ERROR CONTROL AND ANALYSIS IN COARSE-GRAINING OF
STOCHASTIC LATTICE DYNAMICS
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Abstract. The coarse-grained Monte Carlo (CGMC) algorithm was originally proposed in the
series of works [15, 16].

In this paper we further investigate the approximation properties of the coarse-graining procedure
and relation between the coarse-grained and microscopic processes. We provide both analytical and
numerical evidence that the hierarchy of the coarse models is built in a systematic way that allows
for the error control of quantities that may also depend on the path. We also demonstrate that
CGMC leads to a significant CPU speed-up of simulations of metastable phenomena, e.g., estimation
of switching times or nucleation of new phases. Numerical evidence guided by analytical results
suggests that CGMC probes the energy landscape in path-wise agreement to MC simulations at the
microscopic level.

1. Introduction. Microscopic computational models for complex systems such
as Molecular Dynamics (MD) and Monte Carlo (MC) algorithms are typically formu-
lated in terms of simple rules describing interactions between individual particles or
spin variables. The large number of variables, or degrees of freedom and even larger
number of interactions between them present the principal limitation for efficient sim-
ulations. A related limiting factor is represented by the essentially sequential nature
of resolving the time evolution in many particle systems that yields a substantial
slowdown in the resolution of dynamics especially in metastable regimes.

In [15, 16, 18] the authors started developing systematic mathematical strategies
for the coarse-graining of microscopic models, focusing on the paradigm of stochastic
lattice dynamics and the corresponding MC simulators. In principle, coarse-grained
models are expected to have fewer observables than the original microscopic system
making them computationally more efficient than direct numerical simulations. In
these papers a hierarchy of coarse-grained stochastic models—referred to as coarse-
grained MC (CGMC) — was derived from the microscopic rules through a stochastic
closure argument. The CGMC hierarchy is reminiscent of Multi-Resolution Anal-
ysis approaches to the discretization of operators [1], spanning length/time scales
from the microscopic to the mesoscopic. The resulting stochastic coarse-grained pro-
cesses involve Markovian birth-death and generalized exclusion processes and their
combinations, and as demonstrated in [15, 16, 18], they share the same ergodic prop-
erties with their microscopic counterparts. More specifically, the full hierarchy of the
coarse-grained stochastic dynamics satisfies detailed balance relations and as a re-
sult not only yields self-consistent random fluctuation mechanism, but also consistent
with the underlying microscopic fluctuations and the unresolved degrees of freedom
(DOFs). From the computational complexity perspective, a comparison of CGMC
with conventional MC methods for the same real time shows, [15], that the CPU
time can decrease approximately as O(1/¢?) where q is the level of coarse-graining, as
demonstrated for spin-flip lattice dynamics. Thus, while for macroscopic size systems
in the millimeter length scale or larger, microscopic MC simulations are impractical
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on a single processor, the computational savings of CGMC make it a suitable tool
capable of capturing large scale features, while retaining microscopic information on
intermolecular forces and particle fluctuations. A striking difference between CGMC
for diffusion (spin exchange) and adsorption/desorption (spin flip) simulations is that
in the case of diffusion we also have an additional coarse-graining in time by a factor

¢?, improving the hydrodynamic slowdown effect in conservative MC, [18].

In the recent paper [17] the authors attempted to rigorously analyze CGMC
models as approximations of conventional MC in non-equilibrium, by estimating the
information loss between microscopic and coarse-grained adsorption/desorption lat-
tice dynamics. In analogy to the numerical analysis for PDEs, an error analysis was
carried out between the ezact microscopic process {o:}s>0 and the approzimating
coarse-grained process {n:}+>0. The key step in this direction was to use as a quanti-
tative measure for the loss of information during coarse-graining from finer to coarser
scales the information-theoretic concept of the relative entropy between probability
measures, [4]. Such relative entropy estimates give a first mathematical reasoning for
the parameter regimes, i.e., the degree of coarse-graining versus the potential range,
for which CGMC is expected to give errors within a given tolerance. In related ear-
lier work [18], information loss estimates between CGMC and microscopic processes
were derived for the equilibrium canonical Gibbs states; we also refer to [9] for loss
of information results at equilibrium for the coarse-graining of polymeric systems.
More specifically, the suggested strategy, at least in the case of spin-flip dynamics,
consists of the following steps: The interaction potential (or operator) is decomposed
in terms of a truncated multi-resolution decomposition within a given tolerance. The
CGMC algorithm is subsequently defined at the coarsening level specified by the
truncation of the decomposition, since the error in the approximation is due only to
the MRA decomposition and remains small in time. Spin exchange dynamics have a
more complicated error structure, as the stochastic closure process in [18] suggests,
and a rigorous error analysis is currently unavailable. Using the rigorous results in
[17] as a starting point, in this paper we focus on carrying out a detailed numerical
error analysis and error propagation for spin flip lattice dynamics. We first define
a notion of order of convergence for CGMC algorithms using relative entropy, i.e.,
loss of information, as a measure of accuracy. Due to the numerical intractability
of the relative entropy for a large particle system, we employ, in the numerical error
calculations suitable computable upper and lower bounds, as well as targeted coarse
observables, e.g., exit times in domain switching problems. Furthermore, we demon-
strate the capabilities of CGMC for accurate large scale simulations. We comment
on possible pitfalls due to improper coarse-graining, by concentrating on two rather
demanding examples: nucleation and domain switching in spin flip stochastic lattice
dynamics. We computationally demonstrate that CGMC probes efficiently the en-
ergy landscape, yielding spatial path-wise agreement with the underlying microscopic
lattice dynamics, at least for fairly long but still finite interactions.

The CGMC algorithms discussed here are certainly related to a number of meth-
ods involving coarse-graining at various levels, for instance fast summation techniques,
renormalization group theory and simulation and multi-scale computational methods
for stochastic systems. We next discuss some connections of CGMC with these ap-
proaches. One of the sources of the computational complexity of molecular simula-
tions arises in the calculation of particle/particle interactions, especially in the case
where long range forces are relevant. The evaluation cost of such pairwise interac-
tions can be significantly reduced by applying well-controlled approximation schemes
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and/or a hierarchical decomposition of the computation. Such ideas have been suc-
cessfully applied in the development of Ewald summation techniques, multigrid (MG)
, fast multipole methods (FMP) or tree-code algorithms (refs). Typically, once the
interaction terms are computed with one of these fast summation methods, they are
entered in the microscopic algorithm where a simulation with a large number of in-
dividually tracked particles has still to be carried out. The point of view adopted by
CGMC is related to these methods in the sense that the interaction potential or op-
erator is approximated in terms of a truncated multi-resolution decomposition within
a given tolerance; the CGMC is subsequently defined at the coarse level specified by
the truncation of the decomposition. However, a notable difference is that CGMC
models track much fewer coarse observables rather than simulating every individual
particle. The equilibrium set-up of CGMC is essentially given by the renormalized
Hamiltonian after a single iteration in the renormalization group (RG) flow. It is not
surprising that such an approach has many limitations, for instance in nearest neigh-
bor Ising-type models close to critical temperatures, and this fact is manifested in the
aforementioned error estimates and the comparative simulations in [15]. On the other
hand the focus of CGMC is dynamic simulations usually coupled to a macroscopic
system (see for instance the hybrid systems in [5, 14]), where criticality may not be as
important due to the presence of a time-varying external field. Nevertheless, further
corrections to the CGMC dynamics from the RG flow given by RGMC and multi-
grid MC methods (refs) can improve the order of convergence of the CGMC. In that
sense the CGMC method is order one accurate as explained in Section 4, where it is
also demonstrated that RG corrections can give rise to higher order CGMC methods.
This latter observation was partly inspired by the numerical analysis of finite element
methods for PDEs, where smoother elements give rise to higher order accuracy, [8].

In recent years there has been a growing interest in developing coarse-graining
methods for the purpose of modeling and simulation across scales. Such systems
arise in a broad spectrum of scientific disciplines ranging from materials science to
macromolecular dynamics, to epidemiology and to atmosphere/ocean science. These
approaches may yield explicitly derived stochastic coarse models such as CGMC or
[10, 12, 13, 22], or can be statistics-based [23] or may rely on on-fly simulations, e.g.,
equation-free [19], heterogeneous multiscale [7] or multiscale FEM methods [11]. For
instance, the coarse-graining of atomistic models of polymer chains [23] is typically
carried out by collecting a number of atoms (on the order of 10 — 20) in a polymer
chain into a “super-atom” and statistically fitting parameters to a known potential
type, e.g., Lennard-Jones, to derive the coarse-grained potential for the super-atoms.
Other coarse-graining techniques in the polymer science literature include the bond
fluctuation model and its variants [21], in which an atomistic chain is mapped on a
lattice, where a super-atom occupies a lattice cell. Such coarse-graining methodologies
rely on parametrization, hence at different conditions (e.g., temperature, density,
composition) coarse potentials need to be re-parametrized [23].

2. Microscopic lattice models. The presented analysis applies to the class of
Ising-type lattice systems. For simplicity we assume that the computational domain is
defined as the discrete periodic lattice Ay = %Zd N T which represents discretization
of the d-dimensional torus T = [0,1)¢ and d denotes the spatial dimension. However,
the algorithms can also be implemented on bounded domains with usual boundary
conditions. The number of lattice sites N = n? is fixed. The microscopic degrees
of freedom or the microscopic order parameter is given by the spin-like variable o(z)
defined at each site x € An. In this paper we discuss only the case of discrete spin
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variables, i.e., o(z) € ¥ with ¥ = {-1,1}, ¥ = {0,1} (Ising model) or £ = {0,1,...s}
(Potts models). We shall study cases where the spin variable belongs to a compact
Riemannien manifold, e.g., ¥ = S2 (Heisenberg model), ¥ = SU(2) (matrix model),
elsewhere. We denote o = {o(z) |z € An} a configuration of spins on the lattice, i.e.,
an element of the configuration space Sy = LAV, The interactions between spins at
a given configuration ¢ are defined by the microscopic Hamiltonian

H(o) = —% > Y J@-yo@)oly) + Y h(z)o(z), (2.1)
TEAN y#z zEAN

where h(z) denotes the external field at the site . The two-body inter-particle
potential J accounts for interactions between individual spins. We consider the class
of potentials with the following properties

1 n
Je—y)= 73V (Tle—ul) , zy€An,

V:R->R, V(@)=V(-r), V(r)=0, iflr|>1

We impose additional assumptions on V' which allow us to derive explicit error esti-
mates:

V' is smooth on R\ {0},
/|V(r)|dr < oo, and / 0.V(r)|dr < .
R R

Note that the summability condition for V guarantees that the potential J is also
summable due to the scaling factor. Hence the Hamiltonian is well defined even for
N, L — 00. The canonical equilibrium state is given in terms of the Gibbs measure

1
pn,p(do) =

e PHOPN(do),  Zngp= / e PPN (do),  (22)
N3 Sn

where Py (do) = [[,ca, p(do(z)) is the product measure on Sy and the spins o(z)
are independent identically distributed (i.i.d.) random variables with the common
distribution p. Typically for the Ising model the prior distribution on ¥ = {0,1}
would be p(0) = p(1) =1/2.

The microscopic dynamics is defined as a continuous-time jump Markov process
that defines a change of the spin o(x) with the probability c(z, o; &) At over the time
interval [t,t + At]. The function ¢: Ay x Sy X ¥ — R is called a rate of the process.
The jump process {o¢}+>0 is constructed in the following way: suppose that at the
time ¢ the configuration is oy, then the probability that over the time interval [¢, ¢+ At]
the spin at the site £ € An spontaneously changes from o;(x) to a new value in the
state space £ € ¥ is c(z,0;€)At + O(At?). We denote the resulting configuration
%€, In the case of the Ising-type state space and spin-flip dynamics we omit ¢ in this
notation. The generator £ : L®°(Sy) = L*(Sy) of the Markov process acting on a
bounded test function f € L°(Sy) defined on the space of configurations is given by

LhHio) =3 / e(2,0:6) ((6™) - f(0)) dE. (2.3)

TEAN

The evolution of an observable (a test function) f is given by

SE[/(00)] = ELL](00)], (2.4



Coarse-grained stochastic lattice dynamics 5

where the expectation operator E[.] is with respect to a measure conditioned to the
initial configuration o;—g = 09. We require that the dynamics is of relaxation type
such that the invariant measure of this Markov process is the Gibbs measure (2.2).
The sufficient condition is known as Detailed Balance (DB) and it imposes condition
on the form of the rate

c(x7a;§)e_ﬁH(”) = c(z,0™%; U(w))e_ﬁH(’z’e) } (2.5)

This condition has a simple interpretation: c(x,o;&) is the rate of converting o(z) to
the value ¢ while ¢(x,0%%;0(z)) is the rate of changing the spin with the value ¢ at
the site z back to o(x). The widely used class of Metropolis-type dynamics satisfies
(2.5) and has the rate given by

c(z,0;8) = G(BAL ¢H(0)), where Ay (H(o) = H(0%¢) — H(0), (2.6)

and G is a continuous function satisfying: G(r) = G(—r)e™" for all r € R. The
most common choices in physics simulations are G(r) = 3 (Glauber dynamics),
G(r) = eI+ (Metropolis dynamics), with [r]; = r if » > 0 and = 0 otherwise,
or G(r) = e "/2. Such dynamics are often used as samplers from the canonical
equilibrium Gibbs measure. However, the kinetic Monte Carlo method is also used
for simulations of non-equilibrium processes. The dynamics in such a case is known
as Arrhenius dynamics, the rates are usually derived from transition state theory
or obtained from molecular dynamics simulations. To avoid unnecessary generality
from now we restrict the description to the Ising-type model with ¥ = {0,1} used
for modeling adsorption/desorption processes. We also omit ¢ in the notation. The
Arrhenius rate is defined as follows

_ do if O'(SL') = 0,
C(.’I?,O’) = { doef,@U(w,o) if o(z) =1, (27)

where

Ulwo)= Y J@-yoly) - hiz).

yEANyF#2

Furthermore the spin-flip rule is given by

ey | 1—0ox) fy==z
cw={"'20" ihes

With the introduced notation the coarse-graining algorithm can be described as an
approzimation of the microscopic dynamics, i.e., of the process {o;};>9 by a coarse-
grained process {n;}:>o where the approximation is done in a controlled way. We are
interested not only in the approximation of the invariant measure py g(do) (see (2.2))
but also in the approximation of the measure on the path space.

3. Approximation of the coarse-grained process. The coarse-graining is
defined in a geometric way introducing the coarse-grained observables as block-spin
variables. This follows the standard procedure of real-space renormalization as it was
introduced by Kadanoff (refs). We remark that although we introduce block-spins
our aim is not to approximate the renormalization group flow (either on the space of
Gibbs measures or on the path space) rather we want to find an approximation that
can be controlled with computable error estimates. Such task would be difficult for
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problems where the renormalization flow defines non-trivial transformations in the
space of Hamiltonians, for example, in the case of the Ising model with short range
(nearest neighbor) interactions. Although, we study the case of finite- or long-range
potentials we focus on approximating the coarse Hamiltonian in a simple and fast
way. We obtain explicit error control of such procedure which can be combined with
computationally more involved approximation of the RG flow, should higher accuracy
be necessary.

In general terms we define the coarse-graining operator T : Sy — Sf; ,, where
the coarse configuration space Sj; , is defined on the coarse lattice Aj,, and with the
new state space ¥, i.e., Sf; = (EC)A;”. The coarse configuration n = T(0) € Sj;,
is defined on a smaller lattice with M lattice sites and with the coarse state space ¢
for the new lattice spins n(k). The parameter ¢ defines the coarse-graining ratio. The
operator T induces an operator T, on the space of probability measures

T, : P(Sn) = P(Siug)»  w(o) = p(n) = p{o € S| T(0) =n}.

Ising-type spins. To be more specific we analyze the following case of Ising spin-flip
dynamics Sy = {0, 1}*~. Each coarse lattice site k € A, represents a cube Cj, that
contains ¢ sites of the microscopic lattice Axy. The projection operator defines the
block spin at the coarse site k

T(o)(k) == 3 o(x). (3.1)

z€Ch

If the dimension d of the lattice is greater than one we understand k£ and x as multi-
indices k¥ = (k1,...,kq) and we index the corresponding sites on the lattices in a
natural order. Choosing the projection operator in this way defines the coarse state
space as X¢ = {0,1,...q}. Given the Markov process {o;};>0 we obtain a coarse-
grained process {T(oy)}:>0 which is not, in general, a Markov process. From the
computational point of view this may cause significant difficulties should sampling of
such a process be implemented on the computer. Therefore we derive an approzi-
mating Markov process {n;}¢>0 which can be easily implemented once its generator
is given explicitly.

For the model Ising system the projected generator of the coarse-grained process
{n:}+>0 can be evaluated explicitly by rearranging the summations on the lattice An.
Given the microscopic state o and corresponding coarse state n = T(o)

LY(T(0)) = ) lz c(z,0)(1 - 0(37))] [b(n + 6k) — (n)] + (3-2)

kEAS, LzeCy

> lz C(%U)U(w)] [b(n — k) —3(m)] - (3.3)

keAs, Lzec

The configuration & defined on the coarse state space is equal to zero at all sites
except the site k € A, where it is equal 1, i.e., 0 (j) = 1 for j = k and = 0 otherwise.
We see from the formula (3.2) that the exact generator for the coarse process can be
written in the form

Lhm) = Y caB) [l +6) =] + Y catk) [(n—k) —vm)], (34)

kEAS, kEAS,



Coarse-grained stochastic lattice dynamics 7

where the new rates

cak) = Y e(w,0)(1=0(2)), calk)= ) ez,0)0(z),

z€Cy z€Cly

correspond to the adsorption and desorption processes. In this form the rates de-
pend on the microscopic configuration o and not on the coarse random variable
T(o). Therefore, we propose an approximating Markov process, which for the case
of desorption/adsorption is a birth-death process {n:}:>o defined on the state space
Sirq = {0,1,...¢}. This process is defined by the generator £ of the form (2.3)
where the rates ¢, and ¢y are replaced by approximate rates

Za(ksn) = do(g —n(K)),  a(k,n) = don(k)e PU™ . (3.5)

For details we refer to [15]. The new rates have a simple interpretation in terms of
fluctuations on each cell: ¢,(k,n) describes the rate with which the coarse variable
n(k) is increased by one (i.e., adsorption of a single particle in the coarse cell C) and
¢q(k,m) defines the rate with which it is decreased by one (desorption in Cj). The
new interaction potential U () represents the approximation of the original interaction
U(o)

U@) = Y Jknk) +J(0,0)(n) — 1) = A(D). (3.6)
keAy,
I#£k

The coarse-grained interaction potential J is computed as average of pair-wise inter-
actions between microscopic spins on coarse cells C, and Cj

J(k,1) = q2/c g J(r — s)drds. (3.7)

Note that this represents the direct projection of the interaction kernel J on the coarse
space and the contribution from fine scales are neglected. This procedure differs from
the renormalization group approach where fluctuations from the fine scales contribute
to the transformed Hamiltonian. However, in the case of finite-range interaction
kernels J treated here, the above projection yields approximation of the order O(q/L)
as we discuss in the next section. The coarse interaction Hamiltonian is then given
explicitly in terms of J and h as

A =—5 3 3 T Dn(kn@) - 570,00 3 nd)0@) ~ 1) +
1EAS, k#L 1EAS,
> ) (38)
1eAS,

A direct calculation shows that the invariant measure of the Markov process
{m¢}e>0 generated by L€ is again a canonical Gibbs measure

!
ZM,q,8

1t.q.5(dn) e PHOP y (dn),

where the product measure Pz (dn) is the coarse-grained prior distribution. Note
that the prior distribution is altered by coarse-graining procedure and different CG
projections may yield prior distributions that are computationally intractable.
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For example, the coarse-grained prior arising from the uniform microscopic prior
(p(0) = p(1) = 1/2) is the binomial distribution corresponding to including ¢ inde-
pendent sites:

Parg(dn) = I ofantk), p;<n<k>=p>=q7‘(1) .

TP
kEAS, p.(q p). 2

The condition of detailed balance for {n;}:>o with respect to the measure pz,q,3
is

Ca(kym)pint,g,8(n) = Ea(k,n + Ok) pias,q,8(n + Ok)
ca(k,mpnt,q,5(n) = Calk,n — Ok)pins,q,8(n — Ok) -

We only verify the first relation; using that H(n + ) — H(n) = —U(k) and the
definitions of the rates (3.5), we have (for dy = 1):

Calk,m)penr,g,3(n) — €a(kyn + Ok) pinr,q,8(n + 0k) =
(g —n(k))e PPy () — (k) +1) x e*ﬁ(ﬂ(ﬂHkHU(’“))PM,q(n + ;) =
e PHM L (g — (k)P as,g(n) — (n(k) + 1)Pasg(n+06)} =

II &®) x {@—n®@) &) — @0k) + 1) (k) + 1)} -

1=1,l#k

Since (g — A)pg(A) = (A+1)pg(A+1), for all integers 0 < A < g, the last curly bracket

is equal to zero, hence detailed balance holds. This calculation shows that due to the

specific form of the self-interaction term 7(1)(n(l) —1) the detailed balance condition is
satisfied for the coarse Hamiltonian (3.8) and hence the fluctuations from microscopic
dynamics are properly included into the coarse-grained process.

In summary, the coarse-graining procedure described here has the following char-
acteristics:

(i) the derived coarse-grained stochastic process {n:}+>0 approximates a pre-specified
observable, e.g. (3.1). In particular, time-dependent error estimates such
as (5.6) can rigorously demonstrate that the process {n:}+>0 keeps track of
fluctuations from the microscopic level so expected values of certain path
dependent (global) quantities can be properly estimated. More precisely, we
can characterize approximation properties of {T(o¢)}s>0 by {n:}:>0 using a
suitable probability metric on the path space.

(ii) the invariant measure u§, . 5(dn) for the process {7; }:>o defined on Sj; , is close in
a suitable probability metric to the projection of the microscopic Gibbs mea-
sure T, (un g(do)); in particular the error estimates in (5.1) below, demon-
strate that the coarse-grained process can preserve the ergodicity properties of
the microscopic process within a prescribed tolerance. Here we also note that
the coarse-graining modifies the microscopic prior Py (do) in (2.2), yielding
the coarse prior Pz ,(dn).

4. Probability metrics and information theory tools. Since we propose
the coarse-grained process {n;}:>0 to be only an approximation of {T(o¢)}:>0 which
can be computed in a fast and simple way it is necessary to define in what sense
we evaluate the approximation properties. We propose to view the approximation in
coarse-graining procedure as information loss. Such approach is naturally connected
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to the actual computational implementation in the Monte Carlo algorithm. In this
section we give a brief introduction to basic tools of information theory required in the
error analysis. We define the basic notions on a probability space with the discrete
state space S but analogous properties and definitions hold for the relative entropy
of measures on general probability spaces (see [6]). Although the exposition in this
section is general we keep the notation consistent with the previous section. However,
the reader may assume that the state space S does not necessarily refer to the space
of spin configurations.

We consider two probability measures 71 (¢) and 72 (o) on the discrete state space
S. We define the relative entropy

(71 | 72) Z m (o log

oceS

m (o)

2(0)

(4.1)

Using Jensen’s inequality it is not difficult to show that

R(Trl |7T2) Z 0 and,
R (my |me) =0 if and only if w1 (o) = m3(0) for all o € S.

Although the above properties of the relative entropy R (m |m2) suggest that this
quantity is a distance between the measures m; and 72, it does not define a true
metric since it is not symmetric, i.e., R (71 |m2) # R (w2 |m) for all measures my,
my. Nevertheless, there is an important inequality that allows us to use the relative
entropy as a tool for estimating distance between two measures and hence use it for
evaluating errors in the coarse-graining procedures. Using the relative entropy we can
bound the total variation of the measures 7m; and m:

R (my |m2) > % (Z m1 (o) —7T2(0)|> = %||7T1 — ot - (4.2)

ocEeS

Furthermore, for any observable f = f(o) we have the bound
[Ex, [f(0)] = Bry [£()]] < sup |f(0)]| V2R (w1 | m2) - (4.3)

The following wvariational characterization of the relative entropy is useful in the
error estimation. Given a bounded function (observable) f € L*>(S) defined on the
state space S we have the natural dual pairing with the measures on S

(m, f) = Zw(a)f(a) =E. [f].

oceS

The relative entropy (4.1) has the variational representation (see [20, pp. 338-339])

R(m|m)= sup {{m,[)—loglm,e’)} . (4.4)
feL>=(S)

The variational representation is used in the next section to obtain lower bounds on
the relative entropy error of coarse-grained processes.

It is worth mentioning the relation between coarse graining and information the-
ory and use of the relative entropy in the context of coarse graining. The information
point of view also clearly explains the meaning of the relative entropy as a tool that
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estimates the loss of information. In information theory one is interested in encoding
the random variable o with values in the state space S, and distributed according to
the probability measure 7 = w(0), o € S. The information should be encoded using
symbols from a D-nary alphabet, for example only 0 and 1 in the case of the binary
alphabet. Suppose that Cp (o) is a code/string corresponding to the value o € S. We
denote £p(o) the length of the code needed for the state o. Since the information is
carried in the random variable ¢ we have to ask what is the expected length of the
code required to capture the states of o provided we know the distribution of . The
expected length is given by

E: [(p(S)] = ) n(0)ép (o). (4.5)

ocEeS

It can be shown (see [4]) that the optimal (minimal) expected length is attained by
choosing

Lp(o) =logp —— . (4.6)

Obviously, to set the optimal length for encoding the states of the random variable
o one needs to know the measure 7. If we assume a wrong distribution w = w(o)
to define the length of the code we obtain the expected length which would not be
optimal. The relative entropy R (7 |w) describes the increase of the length (4.6) due
to using the wrong distribution or information about the random variable o. In this
sense R (7 |w) is interpreted as the increase in descriptive complexity due to “wrong
information”.

This information point of view is applicable to the analysis of coarse-graining pro-
cedures: the spin configurations o are sampled by the Markov chain Monte Carlo al-
gorithms and hence samples of a random variable o with large-dimensional state space
are generated. On the coarse level we sample an approximate process {n; }+>o0 instead
of the exact projection {Tat}tzo and hence assuming a wrong measure/distribution
for the random variable o. Using the relative entropy for estimating the approxima-
tion properties estimates the loss of information arising from using samples of {n; }+>0
instead of the exact coarse-grained process.

5. Error analysis and a priori estimates for coarse-grained processes.
As described in the previous section we construct a new process which only approx-
imates the projected process {To;}:>0, hence the approximation properties of such
construction needs to be clarified.

As noted in the previous section we do not attempt to capture the effect of fine
scales exactly and incorporate them into coarse model through the renormalization
group transformation. Instead we construct an approximate process {7 }:>0, with the
invariant measure pj, . 5. The first question which need to be addressed is comparison
and error estimate on the exactly coarse-grained equilibrium measure, i.e., Ty g,
and its approximation ug, . 5. We recall that T, is the projection operator induced
by the projection of fine to coarse spin variables. The principal idea proposed in
[18] is to control the specific loss of information quantified by the relative entropy

R (11,08 | Tetin5)-
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PROPOSITION 5.1 ([18], A priori estimate).
1 c
NR (:U'M,q,ﬂ |T*/~¢N,B) = (5.1)
1

X (=0 (f).

A
€Sy, , pnp({o € SN | To = n}

This a priori estimate quantifies the dependence of the information distance (the
specific relative entropy R (p|v)) in terms of the coarse-graining ratio ¢ and the
interaction range L.

The procedure described in the previous section defines a hierarchy of coarse-
grained algorithms parametrized by gq. The fully resolved simulations correspond
to the microscopic model ¢ = 1 while the mean-field approximation is obtained in
the case where ¢ > L, i.e., when we coarse-grained beyond the interaction range of
the potential. Each level of this hierarchy introduces an error since some fine-scale
fluctuations may be neglected. However, we also provide a posteriori estimate ([3, 2])
that allows to locally refine the hierarchy in adaptive way resembling the adaptive
mesh refinement for approximation of PDEs.

PROPOSITION 5.2 (A posteriori estimate). Given the coarse lattice A, = |J,, Ck
with g = |Ci|

R (His,q,8 | Tuiv,p) < Epe [R(n)] + log (Euc [eR(")]) : (5.2)

where the residuum operator R(.) is given by

J
R(n)=4) qk—kqll (gem (@ —m) — 2mem (qe — ) (@ — mn))
k,l

ksl

Jrk
+4; mﬂk(% =) (e — 1) + (g6 — me) (g — e + 1)),

and

Juw= max |J(z—y)—J( —y).
z,2' €Dy,
y,y' €Dy

The expected value By [.] is computed with respect to the Gibbs measure Wit,q,p Of the
coarse-grained process {ng}¢>0-

The error control is defined by the residuum operator R(.) which can be computed
a posteriori from sampling the measure Kit,q.8 (note that the expectations E,. [.] are
computed with respect to the coarse-grained process).

The next estimate provides a lower bound for the loss of information in terms of
coarser observables:
PRrROPOSITION 5.3 (Lower bound).

R (Hi1,q,5 | Txing) 2R (TT g, | T NN,B) : (5.3)

for allm' <m and m'q’ =mqg=N.
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Proor We first recall the variational formulation for the relative entropy (see for
instance [20], Appendix 1):

R(u|l/):sgp{/fdu—log/efdu}, (5.4)

where the supremum is over all bounded functions over the space where the measures
are defined. This inequality now readily implies the result since

R (u|v) > su {/fonu—log/ef“T dz/} =R (Tup| Tyv) (5.5)
foT

where T is the projection operator (subscripts omitted) in the statement of the propo-
sition.

REMARK: This estimate provides a lower bound for the loss of information in terms of
coarser observables, hence the condition m' < m where m'q’ = mq = N. For instance
if m' = 1,¢' = N the measures Tl"l’qluﬁw,qﬂ and T juy 5 are the PDF's of the total
coverage with respect to the coarse-grained (essentially mean field with noise) and the
microscopic Gibbs states respectively. We characterize such an estimate as a priori
since the bound depends on the exact microscopic process, in analogy to bounds for
finite element approximations to PDE which depend on the Sobolev norm of the exact
solution, [8]. At first glance it may appear that such an estimate is hard to implement
since it depends on the exact microscopic MC, however for relatively small systems
where microscopic MC can be carried out, (5.3) can provide a lower bound on the
loss of information, as well as a sense on how sharp are the upper bounds given by
(5.2). More specifically when m' is small , i.e. m' =1,2,3... etc., the PDFs can be
calculated as a histogram by MC and subsequently the relative entropy in the lower
bound is straightforward to compute.

For the comparison of the processes {T(o¢)}i>0 and {n:}i>0 we need to carry
out a similar a priori analysis on the coarse path space D(X°), i.e., on the space
of all right-continuous paths 7; : [0,00) — X°. Above we derived estimates for the
exact coarse graining T.un g of the invariant measure uy g and its approximation
Kig,q,p cOmputed in terms of the coarse Hamiltonian. In the similar way we treat
the measures on the path space: we denote @, 0,r] the measure on D(X) for the
process on the interval [0,7], {o¢}¢c[o,r] With the initial distribution op. Similarly
Qf,o,[o,T] denotes the measure on the coarse path space D(X¢). With a slight abuse
of notation we also use T, to denote the projection of the measure () on the coarse
path space, i.e., the exact coarsening of the measure (). The full rigorous analysis on
the path space is more involved and we refer to [17] and will only state the main a
priori estimate here

PROPOSITION 5.4 ([17]). Suppose the process {n:}ic[o,1], defined by the coarse
generator L is the coarse approximation of the microscopic process {Ut}te[o,T] then
for any ¢ < L and N, M the information loss as q/L — 0 is

%R <T*QT*00,[O,T] |QZO,[O,T]) =TO (%) (5.6)

REMARK The detailed proof of this information estimate (see [17]) reveals that no
control of fluctuations of the process {o¢}¢>0 is necessary for the estimate. Conse-
quently the estimate is very robust and as far as q/L, is small the approximation by
the coarse-graining scheme yields small error independently of the potential V' or the
initial distribution oy.
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6. Implementation of the coarse-grained Monte Carlo algorithms. The
hierarchy of coarse-grained Monte Carlo processes (CGMC) parametrized by g has
been designed in such a way that it is easily implemented in the unified manner.
In fact, the nature of the generator L£° at the level ¢ allows us to use the same
implementation as for the standard MC at the microscopic level, i.e., ¢ = 1.

The stochastic system is simulated with the kinetic Monte Carlo (KMC) algo-
rithm. Each iteration of the Monte Carlo simulation produces a variable time step
At within which a spin flip occurs at a specific lattice node based on the transition
probability,

[calk,n) + calk, m)]At + O(At?)

where ¢, and ¢4 as in (3.5). This procedure repeats until the stopping criteria (see

below) have been met. More specifically, the simulation is implementing the follow-

ing global updating process-type kinetic Monte Carlo (KMC) algorithm for spin flip

Arrhenius dynamics:

Step 1 Calculate all transition rates ¢, (k,n) (adsorption), cq(k,n) (desorption) from
(3.5) for all nodes & in the lattice AY,

Step 2 Calculate the total R, = ZleAg,, co(l,m), Rg = ZleAg,, cq(l,n) adsorption,
desorption rates respectively. Similarly obtain the total rate R = R, + Rg.

Step 3 Obtain two random numbers p; and ps.

Step 4 Use the first random number to choose between absorption or desorption based
on the measure created by the rates R,, Rq and Rr. Assume that the choice
is to adsorb(desorb) and denote by ¢ = c,(I,n), (ca(l,n)) and R = R,, (Ry),
respectively.

Step 5 Find the node at lattice position [ € A§, such that,

-1

C(j, 77) Z PZR Z C(kﬂ?)
J

M-

Il
o
Il
<

J

Step 6 Update the time, t = ¢t + At where
At=1/Rr. (6.1)

Step 7 Repeat from Step 1 until equilibrium or dynamics of interest have been cap-
tured.

As expected a kinetic Monte Carlo algorithm produces no “null” steps and there-
fore every trial is accepted. A similar version of the algorithm can also be implemented
with a local updating mechanism which can improve speed substantially at the recip-
rocal expense of allocating further computer memory for dynamic array allocation.
In the simulation that follow we use a finite size interaction potential and lattice size
L,N < oo.

We produce simulations and compare observables at microscopic (¢ = 1) and
coarse grained (¢ > 1) levels. For consistency purposes we use the same seed for
our random number generator in order to compare simulations for different coarse
grained values of q. This allows us to focus on the differences attributed only to
the coarse graining variable and not on those resulting from different paths due to
the initial seed. In the case of several realizations we initialize each new microscopic
realization with a different seed. Once again, for comparison purposes, we initialize
each subsequent coarse grained realization with the same seeds used in the respective
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F1G. 7.1. Relazation dynamics. Comparison of microscopic (¢ = 1) and coarse grained (q = 10)
sitmulations. The plot depicts a short time simulation in order to calibrate the code and compare to
Figure 4 from [15].

microscopic simulations. All simulations are compared in the same non-dimensional
time units. The corresponding non-dimensional time-step is respectively set by the
Monte Carlo simulation based on the rule 6.1.

7. Numerical simulations. We use the CGMC described and analyzed in the
previous sections for efficient simulations in the systems that undergo phase transi-
tions. Within the context of spin-flip dynamics a typical example will be, for example,
nucleation of regions with a phase or transition from one phase (all spins equal to zero)
to another (all spins equal to one). The emphasis is on the path-wise properties of
the coarse-grained process. We compare simulations on the microscopic level ¢ = 1
with those performed on different levels of coarse-graining hierarchy parametrized by
q.

The parameters in the simulations have been chosen as follows: We use a uniform
finite range potential for all examples presented. We simulate a finite lattice with a
total of N = 1000 microscopic nodes and allow a potential interaction range of 2L + 1
for L = 100. We choose the constant dy = 1 so that ¢, = 1 and ¢4 = 1. Hence
in this case the critical value of 8.Jy = 4. For the phase transition examples we fix
/BJO =6> /BCJO

We investigate approximation of certain global quantities.

Coverage: We define the coverage ¢; to be the process computed as the spatial mean

alr) =5 X o), ) =7 3 ml).

zEAN leAs,

We present time evolution of the coverage at the phase transition regime, 8Jy = 6.
Note that the case ¢ = 1000, m = 1 which corresponds to the mean-field approxima-
tion (“over coarse-grained” interactions) does not follow the phase transition path of
the other simulations. On the other hand the agreement in the results is extremely
good for the remaining values of q. Furthermore, these numerical results indicate
path-wise (strong) approximation of the microscopic process by the coarse-grained
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Fi1c. 7.2. Time series of the coverage cg. Simulations for different coarse-graining ratios are

shown in the phase transition regime. The case ¢ = 1000, m = 1 (mean-field approzimation) shows
significant discrepancy. Parameters used: potential radius length L = 100, BJo = 6. FExternal
potential is kept at the critical value of 1/.072.

TABLE 7.1
Approzimation of Tr, R (p? |T*pT) and relative error.

L g Tr R(PL|Twp;) Rel. Err. CPU [g
100 1 532 0.0 0 309647
100 2 532 0.003 0.01% 132143
100 4 530 0.001 0.22% 86449
100 5 534 0.003 0.38% 58412
100 0 536 0.004 0.82% 38344
100 20 550 0.007 3.42% 16215
100 25 558 0.010 4.91% 7574
100 50 626 0.009 17.69% 4577
100 100 945 0.087  77.73% 345

process. This observation suggests a stronger error control than the relative entropy
estimate provided by Proposition 5.4.

Mean time to reach phase transition: One quantity of interest that can be calculated
from the simulations is the mean time 7r = E[7r] until the coverage reaches ct
in its phase transition regime (see Figure 7.2). The random exit time is defined as
mr = inf{t > 0|¢; > Ct}. We estimate the probability distributions p, and p2
from the simulations. We record a phase transition at the time 7 when the coverage
exceeds the threshold value Ct = 0.9.

In Figure 7.3 we plot approximations of the Probability Density Functions (PDFs)
and compare them for different values of q.

The qualitative agreement observed in Figure 7.3 can be quantified using the
information distance for error estimation, i.e., by estimating the relative entropy

R (p1]p2) Zm log< 283) : (7.1)
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F1G. 7.3. Probability Density Function (PDFs) comparisons between different coarse graining

q. The mean times for each PDF are shown in the figures. All PDFs comprised of 10000 samples.
The histogram is approzimated by 100 bins.
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F1G. 7.4. The dependence of the relative error and or the relative entropy on the coarse-graining
level q. The left figure depicts the relative error and q on the log-log scale. Measurements based on
averaging over 10000 realizations for each q.

Nucleation: The last set of simulations deals with the path-wise behaviour on the con-
figuration space for nucleation of a new phase. We present only qualitative comparison
in the series of snap-shots (Figure 7.5) of the phase transition from the uniform (zero)
initial coverage to the full coverage. We observe a striking path-wise agreement on
the configuration space for relatively large values of ¢ compared to the interaction ra-
dius L. However, as the ratio ¢/L increases the corresponding coarse-grained process
lags behind which is also demonstrated in the expected values of transition times.
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Such behaviour suggests that fluctuations at regions with uniform states are well-
approximated by a highly coarse-grained process while finer resolution is necessary
for resolving nucleation of new phases through islands. This point is also partly
justified by the a posteriori estimate (5.2) where the residual term concentrates on

transition regions.

Spatial Comparisons of Phase Transition
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FiG. 7.5. Snap-shots of the transition from zero initial spatial distribution. Comparisons be-

tween the microscopic ¢ = 1 and two coarse grained simulations ¢ = 10 and ¢ = 50. The interaction
radius is set to L = 200 while total nodes are N = 10000.

In the next set of figures we present qualitative comparison of nucleation from

an island of a given size (Figure 7.6-7.8). In these simulations we observe spatial
propagation of the interface in time for different initial size of the island.
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Fi1G. 7.7. Snap-shots of the nucleation from a medium-size initial seed. Comparisons between
the microscopic ¢ = 1 and two coarse grained simulations ¢ = 10 and ¢ = 50. Potential radius is
set to L = 100 and the size of the lattice to N = 2000.
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