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A stochastic partial differential equation for the morphological evolution of strained epitaxial films is derived
from atomistic aggregation kinetics. The transition rules and rates are based on a model that incorporates the
effects of strain through environment-dependent energy barriers to adatom detachment. Comparisons with
previous approaches based on continuum elasticity provide an atomistic interpretation of the governing equa-
tion for heteroepitaxial thin films.
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Self-organization on strained epitaxial surfaces has been
studied with many theoretical methods, including kinetic
Monte Carlo �KMC� simulations,1–10 molecular
dynamics,11–13 and continuum equations.14–18 One of the
“grand challenges” for computational materials science is the
synthesis of such disparate descriptions into a multiscale
theory of morphological evolution. The presence of strain
relaxation, in particular, endows the rates of atomistic pro-
cesses on strained surfaces with a dependence on nonlocal
factors such as the height and lateral extent of a terrace
above a substrate4 and the presence of neighboring islands.19

These effects are manifestations of elastic interactions, which
find a natural expression within a continuum framework.

In this Rapid Communication we derive a stochastic dif-
ferential equation for the morphological evolution of het-
eroepitaxial surfaces from an atomistic model4 for coherent
three-dimensional �3D� island formation. Our approach is
based on first expressing the transition rules of this model as
a lattice Langevin equation,20 which is then regularized to
obtain a stochastic partial differential equation. The deter-
ministic part of this equation has the same form as that de-
rived by Golovin et al.17 from continuum elasticity, but with
coefficients that have a direct relation to the underlying ato-
mistic processes.

We first consider a one-dimensional �1D� substrate with L
sites on each site i of which is a column of Hi particles.
Every surface configuration corresponds to an array H
= �H1 ,H2 , . . . ,HL�. The probability that the system has con-
figuration H at time t is P�H , t�, which is a solution of the
master equation21

�P

�t
=� �W�H − r;r�P�H − r,t� − W�H;r�P�H,t��dr , �1�

where W�H ;r� is the transition rate density from H to
H+r, and r= �r1 ,r2 , . . . ,rL� is the array of jump lengths at
each site. This equation can be transformed into a lattice
Langevin equation for height fluctuations,20

dhi

d�
= Ki

�1� + �i, �2�

where hi=�−1Hi and �=�−1t are continuous height and time
variables rescaled by a “largeness” parameter �, �i are
Gaussian noises that have mean zero, ��i���	=0, and covari-
ance

��i���� j����	 = Kij
�2���� − ��� , �3�

in which ��x� is the Dirac � function, and

Ki
�1��h� =� riW�h;r�dr , �4�

Kij
�2��h� =� rirjW�h;r�dr �5�

are the first and second moments of W. There is a direct
correspondence between solutions of Eqs. �1� and �2� in the
limit �→�.20

The processes in our model are random deposition and
surface diffusion. For random deposition,

W1�h;r� = �0
−1


i

��ri − a���
k�i

��rk� , �6�

where �0
−1 is the average deposition rate per site and a� is the

vertical lattice spacing. The transition rate density for
nearest-neighbor hopping is

W2�h;r� = 

ij

wij��ri + a����rj − a�� �
k�i,j

��rk� , �7�

where wij =
1
2�i��i,j−1+�i,j+1�, �i,j is the Kronecker �, and the

local hopping rate �i=�0e−	Ei, where �0�1013 s−1,
	=1/ �kBT�, kB is Boltzmann’s constant, T is the absolute
temperature, and Ei is the hopping barrier from the ith site.
The total transition rate density W=W1+W2, from which we
obtain20

Ki
�1� =

1

2
a�
2�i +

a�

�0
, �8�

Kij
�2� =

1

2
a�

2 ��i,j

2�i − �i


2�i,j − 
2��i�i,j�� + �i,j
a�

2

�0
, �9�

in which the second difference 
2f i= f i−1−2f i+ f i+1 acts only
on the index i in Eq. �9�.

A basic description of aggregation is obtained by
setting22–25 Ei=ES+niEN, where ES is the energy barrier from
the substrate and EN the contribution from each of the ni
lateral nearest neighbors. Ratsch et al.4 used a Frenkel-
Kontorova model to calculate the effect of strain relaxation
at island boundaries on EN. To lowest order, the interplay
between strain relaxation and surface morphology is de-
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scribed by the functional form EN=EN�hi , �
hi�2 ,
2hi�,
where �
hi�2= 1

4 �hi−1−hi+1�2, which accounts for the absolute
height, slope, and curvature around the detaching atom. In-
cluding higher-order differences of hi in EN provides a more
accurate description of the height environment, but does not
alter the structure of the resulting coarse-grained equation.
With this form of EN we have

�i = �0e−	ES��i−1�i+1 + e−	EN�i−1�i+1 + e−	EN�i−1�i+1

+ e−2	EN�i−1�i+1� , �10�

where �i±1=1−�i±1, �i±1=��hi±1−hi�, and, for integer height
differences 
h=n,

��n� = 
1, if n 
 0;

0, if n � 0.
� �11�

Equation �10� can be expressed more succinctly as

�i = a�
−2DS�1 − ���
+hi���1 − ���
−hi�� , �12�

with DS=a�
2 �0e−	ES, 
±hi=hi±1−hi, �=1−e−	EN, and

��
h� = max�a�
−1
h + 1,0� − max�a�

−1
h,0� , �13�

which generalizes the hopping rules of our model to continu-
ous heights.20 Equations �2� and �3�, with Eqs. �8�, �9�, �12�,
and �13� embody the statistical properties of the original lat-
tice model.20

The lattice equations �2� and �3� can be converted into a
continuum stochastic equation by first regularizing the step
function in Eq. �13�. An analytic representation is

��
h;�� =
1

2
�

−�

a�
−1
h

�erf��s + 1��� − erf�s���ds

= A��� +
B���
a�


h +
C���
a�

2 �
h�2 + ¯ , �14�

where ��0, erf�x� is the error function, and A, B, and C are
coefficients in the Taylor expansion of � around 
h=0. We
have that lim�→� ��
h ;��=��
h� for all real 
h. The height
function hi is now replaced by an analytic function u�x ,��
such that

h�i ± k,�� = 

n=0

� �� �nu

�xn��
x=i

�±a�k�n

n!
, �15�

where a� is the lateral lattice spacing, and � is expanded
around �h , �
h�2 ,
2h�= �0,0 ,0�:

��h,�
h�2,
2h� = 

l,m,n=0

�
�lmn

l!m!n!
� h

a�

�l�
h

a�

�2m�
2h

a�

�n

.

�16�

Substitution of these expansions into Eqs. �8� and �9� yields
a convergent series with successively higher spatial deriva-
tives of u. The value of � in Eq. �14� determines if the regu-
larized equation captures all of the properties of the lattice
model �large �� or only coarse-grained features �small ��.26

Here, we choose ��0.01 to obtain the leading-order equa-
tion

�u

��
= �2

�2u

�x2 + �4
�4u

�x4 + �6
�6u

�x6 +
�2

�x2��1u2 + �2� �u

�x
�2

+ �3u
�2u

�x2� + F + � , �17�

where F=a� /�0 is the average deposition rate and the
smoothed Gaussian noise � has zero mean and covariance

���x,����x�,���	 = 2�D0 −
�

�x
D2

�

�x
���x − x����� − ��� , �18�

where D0=a�a�
2 / �2�0� is due to deposition and the remaining

coefficients are compiled in Table I. The deterministic part of
Eq. �17� has the same form as that derived by Golovin et
al.17 from continuum elasticity for a rigid substrate. The de-
scription of detachment kinetics solely in terms of short-
range absolute height environments is also valid only where
deformation of the substrate is neglected, as was indeed the
case in Ref. 4. Morphological evolution on a deformable
substrate produces nonlocal terms,16,18 which reflect elastic
interactions mediated by the substrate.

The atomistic ancestry of the coefficients in Eq. �17� al-
lows us to relate this equation to specific materials and

TABLE I. Coefficients in the 1D equation �17�. For ��0.01,
A�0.5, B�0.006, and C�−3�10−7.

�2=−
a�

2

a�
2 DS A�100�1−A�000�

�4=−
a�

4

2a�
2 DS�1−A�000��B�000+

1

6
A�100+2A�001�

�6=−
a�

6

360a�
2 DS�1−A�000��30B�000+A�100+60A�001�

�1=−
a�

2

2a�
3 DS A��200�1−A�000�−A�100

2 �

�2=−
a�

4

12a�
3 DS�6B2�000

2 + �12C�000+12A�010+A�200�

��1−A�000�−A2�100
2 �

�3=−
a�

4

12a�
3 DS�6B�100�1−2A�000�+ �12A�101+A�200�

��1−A�000�−A2�100�12�001+�100��

D2=
a�

3

2
DS�1−A�000��1−A�000−

2

a�

A�100u�

FIG. 1. For the indicated local configurations of the shaded par-
ticle, EN

�a�
�EN

�b,c� and EN
�a�

�EN
�d� for EN

�1,0,0��0,0 ,0��0 and
EN

�0,0,1��0,0 ,0��0.
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growth scenarios. For T�0, we have 0��000�1 and,
hence, the sign of �2 is determined by the sign of ��100

= �	EN
�1,0,0�e−	EN���0,0,0�. The key quantity is EN

�1,0,0��0,0 ,0�,
which is the rate of change of EN with the film height.
Golovin et al.17 considered situations where �2�0, which
corresponds to EN

�1,0,0��0,0 ,0��0. Alternatively, the calcula-
tions in Ref. 4 suggest EN

�1,0,0��0,0 ,0��0, i.e., �2�0. The
growth of 3D islands then results from the decreasing de-
tachment rate with increasing height, as shown in Figs. 1�a�
and 1�b�. We focus on this case below.

The sign of �4 is determined by the sign of
B�000+ 1

6A�100+2A�001. Choosing4 EN�0,0 ,0�=0.3 eV,

EN
�1,0,0��0,0 ,0��0.01–0.05 eV, and T�900 K, the above

quantity is positive for EN
�0,0,1��0,0 ,0��−0.03 eV, in which

case �4�0 and the sixth-order term in Eq. �17� can be
omitted.27 A negative EN

�0,0,1��0,0 ,0� implies that strain is re-
lieved more effectively by islands with larger numbers of
lateral edge atoms4 �Fig. 1�c��, but local depressions are sup-
pressed �Fig. 1�d��. For EN

�0,0,1��0,0 ,0��−0.03 eV, we find
�4�0, which necessitates the inclusion of the sixth-order
derivative, for which �6�0, for stability.

Our procedure can be applied to obtain the equation for
morphological evolution during heteroepitaxial growth on a
two-dimensional �2D� substrate, with the result

��u = �2��x
2u + �y

2u� + �4��x
4u + �y

4u� + �4��x
2�y

2u + �6��x
6u + �y

6u�

+ �6���x
4�y

2u + �x
2�y

4u� + �x
2��1u2 + �2ux

2 + �2�uy
2 + �3uuxx

+ �3�uuyy� + �y
2��1u2 + �2uy

2 + �2�ux
2 + �3uuyy + �3�uuxx�

+ F + � , �19�

where �x��u /�x�ux, with a similar notation for other de-
rivatives, F=a� /�0, and the smoothed Gaussian noise
��x ,y ,�� has zero mean and covariance analogous to Eq.
�18�. This equation contains the same types of terms as Eq.
�17�, but in a form that respects the fourfold symmetry of the

lattice. The coefficients are compiled in Table II. As for a 1D
substrate, �2�0 if EN

�1,0,0��0,0 ,0��0. For EN
�0,0,1��0,0 ,0�

�−0.02 eV the linearized 2D equation is stabilized by nega-
tive �4 and �4�, and the sixth-order terms can be omitted.27

But, for EN
�0,0,1��0,0 ,0��−0.02 eV, �6 and �6� must be in-

cluded for stability.
In Fig. 2 we show morphologies and associated two-point

correlation functions,

G�x,�� = 
 1

Na�
2 � �u�x + x�,�� − u�x�,���2dx��1/2

, �20�

where x= �x ,y� and Na�
2 is the area of an La� �La� lattice, at

0.5 monolayers �ML� during growth at 0.1 ML/s obtained
by integrating the linearized 2D equation �19� with periodic
boundary conditions and only deposition noise. We use pa-
rameters consistent with the simulations in Ref. 4, which
leads to a fourth-order equation. At T=650 K �Figs. 2�a� and
2�c��, there is scant evidence of structure. But the morphol-
ogy at T=750 K �Figs. 2�b� and 2�d��, which corresponds to
the simulated temperature in Ref. 4, clearly shows the devel-
opment of locally ordered �i.e., self-organized� 3D islands.
The most striking aspect of Fig. 2�b� is its similarity to the
KMC simulations in Fig. 3 of Ref. 4 in terms of the size of
the 3D islands, their density, and the time scale of their for-
mation.

The trends in Fig. 2 can be further extended by solving, at
least formally, the linearized versions of Eqs. �17� and �19�
using Fourier transforms. Introducing the spatial transform

u�x,�� =� dk

�2��deik·xu�k,�� , �21�

with an analogous expression for ��k ,��, and neglecting the
difference between �4 and �4�, the solution to the linearized
fourth-order equation with u�k ,0�=0 can be written as

TABLE II. Coefficients in the 2D equation �19�. The values of A, B, and C are as in Table I.

�2=−
a�

2

a�
2 DS A�100�1−A�000�3 �2�=−

a�
4

8a�
3 DS�1−A�000�2�2B2�000

2 + �4C�000+8A�010��1−A�000��

�4=−
a�

4

12a�
2 DS�1−A�000�3�3B�000+A�100+12A�001� �3=−

a�
4

12a�
3 DS�1−A�000�2�3B�100�1−4A�000�

�4�=−
a�

4

2a�
2 DS�1−A�000�3�B�000+4A�001� +�12A�101+A�200��1−A�000�−3A2�100��100+12�001��

�6=−
a�

6

360a�
2 DS�1−A�000�3�15B�000+A�100+60A�001� �3�=−

a�
4

4a�
3 DS�1−A�000�2�B�100�1−4A�000�

�6�=−
a�

6

24a�
2 DS�1−A�000�3�B�000+4A�001� +4A�101�1−A�000�−12A2�100�001�

�1=−
a�

2

2a�
3 DS A�1−A�000�2��200�1−A�000�−3A�100

2 � D0=
a�

2a�
2

2�0

�2=−
a�

4

12a�
3 DS�1−A�000�2�3B2�000

2 + �6C�000+12A�010 D2=
a�

4

4
DS�1−A�000�3�1−A�000−

4

a�

A�100u�
+A�200��1−A�000�−3A2�100

2 �
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u�k,�� = �
0

�

�e���2�k2−��4�k4���−s���k,s��ds , �22�

where the Gaussian noise � has zero mean and covariance

���k,����k�,���	 = 2�2��d�D0 + D2k2���k + k����� − ��� ,

�23�

in which D2 is taken to be a constant and d is the substrate
dimension. For k� �D0 /D2�1/2�kD diffusion noise domi-
nates over deposition noise. On the other hand, the determin-
istic terms in Eq. �22� imply a critical wave number kc
= ��2 /�4�1/2, below which all modes are unstable. Thus, if
kc�kD, fluctuations due to deposition and diffusion “feed
into” unstable modes, so the self-organization process is en-
hanced by diffusion noise. For the coefficients in Table II,
diffusion fluctuations excite only a relatively narrow band of
unstable modes at T=650 K, but at T=750 K this effect is
dominant for L�200a�. However, since EN increases with
height, D2 decreases accordingly, so kD increases with
height. Thus, for large enough terrace heights, diffusion
noise only minimally perturbs the unstable modes, even for
T=750 K, which supports the stabilization of island heights.

In summary, we have derived a stochastic differential
equation for the morphological evolution of strained het-
eroepitaxial films from an atomistic model. The deterministic
terms are the same as those obtained by Golovin et al.17 from
continuum elasticity. Two crucial differences from this ear-
lier work are the presence of noise due to deposition and
diffusion and the relation of the coefficients to the original
atomistic processes. Since the parametrization of such atom-
istic processes is becoming available through density func-
tional calculations,28–30 our methodology offers the promise
of a genuine multiscale atoms-to-continuum description of
the morphological evolution of heteroepitaxial thin films.
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FIG. 2. Heights u �a�,�b� and two-point correlation functions G
�c�,�d� obtained from the linearized fourth-order equation �19� at 0.5
ML for a system of size 60a� �60a� at T=650 K �a�,�c� and T
=750 K �b�,�d� with ES=1.3 eV, EN�0,0 ,0�=0.3 eV,
EN

�1,0,0��0,0 ,0�=0.01 eV, and EN
�0,0,1��0,0 ,0�=−0.004 eV. The

ranges of u and G, in units of a�, are �a� −0.6�u�1.5, �b� −0.3
�u�1.5, �c� 0�G�0.4, and �d� 0�G�0.5.

CHRISTOPH A. HASELWANDTER AND DIMITRI D. VVEDENSKY PHYSICAL REVIEW B 74, 121408�R� �2006�

RAPID COMMUNICATIONS

121408-4


