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A FINITE ELEMENT METHOD VIA NOISE REGULARIZATION
FOR THE STOCHASTIC ALLEN-CAHN PROBLEM

MARKOS A. KATSOULAKIS, GEORGIOS T. KOSSIORIS, AND OMAR LAKKIS

Abstract. We study finite element approximations of stochastic partial dif-
ferential equations of Ginzburg-Landau type and the main paradigm consid-
ered in this paper is the stochastic Allen-Cahn model. We first demonstrate
that the constructed stochastic finite element approximations are within an
arbitrary level of tolerance from the corresponding one-dimensional stochastic
partial differential equation; secondly we show that the finite element approx-
imation is close to the most probable deterministic trajectory of the stochastic
Allen-Cahn equation, even in large time intervals where interfaces form and
evolve according to macroscopic mean curvature-dependent evolutions.

1. Introduction

Stochastic partial differential equation (SPDE) models arise in numerous applica-
tions ranging from materials science, surface processes and macromolecular dynam-
ics [Coo70, Spo89, Str97], to atmosphere/ocean modeling [LN03] and epidemiology
[Dur99]. These models are typically derived through mostly formal arguments from
finer, more detailed, models were unresolved degrees of freedom are represented by
suitable stochastic forcing terms. There are also some notable rigorous derivations
from microscopic scales in special asymptotic regimes [BPRS93, MT95, e.g.].

An important class of these nonlinear SPDE are the stochastic Ginzburg–Landau
models which are typically obtained from microscopic lattice models for a suitable
order parameter (e.g., spin), by statistical mechanics renormalization arguments
combined with detailed balance laws. They formally result to Langevin type dy-
namics in infinite dimensions and can be categorized as type A models, where the
order parameter is not conserved, and type B, conservative, models [HH77].

A common feature of the aforementioned SPDE’s is that they are nonlinear
and typically have transition regimes associated with nucleation, phase transitions,
pattern formation, etc. From a computational view-point such SPDE’s are usually
handled by using finite difference methods [KM99, KK01]. This approach, which
is computationally robust as long as the underlying SPDE has a solution which is
not oscillating at the finest resolution scales, has a drawback in that it does not
allocate computational resources efficiently, the reason being that the computa-
tional space-time grids are uniform. This is a major computational issue in SPDE
simulation, even more so than in deterministic PDE ones since many realizations
must be carried out in order to reproduce statistical quantities with a satisfactory
approximation.
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For this purpose Finite Element Methods (FEM) for SPDE could provide a more
flexible framework than finite differences. In fact, it is a well known and a widely em-
ployed fact that FEM allow for space-time adaptivity. Heuristically, in an adaptive
scheme the computational mesh is very fine in high activity regions (e.g., nucleation
regimes, transition layers, etc.) of the computational domain, while the mesh stays
coarse elsewhere. This process, should lead in principle to an efficient allocation
of resources, in the sense that the best possible approximation is obtained within
a given computational time and space. On the other hand, FEM have seen an
enormous development of a posteriori error control, which permits one step further
in adaptive methods, well beyond the solely heuristic ideas, by providing a mathe-
matical foundation for automatic adaptivity. In this case, the mesh refinement and
coarsening are driven by error indicators, that can be effectively computed from the
numerical solution and form the building blocks of a bound on the numerical error.
The ideal adaptive method, should therefore rely only on such automatically com-
puted quantities, excluding human intervention, and be both efficient and reliable
at the same time. Much on the subject of error control and adaptivity for determin-
istic PDE’s can be found in some recent monographs dedicated to space-dependent
problems [AO00, Bra01, BS94, Ver96] and, for space-time-dependent problems, in
the extensive research paper literature some of which will be cited further on. No-
tice that recently there has also been a rapid development of a priori error analysis
of FEM for linear SPDE’s [ANZ98, BTZ04, ST03, e.g.] and various adaptive meth-
ods have been pursued for stochastic (ordinary) differential equations [STZ01] as
well as for Monte-Carlo algorithms for space dependent problems [CKV05, CVK04].
However, there seems to be yet no studies regarding error control and adaptivity
for linear, let alone nonlinear, evolution SPDE’s in the literature.

Motivated by this need for robust FEM for nonlinear SPDE’s, in this paper we
begin a systematic study of a numerical approximation of stochastic Ginzburg–
Landau type equations. We focus on the simplest example exhibiting the phe-
nomena of interface formation and nucleation, namely the stochastic Allen–Cahn
problem

(1) ∂tu(x, t)− ∂xxu(x, t) + fε(u(x, t)) = εγ∂xtW (x, t), for x ∈ D, t ∈ [0,∞)

where D = (−1, 1), ε > 0 and fε is an odd nonlinearity scaled by 1/ε2 and ∂xtW
is the space-time white noise; see §2.1 further for the details on fε. This is a
stochastic version of the well-known deterministic Allen–Cahn problem describing,
among the others, the evolution in time of a polycrystalline material [AC79]. We
take boundary conditions of Neumann type and the initial condition to be a resolved
profile; we refer again to §2 for the details.

Equation (1) is a type A model in Halperin’s classification [HH77], i.e., it is non-
conservative in the order parameter u and exhibits both nucleation and interface
formation, while it retains a relatively simple structure without multiplicative or
conservative noise terms as the ones arising in type B models, such as the Cahn–
Hilliard–Cook equation [KM99, KV03].

While a thorough discussion of (1) is given in §2, it is worth mentioning that this
SPDE, with the white noise term, is well-posed only in spatial dimension 1. Two
important pieces of work concerned with the analytic and probabilistic aspects of
(1) are those of Funaki [Fun95] and Brassesco, De Masi & Presutti [BDMP95]. In
both papers, the authors study the asymptotic behavior of the solution processes
as ε → 0. In particular, it turns out that, under suitable time-space rescaling, the
solution with initial value taken to be (roughly speaking) a step function, converges
(in an appropriate probabilistic sense) to the step function with its jump point
performing a Brownian Motion.
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Our first task, carried out in §3, is to construct a regularization, denoted ∂xtW̄ (x, t),
of ∂xtW (x, t) (appearing in (1)) with respect to an underlying uniform partition,
Dσ ×Iρ, of the space-time domain D× I. In the spirit of FEM, this regularization
process consists of a projection of the white noise onto an appropriate space of
piecewise constant space-time functions, which may be viewed as the mixed deriva-
tives of hat functions. This idea, which has been successfully used in the context
of the linear heat equation [ANZ98], leads to the regularized problem

(2) ∂tu(x, t)− ∂xxu(x, t) + fε(u(x, t)) = εγ∂xtW̄ (x, t), for x ∈ D, t ∈ [0,∞).

Notice that ∂xtW̄ is still a stochastic process in space-time, but it is much smoother
than the white noise which allows equation (2) to be interpreted in the usual PDE
sense pathwise. In §4 we cover some basic properties of problem (2) and its solution.
The main result of this section is Theorem 4.5, which states that the solution of
the regularized problem converges—in an appropriate sense—to the solution of the
original SPDE (1) as the space-time partition becomes infinitely fine.

In §5, we devote some more to the analysis of (2), taking it as a model for its own
sake. We show, in Theorem 5.3, that if the noise is weak enough (namely γ > 4)
then the solution of the regularized problem converges, in an appropriate sense, to
the solution of the deterministic Allen–Cahn problem

(3)
∂tq − ∂xxq + fε(q) = 0, in D × I,

q(0) = u0, on D, and ∂xq(t, 0) = ∂xq(t, 1), t ∈ I.
Our proof makes use of the spectrum estimates of the linearized elliptic differential
operator−∂xx+f ′ε(q), derived independently by Xinfu Chen [Che94] and de Mottoni
& Schatzman [dMS95].

The derivation of (2) is the first step, out of two, towards the derivation of an im-
plementable numerical scheme for the original SPDE. Indeed equation (2), having
a more regular solution than (1), can be discretized using a standard finite ele-
ment (or finite difference) scheme for evolution equations. Our second step consists
therefore in introducing such a scheme in §6, using a FEM for the space variable
and a Backward Euler discretization for the time variable. Related schemes have
been thoroughly analyzed and successfully applied in the context of the determinis-
tic Allen-Cahn problem [FP03, KNS04] and for the stochastic linear heat diffusion
problem [ANZ98]. It is for the first time, up to our knowledge, that this scheme
is employed in a stochastic and nonlinear setting. The issues of regularity of the
regularized solution and the convergence of the FEM are left as a topic for a subse-
quent article [KKL05]. Let us mention just that while an adaptation of the ideas of
Feng & Prohl [FP03] and Kessler, Nochetto & Schmidt [KNS04] may prove helpful,
this is not straightforward and may be short from sufficient to conduct the analysis
for any γ ≥ 0 and ε > 0. There are two main reasons for this. First, the spectral
estimates derived by Xinfu Chen [Che94] and De Mottoni & Schatzman [dMS95]
which allow a reasonable dependence of the computational parameters with respect
to ε may cease to be valid as γ closes to 0. Secondly, in our case, the regularity
assumptions on the “exact” solution ū have to be weakened with respect to those
assumed by Feng & Prohl in their a priori error analysis [FP03]; on the other hand,
it is not clear how to conduct an adaptive method with the stochastic term using
a posteriori error estimators similar to those of Kessler et al. [KNS04].

In §7, we test our scheme in a practical situation, geared towards reconciling the
computational results with the main aspects of the theoretical results outlined by
Funaki [Fun95] and Brassesco, De Masi & Presutti [BDMP95] independently. We
focus on tracking the so-called center of a resolved profile of the Allen-Cahn equa-
tion as time evolves. For the deterministic Allen–Cahn it is well-known [CP89] that
so-called metastable states, consisting of two separated phases, are non-equilibrium
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points that take times of the order exp(C0/ε) to reach a stable state, for which
one phase prevails on the other. One of the main difference between the determin-
istic and the stochastic Allen–Cahn is that the speed that metastable states take
to evolve into stable ones is much higher, indeed this takes times polynomial in ε.
Furthermore, the center of a resolved profile follows a rescaled Brownian motion
with diffusion coefficient given, in our scaling, by

√
3× 2−3/2ε1+2γ . We use this

fact as a theoretical benchmark to test the quality of our FEM solution of (2) by
showing that, as ε decreases, the average of the numerical solution gets closer to the
error function distribution with 0 mean and standard deviation

√
3× 2−3/2ε1+2γt.

Although, this benchmarking procedure is not sufficient to validate the convergence
of the FEM, it gives an as accurate as possible quantification of our method. It
is worth mentioning that a similar procedure, albeit in the context of stochastic
ODE’s has been employed by Shardlow as a test case [Sha00]. The fact that the
procedure succeeds, in that the behavior of the numerical solution reflects that of
the exact solution, encourages us down the road of further studies of this method,
its extension to higher dimensions and the derivation of adaptive methods.

Note also that the most probable path of (1) is given by its deterministic ana-
logue as obtained also by large deviations results for stochastic reaction diffusion
equations in [FW98] (cf [Fun95], [BDMP95]). The analysis in §5 can be seen as a
quantification in terms of detailed error estimates. Furthermore, in view of well-
known asymptotic limits in dimension 2 or higher of the deterministic Allen-Cahn
equation to motion by mean curvature [BSS93], this latter result demonstrates that
the FEM approximation presented here is a stochastic approximation to motion by
mean curvature evolutions. The influence of stochastic corrections to motion by
mean curvature evolutions and in particular to its instabilities such as interface
fattening was recently demonstrated in [KK01, DLN01, SY04]. Our results give
thus a first rigorous indication that this approximation framework could provide
an accurate and potentially efficient algorithm (via FEM adaptivity) for simulating
the stochastic motion by mean curvature and more complicated geometric motions
that arise in stochastic PDE modeling.

Acknowledgment. We would like to thank Georgios Zouraris and Anders Szepessy
for stimulating discussions.

2. Set up

2.1. Noisy Allen-Cahn problem. We will study an initial-boundary value prob-
lem associated with the semilinear parabolic partial differential equation with ad-
ditive white noise, known as the stochastic (or noisy) Allen-Cahn equation given
by (1). The nonlinearity fε must be the derivative of an even coercive function Fε

with exactly two minimum points. Such a Fε is known as a double-well potential
and, for sake of conciseness, we focus on the model potential explicitly defined by

(4) Fε(ξ) =
1

4ε2
(ξ2 − 1)2, for ξ ∈ R.

Here ε ∈ R+ is a scaling parameter. The term ∂xtW is the space-time Gaussian
white noise, which can be defined as the mixed distributional derivative of a Brow-
nian sheet W [Wal86, KX95]. The parameter γ ∈ R models the intensity of the
white noise and plays a delicate role in the analysis, as ε→ 0.

The presence of the right-hand side makes (1) a randomly perturbed version of
the Allen-Cahn equation which is a stochastic PDE (SPDE). A solution of such
an equation has to be interpreted in the stochastic sense. That is, for each t, the
solution u(·, t) is understood as a random process on an underlying probability
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measure space (Ω,F , P ) with values in a suitable function space defined on D.
Equation (1), supplemented with the initial condition

(5) u(x, 0) = u0(x), ∀x ∈ D,
and with the Neumann boundary conditions

(6) ∂xu(−1, t) = ∂xu(1, t) = 0 ∀t ∈ R+,

defines the stochastic Allen-Cahn problem. We will assume throughout the pa-
per that u0 is a resolved profile solution, that is, for all x ∈ D, u0(x) is a linear
perturbation of q0((x− α)/ε), where α ∈ D and q0 is the unique solution to

(7) −q′′0 + f1(q0) = 0 in R, q0(±∞) = ±1 and q0(0) = 0

[Che94, p. 1374] [dMS95, Thm. 5.1].

2.2. Space-time stochastic integral. One can give a mathematically rigorous
definition of a solution of the stochastic Allen-Cahn problem (1),(5)–(6) as a distribution-
valued process [Wal86, KX95]. However, we find it more convenient, as in the case
of the white noise generated from a Brownian motion, to work with the stochastic
integral with respect to the Brownian sheet W denoted by “

∫
·dW” [Wal86, §II]

[KX95, Ch. 3]. In our doing so, we bear in mind the formal relationship

(8)
∫ ∞

0

∫
D

f(x, t)∂xtW (x, t) dxdt =
∫ ∞

0

∫
D

f(x, t) dW (x, t)

that will inspire the weak formulation (14) and the definitions in §3. In the
particular case where f is the characteristic function of a Borel-measurable set
A ∈ B(R+ ×D) of Lebesgue measure |A| <∞ the following basic property of the
stochastic integral is satisfied

(9)
∫ ∞

0

∫
A

dW (x, t) = W (A) ∈ N (0, |A|) ,

i.e., W (A) is a Gaussian random variable with mean zero and variance |A|.1
Since we are interested in numerical solutions, we consider the time domain to

be a bounded interval I = [0, T ], for some fixed T ∈ R+. A fundamental property
of the stochastic integral is the following well-known L2-isometry, which holds for
the Itô integral,

(10) E

[(∫
I

∫
D

f(x, t) dW (x, t)
)2
]

= E
[∫

I

∫
D

f(x, t)2 dxdt
]
,

for any FW
t -measurable f ∈ L2(I ×D × Ω), where

(11) FW
t = σ {W (A) : A ∈ B(I ×D)} ,

is the sigma-field (or sigma-algebra) generated by W up to time t, and E denotes
the expectation with respect to (Ω,F , P ).

A useful consequence of (10) is that
(12)

E
[∫

I

∫
D

f(x, t) dW (x, t)
∫

I

∫
D

g(y, s) dW (y, s)
]

= E
[∫

I

∫
D

f(x, t)g(x, t) dxdt
]
,

for any FW
t -measurable f, g ∈ L2(I×D×Ω). In the special case where f and g are,

respectively, the characteristic functions of two Borel sets A and B ∈ B(I × D),
with |A| , |B| <∞, (12) implies

(13) Cov(W (A),W (B)) = |A ∩B| .

1For µ ∈ R, σ ∈ R+ we denote by N
`
µ, σ2

´
the class of normally distributed (or Gaussian)

random variables of mean µ and variance σ2 on the space Ω.
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2.3. Integral solutions. By multiplying (1) with a test function φ ∈ C2
c(D ×

(0,∞)) and using the formal relation (8), we can write the problem in the usual
weak form2

(14)
∫ ∞

0

∫
D

u∂tφ+ ∂xu∂xφ+ fε(u)φ+ εγ
∫ ∞

0

∫
D

φdW = 0.

Despite the above formulation being quite useful, especially for studying a numerical
scheme, it is not very convenient to nail down the concept of solution. A rather
more convenient way to give rigorous meaning to (1) is to look for an integral
solution of an equivalent integral equation [DPZ92, Doe87, FJL82, Wal86], as we
briefly illustrate next.

Introduce first the corresponding boundary value problem for the stochastic lin-
ear heat equation [DPZ92, Wal86]

(15)

∂tZ − ∂xxZ = ∂xtW, in D × R+
0

Z(x, 0) = 0, on D

∂xZ(1, t) = ∂xZ(−1, t) = 0, ∀t ∈ [0,∞).

The solution to this problem can be defined as the Gaussian process in space-time
produced by the stochastic integral

(16) Zt(x) = Z(x, t) :=
∫ t

0

∫
D

Gt−s(x, y) dW (y, s),

where G is the heat kernel for the corresponding homogeneous Neumann problem.
In our one-dimensional particular case, G can be explicitly written as

(17) Gt(x, y) = 4
∞∑

k=0

(2− δk
0 ) cos

πk(x+ 1)
2

cos
πk(y + 1)

2
exp

−π2k2t

4
,

where δk
0 is the Kronecker symbol.

The integral solution of (1) can then be defined as a solution of the equivalent
integral equation

u(x, t) = −
∫ t

0

∫
D

Gt−s(x, y)fε(u(y, s)) dy ds+
∫

D

Gt(x, y)u0(y) dy + εγZt(x).

(18)

It is known that such a solution exists uniquely as a C0(D)-valued continuous
process, t 7→ u(., t), adapted to Zt, provided the initial condition u0 satisfies the
Neumann boundary conditions [BDMP95, Wal86, FJL82]. In this article we use
this concept of solution which we refer to simply as the solution of Problem (1),(5)–
(6) and we will denote it by u. Notice that u is also referred to by some authors as
the Ginzburg-Landau process [BDMP95].

For the aims set in this paper, in order to study the error of convergence of an
approximation of the solution of (1), we first need a uniform bound for u. In the
deterministic case such a bound is direct consequence of the maximum principle.
In our case we do not expect to have a uniform bound in the whole probability
space. However, a bound on a set with large probability controlled by ε will suffice
for our needs.

2Whenever the meaning is clear from the context, for sake of conciseness, we often drop the
variables “x, t” and, in non-stochastic integrals, also the corresponding elementary terms “ d”.
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2.4. Theorem (Probabilistic maximum principle) Given T , there exist c1, c2, δ0 > 0
such that if ‖u0‖L∞(D) ≤ 1 + δ0 then

(19) P

{
sup

t∈[0,T ]

‖u(t)‖L∞(D) > 3

}
≤ c1 exp(−c2/ε1+2γ).

Proof
We conduct ourselves to Proposition 5.2 of Brassesco et al. [BDMP95] by in-

troducing the time-space rescaling: t 7→ t/ε2 and x 7→ x/(
√

2ε) and extending the
solution periodically to the whole space as to obtain the proper barrier function.
Since we are dealing with the more general case γ ≥ 0, while they deal with the
case γ = 0 only, we retrace the salient points of their proof. The barrier function v
satisfies the following equation—corresponding to [BDMP95, (5.12)]:

(20) ∂tv −
1
2
∂xxv + 2v = −3v2 − v3 + 2−1/4εγ+1/2∂xtW.

Consider now the function

(21) V (x, t) =
∫ t

0

exp(−2(t− s))H(ε
√

2)
t−s (x, y) dW (y, s),

where H(ε
√

2)
t−s is the Green operator defined by

(22) exp(−2t)H(ε
√

2)
t−s =

(
∂t −

1
2
∂xx + 2 Id

)−1

,

with homogeneous boundary conditions on
(
−1/(

√
2ε), 1/(

√
2ε)
)
. By using equa-

tion [BDMP95, (5.2)] with λ = exp(−(γ + 1/2)) and adapting properly the proof
of [BDMP95, Lemma 2.1] we can easily conclude that for each b > 0 there exist c1
and c2 > 0 such that

(23) P ε

(
sup

t≤Tε−2,x∈R

∣∣∣εγ+1/2V (x, t)
∣∣∣ > b

)
≤ c1 exp(−c2/ε1+2γ).

The rest of the proof is now identical to that of [BDMP95, Proposition 5.2].

3. White noise approximation

In order to introduce a finite element method (FEM) that approximates a solu-
tion of (18), we first need to to obtain a weak formulation in the standard sense
of PDE and FEM. This is not possible with the presence of the white noise, so we
regularize first the problem by replacing the white noise with a smoother stochastic
term. Our technique is inspired by that of Allen, Novosel & Zhang [ANZ98] for the
linear heat equation.

3.1. A piecewise constant approximation of the white noise. Consider a
tensor-product partition of the space-time domain, Dσ ×Iρ, where σ, ρ ∈ R+ and

(24)
Dσ := {Dm : Dm := (xm−1, xm), m ∈ [1 : M ]} ,
and Iρ := {In : In := [tn−1, tn), n ∈ [1 : N ]} ,

are, respectively, a space-domain, and a time-domain, partition; each one of these
partitions is uniform, that is

(25) xm − xm−1 = σ, ∀m ∈ [1 : M ] and tn − tn−1 = ρ, ∀n ∈ [1 : N ]

and x0 = −1, xM = 1, t0 = 0 and tN = T . Let us denote by χm = 1Dm and
ϕn = 1In the characteristic functions of the space subdomains and time subdomains
respectively. We think of these as “basis functions” with respect to which we will
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construct the regularized approximation of the white noise through a projection
operation.

The (piecewise constant) approximation of white noise, abbreviated by AWN, is
given by the random space-time function

(26) ∂xtW̄ (x, t) =
N∑

n=1

N∑
m=1

η̄m,nχm(x)ϕn(t)

where the coefficients are the random variables defined by

(27) η̄m,n :=
1
σρ

∫
I

∫
D

χm(x)ψn(t) dW (x, t).

In the sequel we will use the shorthand

(28)
∫ t

0

∫
D

f(x, s) dW̄ (x, s) =
∫ t

0

∫
D

f(x, s)∂xtW̄ (x, s) dxds,

despite the integral being a classical non-stochastic one.

3.2. Lemma (Moments and independence of the AWN coefficients) The coefficients
η̄m,n defined in (27) are i.i.d. N (0, 1/(σρ)) variables.

Proof From the definitions of η̄m,n and property (9) we have

η̄m,n =
1
σρ

∫
I

∫
D

χm(x)ϕn(t) dW (x, t)

=
1
σρ

∫
In

∫
Dm

dW (x, t) =
W (In ×Dm)

σρ

∈ N
(

0,
|In ×Dm|
σ2ρ2

)
= N

(
0,

1
σρ

)
.

(29)

To show independence compute the covariances for m,m′ ∈ [1 : M ] and n, n′ ∈
[1 : N ], using (12), as follows

(σρ)2 E[η̄m,nη̄m′,n′ ] = E
[∫

I

∫
D

χmϕn dW
∫

I

∫
D

χm′ϕn′ dW
]

=
∫

I

∫
D

χm(x)χm′(x)ϕn(t)ϕn′(t) dxdt

= δm
m′δn

n′σρ,

(30)

where δi
j is the Kronecker symbol.

The AWN satisfies two important technical properties that we state and prove
next.

3.3. Lemma (Approximate Itô-type inequality) For all deterministic functions f ∈
L2(I ×D) the following holds true

(31) E

[(∫
I

∫
D

f(x, t) dW̄ (x, t)
)2
]
≤
∫

I

∫
D

f(x, t)2 dxdt.
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Proof Lemma 3.2 and some manipulations yield

E

[(∫
I

∫
D

f(x, t) dW̄ (x, t)
)2
]

= E

(∫
I

∫
D

f(x, t)
∑
mn

η̄m,nχm(x)φn(t) dxdt

)2


= E

(∑
mn

η̄m,n

∫
In

∫
Dm

f(x, t) dxdt

)2


= E

∑
nm

η̄2
m,n

(∫
In

∫
Dm

f

)2

+ 2
∑

n 6=n′,m 6=m′

η̄m,nη̄
′
m′n

(∫
In

∫
Dm

f

)(∫
I′n

∫
D′

m

f

)
=
∑
mn

E
[
η̄2

m,n

](∫
In

∫
Dm

f

)2

=
∑
mn

1
ρσ

(∫
In

∫
Dm

f

)2

≤
∑
mn

∫
In

∫
Dm

f2 =
∫

I

∫
D

f(x, t)2 dxdt.

In the next-to-last step we use the Cauchy–Schwarz inequality.

3.4. Remark Lemma 3.3 and (10) imply that

(32) E

[(∫
I

∫
D

f(x, t) dW̄ (x, t)
)2
]
≤ E

[(∫
I

∫
D

f(x, t) dW (x, t)
)2
]
.

In other words, the L2-type regularity properties of the AWN will be, at the worse,
the same as those of the white noise itself. In many cases the regularity properties
of the AWN can be actually improved with respect to those of the white noise, as
illustrated by the next result.

3.5. Lemma (L∞(0, T ; L2(D)) bound for the AWN) For each K > 0 there exists
an event Ω2

K ⊂ Ω that satisfies

P (Ω2
K) ≥

[
1− T

ρ

(
1 +

K2

2
ρ

)1/(2σ)−1

exp
(
−K

2

2
ρ

)]+

(33)

and such that

sup
t∈[0,T ]

∥∥∂xtW̄ (t)
∥∥

L2(D)
≤ K, on Ω2

K .(34)

Proof We proceed in steps.
Step 1. Recall that M = 1/σ and N = T/ρ. By the definition of ∂xtW̄ we have,
for each t ∈ [0, T ] and n ∈ [1 : N ] such that t ∈ In, that

(35)
∥∥∂xtW̄ (t)

∥∥2

L2(D)
= σ

M∑
m=1

η̄2
m,n =

1
ρ

M∑
m=1

η2
m,n,

where the ηm,n ∈ N (0, 1). In order to conclude, we will obtain a condition on the
right-hand side that makes it smaller than K2, for all n ∈ [1 : N ].
Step 2. For each n ∈ [1 : N ] we consider the random variable

(36) Hn :=
M∑

m=1

η2
m,n.
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Notice that, in view of Lemma 3.2 for n 6= n′, Hn and Hn′ are independent. Let us
fix n for a while and find an event for which Hn ≤ ρK2. By Lemma 3.2 and a basic
probability fact [Bil95, Pbm. 20.16], the random variable Hn has a chi-squared
distribution with M degrees of freedom. Its density is given by

(37)
zM/2−1 exp(−z/2)

2M/2Γ(M/2)
, for z > 0,

and 0 for z ≤ 0, where Γ is the Euler Gamma-function. Thus we have

(38) P (Hn ≤ ρK2) =
1

2M/2Γ(M/2)

∫ ρK2

0

zM/2−1 exp(−z/2) dz.

Step 3. We prove next a lower bound on this integral in the case where M is even,
the odd case being similar. Let y play the role of ρK2 and consider for each k ∈ N0

the integral

(39) Ik :=
∫ y

0

zk exp(−z/2) dz.

An integration by parts yields the recursive expression

(40) Ik = 2kIk−1 − 2yk exp(−y/2),

which allows, by an inductive argument, to see that

(41) Ik = 2k+1k!− 2
k∑

i=0

k!
(k − i)!

yk−i2i exp(−y/2).

An easy manipulation with the binomial formula implies that

(42) Ik ≥ 2k+1k!
(
1− (1 + y/2)k exp(−y/2)

)
.

Taking k = M/2 − 1 in the above and recalling the definition of Ik and (37) it
follows that

(43) P (Hn ≤ ρK2) ≥ 1−
(

1 +
ρK2

2

)M/2−1

exp
(
−ρK

2

2

)
;

which implies

(44) P (Hn ≤ ρK2) ≥

[
1−

(
1 +

ρK2

2

)M/2−1

exp
(
−ρK

2

2

)]+

.

Step 4. To conclude the proof, we introduce the event

(45) Ω2
K =

N⋂
n=1

{
Hn ≤ ρK2

}
,

and we observe that, in view of (35), on Ω2
K we have

(46)
∥∥∂xtW̄ (t)

∥∥
L2(D)

≤ K, ∀t ∈ [0, T ].
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On the other hand, using the independence of Hn, n ∈ [1 : N ], the simple fact that
(1− ξ)N ≥ 1−Nξ for ξ ≤ 1 and (44) we can estimate the probability

P (Ω2
K) =

N∏
n=1

P
(
Hn ≤ ρK2

)

≥

[1− (1 +
ρK2

2

)M/2−1

exp
(
−ρK

2

2

)]+
N

≥

[
1−N

(
1 +

ρK2

2

)M/2−1

exp
(
−ρK

2

2

)]+

.

(47)

By replacing N = T/ρ and M = 1/σ the lemma’s assertion is obtained.

3.6. Remark (interpretation of (33)) We may rewrite the term appearing in (33),
as

(48)
T

ρ

(
1 +

K2

2
ρ

)1/(2σ)−1

exp
(
−K

2

2
ρ

)
= T exp

(
log

1
ρ

+ log
(

1 +
K2

2
ρ

)(
1
2σ

− 1
)
− K2

2
ρ

)
=: T expF (ρ, σ,K).

The way we will use Lemma 3.5 will be by fixing first ρ, σ ∈ R+ and by requiring
a big enough K such that T expF (ρ, σ,K) � 0. This is made possible by the fact
that limK→∞ F (ρ, σ,K) = −∞ for any fixed ρ, σ ∈ R+.

4. The regularized solution

We now introduce the regularized solution to problem (1), (5)–(6), which we
obtain by replacing the white noise by the AWN in (1). The role of the regularized
problem is pivotal in devising a numerical scheme to approximate the stochastic
Allen-Cahn problem. We discuss the approximation properties of this regularization
with respect to the original problem.

4.1. Definition (regularized solution) The regularized solution, ū, of the noisy
Allen-Cahn problem is the unique continuous solution of the integral equation

(49) ū(x, t) = −
∫ t

0

∫
D

Gt−s(x, y)fε(ū(y, s)) dy ds

+
∫

D

Gt(x, y)u0(y) dy + εγ
∫ t

0

∫
D

Gt−s(x, y) dW̄ (y, s).

4.2. Theorem (maximum principle for regularized solutions) There exist δ0, c1, c2 >
0, independent of ε, such that if ‖u0‖L∞(D) ≤ 1 + δ0 then

(50) P

{
sup

t∈[0,T ]

‖ū(t)‖L∞(D) ≤ 3

}
≥ 1− c1 exp(−c2/ε1+2γ).

Proof We follow exactly the proof of Theorem 2.4, by observing that (32) ensures
that all the estimates for the stochastic integrals of the white noise can be “trans-
lated” in corresponding estimates for the integrals of the approximate white noise.
The constants appearing in this Theorem can be therefore taken to be the same
that appear in §2.4.

4.3. Remark (regularized solution is strong solution) Notice that the regularized
solution ū of (49) is in fact a weak solution in the PDE sense, i.e., ū(t;ω) ∈ H1(D)
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and ∂tū(t, ω) ∈ L2(D) for all t ∈ (0, T ] and ω ∈ Ω, and the following weak formu-
lation is satisfied:

〈∂tū(t;ω), φ〉− 〈∂xū(t;ω), ∂xφ〉+ 〈fε(ū(t;ω)), φ〉
= εγ

〈
∂xtW̄ (t;ω), φ

〉
∀φ ∈ H1

0(D), t ∈ (0, T ]

and ū(0;ω) = u0,

(51)

for each ω ∈ Ω (the notation 〈·, ·〉 indicating the inner product in L2(D)). Indeed,
each one of the AWN’s realizations, ∂xtW̄ (ω), is a piecewise constant space-time
function. For each such realization the usual regularity theory for semilinear para-
bolic equations with piecewise continuous data can be applied and the correspond-
ing weak formulation written down [LSU68].

4.4. Definition (regularization error) Our next goal is to show that the regularized
approximate solution converges to the solution u. For this we will estimate the
regularization error

(52) e(x, t) = u(x, t)− ū(x, t),

in terms of the white noise regularization parameters σ and ρ, and show that it
converges to zero in an appropriate sense.

4.5. Theorem (convergence to the stochastic solution) For a fixed T , there exist
constants c1, c2, C1 and C2 such that for each ε ∈ (0, 1) there correspond an event
Ω∞ε and a constant Cε > 0 such that

P (Ω∞ε ) ≥ 1− 2c1 exp(−c2/ε1+2γ) and(53) ∫
Ω∞ε

(∫ T

0

∫
D

|ū− u|2
)

dP ≤ Cε

(
C1ρ

1/2 + C2
σ2

ρ1/2

)
, ∀σ, ρ > 0.(54)

Proof We proceed by steps.
Step 1. By the integral representations of u, (18), and ū, (49), we can represent
the error as an integral too:

e(x, t) =
∫ t

0

∫
D

Gt−s(x, y)
(
f(ū(y, s))− fε(u(y, s))

)
dy ds

+
∫ t

0

∫
D

Gt−s(x, y)
(
dW (y, s)− dW̄ (y, s)

)(55)

for all (x, t) ∈ D × (0, T ]. So our task now is to bound the terms in the left-hand
side of (55) in the appropriate norm.
Step 2. In view of the maximum principle for both the exact solution, §2.4, and
the approximate solution, §4.2, there exists an event Ω∞ε ⊂ Ω such that

P (Ω∞ε ) ≥ 1− 2c1 exp(−c2/ε1+2γ)(56)

and

Ω∞ε ⊂
{
‖u(t)‖L∞(D) , ‖ū(t)‖L∞(D) ≤ 3, ∀t ∈ [0, T ]

}
.(57)

This and the local Lipschitz continuity of f imply that

(58) |fε(ū)− fε(u)| ≤
28
ε2
|ū− u| , on Ω∞ε .
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Step 3. Working now on the event Ω∞ε and introducing the functions

ε(r) :=
∫ r

0

∫
D

e(x, t)2 dxdt(59)

φ(r) :=
∫ r

0

∫
D

∣∣∣∣∫ t

0

∫
D

Gt−s(x, y)( dW (y, s)− dW̄ (y, s))
∣∣∣∣2 dxdt(60)

for all r ∈ [0, T ], we infer from (55) that

(61) ε(r) ≤ 2
∫ r

0

∫
D

(∫ t

0

∫
D

|Gt−s(x, y)|
28
ε2
e(y, s) dy ds

)2

dxdt+ 2φ(r).

The integral in (61) can be bounded, using the Cauchy–Schwarz inequality, by

(62)

2
282

ε4

∫ r

0

∫
D

(∫ t

0

∫
D

|Gt−s(x, y)|2 dy ds
∫ t

0

∫
D

e(y, s)2 dy ds
)

dxdt =
∫ r

0

z(t)ε(t) dt

where

(63) z(t) := 2
282

ε4

∫
D

∫ t

0

∫
D

|Gt−s(x, y)|2 dy dsdx.

Inequality (61) implies

(64) ε(r) ≤ φ(r) +
∫ r

0

z(t)ε(t) dt,

for each r ∈ I. Applying the Gronwall lemma to this inequality we obtain

(65) ε(T ) ≤ exp

(∫ T

0

z(t) dt

)
φ(T ) ≤ Cεφ(T ),

where—by estimating the heat kernel—the constant is given by

(66) Cε := exp
(

282 T

12 ε4

)
.

Step 4. By summing with respect to P on the event Ω∞ε both members of this
inequality we obtain

(67)
∫

Ω∞ε

∫ T

0

∫
D

|ū− u|2 dxdtdP ≤ Cε

∫
Ω∞ε

φ(T ) dP ≤ Cε E[φ(T )].

We conclude by observing [ANZ98, Lem. 2.3] that there exist C1, C2 > 0, depending
only on T , such that

(68) E[φ(T )] ≤ C1ρ
1/2 + C2

σ2

ρ1/2
.

Thus we established that

(69)
∫

Ω∞ε

∫ T

0

∫
D

|ū− u|2 dxdtdP ≤ Cε

(
C1ρ

1/2 + C2
σ2

ρ1/2

)
,

as we claimed.

4.6. Remark (About the constant Cε) Theorem 4.5 insures that, for fixed T and ε,
the approximate solution ū converges to u as ρ, σ → 0. The constant Cε appearing
in the estimate depends exponentially on both 1/ε4 and T , thus for small ε, or large
T , this might force us to take very small ρ and σ. This fact should to be taken into
account in practice. The bound we have proved seems to be pessimistic though, as
the choice of σ and ρ, used in our subsequent numerical experiments, indicates.
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5. Convergence for weak noise

Notice that the regularized problem from previous section, for small yet non-
vanishing ρ and σ, could have a value in modeling for its own sake. In other words,
the stochastic PDE might be a rougher model than its regularization for some
physical phenomena, such as small scale fluctuations. Therefore the analysis and
the approximation of the regularized problem is important.

In this section we show that for weak noise intensity, εγ , the limit as ε→ 0 coin-
cides with the deterministic solution. Our proof makes use of a spectrum estimate
result for the linearized Allen-Cahn operator [Che94, dMS95], which is recalled in
Theorem 5.2. For technical reasons, we have to assume that γ > 4 for the result to
hold. We believe that this threshold could be lowered, ideally down to γ > 0, but
we do not know how to prove this at the moment.

We notice that the analogous result for the stochastic PDE is also valid, and
has been proved independently by Funaki [Fun95] and Brassesco et al [BDMP95].
Their proofs, however are much more involved and require much more technical
background in probability than ours.

5.1. Definition (Deterministic solution) Let q be the (classical) solution of the
problem

∂tq − ∂xxq + fε(q) = 0, in D × I(70)

q(0) = u0, on D(71)

∂xq(t, 0) = ∂xq(t, 1), t ∈ I.(72)

Recalling that the initial condition u0 is considered to be a resolved profile solu-
tion, the linearization of the operator u 7→ −∂xxu + fε(u) about q enjoys a rather
striking spectral property given by the following result.

5.2. Theorem (Spectrum estimate [Che94, dMS95]) There exists a constant λ0 > 0
such that for any ε ∈ (0, 1] we have

(73) ‖∂xφ‖2L2(D) + 〈f ′ε(q)φ, φ〉 ≥ −λ0 ‖φ‖2L2(D) , ∀φH1(D).

As a consequence of this estimate we can prove the following result.

5.3. Theorem (Convergence for weak noise) Suppose γ > 4. For each choice of
T,K > 0, there exist ε0, c0, µ0 > 0 such that for each ε ∈ (0, ε0) there correspond
an event Ωε ⊂ Ω such that the estimates

sup
[0,T ]

‖ū− q‖L2(D) ≤
exp(µ0T )− 1

µ0
Kεγ(74)

sup
[0,T ]

‖ū− q‖L∞(D) ≤ c0ε
2(75)

are satisfied with probability

P (Ωε) ≥

[
1− T

ρ

(
1 +

K2

2
ρ

)1/(2σ)−1

exp
(
−K

2

2
ρ

)
− c1 exp(−c2/ε1+2γ)

]+

,(76)

for all ρ, σ > 0.

Proof We divide the proof in several steps.
Step 1. We start by deriving an energy inequality for the error

(77) ē := ū− q.
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Since ū satisfies the weak formulation (51) and q is a classical solution, we can write
the following PDE in its weak formulation for ē:

(78) 〈∂tē, φ〉+ 〈∂xē, ∂xφ〉+ 〈f ′ε(q)ē, φ〉 = εγ
〈
∂xtW̄ , φ

〉
− 1
ε2
〈
r̄ē2, φ

〉
, ∀φ ∈ H1(D),

where

(79) r̄ := 3q + ē = 2q + ū.

Testing with ē in (78) and using the spectrum estimate (73) we obtain

‖ē‖L2(D) dt ‖ē‖L2(D) − λ0 ‖ē‖2L2(D) ≤ 〈∂tē, ē〉+ ‖∂xē‖2L2(D) + 〈f ′ε(q)ē, ē〉

≤ εγ
〈
∂xtW̄ , ē

〉
− 1
ε2
〈
r̄, ē3

〉
.

(80)

To shorten displays, let us introduce the following notation:

(81) a(t) := ‖ē(t)‖L2(D) , and b(t) := ‖ē(t)‖L∞(D) .

Step 2. Our next objective is to bound the terms in the right-hand side of (80).
For the first term, we use the L∞(0, T ; L2(D))-norm bound of the AWN of Lemma
3.5, according to which correspondingly to K there exists an event Ω2

K ⊂ Ω on
which

(82)
∥∥εγ 〈∂xtW̄ (t), ē(t)

〉∥∥ ≤ εγKa(t), ∀t ∈ [0, T ].

To produce a bound on the second term of the right-hand side of (80) we use the
maximum principle for ū, Lemma 4.2, which states that the event

(83) Ω∞ε :=

{
sup

t∈[0,T ]

‖ū(t)‖L∞(D) ≤ 3

}
,

has probability P (Ω∞ε ) = 1−c1 exp(−c2/ε1+2γ). Using this fact and the expression
for r̄ in (79) we deduce that, on the event Ω∞ε ,

(84) ‖r̄(t)‖L∞(D) ≤ 5, ∀t ∈ [0, T ].

Therefore, we have shown that, on the event Ω∞ε and for all times t ∈ [0, T ], we
have

(85)
∣∣∣∣ 1
ε2
〈
r̄(t)ē(t), ē(t)2

〉∣∣∣∣ ≤ 5
ε2
‖ē(t)‖L∞(D) ‖ē(t)‖

2
L2(D) =

5
ε2
b(t)a(t)2.

The inequalities (80), (82) and (85) imply now the following bound

(86) dta(t)− λ0a(t) ≤ εγK +
5
ε2
b(t)a(t), ∀t ∈ I,

on the event

(87) Ωε := Ω2
K ∩ Ω∞ε .

Notice that, in view of (33) and (50), the event Ωε satisfies

P (Ωε) ≥
[
P (Ω2

K) + P (Ω∞ε )− 1
]+

≥

[
1− T

ρ

(
1 +

K2

2
ρ

)1/(2σ)−1

exp
(
−K

2

2
ρ

)
− c1 exp(−c2/ε1+2γ)

]+

.
(88)

This establishes (76).
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Step 3. In order to use inequality (86) to prove both (74) and (75), we need to
show first the following pointwise bound on ē:

(89) b(t) = ‖ē(t)‖L∞(D) ≤ C1t
3/4

(
εγK + ε−2 sup

[0,t]

((5b+ 2) a)

)
on Ωε,

where C1 is the constant appearing in the right-hand side of (119).
This bound is derived by using the integral representation for the error

ē(x, t) =
∫ t

0

∫
D

Gt−s(x, y)

×
(
εγ∂ysW̄ (y, s)− f ′ε(q(y, s))ē(y, s)−

1
ε2
r̄(y, s)ē(y, s)2

)
dy ds.

(90)

The result follows by applying Lemma A.1 and observing that the following bounds
are valid on the event Ωε:

εγ
∥∥∂xtW̄

∥∥
L2(D)

≤ εγK(91)

‖f ′ε(q)ē‖L2(D) ≤ 2ε−2 ‖ē‖L2(D) = 2ε−2a(92)

ε−2
∥∥r̄ē2∥∥

L2(D)
≤ 5ε−2 ‖ē‖L∞(D) ‖ē‖L2(D) = 5ε−2ba.(93)

Step 4. We now conclude the proof, by employing a connectedness argument which
is similar to the one used by de Mottoni & Schatzman [dMS95, §6]. Start by
introducing the (arbitrary) constant c0 > 0 and

(94) µ0 := λ0 + 5c0.

Consider the set

(95)
{
t ∈ [0, T ] : b(s) ≤ c0ε

2, ∀s ∈ [0, t]
}
.

This set is non-empty for b(0) = 0, and it constitutes a closed interval—denoted as
[0, t?]—for b is continuous. We will show [0, t?] to be relatively open in [0, T ] which,
in view of connectedness, will imply the bound

(96) b(t) ≤ c0ε
2, ∀t ∈ [0, T ].

To see that the interval [0, t?] is open it is sufficient to show that the bound is strict
at t?, i.e., that

(97) b(t?) < c0ε
2.

By (86) and the definition of t? we have

(98) dta− λ0a ≤ εγK + 5c0a, on [0, t?].

It follows that

(99) dta− µ0a ≤ εγK, on [0, t?],

and by the Gronwall lemma that

(100) a(t?) ≤ εγK
exp(µ0t?)− 1

µ0
.

We have used that a(0) = 0. From (89) it follows that

b(t?) ≤ C1t
3/4
?

(
εγK + εγ−2 exp(µ0t?)− 1

µ0

(
5c0ε2 + 2

))
≤ C1T

3/4

((
K + 5c0

exp(µ0T )− 1
µ0

)
εγ−2 + 2

exp(µ0T )− 1
µ0

εγ−4

)
ε2.

(101)
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Since γ > 4, the last term above can be made strictly smaller than c0ε
2 for all ε

smaller than an appropriate ε0. For instance, it is enough to choose ε0 such that

ε0 <
(
c0
−12C1T

3/4
(
K + 5c0(exp(µ0T )− 1)µ−1

0

))−1/(γ−2)

(102)

and

ε0 <
(
c−1
0 4C1T

3/4 (exp(µ0T )− 1)µ−1
0

)−1/(γ−4)

.(103)

Notice that since c0 > 0 is arbitrary, it can be chosen in such a way as to maximize
the value of the possible ε0.

5.4. Remark (role of ρ and σ) The above result is basically a “weak noise” result
in the sense that it gives a threshold under which the noise becomes negligible and
for which the stochastic solution becomes quite close to the deterministic solution.
Notice that the effect of the AWN parameters ρ and σ is seen only in the probability
of the event Ωε and not in the estimates themselves, which reflects the fact that
the noise is so weak as for the equation not to distinguish between the white noise
and its approximation. Notice also that the choice of c0, µ0, ε0 is independent of ρ
and σ. However, equation (76) says also that for any given ρ and σ, K should be
big enough in order to ensure a high probability for the estimates to hold, which
means that the estimates may deteriorate as σ and ρ tend to zero.

5.5. Remark (relation to large deviation results) The previous result provides a
theoretical benchmark for the validity of the approximation of (1) by (2), by show-
ing that it is close in a suitable sense to the most probable deterministic trajectory
of the stochastic Allen-Cahn equation (1), even in large time intervals where inter-
faces form and evolve according to macroscopic mean curvature evolutions. Note
that the most probable path of (2) is given by its deterministic counterpart, (70),
as obtained by large deviations results for stochastic reaction diffusion equations
[FW98, Section 10.5]. Here this latter result is used not only as a benchmark for
the validity of our AWN regularization (2) but it is further quantified in terms of
detailed error estimates in Theorem 5.3.

5.6. Remark (relation to stochastic mean curvature flow) Finally, in view of well-
known asymptotic limits in dimension 2 or higher of the deterministic Allen-Cahn
equation to motion by mean curvature [BSS93, e.g.], Theorem 5.3 demonstrates that
a higher dimensional white noise regularization, corresponding to the one presented
here, should provide a stochastic approximation to motion by mean curvature evo-
lutions. The influence of stochastic corrections to motion by mean curvature evo-
lutions and in particular to its instabilities such as interface fattening was recently
demonstrated in [KK01, DLN01, SY04]. Thus our results give a first rigorous indi-
cation that the approximation framework presented here may provide an accurate
and potentially efficient algorithm (via FEM adaptivity) for simulating stochastic
motion by mean curvature.

6. An Euler-Galerkin finite element scheme

We introduce now the finite element discretization of the regularized problem
(51).

6.1. Discretization partitions. Start by introducing the space-time partitions

(104)
Dh :=

{
D′m : D′m := (x′m−1, x

′
m), m ∈ [1 : M ′]

}
,

and Ik :=
{
I ′n : I ′n := [t′n−1, t

′
n), n ∈ [1 : N ′]

}
.
.
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These partitions do not necessarily coincide with the partitions Dσ and Iρ used
for the regularization procedure in §3.1. Bearing in mind that this setting could
be further generalized, we limit ourselves here to the case where the numerical dis-
cretization partitions, Dh and Ik, are refinements of the white noise regularization
partitions Dσ and Iρ, respectively. I.e., for each D′m ∈ Dh there exists Dl ∈ Dσ

such that D′m ⊂ Dl etc; this determines a unique mapping µ : [0 : M ′] → [0 : M ],
such that D′m ⊂ Dµ(m). For simplicity, we also assume that the partitions are
uniform and that the meshsize and timestep are denoted respectively by h and k.
The reason we do not make these partitions coincide is that for the finite element
method’s convergence analysis it may prove useful to have couplings of the type
h = σp and k = ρq, with p, q ≥ 1. We observe that for all practical aspects coming
up in §7, we will consider only the simplest situation possible where these partitions
do coincide.

6.2. Finite element space and the discrete scheme. Let V ⊂ H1
0(D) be the

space of continuous piecewise linear functions associated with the partition Dh,
we define the (spatial) semi-discrete solution as the time-dependent random finite
element function U : [0, T ]× Ω → V which solves the SDE

(105) 〈∂tU(t), V 〉+〈∂xU(t), ∂xV 〉+〈fε(U(t)), V 〉 =
〈
∂xtW̄ , V

〉
, ∀V ∈ V, t ∈ [0, T ].

We discretize further this SDE in the time variable by taking a semi-implicit Euler
scheme in time associated to the partition I = {t0} ∪

⋃
m Im

(106)〈
Un − Un−1

k
, V

〉
+〈∂xU

n, ∂xV 〉+
〈
fε(Un−1), V

〉
=
〈
∂xtW̄ , V

〉
, ∀V ∈ V, t ∈ [0, T ].

The adjective “semi-implicit” expresses the fact that the scheme is implicit in the
linear part, while it is explicit in the nonlinearity. This means that at each timestep
only a linear problem has to be solved.

In practice, we find it more useful to use a slightly modified version of (106)
given by 〈

Un − Un−1

k
, V

〉
+ 〈∂xU

n, ∂xV 〉+
〈
f ′ε(U

n−1)Un, V
〉

=
〈
f ′ε(U

n−1)Un−1 − fε(Un−1), V
〉

+ εγ
〈
∂xtW̄ , V

〉
, ∀V ∈ V, t ∈ [0, T ].

(107)

which allows to take bigger timesteps k [KNS04]. Note that this is nothing but a
linearization involving one step of the Newton method to solve the nonlinear (fully
implicit) backward Euler scheme.

6.3. The linear time-stepping system. Let us indicate the basis functions of
V by Φm, for m ∈ [0 : M ′]; that is the piecewise linear continuous function such
that Φm(xl) = δm

l , for l ∈ [0 : M ′]. If we indicate by un = (un
m) the vector of

nodal values corresponding to the discrete solution Un at time tn, that is Un(x) =∑M ′

m=0 u
n
mΦm(x), then, we can translate (107) in the following matrix form

(108)
[

1
k

M + A +
1
ε2

N(un−1)
]

un =
1
ε2

g(un−1) +
1
k

Mun−1 + εγw,

where M , A are the usual finite element mass and stiffness matrices, respectively,
N(un−1) and g(un−1) are a “nonlinear” mass matrix and load vector, respectively,
and w = (wm) a random load vector generated at each time-step. A short calcula-
tion shows that for m an internal degree of freedom (node) we have

(109) wm =
h

2
√
σρ

(ηµ(m)−1 + ηµ(m))
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where µ is the mapping introduced earlier in this section and ηl is a N (0, 1) random
number for l ∈ [0 : M ], or zero for l = −1,M + 1 (the boundary cases). If the
partitions Dσ and Dh coincide, which will be the case in the next section, then
h = σ and (109) simplifies to

(110) wm =
1
2

√
h

ρ
(ηm−1 + ηm).

This is the form that we employ in our computations below.

7. Computations

We state some computational results. The main issue here is benchmarking as,
in contrast with the deterministic case, there is no explicit exact solution known.
Therefore our benchmarking procedure is based on the theoretical results of Funaki
[Fun95] and Brassesco et al [BDMP95].

7.1. Monte Carlo simulations. We run a series of Monte Carlo simulations. For
each choice of parameters ε, γ and meshsize h, we choose the timestep k = h2 and
run 1600 times the code with different seeds for the random number generator. By
“run” we mean the computation of a sample path from time 0 to a final time T
which is fixed at 20 for all runs. At the beginning of each run, the random number
generator is seeded and the subsequent ηm appearing in (110) are chosen according
to this seed for all the run. The seed for each run is determined by the clock of the
machine at the start of each run (these are also recorded for rerunning purposes).
In this section we denote the numerical solution (which tacitly depends on ε, γ, h)
by (Un

ω )n∈[0:N ], where n corresponds to the timestep and ω is a discrete sample,
i.e., the choice of the initial seed. Let us indicate by Ω̄ the discrete sample space,
which can be thought of being the choice initial seeds.

Since it is well known that for the deterministic Allen-Cahn, the meshsize h has
to be, at most, smaller than ε in order to resolve satisfactorily the transition level
we choose h ≤ c0ε, c0 ≤ 1/2, in all our computations. As comparisons are made
with respect to different ε, we use the same meshsize h and the same seed ω for
each run with all different values of ε.

7.2. Benchmarking. Our benchmarking procedure consists in tracking the center
of the discrete solution. This benchmarking is used on a heuristic argument, based
in part on rigorous results.

According to known results [Fun95, Thm. 8.1], we expect the center of Ūn, which
is a piecewise linear function in the space variable x ∈ D, to perform a Brownian
Motion, modulo perturbations of order O(ε) and the numerical error. Namely, we
expect

(111) lim
ε↘0

P

{
max

n∈[0:N ]

∥∥∥Un
ω −Xξε

tn

∥∥∥
L2(D)

> δ

}
= 0,

for each fixed δ > 0. Here the function Xξ(x) has value −1 for x < ξ and 1 for
x > ξ and ξε

t is the solution of a SDE, which converges in an appropriate sense to
the Brownian Motion with diffusion coefficient squared equaling 3× 2−3/2ε1+2γ . It
follows that for a fixed δ > 0, for ε > 0 small enough, there exists a set Ω̄ε

δ for which

max
n

∫
D

∣∣∣∣∣∣ 1
#Ω̄ε

δ

∑
ω∈Ω̄ε

δ

(
Un

ω (x)−Xξε
tn

)∣∣∣∣∣∣
2

dx

≤ 1
#Ω̄ε

δ

∑
ω∈Ω̄ε

δ

max
n

∥∥∥Un
ω −Xξε

tn

∥∥∥2

L2(D)
≤ δ2,

(112)
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Figure 1. Numerical results for γ = 0, fixed h ≤ c0ε, c0 < 1/2
and k = h2. Here ε = {0.08, 0.04, 0.02, 0.01} and the number of
samples #Ω̄ increases. The abscissa represents the time interval
[0, 20] whereas the ordinate is

∥∥Ūn − erf(·/σ(tn))
∥∥

L2(D)
, as detailed

in §7.2. For such low values of γ the convergence is rather poor;
in fact, almost absent. It is interesting to notice in the two lower
diagrams, that certain solutions can lead to a “shooting” of the
error. In fact, a proper convergence check should exclude such
solutions by the means of the maximum principle. This is explained
in §7.2.

and

(113) lim
ε↘0

#Ω̄ε
δ

#Ω̄
= 1.
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Figure 2. Numerical results for γ = 0.2, fixed h ≤ c0ε, c0 < 1/2
and k = h2. Here ε = {0.08, 0.04, 0.02, 0.01} and the number of
samples #Ω̄ increases. The abscissa represents the time interval
[0, 20] whereas the ordinate is

∥∥Ūn − erf(·/σ(tn))
∥∥

L2(D)
, as detailed

in §7.2. In this case, the convergence is much more detectable,
with respect to figure 1. This is a “fortunate” case, in which all
the samples do not violate the maximum principle, leading to no
“shooting” of the diagrams.

Now, indicate by ξt a normalized Brownian Motion, and take the approximation

(114)
1

#Ω̄ε
δ

∑
ω∈Ω̄ε

δ

Xξε
t
≈
∫

Ω

Xξt dP = erf(x/σ(t)),
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Figure 3. Numerical results for γ = 0.5, fixed h ≤ c0ε, c0 < 1/2
and k = h2. Here ε = {0.08, 0.04, 0.02, 0.01} and the number
of samples #Ω̄ increases. The abscissa represents the time in-
terval [0, 20] whereas the ordinate is

∥∥Ūn − erf(·/σ(tn))
∥∥

L2(D)
, as

detailed in §7.2. It is clear that the convergence becomes faster as
γ increases. Notice that also in this case we can still get solutions
that lead to “shooting” of the error. This is further evidence that
the discrete probabilistic maximum principle ought to be employed
in practical results as much as it is in the theoretical ones.

where the error function is defined as

(115) erf(x) :=
2
π

∫ x

0

exp(−y2) dy

and the variance is related to the diffusion coefficient

(116) σ(t)2 = 3× 2−3/2ε1+2γt.
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In a first, and rather coarse, approach we replace the first average in the left
hand side of (112) by the average over all Ω̄, i.e.,

(117) Ūn :=
∑

ω∈Ω̄ U
n
ω

#Ω̄
≈
∑

ω∈Ω̄ε
δ
Un

ω

#Ω̄ε
δ

.

This turns out to be too coarse and, as seen from figures 1 and 3, it may hap-
pen, very rarely though, that some solution makes the average diverge. This lack
of convergence can be avoided by excluding solutions that violate the maximum
principle. To be concise, if we introduce the discrete analog of Ω∞, that is the set

(118) Ω̄∞ =
{
ω ∈ Ω̄ : max

n
‖Un

ω‖L2(D) ≤ 3
}
,

and replace Ω̄ by this subset in the above discussion, we get a converging pattern,
such as the one in figure 2.

Figures 1 and 3 show very clearly that the convergence results cannot hold for
the whole probability space. In particular, this is a computational evidence that
the restriction to the events Ω∞ε and Ωε in Theorems 4.5 and 5.3, respectively, may
be necessary to obtain convergence.

7.3. Results. Our results can be summarized by the figures and the main com-
ments are reported in the captions. The main observation, besides that made in the
previous paragraph about the sample paths to be excluded in the benchmarking,
is that as γ becomes larger—i.e., as the noise intensity is dimmed out—the conver-
gence as ε↘ 0 becomes faster. In fact, for γ = 0, there is basically no convergence
visible from the numerics, whereas for γ = 0.2 and 0.5 there is a clear pattern that
echoes the expectations from theoretical results.

Appendix A. Some useful facts

A.1. Lemma (Heat kernel estimate) The heat kernel G defined by (17) satisfies the
following estimate

(119)
∣∣∣∣∫ t

0

∫
D

Gt−s(x, y)v(y, s) dy ds
∣∣∣∣ ≤ C1t

3/4 sup
[0,t]

‖v‖L2(D) ,

for any v ∈ L∞(0, t; L2(D)), with

(120) C1 =
217/4

3π1/4
.

Proof Let

(121) f(x, t) :=
∫ t

0

∫
D

Gt−s(x, y)v(y, s) dy ds.

Then

(122) |f(x, t)| ≤
∫ t

0

(∫
D

|Gt−s(x, y)|2 dy
)1/2

‖v(s)‖L2(D) ds.
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By the Parseval identity and an approximation of the series by an improper integral
we obtain

∫
D

|Gt−s(x, y)|2 dy = 16
∞∑

k=0

(2− δk
0 )2 exp(−(kπ)2(t− s)/2) cos2(kπ(x+ 1)/2)

≤ 64
∞∑

k=0

exp(−(kπ)2(t− s)/2)

≤ 64
∫ ∞

0

exp(−(κπ)2(t− s)/2) dκ =
16
√

2√
π(t− s)

.

(123)

Thus

|f(x, t)| ≤ 4(2π−1)1/4

∫ t

0

(t− s)−1/4 ‖v(s)‖L2(D) ds

≤ 217/4

3π1/4
t3/4 sup

s∈[0,t]

‖v(s)‖L2(D) .

(124)
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[STZ01] Anders Szepessy, Raúl Tempone, and Georgios E. Zouraris, Adaptive weak approxima-

tion of stochastic differential equations, Comm. Pure Appl. Math. 54 (2001), no. 10,
1169–1214.



26 MARKOS A. KATSOULAKIS, GEORGIOS T. KOSSIORIS, AND OMAR LAKKIS

[SY04] P. E. Souganidis and N. K. Yip, Uniqueness of motion by mean curvature perturbed
by stochastic noise, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), no. 1, 1–23.
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