved statistical model is based on the observation
that in the second row of an Itô-Taylor expansion of (2.1) the drift terms are of size
O(∆t) whereas the random forcing term is ”typically” (in root mean square) of size
O(

√
∆t). Thus, neglecting the contribution of the drift term in the second row on the

first row leads to the following approximation of (2.1):

[
Qn+1

Pn+1

]
=

[
Qn

Pn

]
+ ∆t

[
Pn

f(Qn) − γPn

]
+ σ

[∫∆t

0
B(s)ds

B(∆t)

]

The random vector on the right hand side is Gaussian, and can be expressed as a linear
combination of two independent normally distributed Gaussian random variables.
Computation of the variances and the correlation is straightforward leading to the
following statistical model:

[
Qn+1

Pn+1

]
=

[
Qn

Pn

]
+ ∆t

[
Pn

f(Qn) − γPn

]
+ σ

√
∆tR

[
ξ1

ξ2

]
(4.1)

Here, ξ1 and ξ2 are normally distributed Gaussian random variables and R is given
as

R =

[ ∆t√
12

∆t
2

0 1

]

This is a specific instance of (1.2). It should be noted that this model is in
agreement with the Ito-Taylor approximation up to error terms of order O(∆t2) in

the first row and O(∆t
3
2 ) in the second row.

If complete observations are available, this model performs satisfactorily for the
estimation of σ. This can be verified analytically for Model Problem I in the same
fashion as in section 3.3. Numerically, this can be seen from the first row (referring
to complete observation) of Figure 4.2 for Model Problem I and from the first row of
Figure 4.2 for Model Problem II. In both cases the true value is given by σ = 1. See
subsection 4.2 for a full discussion of these numerical experiments.

3There is similarity here with work of Gaines and Lyons [12] showing that adaptive methods for
SDEs get the quadratic variation wrong if the adaptive strategy is not chosen carefully.
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If only partial observations are available, however, a means of reconstructing the
hidden component of the path must be procured. A standard procedure would be
the use of the Kalman filter/smoother [19, 4] which could then be combined with
the expectation-maximisation (EM) algorithm [6, 25] to estimate parameters. In this
paper, however, we employ a Bayesian approach sampling directly from the posterior
distribution for the rough component, p, without factorising the sampling into forward
and backward sweeps.

4.1. Path Sampling. The log likelihood functional for the missing data induced
by the statistical model (1.2) can be written as follows:

logLIT (p) = − 1

2σ2

N∑

l=0

‖∆Xl − ΘA(Xl)∆t‖2
R + const. (4.2)

We will apply this in the case (4.1) which is a specific instance of (1.2).
One way to sample from this likelihood LIT (p) for rough paths {pi}N

i=0 is via
the Langevin equation (see section 6.5.2 in [29]) and, in general, we expect this to be
effective in view of the high dimensionality of p. However, when p is Gaussian it is pos-
sible to generate independent samples, and we explain how this may be implemented
below.

The Langevin equation is:

dp

ds
= ∇p logLIT (p) +

√
2
dWs

ds
(4.3)

The required derivatives of logLIT (p) with respect to the rough path p are computed
in the Appendix. For our oscillator framework, they can be expressed using a tridi-
agonal, negative definite matrix Pmat with highest order stencil −1 −4 −1 acting on
the p-vector plus a possibly nonlinear contribution Q(q) acting on the q-vector only.
The gradient of LIT can then be written as follows:

∇p logLIT (q, p) = Pmatp + Q(q).

The suggested sampler for p-paths is simply:

pn = −P−1
matQ(q) + U−1ξn (4.4)

Here UT U = −Pmat is a Cholesky factorization.

4.2. Estimating diffusion coefficient and missing path. The approximate likeli-
hood LIT (P, Q|σ, Θ) can be used to estimate both the missing path p and the diffusion
coefficient σ for our Model Problems I, II and III.

In order to estimate σ, the derivative of the log likelihood

logLIT (σ) = logLIT (P, Q|σ, Θ) + log

(
p0(Θ, σ)

L(P, Q, Θ)

)

(where priors p0(Θ, σ) are assumed to be given) with respect to σ is computed:

∂

∂σ
logLIT = −2N

σ
+

1

σ3
Z +

∂

∂σ
log (p0(Θ, σ)) .

Here, we have used the abbreviation

Z :=

N−1∑

p=0

∥∥∥∥
((

Qp+1

Pp+1

)
−
(

Qp

Pp

)
− ∆t

(
Pp

−f(Qn) − γPp

))∥∥∥∥
2

R

.
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In this case no prior distribution was felt necessary in this example, as when
N → ∞ its importance would diminish rapidly. Thus we set p0 ≡ 1. The resulting
maximum likelihood estimator is:

σ̂2 =
Z

2N∆t
(4.5)

Instead of providing just the maximum of the likelihood it may be more desir-
able to sample from the distribution of σ given observations p and q and the drift
parameters. As the derivative of the log-likelihood conditional on these obsevations is
available we can write a Langevin type sampler for this distribution in the following
form:

dσ =
∂LIT

∂σ
ds +

√
2dW

=

(
−2N

σ
+

1

σ3
Z

)
ds +

√
2dW

Empirically, the singularity at σ = 0 is seen to be more amenable to numerical solution
if the transformation ζ(σ) = σ4 is used. Using the Itô formula, this yields the Langevin
sampler:

dζ =
(
(12− 8N)

√
ζ + 4Z

)
ds + 4

√
2ζ

3
4 dW. (4.6)

A simple explicit Euler-Maruyama discretisation in s is used to simulate paths for
this SDE.

This Langevin-type sampler (4.6) can then be alternated in a Systematic-Scan
Gibbs Sampler (as described on p.130 of [24]) using NGibbs iterations with the direct
sampler for the paths, (4.4). The yields estimates of the missing path and the diffusion
coefficient which is estimated by averaging over the NGibbs samples. We illustrate this
with an example. For Model Problem I we use the following parameters:

σ = 1 T ∈ {10, 100} ∆t ∈ {0.1, 0.01} NGibbs = 10

The sample paths used for the fitting are generated from exact samples using (2.3)
and the resulting plot is given in Figure 4.2 where the first row corresponds to the
behaviour when complete observations are available and the second row corresponds
to only the smooth component being observed. For Model Problem II we use the
following parameters:

σ = 1 D = 4 γ = 0.5
T ∈ {10, 100} ∆t ∈ {0.02, 0.002} NGibbs = 10

The sample paths used for the fitting are generated using a subsampled Euler-Maruyama
method with temporal grid ∆t

k where k = 30. This experiment results in the plot given
in Figure 4.2.

It appears from these figures that the estimator for this joint problem performs
well for Model Problem I. While the bias observed in Model Problem II can be consid-
erable, it decays under ∆t refinement. A more careful investigation of the convergence
properties is postponed to section 6 when drift estimation will be incorporated in the
procedure.

5. Drift Estimation.
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Fig. 4.1. Estimates of σ using the LIT Model for Model Problem I.
Top row: fully observed process; bottom row: partially observed process.
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Fig. 4.2. Estimates of σ using the LIT Model for Model Problem II.
Top row: fully observed process; bottom row: partially observed process.

5.1. Overview. With the approximate likelihoods LE and LIT in place, the ques-
tion arises which of these should be used to estimate the drift parameters. Using Model
Problem II we numerically observe that an LE based maximum likelihood estimator
performs well. In contrst, ill-conditioning due to hypoellipticity leads to error ampli-
fication and affects the performance of the LIT based estimator. Alternatively, the
estimator (1.9) suggested by Le Breton and Musiela can be used, but this is inap-
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propriate if a harmonic oscillator fit is sought, as it means that all entries of Θ must
be estimated and known entries of Θ cannot be fixed a priori. While it is possible
to use a cut-back version of this estimator applying it to only those rows of Θ whose
entries need to be estimated, it is unclear how to obtain an approximate likelihood
corresponding to this estimator that is amenable to Langevin sampling of the drift
parameters and – at the same time – avoids the error amplification observed in the
LIT -based case.

Hence, since the LE-based estimators also cover Model Problem III, and since
they are amenable to Langevin sampling, they are our choice for estimating drift
parameters.

5.2. Drift parameters from LE . In order to simplify analysis, we illustrate the
estimator using the Model Problem II, (2.4), only. Nonetheless, we start from equation
(2.1) for which the Euler statistical model is given as follows:

{
Qn+1 = Qn + ∆tPn

Pn+1 = Pn + ∆t
∑c

i=1 Difi(Qn) − ∆tγPn +
√

∆tσξn
(5.1)

Here, we assume that the force functions {fi}c
i=1 are prescaled by parameters Di ∈ R.

The likelihood functional in this case is given by:

LE(γ, D|Q, P, σ) ∝ 1
√

2πσ2
N

exp

(
− 1

2σ2

N−1∑

n=0

(∆Pn − ∆t

c∑

i=1

Difi(Qn) + ∆tγPn)2

)

Differentiating this likelihood with respect to the parameters {Di}c
i=1 and γ and

equating to zero yields a linear system of equations which we denote by

ME




D1

...
Dc

γ


 = bE (5.2)

In the harmonic oscillator case, where c = 1 and f1(q) = −Dq we obtain the
following linear system:

[ ∑N−1
n=0 ∆tQ2

n

∑N−1
n=0 ∆tQnPn∑N−1

n=0 ∆tQnPn

∑N−1
n=0 ∆tP 2

n

] [
D̂
γ̂

]
=

[
−∑N−1

n=0 Qn∆Pn

−∑N−1
n=0 Pn∆Pn

]
(5.3)

The continuum limit for ∆t −→ 0 with N∆t = T of this system is simply:
[ ∫ T

0
q(t)2dt

∫ T

0
p(t)q(t)dt∫ T

0
p(t)q(t)dt

∫ T

0
p(t)2dt

] [
D̂
γ̂

]
=

[
−
∫ T

0
q(t)dpt

−
∫ T

0
p(t)dpt

]

This corresponds to the estimator of D and γ alone given by (1.9). Casting aside
issues about the discretisation error (finite ∆t), the proof of asymptotic consistency
given in [3] still applies to this estimator in the linear case.

Using the same likelihood, LE , a Langevin sampler can also be used for the drift
parameters. Since the resulting distribution for Θ is Gaussian, direct sampling can
be used in the spirit of subsection 4.1:

Θ̂ ∼ N
(
M−1

E bE , M−1
E

)
(5.4)
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5.3. Drift parameters from LIT . As the approximate model based on LIT is
observed to resolve the difficulty with estimating σ for hidden p-paths, it is interesting
to see whether it can also be used to estimate the drift parameters.

The log-likelihood function is given by (4.2). To illustrate the problems arising
from the use of LIT we use Model Problem II, so that (4.2) becomes

logLIT (Θ) =
1

2σ2∆t

N−1∑

n=0

‖(Xn+1 − Xn − ∆tΘA(Xn))‖2
R + const (5.5)

where R =

[ ∆t√
12

∆t
2

0 1

]
, irrelevant constants have been omitted and we have

A

([
Qn

Pn

])
=

[
Qn

Pn

]
, θ =

[
0 1

−D −γ

]
.

In order to obtain a maximum likelihood estimator from this, we take the derivative
with respect to the parameters D and γ and equate to zero. This yields the following
linear system:

[ ∑
n Q2

n∆t
∑

n PnQn∆t∑
n PnQn∆t

∑
n P 2

n∆t

] [
D̂
γ̂

]
=

[
−∑n Qn∆Pn

−∑n Pn∆Pn

]
+



∑

n
3
2Qn

(
∆Qn

∆t − Pn

)

∑
n

3
2Pn

(
∆Qn

∆t − Pn

)

(5.6)

Comparing this linear system to the successful estimator (5.2) we note the presence
of an additional term on the right hand side. This term leads to the failure of the
above estimator.

5.4. Numerical Check: Drift. There are two factors influencing convergence: T
and ∆t. To illustrate their influence, consider the following series of numerical tests.
All of the tests share these parameters:

D = 4 γ = 0.5 σ = 0.5 k = 30

Data for the tests are again generated using an Euler-Maruyama method on a finer
temporal grid with resolution ∆t/k. In the plot given in Figure 5.1 the top row
contains histograms for the drift parameter D whereas the second row contains his-
tograms for the drift parameter γ in any case using the full sample path for inference.
It is clear from these experiments summarised in Figure 5.1 that both D and γ are
grossly underestimated.

5.5. Why the Model fails for the drift parameters. The key is to analyse the
error term on the right hand side of (5.6) comparing it to the consistent estimator
(5.2). Using the 2nd order Itô-Taylor approximation

Xn+1 = Xn + ∆tAXn +

[
1 0
−γ 1

]
R

[
ξ1

ξ2

]
+

1

2
∆t2A2Xn + O(∆t

5
2 )

we can compute the error term on the right hand side of (5.6):



∑

n
3
2Qn

(
∆Qn

∆t − Pn

)

∑
n

3
2Pn

(
∆Qn

∆t − Pn

)

 =

[
− 3

4γ
∑

n QnPn∆t − 3
4D
∑

n Q2
n∆t

− 3
4D
∑

n QnPn∆t − 3
4γ
∑

n P 2
n∆t

]
+Is+O(∆t). (5.7)
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Fig. 5.1. Drift estimation for Model Problem II, using LIT

Here, D and γ refer to the exact drift parameters used to generate the sample path,
whereas D̂ and γ̂ in (5.6) and (5.7) are the drift parameters estimated using the
improved statistical model. The term Is on the right hand side contains stochastic
integrals whose expected value is zero.

As the mean error terms can be written in terms of the matrix elements them-
selves, (5.7) can be substituted in (5.6) to obtain:

ED̂ =
1

4
D + O(∆t) (5.8)

Eγ̂ =
1

4
γ + O(∆t). (5.9)

This seems to be corroborated by the numerical tests.

5.6. Conclusion for Drift Estimation. It has been observed numerically that the
likelihood LE associated with an Euler model for the SDE (1.1) yields asymptotically
consistent Langevin and maximum likelihood estimators for Model Problem II. For
the case of continuous time the proof of asymptotic consistency in the limit T → ∞
given in [3] can be adapted in the linear case (i.e. A = id) and it would be expected
to carry over to the discretised problem in the limit ∆t → 0 and N∆t → ∞.

While it is aesthetically desirable to base the estimation of all parameters as well
as the missing data on the same approximation LIT of the true likelihood L, and
although this approximation was found to work well for the estimation of missing
data and the diffusion coefficient, it does not work for the drift parameters.

It is possible to trace this failure to the fact that only the second row of Θ is
estimated where O(∆t) errors in the first row get amplified to O(1) errors in the
second row. Estimating all entries of Θ, while being outside the specification of the
problem under consideration, also yields O(1) errors if LIT is used and so does not
remedy the problem. This problem is not shared by the discretised version of the
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diffusion independent estimator (1.9), but this is not a maximum likelihood estimator
for LIT .

In summary, for the purposes of fitting our model problems to observed data we
employ the Euler estimator (5.4) for the drift parameters.

6. The Gibbs Loop. In this section, we combine the insights obtained in previ-
ous sections to formulate an effective algorithm to fit hypoelliptic diffusions to partial
observations of data at discrete times. We apply a deterministic scan Gibbs sampler
alternating between missing data, drift parameters and diffusion parameters. Sub-
section 6.1 describes the approach in the general case, when applied to (1.1), wheras
subsection 6.2 describes the application to Model Problem III.

6.1. Overview. In this section, the estimators for the hidden rough path V ,
the covariance ΓΓT and the those rows of the drift parameters Θ which are to be
estimated are combined in a Gibbs sampler. Given a likelihood L(U, V |Θ, ΓΓT ), a
prior p0(Θ, ΓΓT ) and observation U , a Systematic Scan Gibbs Sampler would normally
work as follows:

1. Sample V from L(V |U, Θ, ΓΓT ).
2. Sample Θ from L(Θ|U, V, ΓΓT ).
3. Sample ΓΓT from L(ΓΓT |U, V, Θ).
4. Restart from step 1 unless sufficiently equilibrated.

Of course, the exact likelihood for the problem at hand is unavailable and thus ap-
proximate likelihoods are chosen. Exactly which approximations are chosen depends
on the problem at hand. We have outlined how to construct LIT approximations to
estimate V and ΓΓT by propagating the highest order noise to every row and LE ap-
proximations for the drift parameter estimation. Numerical and analytical evidence
indicates that these approximations work well.

The algorithm to be put in practice thus reads:

1. Sample V from LIT (V |U, Θ, σ).
2. Sample Θ from LE(Θ|U, V, σ).
3. Sample σ from LIT (σ|U, V, Θ).
4. Restart from step 1 unless sufficiently equilibrated.

In practice, we find that for Model Problem II and III, equilibration is fast. Fur-
thermore, convergence of the estimates to the true parameter values is observed nu-
merically for Model Problems II and III with O(∆t) discretisation errors and O

(
1
T

)

truncation errors if the sample paths do not start in the equilibrium measure. The
overall bias is therefore of order O(∆t + 1

T ) and the observed variance is of order
O( 1

T ). We now show this in detail.

6.2. The Algorithm. The proposed algorithm will be illustrated using Model
Problem III.

Algorithm 6.1. Given observations qi, i = 1, . . . , N , the initial p-path is ob-

tained using numerical differentiation:

p
(0)
i =

∆qi

∆t
. (6.1)

The initial drift parameter estimate is just set to zero:
{
D

(0)
j

}c

j=1
= 0, γ(0) = 0.

Then start the Gibbs loop:
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Fig. 6.1. Typical sample path for Model Problem III, T = 500

For k = 1, . . . , NGibbs:

1. Estimate the drift parameters γ(k) and {D(k)
j }c

j=1 using sampling from LE

given
{

p
(k−1)
i

}N

i=0
via a (5.4).

2. Estimate the diffusivity σ(k) using the Langevin sampler (4.6) based on LIT

given
{
p(k)

}N

i=0
and γ(k),

{
D(k)

}c

j=1
.

3. Get an independent sample of the p-path,
{
p
(k)
i

}N

i=0
using (4.4) derived from

LIT given parameters γ(k),
{

D
(k)
j

}c

j=1
and σ(k).

This algorithm is tested numerically where sample paths of (2.5) are generated
using a sub-sampled Euler-Murayama approximation of the SDE. The data is gener-
ated using a timestep that is smaller than the observation time step by a factor of
either k = 30 or k = 60. Comparing the results for these two and other non-reported
cases, they are found not to depend on the rate of subsampling, k, if this is chosen
large enough. The parameters used for these simulations are as follows:

D0 = 1 D1 = −8 D2 = 8 γ = 0.5 σ = 0.7
T = 500 ∆t ∈

{
1
2 , . . . , 1

128

}
NGibbs = 10

The trigonometric potential resulting from this choice of drift parameters is depicted
on the left of Figure 6.1 and a typical samplepath is given on the right side of Figure
6.1. It should be noted that all sample paths are started at (q, p) = (1, 1). As the
potential is inspired by dihedral angle potentials used in molecular dynamics it seems
appropriate that σ is chosen such that metastability occurs. This can be observed in
the typical q-path given in Figure 6.1.

Using up to 64000 sample paths we obtain estimates of the drift parameters by
averaging over the latter half of NGibbs = 50 Gibbs iterations. We label these as 〈D̂i〉
and 〈γ̂〉. We then compute their deviation from the true values, ∆Di = 〈D̂i〉 − Di

and plot ∆Di and ∆γ versus ∆t in a doubly logarithmic plot given in Figure 6.2.

A similar plot which is given in Figure 6.3 is obtained for the shorter final time
T = 50 which will be helpful in understanding the influence of finite time resolution
∆t and finite final time T on the observed bias of the estimators.

A straight line fit for the doubly logarithmic plot is desired to numerically ascer-
tain the order of convergence. First attempts at obtaining such a fit using a standard
least squares procedure yield a slope close to 1 indicating O(∆t) errors in the fitted
parameters. However, since the Monte Carlo standard deviations around each data-
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Fig. 6.2. Whole loop estimation for Model Problem III: T = 500
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Fig. 6.3. Whole loop estimation for Model Problem III: T = 50

point get magnified due to the logarithmic transformation, the fact that the apparent
variance increases as ∆t is decreased has to be taken into account. As the observed
transformed standard deviations cannot be assumed to be small in comparison to the
observed mean error, a more sophisticated method than the standard least squares fit
is suggested.

Given averaged numerically observed parameter estimates yi and their numeri-
cally observed Monte Carlo standard deviations αi obtained at timesteps ∆ti we fit b
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Fig. 6.4. Whole loop estimation for Model Problem III: T = 500

and c in the following model:

αiξi = yi − b − c∆ti. (6.2)

Assuming that the errors ξi are normally distributed (which is empirically found to
be the case) a maximum likelihood fit for the parameters b and c can be performed
and yields the asymptotic (for ∆t → 0) drift parameter values reported in Figures
6.2 and 6.3. Note that this fit constrains the slope of the fitted line in the doubly
logarithmic plot to one. This is to minimise the number of parameters fitted and to
improve the accuracy of the extrapolated value b which is the predicted value for y at
∆t = 0. It can be observed in Figures 6.2 and 6.3 that this leads to good agreement
with the observed average parameter values yi, and this corroborates the estimator’s
bias being of order O(∆t).

Comparing the results for the two final times tested, T = 50 and T = 500, we
find that the deviation of the asymptotic drift parameter (b in (6.2)) from the true
parameter value is consistent with it being O

(
1
T

)
. This error is attributed to all

sample paths having been started at (q, p) = (1, 1) rather than from a point sampled
from the equilibrium measure.

From these coniderations it is apparent that the numerical experiments’ outcome
is consistent with an O(∆t)+O

(
1
T

)
bias, making the Algorithm 6.1 an asymptotically

consistent estimator of the drift and diffusion parameters.

7. Application to Molecular Conformational Dynamics. As a simple application
of fitting hypoelliptic diffusions using partial observations we consider data arising
from molecular dynamics simulations of a Butane molecule using a simple heat bath
approximation. After describing the origin of the data to be fitted, we observe that
for small ∆t, fitting an elliptic diffusion process is inappropriate as the fitted diffusion
coeffcient σ̂ tends to zero as ∆t −→ 0.

By considering the origin of the data we demonstrate that it is natural to fit
a hypoelliptic diffusion process which yields convergent results for diminishing inter-
sample intervals ∆t. Also, stabilisation of the fitted force function f(q) =

∑c
j=1 Djfj(q)

as the number of terms to be included, c, increases, is observed. Thus the hybrid Al-
gorithm 6.1 is shown to be effective on real data. It is also clear, though, that the
resulting fit has only limited predictive capabilities as it fails to fit the invariant mea-
sure of the data at all well. However, this is a modeling issue which is not central to
this paper.
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Fig. 7.2. MD Samplepath: Butane

7.1. Molecular Dynamics. The data used for this fitting example are generated
using a molecular dynamics (MD) simulation for a single molecule of Butane. In
order to avoid explcit computations for solvent molecules, several ad hoc approximate
algorithms have been developed in molecular dynamics. One of the more sweeping
approximation that is nonetheless fairly popular, at least as long as electrostatic
effects of the solvent can be neglected or treated otherwise, is Langevin dynamics.
The butane molecule is modelled as a damped-driven Hamiltonian system of the form

ẍ = ∇V (x) + γẋ + σḂ. (7.1)

The coordinate x in this equation stands for cartesian coordinates of the four extended
atoms making up the butane molecule, see [9] for details of the CHARMM forcefield
used here.

From a chemical point of view interest is focused on the dihedral angle, which
is the angle between the two planes in R

3 formed by atoms 1, 2, 3 and atoms 2, 3, 4
respectively; see the sketch in figure 7.1. Conformational change is manifest in this
angle, and the cartesian coordinates themselves are of little direct chemical interest.
Hence it is natural to try and describe the stochastic dynamics of the dihedral angle
in a self-contained fashion.

Fig. 7.1. Sketch of Dihedral Angle

One MD run is produced using a timestep of
∆t = 10−16s (one tenth of a femtosecond) and a
Verlet variant (see p.435 in [31]) covering a total
time of T = 4 · 10−9s (4 nanoseconds). A section
of path of the dihedral angle versus time can be
seen on the left of figure 7.2; the corresponding
histogram is depicted to the right of that figure.
It is known ([10]) that the stationary distribution
of (7.1) is given by the canonical distribution as-
sociated with the torsional potential, so that an
explicit analytical representation can easily be ob-
tained.
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Fig. 7.3. Convergence for fitted MD path with subsampling

It should be stressed that the effective stochas-
tic differential equation governing the behaviour of the dihedral angle ω is not of the
form (2.5), in particular, it will have a non-constant diffusivity σ. So, fitting to this
data tests the robustness of the fitting algorithm in a way that the experiments in
previous sections did not.

7.2. Fitting. The physical time-units in seconds are miniscule and do not lead
to SDE parameter fits of order one. It transpires that, in order to obtain parameter
values of order one, re-scaling time so that the final time becomes T = 80000 is a
good choice. This rescaling is useful in comparing convergence properties with what
was observed in section 6.

In order to assess consistency, the MD data is subsampled, at timesteps ∆t ∈
{1·10−15s, 2·10−15s, 3·10−15s . . .} in physical time units, corresponding to {k0.02}k∈N

in the rescaled time units. The Deterministic Scan Gibbs sampler is then run for
NGibbs = 40 outer iterations on each path using a potential ansatz

V (ω) =
c∑

k=1

θkcosk(ω)

where c ∈ {3, 5, 7} is used. This corresponds to a choice of the force function in
(2.5). The obtained drift parameters under subsampling at timestep ∆t can be seen
from figure 7.3. This plot shows the behaviour of the drift parameters averaged over
NGibbs = 100 Monte-Carlo samples θ1, . . . , θ5, γ as the subsampling rate is increased.
Below a subsampling rate k = 20, behaviour consistent with O(∆t) errors is ob-
served indicating convergence of the algorithm as ∆t is decreased. This is exactly the
behaviour observed on simulated data and it is a measure of the robustness of the
proposed algorithm.
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7.3. Limitations. The desirable convergence properties of the algorithm in ∆t
and T should not be confused with inference about whether fitting this kind of model
to this kind of MD data gives a good or a bad fit, it merely indicates that, using the
algorithm suggested in this paper, it is possible to perform such fitting.

To show limitations of the model in this particular application and see how the
performance can be assessed using the fitting algorithm from section 6.2, we show
posterior invariant probability densities resulting from the fitted trigonometric poten-

tials. In order to do this, we convert the drift parameter samples {D(m)
j }c

j=1 obtained

at step m using input data subsampled at rate k = 1 to an invariant density, %(m)

specified by its values on an equidistant grid on the interval [−π, π]. These densities
for m ∈ {1, . . . , 1000} are then averaged and their standard deviation is computed
pointwise on the grid. This results in the plot given in figure 7.4. There, we display
results for three orders of trigonometric potential c to be fitted and contrast this with
the empirically observed invariant density and the density arising from the classic

canonical thermodynamic ensemble which is proportional to exp
(
−V (ω)

kT

)
. For the

parameterisation used here, it is known that the latter two agree in the limit T → ∞,
see [10].

With increasing polynomial order c we find some qualitative change in the result-
ing probability and also (in particular moving from c = 5 to c = 7) a marked increase
in posterior variance. This goes hand-in-hand with a marked increase in the condi-
tion number of the drift parameter matrix ME in (5.4). It is simply an ill-conditioned
problem to derive higher and higher order polynomial coefficients from a fixed length
of observed path.

It is observed that even though the empirically observed invariant density is
smooth and close to the thermodynamical expectation, the fitted potentials induce an
SDE whose invariant measure is not a good approximation of the empirical density.
This may simply be attributed to the fact that the SDE that is being fitted does not
represent a good model of the dynamics of the dihedral angle in the Butane molecule
with second order Langevin heat bath model.
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8. Conclusions. A hybrid
algorithm for fitting drift and
diffusion parameters of a hy-
poelliptic diffusion process with
constant diffusivity from obser-
vation of smooth data at dis-
crete times has been described.
Its performance has been vali-
dated numerically for a number
of test cases and an application
to molecular dynamics data has
been given. While parameter
fitting can be viewed as an in-
verse problem for SDE solvers
– and thus ill-conditioning of
some kind is to be expected –
a detailed understanding of the
ill-conditioning induced by hy-
poellipticity and partial obser-
vation has been attained.

While only second order hy-
poelliptic problems have been
treated in this article, the algo-
rithm’s applicability is expected
to encompass order k hypoel-
liptic problems and it has been
tested successfully on a third or-
der example. Furthermore, non-
linear p-dependence in the ex-
ample (2.1) can be dealt with

using a Langevin sampler for the missing path and this has also been tested.
Further avenues of investigation include the use of imputed data-points between

samples to diminish O(∆t) errors; however there is a risk of bad mixing as σ is
determined by the small scale behaviour of the process which would then be dominated
by the imputed data points. This has been analysed in the case of elliptic diffusion
processes in [30].

Also, an extension to position dependent diffusion coefficients may prove useful,
in particular, in may render the algorithm more useful in molecular dynamics contexts
such as those in [18].

9. Appendix. We explain how the exact sampler (4.4) is derived. The Langevin
equation used to sample from the distribution of p (given drift parameters and σ) is:

dp

ds
= Pmatp + Q(q) +

√
2
dW

ds
(9.1)

Here, W consists of N independent standard white noise processes and p = p(s) is
thought of as a function

p : [0,∞) −→ R
N

This equation is continuous in time but discrete in space. Given that the derivative
of logLIT is linear in the pi, (9.1) is recognised as an Ornstein-Uhlenbeck process, so
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that the equilibrium measure is expressible as follows:

p ∼ N (−P−1
matQ(q),−P−1

mat) (9.2)

Given a computer-generated pseudo-random i.i.d. sequence of normally dis-
tributed random variables, {ξn}, one can generate independent samples with the
desired distribution, if the root of the covariance matrix is available, simply by set-
ting:

pn = −P−1
matQmatq +

√
−P−1

matξn.

As noted above, −P−1
mat is positive definite symmetric. We may thus compute the

Cholesky factorisation UT U = −Pmat and use the following observation which yields

E

(
U−1ξ

(
U−1ξ

)T)
= U−1IU−T

= U−1U−T

= −P−1
mat

as desired.
The suggested sampler for p-paths is then (4.4). Since a Cholesky factorisation

of Pmat is an efficient way to compute the mean, the application of U−1 is a just a
backsubstitution using the already computed Cholesky factor.

A cautionary note from Trefethen ([33], p.177 ) shows that while solving the
linear system for P−1 is backward stable, the computation of the factor U is not
forward-stable, i.e. the errors in U might be large for a generic positive definite
matrix. In our case, P is very well-conditioned ( Gershgorin yields an upper bound
for its condition number with respect to the 2-norm of κ(P ) < 3 +O(∆t)) so that we
expect U to be computed accurately. Employing a combination of Theorem 10.5 for
stability and Theorem 10.8 for conditioning of the Cholesky factor from [17] this can
be substantiated.

Now we compute derivatives of the approximate likelihood LIT needed for a
Langevin sampler of the missing path p and for the resulting exact sampler (4.4). We
have

−σ2 ∂L
∂pi

= qi+1

(
6

b∆t
(γ − ∆t−1)

)

+qi

(
−(1 + ∆ta)

6

b∆t
(γ − 1

∆t
) − ∆tD(2∆t−1 − 4γ)− 6b−1∆t−2

)

+qi−1

(
(1 + ∆ta)6b−1∆t−2 − 4D

)

+pi+1

(
2∆t−1 − 4γ

)

+pi

(
6(∆t−1 − γ)(2∆t−1 − 4γ)(−1 − ∆tγ) + 4∆t−1

)
+ pi−1

(
2∆t−1 − 4γ

)

at inner points 0 < i < N . At the boundary points one gets:

−σ2 ∂L
∂p0

= q0

(
−(1 + ∆ta)(6b−1∆t−1γ − 6b−1∆t−2) − 2D + 4γD∆t

)

+q1

(
6b−1∆t−1γ − 6b−1∆t−2

)

+p0

(
−∆tb(−6b−1∆t−2 + 6b−1∆t−1γ) − (1 + ∆γ)(2∆t−1 − 4γ)

)

+p1

(
2∆t−1 − 4γ

)
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And for i = N :

−σ2 ∂L
∂pN

= qN−1

(
(1 + ∆ta)6b−1∆t−2 − 4D

)
+ qN

(
−6b−1∆t−2

)

+pN−1

(
6∆t−1 − (1 + ∆tγ)4∆t−1

)
+ pN

(
4∆t−1

)
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