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Stochastic equation for the morphological evolution of heteroepitaxial thin films
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A stochastic partial differential equation for the morphological evolution of strained epitaxial films is derived

from atomistic aggregation kinetics. The transition rules and rates are based on a model that incorporates the

effects of strain through environment-dependent energy barriers to adatom detachment. Comparisons with

previous approaches based on continuum elasticity provide an atomistic interpretation of the governing equa-

tion for heteroepitaxial thin films.

DOLI: 10.1103/PhysRevB.74.121408

Self-organization on strained epitaxial surfaces has been
studied with many theoretical methods, including kinetic
Monte Carlo (KMC)  simulations,"”'®  molecular
dynamics,"'~!3 and continuum equations.'*'8 One of the
“grand challenges” for computational materials science is the
synthesis of such disparate descriptions into a multiscale
theory of morphological evolution. The presence of strain
relaxation, in particular, endows the rates of atomistic pro-
cesses on strained surfaces with a dependence on nonlocal
factors such as the height and lateral extent of a terrace
above a substrate* and the presence of neighboring islands."’
These effects are manifestations of elastic interactions, which
find a natural expression within a continuum framework.

In this Rapid Communication we derive a stochastic dif-
ferential equation for the morphological evolution of het-
eroepitaxial surfaces from an atomistic model* for coherent
three-dimensional (3D) island formation. Our approach is
based on first expressing the transition rules of this model as
a lattice Langevin equation,”® which is then regularized to
obtain a stochastic partial differential equation. The deter-
ministic part of this equation has the same form as that de-
rived by Golovin et al.'” from continuum elasticity, but with
coefficients that have a direct relation to the underlying ato-
mistic processes.

We first consider a one-dimensional (1D) substrate with L
sites on each site i of which is a column of H; particles.
Every surface configuration corresponds to an array H
={H,,H,,...,H,}. The probability that the system has con-
figuration H at time ¢ is P(H,7), which is a solution of the
master equation?®!

%: J [(WH-r;r)PH-r,1) - WH;r)P(H,7)]dr, (1)

where W(H;r) is the transition rate density from H to
H+r, and r={r|,r,,...,r.} is the array of jump lengths at
each site. This equation can be transformed into a lattice
Langevin equation for height fluctuations,?”

dh; .

=K'+, (2)
where #;=Q7'H; and 7=t are continuous height and time
variables rescaled by a “largeness” parameter ), #; are
Gaussian noises that have mean zero, {#;(7))=0, and covari-
ance
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PACS number(s): 68.55.—a, 68.35.Gy, 68.60.—p
(D) =K 87— 1), 3)

in which 8(x) is the Dirac & function, and

KV(h) = f r;W(h;r)dr, 4)

K1) = f T (5)

are the first and second moments of W. There is a direct
correspondence between solutions of Egs. (1) and (2) in the
limit Q) — .20

The processes in our model are random deposition and
surface diffusion. For random deposition,

Wi(h;r) = 7'(_)12 5(ri_aJ_)H Ay, (6)

k#i

where 751 is the average deposition rate per site and @ | is the
vertical lattice spacing. The transition rate density for
nearest-neighbor hopping is

Walhir) = 2 wdlri+a)dr=ay) [T &), (7)

ij ki

where wij:%A,«(éi,j_l +0; j+1), 0;; is the Kronecker 8, and the
local hopping rate A=vye P, where vy~ 10" 57!,
B=1/(kgT), kg is Boltzmann’s constant, T is the absolute
temperature, and E; is the hopping barrier from the ith site.
The total transition rate density W=W;+ W,, from which we
obtain?’

1

K= —a AN+, )

i 2 L i -
0

2
K = 8,0, - A N5, - %051+ 4 O
in which the second difference A%f;=f,_;—2f;+f:,; acts only
on the index i in Eq. (9).

A basic description of aggregation is obtained by
setting?>~? E;=E¢+n,Ey, where Eg is the energy barrier from
the substrate and Ey the contribution from each of the n;
lateral nearest neighbors. Ratsch et al.* used a Frenkel-
Kontorova model to calculate the effect of strain relaxation
at island boundaries on Ey. To lowest order, the interplay
between strain relaxation and surface morphology is de-
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scribed by the functional form Ey=Ey[h;,(Ah;)?, A%h;],
where (Ah;)>= i(hi_l —h,,,)%, which accounts for the absolute
height, slope, and curvature around the detaching atom. In-
cluding higher-order differences of 4; in Ey provides a more
accurate description of the height environment, but does not
alter the structure of the resulting coarse-grained equation.
With this form of Ey we have

A= voePES(0,_ 10, + €PN 10,,, + e PN, 6,

+e NG, 6,4,), (10)
where O,,,=1-60,,,, 6i.;=0(h..;—h;), and, for integer height
differences Ah=n,

1, ifn=0;
0(")={0, if n<0. ()

Equation (10) can be expressed more succinctly as
Aj=a’Dg1 - yo(A*h)][1 - y0(Ah)],  (12)
with DS=(12l voe PEs, A*h;=h,,,—h;, y=1-¢"PEN, and
O0(Ah) = max(allAh +1,0) - max(allAh,O), (13)

which generalizes the hopping rules of our model to continu-
ous heights.?’ Equations (2) and (3), with Egs. (8), (9), (12),
and (13) embody the statistical properties of the original lat-
tice model.?”

The lattice equations (2) and (3) can be converted into a
continuum stochastic equation by first regularizing the step
function in Eq. (13). An analytic representation is

-1

1 (a, An
a(m;;a):;fl

_A()+ B(5) Ah+ C((S)

a | al

{erf[(s + 1) 8] — erf(s &) }ds

— (AR -, (14)

where >0, erf(x) is the error function, and A, B, and C are
coefficients in the Taylor expansion of @ around Ah=0. We
have that limg .., 8(Ah; 8)=6(Ah) for all real Ah. The height
function A; is now replaced by an analytic function u(x,7)
such that

Jd'u

h(i £ k,7) = i ( )

o

(iaHk)”
n!

(15)

x=i

where ¢ is the lateral lattice spacing, and y is expanded
around [/, (AR)?,A’h]=(0,0,0):

R il )
tmn=o !!'m!n!t\a, / \a, a, ]’

(16)

Ah,(Ah)? A%h] =

Substitution of these expansions into Egs. (8) and (9) yields
a convergent series with successively higher spatial deriva-
tives of u. The value of §in Eq. (14) determines if the regu-
larized equation captures all of the properties of the lattice
model (large 6) or only coarse-grained features (small 8).%°
Here, we choose 6=<0.01 to obtain the leading-order equa-
tion
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TABLE 1. Coefficients in the 1D equation (17). For 6~ 0.01,
A~0.5, B~0.006, and C~-3x107".

2
qj

vy==—"Dg Ay 001 =AYo00)
a,

a
1
vy=- |2 D(1-Avyyop) 37000+6A7100+2A7001
1
e
ve=— A 5 Ds(1=AY000) (30B Yoo +A Y100+ 604 ¥01)
360a>
2
q
7\1=—_|305A[7200(1—A7000)—AY%00]
2aL
A=~ 124 3 Ds[6B% ¥+ (12C 000+ 12A y910+A ¥200)
X(1- AVOOO) -A 7200]
4
N3=- Ds[6B100(1~2AY500) + (124 ¥101+A ¥200)

12a ’
X(1- AVooo) =A% y100(12 %001+ ¥100)]

aH 2
D,= ;Ds(1 -A 7000)(1 —Avypo——A Yloou)
a

du Fu Fu FPu P { (r?u)
_2 )\ll/l +)\2
X ox

D St o i o
ar Zoxr ot wS g

Fu
+)\3u(92]+F+§ (17)

where F=a /7, is the average deposition rate and the
smoothed Gaussian noise & has zero mean and covariance

(§x, D", 7)) = Z(Do - _Dza_i) Sx—x")o(r=7), (18)

where Dy=a,a* /(27y) is due to deposition and the remaining
coefficients are compiled in Table I. The deterministic part of
Eq. (17) has the same form as that derived by Golovin et
al.'” from continuum elasticity for a rigid substrate. The de-
scription of detachment kinetics solely in terms of short-
range absolute height environments is also valid only where
deformation of the substrate is neglected, as was indeed the
case in Ref. 4. Morphological evolution on a deformable
substrate produces nonlocal terms,'®!® which reflect elastic
interactions mediated by the substrate.

The atomistic ancestry of the coefficients in Eq. (17) al-
lows us to relate this equation to specific materials and

(a) (b) (c) (d)

FIG. 1. For the indicated local configurations of the shaded par-
ticle, EE\?) <E(h 9 and E(a) >E( ) for Ex’o’o)(0,0,0) >0 and
E(OO D(020,0) <0.
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TABLE II. Coefficients in the 2D equation (19). The values of A, B, and C are as in Table 1.
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a
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4
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4
a 4

D,= ZDs(l —A%000)°| 1 =Ayo00— —A Y100t
ay

growth scenarios. For 7>0, we have 0<1yy,<l and,
hence, the sign of v, is determined by the sign of 1y
=[,BES’O’O)e‘BEN]hO’O’O). The key quantity is ES’O’O)(O,O,O),
which is the rate of change of Ey with the film height.
Golovin et al.'” considered situations where v,>0, which
corresponds to E(1 00)(0 0,0) <0. Alternatively, the calcula-
tions in Ref. 4 suggest E(1 0.0) (0 0,0)>0, i.e., »,<0. The
growth of 3D islands then results from the decreasing de-
tachment rate with increasing height, as shown in Figs. 1(a)
and 1(b). We focus on this case below.

The sign of wv, is determined by the sign of
Byooo+ ¢AY100+2AY001.  Choosing*  Ey(0,0,0)=0.3 eV,

EVY(0,0,0)~0.01-0.05 eV, and T=900 K, the above
quantity is positive for E(OO "1(0,0,0)=-0.03 eV, in which
case v4,<0 and the 51xth order term in Eq. (17) can be
omitted.2” A negative Eg\(,)’o’l)(0,0,0) implies that strain is re-
lieved more effectively by islands with larger numbers of
lateral edge atoms* [Fig. 1(c)], but local depressions are sup-
pressed [Fig. 1(d)]. For E;S’O’l)(O,O,O)S—O.% eV, we find
v, >0, which necessitates the inclusion of the sixth-order
derivative, for which v4>0, for stability.

Our procedure can be applied to obtain the equation for
morphological evolution during heteroepitaxial growth on a
two-dimensional (2D) substrate, with the result

o= Vz((?iu + &iu) + V4(<9iu + &iu) + v[@%&iu + V6((9)6Cu + (?‘614)
+ VR(Ai T+ Fodu) + TN + Natdy + Ny + Nyt
+ Njuuy,) + (95()\1u2 + )\2”5 + Nl + N3ttty + N3uidy,)
+F+E¢, (19)

where d,= du/dx=u,, with a similar notation for other de-
rivatives, F=a, /7, and the smoothed Gaussian noise
&(x,y,7) has zero mean and covariance analogous to Eg.
(18). This equation contains the same types of terms as Eq.
(17), but in a form that respects the fourfold symmetry of the

lattice. The coefficients are compiled in Table II. As for a 1D
substrate, 1,<0 if E|"”(0,0,00>0. For E\""(0,0,0)

=-0.02 eV the linearized 2D equation is stabilized by nega-
tive v, and v}, and the sixth-order terms can be omitted.?’
But, for E(oo ])(O 0,0)<-0.02 eV, vs and v, must be in-
cluded for stablhty

In Fig. 2 we show morphologies and associated two-point
correlation functions,

12
G(x,7) = { j[u(x+x 7) —u(x’, T)]zdx} , (20)

where x=(x,y) and Naj is the area of an La, X La, lattice, at
0.5 monolayers (ML) during growth at 0.1 ML/s obtained
by integrating the linearized 2D equation (19) with periodic
boundary conditions and only deposition noise. We use pa-
rameters consistent with the simulations in Ref. 4, which
leads to a fourth-order equation. At T=650 K [Figs. 2(a) and
2(c)], there is scant evidence of structure. But the morphol-
ogy at T=750 K [Figs. 2(b) and 2(d)], which corresponds to
the simulated temperature in Ref. 4, clearly shows the devel-
opment of locally ordered (i.e., self-organized) 3D islands.
The most striking aspect of Fig. 2(b) is its similarity to the
KMC simulations in Fig. 3 of Ref. 4 in terms of the size of
the 3D islands, their density, and the time scale of their for-
mation.

The trends in Fig. 2 can be further extended by solving, at
least formally, the linearized versions of Egs. (17) and (19)
using Fourier transforms. Introducing the spatial transform

u(x,7) =f

with an analogous expression for &(k, 7), and neglecting the
difference between v, and v[l, the solution to the linearized
fourth-order equation with u(k,0)=0 can be written as

e*u(k, 1), (1)

2m)*
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u(k,7) = f [elP2lR=Ilk) 9 £k _g)]dis, (22)
0

where the Gaussian noise & has zero mean and covariance

(€, DEK', 7)) = 22m) (Do + Dok?) Sk + k') 87— 7'),
(23)

in which D, is taken to be a constant and d is the substrate
dimension. For k> (D,/D,)">=k, diffusion noise domi-
nates over deposition noise. On the other hand, the determin-
istic terms in Eq. (22) imply a critical wave number k.
=(v,/v4)""?, below which all modes are unstable. Thus, if
k.>kp, fluctuations due to deposition and diffusion “feed
into” unstable modes, so the self-organization process is en-
hanced by diffusion noise. For the coefficients in Table II,
diffusion fluctuations excite only a relatively narrow band of
unstable modes at 7=650 K, but at 7=750 K this effect is
dominant for L=<200a,. However, since Ey increases with
height, D, decreases accordingly, so kj increases with
height. Thus, for large enough terrace heights, diffusion
noise only minimally perturbs the unstable modes, even for
T=750 K, which supports the stabilization of island heights.
In summary, we have derived a stochastic differential
equation for the morphological evolution of strained het-
eroepitaxial films from an atomistic model. The deterministic
terms are the same as those obtained by Golovin et al.'” from
continuum elasticity. Two crucial differences from this ear-
lier work are the presence of noise due to deposition and
diffusion and the relation of the coefficients to the original
atomistic processes. Since the parametrization of such atom-
istic processes is becoming available through density func-
tional calculations,?®3° our methodology offers the promise
of a genuine multiscale atoms-to-continuum description of
the morphological evolution of heteroepitaxial thin films.
We are grateful to P. W. Voorhees for a very stimulating
correspondence and to the Institute for Pure and Applied
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FIG. 2. Heights u (a),(b) and two-point correlation functions G
(¢),(d) obtained from the linearized fourth-order equation (19) at 0.5
ML for a system of size 60a;X 60q; at T=650 K (a),(c) and T
=750 K (b),(d) with E¢=13¢eV, EN(0,0,0)=0.3 eV,
ES*0,0,0)=0.01 eV, and EV*"(0,0,0)=—0.004 eV. The
ranges of u and G, in units of a |, are (a) -0.6<u<1.5, (b) -0.3
<u<1.5,(c) 0=G=<04, and (d) 0=G=<0.5.
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