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Abstract

We study the problem of parameter estimation for time-sep@ssessing two,
widely separated, characteristic time scales. The aim imtierstand situations
where it is desirable to fit a homogenized singlescale mamauth multiscale
data. We demonstrate, numerically and analytically, thifte data is sampled too
finely then the parameter fit will fail, in that the correct pareters in the homog-
enized model are not identified. We also show, numericalty amalytically, that
if the data is subsampled at an appropriate rate then it isilplesto estimate the
coefficients of the homogenized model correctly.

Keywords: Parameter estimation, multiscale diffusions, stochatfifferential equa-
tions, homogenization, maximum likelihood, subsampling.

1 Introduction

Parameter estimation for continuous time stochastic nsodedn increasingly impor-
tant part of the overall modelling strategy in a wide variefyapplications. It is quite
often the case that the data to be fitted to a diffusion probassa multiscale char-
acter. One example is the field of molecular dynamics, whieie desirable to find
effective models for low dimensional phenomena (such asotorational dynamics,
vacancy diffusion and so forth) which are embedded withghkr dimensional time-
series. Another example is the ocean—atmosphere scierfta® Wt is desirable to
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find effective models for large—scale structures, whilgtresenting the small-scales
stochastically. The multiscale structure of the data is¢hgroblems renders the prob-
lem of parameter estimation very subtle, and great care & ttaken in order to
estimate the coefficients correctly. The aim of the papey ghied light on this estima-
tion problem through the study of a simple class of model [enwis, typical of those
arising in molecular dynamics.

In econometrics and finance, the problem of estimating patars for continuous
time diffusion processes in the presence of small scaleufdicins (market microstruc-
ture noise) has been considered by Ait-Sahalia and cofiadrs [1, 2] and more re-
cently in [3]. Inthat work the microscale is input as an indiegent white observational
noise that is superimposed on—top of a singlescale diffusiocess. We have a some-
what different framework: we work in the context of couplegtems of diffusions
exhibiting multiple scales. Our aim is to fit a singlescaleniogenized diffusion to
data. Models similar to the ones considered in this papez haen studied extensively
in finance, see [12] and the reference therein. In that bosdetis discussion of param-
eter estimation for multiscale diffusions, with emphasidive estimation of the rate of
mean reversion of volatility from historical asset pricéadaee [12, Ch. 4].

Various numerical algorithms for diffusions with multipbeales have been devel-
oped [24] and analyzed [10]. Those papers are finely honegtimize the fitting of
the homogenized diffusion in situations where the multescaodel is known explic-
itly. In contrast, in this paper we introduce multiscalefui$ions primarily as a device
to generate multiscale data; we do not assume that the mal#immodel is available to
us when doing parameter estimation. This enables us to gaiarstanding of param-
eter estimation in situations where the multiscale datévisrgto us from experiments,
or comes from a model where the scale—separation is notogxplivo recent papers
contain numerical experiments relating to the extractibaveraged or homogenized
diffusions from data generated by a multiscale diffusia® [, 9].

Despite differences from the framework used in [1, 2, 3] talgtproblems arising
in econometrics and finance, similarities with our work reamé#&ying to fit the models
on the basis of data sampled at too high a frequency leadsaor@ct parameter infer-
ence; furthermore, there is an optimal subsampling ratéhferdata to obtain correct
inference.

There are two forms of multiscale diffusions which are oftganlar interest in the
context of parameter estimation. The first gives risaveraging for SDEs, and the
second tdhomogenizationfor SDEs. For averaging one has, fo 1,

() = S0,y () e+ ol (0), y°(0) dU D), (112)
W) = olat (0.5 W) di+ =Bt (1) W) V). (L.1b)

with U, V standard Brownian motions. Averagirfgandaa” over the invariant mea-
sure of they© equation, withz¢ viewed as fixed, gives an averaged SDE:fofl he fast
procesgy, with timescale, is eliminated. For homogenization one has

dr (1) = (— 2@ (1), (1) + e <>,y‘<t>>)dt
T a( (1), v (1) dU ), (L.2a)
S0 (0,97 (0) dt + 250,y () AV (), (L2b)
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where it is assumed thgt averages to zero against the invariant measure of the fast

procesg;© with € fixed. Nowy* has time-scale? and is eliminated. The fluctuations
in fo, suitably amplified bye~!, induceO(1) effects in the homogenized equation



for z¢. In both cases (1.1) and (1.2) it is possible to show [5] thatgrocess:€(t)
converges in law, as— 0, to the solution of an effective SDE of the form

do(t) = F(a(t))dt + A(z(t))dU(t). (1.3)

Explicit formulae can be derived for the effective coeffiti®F'(z) and A(x) in the
above equation [5, 22]. A natural question that arises thdmow to fit an SDE of the
form (1.3) to data generated by a multiscale stochasticteauaf the form (1.1) or
(1.2), under the assumption of scale separation, i.e. whenl. This paper is a first
attempt towards the study of this interesting problem, fgpacific class of SDEs of
the form (1.2).

Our basic model will be the first order Langevin equation

dz(t) = —=VV <xf(t), xT(t) a) dt +V20dp(t), (1.4)

wheref(t) denotes standard Brownian motion&fi ando is a positive constant. The
two—scale potentidl© (z, y; «) is assumed to consist of a large—scale and a fluctuating

part
V(z,y;a) = aV(z) + p(y). (1.5)

As we show explicitly in (5.4) this set-up puts us in the fravoek of homogenization
for SDEs.
Under (1.5), the SDE (1.4) becomes

Az (t) = —aVV (z(t)) dt — 2Vp (“—(’5)> it + V3o dat).  (1.6)

€ €

If p is periodic onT? and sufficiently smooth, then it is well known (see [5, 21] for
example) that, as — 0, the solutionz¢(¢) of (1.4) converges in law to the solution of

the SDE
dx(t) = —aKVV(x(t))dt + V20 Kdp(t), (1.7)
with
K= [ 04 9,000) (I +9,60)" nldy) 1.8
Td
and )
uldy) = ply)dy = e/ dy, 7 = / e P/ dy, (1.9)
Td
The field¢(y) is the solution of the Poisson equation
—Lod(y) = =Vyp(y), Lo:=—-Vyp(y) Vy+0oAy, (1.10)

with periodic boundary conditions. The functip(y) spans the null-space df;, the
L?—adjoint of £y. The effective diffusion tensor is positive definite and difusivity

is always depleted [20]. Physically this occurs becausédmeogenized process must
represent the cost of traversing the many small energydvarpresent in the original
multiscale problem but which are not explicitly capturedhie homogenized potential.

In Figure 1 we plot the potentidl<(z, x/¢), as well as the average potentia(x),
illustrating this phenomenon. In fact, the effective déffiity > = oK decays expo-
nentially fast inc aso — 0. See [7] and the references therein. Thus the original and
homogenized diffusivities are exponentially differensatall temperatures.
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Figure 1:V¢(z,z/e) = 2% + sin (Z) with ¢ = 0.1 and averaged potenti®l(z) =
1,.2 )

To illustrate these facts explicitly, consider the problienone dimensiond = 1.
In this case the limiting equation takes the form

dz(t) = —AV'(x(t))dt + V22d3(1). (1.11)
The effective coefficients are
2 2
A= g and ¥ = i, (1.12)
zZ7Z zZ7Z
where
. L L
7= / ePW/ody 7 = / e PW/7 qy. (1.13)
0 0

Notice thatZL? < ZZ by the Cauchy—Schwarz inequality. This explicitly showatth
the homogenized equation in one dimension comprises mistithre average potential
V(x), at a new slower time—scale contractedAjv.

The main results of the paper can be summarized as followsurs that we are
given a pati{z“(t) };<[0,7) of equation (1.6) and that we want to fit an SDE of the form

(1.11) to the given data, estimating the parameters asﬁ, S Then the following is
a loose statement of our main results; these will be fornedligtrecisely, and proved,
below.

Theorem 1.1. If we do not subsample, then the estimatdrands: are asymptotically
biased — they converge ta o.



Theorem 1.2. If the sampling rate is between the two characteristic ticades of the
SDE(1.4)then the estimatord and>: are asymptotically unbiased — they converge to

)

The rest of the paper is organized as follows. In section 2nesgnt the estimators
that we will use. In section 3 we present various numericakexnents illustrating
the behaviour of these estimators. In section 4 we state #ie rasults of this paper,
explaining the numerical experiments from the previougieac Section 5 contains
some preliminary results that will be useful in the sequedct®n 6 contains proof
of two central propositions concerning the behaviour ofrthétiscale diffusion when
observed on time—scales long compared with the fast tinsdesof process, but small
compared with the slow time—scales of the process. Sectist@voted to the proofs
of our theorems. Finally, section 8 is devoted to some catiefuremarks.

In the sequel we usé, -) to denote the standard inner—product®f and | - |
the induced Euclidean norm. Throughout the paper we makéottosving standing
assumptions on the drift vector fields:

Assumptions 1.3. The potentialp and V' satisfy:
* p(y) € Cpe, (TY,RY);

per

e V(z) € C®(R%,R);

o |VV(z1) — VV ()| < L|wy — 22| V1,29 € RY
e 3a,b>0: (-VV(z),x) <a—blz|? VreR%

e ¢ V@ ¢ LY(RY RY).

The third assumption will be used primarily to deduce thgtchoice of origin for
V!
|VV(z)| < L|x|. (1.14)

This assumption could be relaxed and replaced by a polyrd@raavth bound; how-
ever this complicates the analysis without adding new hisi§imilarly it is not nec-
essary, of course, th&t andp areC°. The fourth condition, however, is essential: it
drives the ergodicity of the process which we use in a funddaievay in the analysis
of the drift parameter estimators; it would not, howeverfloedamental for estimation
of diffusion coefficients alone. The fourth condition ingsithe fifth, which is simply
the requirement that the invariant measure is indeed a piliyaneasure; we state the
two conditions separately for clarity of exposition.

2 The Estimators

In this section we describe various estimators for the patars arising in equation
(1.7). We assume that we are given a pata {x(t)},c[o,r), Ofr samples from such a

path,z = {z,,}_,, with z,, = z(nd). For simplicity we aim to fit the equation in the

form
dz(t) = —AVV (x(t))dt + V25dB(t), (2.1)

whereA andX are scalars. In one dimension this reduces to the form (1Ndte that
in general this is only the correct form for the homogenizedation in one dimension
since, typically, the average potential has a matrix asafpotor, as in (1.7). However
it suffices to exemplify the main ideas in this work, and sirfigs the presentation.



The standard way to estimate the diffusion coefficient ighéaquadratic variation

of the path:
N-1

& 1
Ens(z) = INod Z |[Tng1 — . (2.2)
n=0

A key issue in this paper is to understand how to chdoase a function ot to ensure
that data generated by (1.4) can be effectively fit to obtaendorrect homogenized
diffusivity in equations such as (2.1).

The standard way to estimate drift coefficients is via thénystace likelihood of
(2.1) with respect to a pure diffusion with no drift, nametgé, for example, [4, 17])

L(z) x exp{—I(z)/2%}
where .
I(x) = /0 {|AVV (z(t))Pdt + 2A(VV (2(t)), dz(t)) } .

Maximizing the log-likelihood then gives the estimatef A given by

Ae) = o [TV E0).dx(0)
Jo [VV(2(t)|" dt

(2.3)

If the data is given in discrete but finely spaced incremergtsften happens in practice,
then this estimator can be approximated to yield

qu\,[:_ol<vv(xn)a (xn+1 - xn»
Yoo [VV(an)* 6

Ansle) = - (2.4)

A key issue in this paper is to understand how to chbas a function ot to ensure
that data generated by (1.4) can be effectively fit to obtaéendorrect homogenized
drift coefficients in equations such as (2.1), via the ediimg2.4).

The gradient structure of the SDE (2.1) can be used to obtsécand estimator for
the drift coefficients. This second estimator, which we nenng, is of interest for two
different reasons: firstly it may be useful in practice as &ynead to smaller variance
in estimators; secondly it highlights the fact that workimg how to sample the data
to obtain the correct estimation of the diffusion coeffitiatone will lead to correct
estimation of the drift parameters, at least for the claggradlient—structure SDEs that

we consider in this paper. The second estimator requireBthe of an estimatol:
for the diffusion coefficient and is

()= $ L [T AV (2(t)) dt
A = T OV ot @9

Approximating to allow for the input of discrete—time dafaes

i o S AV ()0
Al = e oV (e o (2.6)

The following result shows that(z) is a natural approximation td ().



Proposition 2.1. Letz = {a(t)}1cpo.r) Satisfy(2.1). If £ = ¥ then the estimatod (z)
is asymptotically equivalent to the maximum likelinoodhestor A:

lim A(z) = A\(x), a.s.

T—o0
Proof. We apply the 1td formula td/(x(¢)) for z(¢) solving (2.1) and use formula
(2.3) to obtain
V(2(0)) — V(x(T)) + = [ AV (x(t)) dt
SV ()2 dt

(V(a(0) = V(D) | +5Jy AV((t)dt

SV ()2 dt LV (@) dt
7(V(2(0) = V((T))

I

Alx) =

Under the Assumptions 1.3 it follows from [18] that

7 (V(@(0) = V((T)
T=0  [FIVV(x(t))]? dt

)

The result follows. O

3 Numerical Results

In all cases we solve the multiscale SDE (1.4) using the EMarayama scheme [16]
for a single realization of the noise, with a time—stipsufficiently small so that the
error due to the discretization is negligible; this reqgsithat the time—step is small
compared withe?, the fastest scale in the problem. We also employ a suffigidorig
time interval so that the invariant measure is well samphedhie single path. Since
the convergence to the invariant measure is uniform i 0, this is not prohibitive.
We then use the data generated from the multiscale procespugo the estimators
for the homogenized diffusion (1.7). We present numerieallts for three model
problems: a one dimensional monomial potential of evenekega one dimensional
bistable potential and a two dimensional quadratic paaéntin all three cases we
perturb the large—scale part of the potentiaby small-scale fast oscillations, usually
in the form of a cosine potential

We present two types of numerical results. Note thahe time interval between
two consecutive observations, is the inverse sampling hatbe first we usé = At as
the time interval between two consecutive observationisarestimators. In the second
we subsample the data, usifig- At and study how the estimated coefficients behave
as a function of the subsampling. We use the data generatecbiur simulation in the
estimators (2.4) and (2.6) to estimate the drift coefficemd in (2.2) to estimate the
diffusion coefficient of (1.11). For the most part we work imeodimension and fit a sin-
gle drift and diffusion parameter so that (1.7) becomesl(ll.%hen we work in more
than one dimension, or estimate more than just a singleatrdiffusion parameter, we
use natural generalizations of the estimators defined iptégous section.

Let us summarize the main conclusions that can be drawn fnenmtimerical ex-
periments; recall thannt < 2. First, if we chooseS = At, that is, if we don’t
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Figure 2: Estimation of the drift and diffusion coefficiemse for the potential (3.1).
Solid line: estimated coefficient. Dashed line: homogeahizeefficient. Dotted line:
unhomogenized coefficient.

subsample, then the resulting estimators do not generatedirect estimates of the
homogenized coefficients. If, on the other hand, we subsamiph ¢> < § < O(1),
then the estimators generate the values of the parametirs bbmogenized equation.
Furthermore, there is an optimal sampling rate: there &xigt which minimizes the
distance between the homogenized value of the parameteéhan@lue generated by
the estimator. The optimal sampling rate depends sengitires. It is also of inter-
est that, in higher dimensions, the optimal sampling ratetmadifferent for different
parameters.

The above observations appear to hold independently ofe¢tedleld form of the
large—scale part of the potentitl (provided, of course, that it satisfies appropriate
convexity conditions). In addition, the performance of #simators seems to be the
same irrespective of the dimension of the problem.

Another interesting observation is that the second estinfat the drift coefficient
(2.6) performs at least as well as the maximum likelihoodrestbr (2.4), and in some
instances outperformasiit.

3.1 Failure Without Subsampling

In this section we study the estimatotsndS when the data is given from the solution
of equation (1.6) with < 1 and At = ¢ — no subsampling is used. We use the
potential

V(z) = -ax? (3.1)
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Figure 3: Estimation of the drift and diffusion coefficiemso for the potential (3.1)
with e = 0.1. Solid line: estimated coefficient. Dashed line: homogeizoefficient.
Dotted line: unhomogenized coefficient.

The small-scale part of the potential is

p(y) = cos(y). (3.2)

In Figure 2 we plot the estimators andX: for various values of. For comparison we
also plot the homogenized coefficietsandy and the unhomogenized coefficients
ando. We observe that the estimators always give us the coefficieando of the
original SDE (1.6). In particular, the performance of théraators does notimprove as
e — 0. In Figure 3 we plot the estimators for various values of tifieision coefficient
o. We notice that the estimators give the values of the coeffisih and o, for all
values ofs. Since the homogenized coefficients deca§ éxponentially fast inr, the
results of Figure 3 indicate that the estimators give exptaky wrong results when
o< 1.

These results indicate the need to subsample — i.e. to clioageropriately as a
function ofe.

3.2 Success With Subsampling

Now, rather than using all the data that were generated frarstlution of equation
(1.4) we use only a fraction of them. We choasim the estimators (2.2), (2.4) and
(2.6) as follows:

AtsanL == 2kAt, k= 07 17 2, ey

and we study the performance of the estimators as a functitrecampling rate. We
investigate this issue for three different model problems.
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Figure 4: Estimation of the drift and diffusion coefficiemsAt,,., for the potential
(3.1) withe = 0.1. Solid line: estimated coefficient. Dashed line: homogediz
coefficient. Dotted line: unhomogenized coefficient.

3.2.1 OU Processesin 1D

We study the problem in one dimension with the large—scalegbshe potential given
by (3.1) and with the fluctuating part being the cosine paai(8.2). The two esti-

matorsA and A for the drift coefficient produce almost identical resultslave only

present results for the maximum likelihood estimatbr In Figure 4 we present the
estimated values of the drift and diffusion coefficients &setion of the inverse sam-
pling rateé = Atgem Whene = 0.1, a = 1.0, 0 = 0.5. We observe that, provided
that we subsample at an appropriate rate, we are able toagstthre parameters of the
homogenized equation correctly. Notice also that the edtns for the drift and the
diffusion coefficient show very similar dependence on the@ing rate. This is in
accordance with our theoretical results; see Theorem 4.5.

In Figure 5 we plot as a function of the sampling rate for two different values of
We observe that the estimator of the diffusion coefficieatiecreasing function of the
sampling rate, as expected. In addition to this, there isledeéned optimal sampling
rate, which depends sensitively enin particular the optimal is a decreasing function
of 0. This is to be expected, since whemns 1 the process:(¢) loses its multiscale
character and becomes effectively a standard BrownianomotConsequently, when
o is sufficiently large, the optimal becomesAt, the integration time step. Notice

furthermore that the slope of theé — ¢ curve depends os.

In Figure 6 we plot the estimators of the drift and diffusiaetficients versus,
for three different sampling rates. For comparison we alsbthe homogenized coef-
ficients. We observe that all three sampling rates lead ®ombly accurate estimates
for A andX, whene is not too small. On the other hand, the estimators becorse les

10
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Figure 5: Estimation of the diffusion coefficient ¥& .., for the potential (3.1) with
e = 0.1, for two different values of. Solid line: estimated coefficient. Dashed line:
homogenized coefficient. Dotted line: unhomogenized auefit.

accurate as — 0. This is also to be expected: whenk 1, the accurate simulation
of (1.4) requires a very small time step; moreover, the dquodtas to be solved over
a very long time interval in order for the invariant measufeh® process to be well
represented. Hence, our hypothesis that the errors dusdeetization and finite time
of integration are small, is not valid. In addition, @a¢ends ta0, the optimal sampling
rate increases, and becomes much larger than the coarsglirggnate that we use in
the simulations.

In Figure 7 we plot the estimators versydor three different values of the sam-
pling rate. As expected, the deviation of the estimatedesbf the drift and diffusion
coefficients from the homogenized values is an increasingtion ofe. On the other
hand, the optimal sampling rate does not appear to depesdigely one: it is always
the same sampling rate that minimizes the distance betWmeestimated coefficient
and the homogenized one, for all values of

3.2.2 A Bistable Potential
We consider equation (1.4) in one dimension with a mean piatexi the bistable form

1 1
Viz;a,8) = —§oza:2 + Zﬁx4. (3.3)
The fluctuating part of the potential is given by (3.2). Thertugenized equation is

dX (t) = (AX(t) — BX()®)dt + V2Zdp(t), (3.4)

11
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Figure 6: Estimation of the drift and diffusion coefficierg & for the potential (3.1)
with ¢ = 0.1, « = 1.0, for three different sampling rates. Solid liné\ts,,, =
0.128. Dash—dotted lineAt,,,, = 0.256. Dotted line:At,.., = 0.512. Dashed line:
homogenized coefficient.

where the homogenized coefficients are given by

472
A=aK, B=pK, Y=0K, K-=—,
Z7

whereZ andZ are given by (1.13) witli, = 27 andp(y) = cos(y). We will estimate
the diffusion coefficient using formula (2.2) with= 1. For the two parameters of the

drift we use generalizations of the maximum likelihood restior A.

In Figures 8 and 9 we present the estimators for the two dvétficients versus the
sampling rate, for two different values ef We observe that the performance of the
estimators is qualitatively similar to the OU case. Notilsodhat the optimal sampling
rate is approximately the same for both coefficients.

In Figure 10 we plot the estimator for the diffusion coeffitigersus the sampling
rate, for two different values af. The conclusions reached from the numerical study

of & for the one dimensional OU process carry almost verbatirhitodase.

3.2.3 A Quadratic Potential in 2D
We Consider now (1.4) in two dimensions with a separablegfatntialp(y):

€ €

da(t) = —VV(2(t), B) dt — %vp1 (@) L. (lQ—“)> dt + V20 dB(1),
3

12
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Figure 7: Estimation of the drift and diffusion coefficierd & for the potential (3.1)
with o = 1.0, 0 = 0.5, for three different sampling rates. Solid linét,,., =
0.128. Dash—dotted lineAt,,,, = 0.256. Dotted line:At4.., = 0.512. Dashed line:
homogenized coefficient.

whereB is the set of the drift parameters that we wish to estimate idmogenized
equation reads

dX(t) = —KVV(X(t), B)dt + V2o K dj(t), (3.6)
where )
L_ 0
K = < Z1OZ1 L ) (37)
ZoZo
and

L Pi(yi) L Pi(yi)
_pi(y; ~ i (Yq .
Zz' Z/ € a dyi, Zz' Z/ e < dyi, 1= 1,2.
0 0

In the abovel denotes the period of(y).
We will consider the case of a general quadratic potentiaskmdimensions:

V(z,B) = %xTBx, (3.8)

with B symmetric positive-definite. For the fluctuations we wilkeus simple two—
dimensional extension of the cosine potential (3.2):

pi(n) = cos(yn), pa(y2) = 5 cos(ys)

13
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Figure 8: Estimation of the parameters of the bistable pgak(8.3) as a function of
the sampling rate fos = 0.5, ¢ = 0.1. Solid line: estimated coefficient. Dashed line:
homogenized coefficient. Dotted line: unhomogenized auefit.

Our goal is to estimate the diffusion tensor and the driftffiicients. We will estimate
the diffusion tensor through the quadratic variation:

N—1
S (o(t)) = ez 3 (st — ) © (i1 — ), 3.9)
n=0

where® stands for the tensor product. For simplicity we will assutrag the diffusion
tensor in our model is diagonal. This is consistent with thenbgenized diffusion
tensor, see eq. (3.7). We will use generalizations of theimiax likelihood estimator

A in order to estimate the parameters of the quadratic patenti

In Figure 11 we present the estimated values of the two nao-emmponents of
the diffusion tensor versus the sampling fat&he performance of the estimator for
the diffusion tensor is, qualitatively at least, similarite performance in the one di-
mensional problems considered in the previous two sulmsetNotice, however, that
the optimal sampling rate is quite different for the two npare components of the
diffusion tensor.

In Figure 12 we present the estimated values of the four daéfficients. The
results are in accordance with the one dimensional theargldped in this paper, as
well as with the numerical experiments shown in one dimensWe remark that the
estimators capture successfully the fact that the homagdmnatrix3 is not symmet-
ric. Notice furthermore that, as for the diffusion matriketoptimal sampling rate is
different for different components of the matrix

1The estimated value of the off-diagonal elements is alradsr all values of the sampling rate, in
accordance with the theoretical result (3.7).

14
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Figure 9: Estimation of the parameters of the bistable pga@k(8.3) as a function of
the sampling rate fos = 0.7, ¢ = 0.1. Solid line: estimated coefficient. Dashed line:
homogenized coefficient. Dotted line: unhomogenized auefit.

Thus, in this simple two dimensional multiscale model, th&rmal sampling rate
is different in different directions. This suggests thateme care has to be taken when
estimating parameters for multidimensional, multiscaédekastic processes.

3.3 The Second Estimator for the Drift Coefficient

In this section we compare between the performances of tbheestimators for the
drift coefficient, namelyA and A given by equations (2.4) and (2.6) respectively. We
estimate the drift parameter of (1.4) in one dimension fouartjc and a sixth—degree
large—scale potentidl (x):

V(z) = iax‘l (3.10)
and .
V(z) = Eaxﬁ. (3.11)

In both cases the small scale fluctuations are representdtelyosine potential (3.2)
In Figure 13 we present the estimated values of the driftfaeft as a function of
the sampling rate for two differemt for the quartic potential (3.10). We also plot the
effective and the unhomogenized values of the drift coeffici Similar results for the
sixth—degree potential (3.11) are presented in Figurerioth cases we observe that

the alternative estimatod performs better thaal in this situation where the data is
subsampled.
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0.8

o7b

Figure 10: Estimation of the diffusion coefficient for thestaible potential (3.3) as a
function of the sampling rate fax = 1.0, § = 2.0, ¢ = 0.1. Solid line: estimated
coefficient. Dashed line: homogenized coefficient. Dotiee: lunhomogenized coef-
ficient.

4 Statement of Main Results

In this section we pesent theorems which substantiate theerical observations in
the preceeding section. The first result shows that, witeobsampling, the parameter
estimators for the homogenized model will be asymptotydaihsed: they recover the
parameters from the unhomogenized equations.

Theorem 4.1. Let z¢(¢) be the solution of(1.6) with z<(0) distributed according to
the invariant measure of the process. Then the estim@t8) satisfies

lim lim A\(xﬁ) =a as. 4.1)

e—0T—oco

Fix T'= N§ in (2.2). Then for every > 0 we have

lim §N75(x6) =0 as. (4.2)

N—o0

Now consider the one dimensional problem
€

dze(t) = —a V' (z5(t))dt — %p' (x—(t)) dt +V20dp(t). (4.3)

The next two results show that, with appropriate subsargplime estimators re-
cover the correct drift and diffusion coefficients for thenimagenized model (1.11)
when taking data from the unhomogenized equation (4.3).

16
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a. ill b. i\322

Figure 11: Estimation of the non—zero elements of the diffugensor for the 2d
quadratic potential (3.8) as a function of the sampling fateB3,; = B2 = Bo1 =

2, Bas =3, 0 = 0.5, ¢ = 0.1. Solid line: estimated coefficient. Dashed line: homog-
enized coefficient. Dotted line: unhomogenized coefficient

Theorem 4.2. Letz<(t) be the solution of4.3)with 2:¢(0) distributed according to the

invariant measure of the process. Further,det €*, o € (0,1) andN = [e7], v >
a, where[-] denotes the integer part of a number. Then

lim Ans(z)=A inlaw, (4.4)

whereA is given by(1.12)

Theorem 4.3. Let 2¢(¢) be the solution 0f(4.3) with x¢(0) distributed according to

the invariant measure of the process. Fix= N with§ = ¢* anda € (0,1). Then
lim Sns(zf) =% inlaw, (4.5)

whereX is given by(1.12)

Remark 4.4. The two previous results requirgd — 0 ase — 0. In view of the fact
that the fast time—scale (<) (see equatiori5.4b) we might expect that this could
relaxed toe?/§ — 0 ase — 0. However we have not been able to prove this. See
Remark 5.8 for further discussion of this point.

The final result concerns the second drift estimator andnagaincerns input of
data from the unhomogenized equation (4.3) into the paragst@mator for the ho-
mogenized equation (1.11). It requires an estimate of tfiesitbn coefficient,X. If

17
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Figure 12: Estimation of the parameters of the 2d quadratiential (3.8) as a function
of the sampling rate fos = 0.5, ¢ = 0.1. Solid line: estimated coefficient. Dashed
line: homogenized coefficient. Dotted line: unhomogenizaefficient.
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L e T 1,

Figure 13: Estimation of the drift coefficients for the quagotential (3.10) as a func-
tion of the sampling rate for = 0.1. Solid line: A. Dash-dot line:A. Dashed line:
homogenized coefficient. Dotted line: unhomogenized agefft .

S} = o, then we estimate the drift coefficient incorrectly widliz<); on the other hand,

if 3 = ¥, then the estimatod (z€) gives the drift of the homogenized equation. (To see
the last result recall thal /¥ = «/0, see (1.12)). Consequently, for multiscale gra-
dient systems, it is sufficient only to subsample in a fashibich leads to the correct
diffusion coefficient. This offers a clear computationavadtage.

Theorem 4.5. Let 2¢(¢) be the solution 0f(4.3) with x¢(0) distributed according to
the invariant measure of the process. Assume that the idiffie®efficient has been

estimated to b&. Then

~

~ x
lim lim A(zf) = —a a.s..

e—0T—o00 o

5 Preliminary Results

In this section we collect various results that will be usedhe proof of our main
theorems. We start by investigating some of the properfiéssoinvariant measures of
the unhomogenized and of the homogenized equation. We tivediice some tools
useful in the study of homogenization for SDEs.

Proposition 5.1. The invariant measure of the homogenized equdtiof)is the Gibbs
measure

1
wu(dz) = p(x)dx = Ee*av(w)/" de, 7= / e~ V@I gy, (5.1)
Rd
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Figure 14: Estimation of the drift coefficients for the sixttegree potential (3.11) as a
function of the sampling rate far= 0.1. Solid line: A. Dash-dotted lineA. Dashed
line: homogenized coefficient. Dotted line: unhomogenizeefficient .

The Markov process(t) given by(1.7)is geometrically ergodic: there ar€, A > 0
such that, for every measurabf¢z) satisfying

lf@)] <1+ |z,

for some integep > 0, we have, fou— a.e. X (0),

Efa(t) - [ sapto)ds

< C(l + |x(0)p|)e_>"“7

whereE denotes expectation with respect to Wiener measure.

Proof. Assumptions 1.3, together with the formulae for the effextrift and the ef-
fective diffusion coefficient, equation (1.8), imply thaetsolutionz(¢) of the homog-
enized equation (1.7) has a unique invariant measure witomdensity. The Gibbs
measure (5.1) satisfies

aVVp+oVp =0

and hence
K(aVVp + UVp) —0.

BecauseX is constant we deduce that

aKVVp+V. (O’Kp) =0.
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Thus
V- (aKVVp+ V- (oKp)) =0.
This is the stationary Fokker-Planck equation for (1.7vgihg that the Gibbs measure
p is indeed an invariant measure. For the geometric erggdigtuse [19, Thm 5.3].
O

Proposition 5.2. The invariant measure of the unhomogenized equdtid®) is the
Gibbs measure

uf(dz) = p(z) dx = %efgv(w)fip(f), Z = / e e V@) —5r(2) g (5.2)
Rd

For everye > 0 the Markov procesgl.6)is geometrically ergodic: there at€, A > 0
such that, for every measurabféz) satisfying

|f(@)] <1+ [af?,
for some integep > 0 we have, fopc—a.e.z<(0),

B 0) - [ S o) ] < 00+ ),
R
whereE denotes expectation with respect to Wiener measure.

Furthermore, the measurg® converges weakly to the invariant measure of the
homogenized dynamigsgiven by(5.1).

Proof. Assumptions 1.3 imply that(¢) is an ergodic Markov process. Direct calcu-
lation with the Fokker—Planck equation shows that the umiquariant measure of the
process is the Gibbs measure

1 o
AT S
1 _a o
= ?6_;V(x)_%p(:)daj,

with Z¢ given by (5.2). For the geometric ergodicity we use [19, ThB].5
Now let
u(z,y) = e 5V @z

Sinceu(z,y) € LY(RY; Cpe,-(T?)), by [8, Lem. 9.1] we have that

u(-,;) —\/ u(-,y)dy, weaklyinL'(RY).
€ Td

In particular, sincd € L>(R%),

1imZ€=/ / em e V@ —or) gy
e—0 Re JTd

We combine the above two results to conclude that
1 o .
pS(x) — Ee—:V(-“, weakly in L' (R%), (5.3)

whereZ is given by (5.1). The weak convergence of the densities!ifR?) implies
the weak convergence of the corresponding probability nmegs O
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Remark 5.3. The assumption of stationarity of the procesét) is not necessary for
the proof of the above theorems and is only made for simpliditdeed, in the next
section we prove that®(¢) is geometrically ergodic and consequently it converges to
its invariant distribution exponentially fast for arbitr initial conditions. Further-
more, the fact that the invariant measure of the procegs) converges weakly, as

e — 0, to the invariant measure of the homogenized process isrianpiofor us as
many of our results will be deduced by taking expectatiotts spect to the invariant
measureu€(dz) of the multiscale dynamidd..6). The weak convergence alluded to
demonstrates that the measurebehaves uniformly ia — 0.

An immediate corollary of the above proposition is tha{t) has bounded mo-

ments of all orders. We will use the notatiifi” to denote expectation with respect to
the stationary measure of (1.3) on path space, when indi@l id distributed according
to the Gibbs measure (5.2).

Corollary 5.4. Letz<(t) be the solution 0o{1.4)with the potential given bf1.5)and
assume that conditior{d.3)are satisfied. Assume furthermore thé&t0) is distributed
according topc. Then, for allp > 1, there is a constan€ = C(P,T) uniform in
€ — 0, such that

EX |z€(t)[P < C Yte0,T).

It is convenient for the subsequent analysis to introdueetixiliary variable
z“(t)

€

ye(t) =

We can then write equation (1.6) in the form

Az (t) = —aVV (2 (1)) dt — %Vp W) dt+ VI dBE),  (5.4a)
dye(t) = —%aVV(x‘(t)) it — éVp (e () dt + \/ii;’ da(t). (5.4b)

Notice that both processe$(¢) andy<(t)are driven by the same Brownian motion.
Written in this fashion it is clear that we are in a situatiohase homogenization ap-
plies. The homogenized equation is found by eliminagif(@) from the scale separated
system for{z<(¢), y¢(¢)}. Note thatl, defined in (1.10) is the generator of the process

dy(t) = =Vp (y(1)) dt + V20 dB(t),

on the unit torus, which governs the dynamicgpfo leading order ire. The generator
of the joint procesgz<(¢), yi } reads

1 1
L= <Lo+ L1+ Lo,
€ €

where

Lo=—-Vyp(y) Vy+ oAy,
L1=-Vyply) Vs —aV,V(z) -V, +20V,-V,,
Lo =—aV,V(z) Vg, +cA,.

The following result can be found in, e.g. [5, Ch. 3].
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Lemma 5.5. Assume thap(y) € Cg3. (T4 R) and thatH (y) € Cgo (T4 R?). Let

per
ugdy; be the Gibbs measuid.9) and assume thakl (y) is centered with respect to
w(dy):
» H(y) p(dy) = 0. (5.5)
Then the Poisson equation
—Lox = H(y), (5.6)

has a unique mean-zero solutionff,,. (T, x.(dy); R*). This solution, together with
all its derivatives, is bounded.

We will need an estimate on integrals whose integrand isecedtwith respect to
the invariant measure(dy).

Lemma 5.6. Let H(y) € Cg2, (T4 R?) satisfy conditior(5.5) Assume that<(0) is
distributed according tq5.2). Then the following estimate holds for apy> 1 and
T>0:

P
<C (627’ + PTP 4 PTE

N—

s))ds

Proof. Consider the Poisson equation (5.6) with periodic boundanditions. Since
H(y) satisfies (5.5), Lemma 5.5 applies and we havetltga} is smooth and bounded,
together with all its derivatives. We now apply the It far@ato x (y<(¢)), wherey<(t)

is the solution of (5.4b), and use (5.6) to obtain

[ ) s = () - xtr o)
T
+ VB [ @), d9) —ae [ {9V (6), T ()

Now, using the boundednessyfwe have, for

T p
T) = B / H(y(s))ds,| ,
0
T p T p
I(T) < C<2p+€pE" IVV (2(s))|ds| + PEX° / (Vyx(y(s)), dB(s)) )
0
T T
< c<2p+epT“ |x€(s>|ﬂds+epT%—1 / B |V, x (v (s))]7 ds>
0 0
< 2p 4 €PTP & epT2)

from which the desired estimate follows. In deriving the abave used the estimate
[15, Egn. 3.25, p. 163] on moments of stochastic integrals. O
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For the rest of this section we will restrict ourselves to ¢ine dimensional case. If
we apply 1td formula tap(y<(s)), the solution of the Poisson equation (1.10), then we
obtain

(n4+1)8

26 -5 = —a / V() (1 + 0,6 (s)ds  (5.7)
néd
(n+1)é
o [ (10,0 () d5)
e (B ((n + 1)B)) — oy (1)) (5.8)

The proof Theorems 4.2 and 4.3 is based on careful asym pimdily'sis of the behavior
of z, | —x5, given by this formulawhen bothands are small. Specifically we will use
the following two propositions. They show how the effecth@mogenized behaviour
is manifest in the times-Markov chain induced by sampling the path(¢) from (1.6).

Proposition 5.7. For ¢, § > 0 sufficiently small andh € N there exists an i.i.d. se-
qguence of random variables € N (0, 1) such that

(n+1)6
Vao / (1+0,0(s () dB(s) = VI3, + Ra(6.6)  (5.9)

5
in law. The remaindeR (4, €) satisfies, for everg € (0, ) andp > 0, the estimate

(Elf Ri(e, 5)\”)

whereC' is independent of andd.

oo (@), (5.10)

Remark 5.8. Estimate(5.10)is almost certainly not optimal. Indeed, informal calcu-
lations lead us to expect the estimate

(E”g‘Rl(e,5)|p)l/p <C (ezﬁ + P68 + eﬁdg) .

However, we have not been able to prove this.
Proposition 5.9. For ¢, § > 0 sufficiently small anéh € N we have that

(n+1)é
04/6 V'(2%(s)) (1 + 0y (y“(s))) ds = AdV'(a7,) + Ra(e, 9) (5.11)

in law. The remaindeR; (4, €) satisfies, for every > 0, the estimate

(=

whereC' independent of andé.

Role, 5)|”) e (62 totet 53/2) , (5.12)

6 Proof of Propositions 5.7 and 5.9

In this section we prove the two propositions 5.7 and 5.9 s€lee central to the proof
of the two theorems concerning the behaviour of the estireatith subsampled data.
We start with a rough estimate arf,,, — g, that we will need for the proofs of the
propositions.
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6.1 A Rough Estimate

Lemma 6.1. Let Assumptions 1.3 hold and assume ttfdt), the solution of(4.3), is
stationary. Then there exists a constéhtindependent of ande, such that

B [a(s) — ail” < C (o7 + 0% + e), (6.1)

for everys € (nd, (n + 1)d] and everyp > 1.

Proof. Using the same derivation that leads to (5.8), but Witht 1)é replaced bys,
we have:

(o) -z, = —af TV (a()) (L + B, 60y (5))) ds + Vo / (14 0,6y (s))) dB(s)
néd néd
e (9y"(5)) — oy (nd))
= I s+ I2s+125 (6.2)

We need to estimate the terms in (6.2). We start wjgtgl. By Lemma 5.5 we have

¢z~ < C.

Consequently
EX|I3 5P < CeP.

To estimatel,} 5 we use again Lemma 5.5 to conclude that
11+ 8yd(y) ||~ < C. (6.3)

The above estimate, together with Assumptions 1.3, Cayoliad and the stationarity
of the process*(t), give

(n+1)6
E# |I,1l’5|p < ot /5 EX |V (2¢(s))|P ds

IN

(n+1)0 .

Cor-! / X |2 (5)[P ds
no

< oo,

Estimate [15, Eqn. 3.25, p. 163] on moments of stochastegials, together with
equation (6.3), enable us to conclude that

, (n+1)s
BN, < CsE /5 B 14 0,6 (y ()| ds
< (C6%.

We combine the above estimates to obtain (6.1). O
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6.2 Proof of Proposition 5.7
From Theorem [13, Sec. 1.3], [15, Thm. 3.4.6] we know thatttagtingale

M(0) 1= Va7 [ (14 0,0000) ds

is equal in law to a time—changed Brownian motion,

mo =5 (20 (14 0,0(%(5)’ ).
Also the quadratic variation satisfies

(M), = 20 /Ot (14 8,6y (s)))? ds ~ 251,
Indeed

EX (M), = 20E* / (1+8,0(y(s)))” ds
0
= 2%t

where the last equality follows from equation (1.8) o= 1. Using these observations
we write

(n+1)é
5, = Vo / 00,00 () d3(s)
10

(n+1)3 n
N / (1+0,6(5°())) dB(s) — v/o / (1+0,6(5(s))) dB(s)
0 0

~ o~

= p2X(n+1)) — B2End) +rpy1 —Th
= V2X6&, 4+ g1 — T,

where the,, are i.i.d unit Gaussian random variables and

~

rn = B((M)ns) — B(25n0).

To estimate this difference we follow the proof of [14, Thm.1R We start by
employing the Holder continuity of Brownian motion, toget with Holder inequality,
to estimate:

p

—~ p B

B |B(M)ns) = BEX (M)as)| < B

IA

HOl3 (3) (M) — B (M) ns)

p

ﬁq> a

IN

B ’Hblg(ﬁ)’p (JE”‘ ‘<M>ms — B*(M)ns

Baq g
C(E/f ) ,
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with 3 € (0, 3). We have used the notation

H(y) =20 (1 + 9,0(y))* — 25.

We have also used the fact that, for everg (O, %) and every bounded time interval,
the S—Holder exponent of Brownian motion is uniformly boundeithyprobability one.
We have that

/H(y)u(dy) =0,
T

whereu(dy) is defined in (1.9). Sinced < T, Lemma 5.6 applies and we have that,
for ¢ sufficiently large and foe sufficiently small,

EF | T — V256 ! < C (62(15 + eqﬂ)%
< C (2P ey,
This completes the proof of the proposition. 0

6.3 Proof of Proposition 5.9

We have
. | s p
E* |Ry(e, 0)[P = E* / aV'(z°(s)) (1 + 0yd(y“(s))) ds — AV (x5,5)
néd
| 1) (n+1)6
= [ V) (e ) ds—A [ Vi) ds
néd nod

p

u A(”‘“” (V’(LCE(S)) _ V/(SU;(S)) (1 + ay¢(y6(s))) ds

)

CEH

IN

(n+1)0
V/(25) / @O+ 0,00 ()~ 4) ds

p

+apCE“€uAOHJW(V%x%s»——Vﬁx;g)(1+i%¢Qf($))ds

%)

. 1 2
= Ie,é + Ie,é’

where the constart’ depends only op. We use the Holder inequality, Assumptions
1.3, Lemma 6.1 and the uniform bound @y (y) to obtain, fore, § sufficiently small,

2
IS

IA

(n+1)é .
C(Sp*l/ EX |z€(s) — als|” ds
nod

IN

(n+1)s
057’_1/ (62 +€P)ds
no

C (5— + 5%?) .

IN
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Consequently
o o \1/P 3/2
(E" |16,5|) < C(6%2 + Ge). (6.4)
Consider now the function
H(y) == a(1+0,6(y)) — A,

From the definition ofA we get that

[ (a4 0,00)) - 4) utty) = .

Hence, Lemma 5.6 applies and we get

p

. (n+1)6
2 [ @O+ 0,001 (s) - 4) ds

)

< C (62” + ePoP + 6p5p/2) .

We combine the above estimate with (1.14) and Corollary®gbtain,
il p 2 1/2
(E“ |I€,5|P) <C (e +eb ) , (6.5)

for ¢, ¢ sufficiently small. The proof of the proposition follows froestimates (6.4)
and (6.5). O

7 Proof of Main Theorems

Here we combine the results from the preceding two sectmnosrnplete the proofs of
the main theorems.

7.1 Proof of Theorem 4.1
We combine equations (2.3) and (1.6) to calculate

A@z) =

Jo = (VV (a5(1)), da (2)
SV (ae(1)[2 dt
T <—VV(a:€(t)), —aVV (z5(t)) dt — LVp (””‘5”) dt + \/%dﬁ(t)>
S IV V (@< (t)]? dt
I (TVEEOLTRE) dt T v (), ds0)

Jo ISV (xe(t))[2 dt JTIOV (@ (t)? dt
= a+L(T,e)— Ix(T,¢).

= o+

We will treat the termd; (T, ¢) and I (T, ¢) separately. We start with, (¢, ¢). Since
the stochastic integral

T
Mw=A<VWf@%M@>
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is a continuous martingale which is null @t the strong law of large numbers for
martingales [23, p. 187] applies and we have that

My

—— =0 a.s.
7Yoo (M)
Consequently
anf I(T,e) =0 as. (7.2)

Let us consider now the terfi (T, ¢). We use the ergodic theorem to deduce that

R (05 ()

A Al =

T—o0 Tfo |VV x€(t))|? dt
OB (W@ AV (E)
Ex|VV (2)|? o
Now we use Proposition 5.2 to compute
B ((VV(2), eVP(£))  _ Jp <W Vp (£))r°
()] a VV (z)[?
—0 5% [pa <VV (z)e V@) ¥ (e_%p(’”/e))> dz
- EFVV (2)]2
E (AV (@)
= Jm _

In deriving the penultimate line we used an integration bstgpaThe weak conver-
gence ofu to i (second part of Proposition 5.2), formula (5.1), togethiéhwnother
integration by parts give

b BOAVE)  EMAV@)
SV T BV @)
_ E(AV (2))
22 YV (@), V(e 5 )ds

We combine the above calculations to conclude that
HH(I] Tlim Li(T,e)=0 as. (7.2)

The proof of the convergence of the maximum likelihood eaton eqn. (4.1) now
follows from equations (7.2) and (7.1).

The proof of the convergence of the estimator for the difiastoefficient, egn.
(4.2), follows from the definition of the quadratic variaticsee e.g. [4]. O

Remark 7.1. An immediate corollary of the proof of the above theoremas th

EX (AV ())

Am A) = TRV (1) 2
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7.2 Proof of Theorem 4.2
We combine Proposition 5.9 and (5.8) to conclude that
x5 —xy, = J, — AV (5,) + R(e, ),

whereJ,, is as defined in the proof of Proposition 5.7 and, 406 sufficiently small
anda € (0,1),

(= 1Rear) " <02 +e). 73)

Notice that .
E* | J,]? = O(5).

We combine this with formula (2.4) to obtain

T SND Wi i CEY BN Sr 4 C2) 1 (0
No(@e) = N_1 N-1
Yot V@R)PPe >0 [V/(5)[?0
= A-1L 1D, (7.4)

We need to control the ternds andl,. We start withZ;, which we rewrite in the form

1 N—1y,
o V(x)Jn
Lo 6¥m2n70 (z5,)
= ~—
N Znco V(@)

The central limit theorem for (discrete) martingales ireplthat

. 1 e 1/ € _ 1 ne 1/ € 2 2
i s ;V () = =N (0. B (V' (a“(0)*|5l?))
1 .
= _\/SN(O’C(S) =cN(0,1) inlaw,

for somec uniform ine — 0. In the above we have used the fact that|.J,|> = 220.
On the other hand, the ergodic theorem implies that

V(z)]?, as. (7.5)

1 N-1
: - T(€Y|2 — RS
iy 3 V) =B

Hence, by Slutsky’s theorem, and remembering ffiat [¢~7], we have that
HH(I) I; =0 inlaw. (7.6)
Consider now the ternk,. It can be written as

oSNV (2 ) R(e, 6)

I, = =0
= V(g2
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The ergodic theorem implies that the denominator in the aleypression converges
a.s. to a finite value. To study the numerator of the aboveession we use estimate
(7.3), together with Holder inequality to estimate

N-1
B €77 > V(a5 R(e, 6)
n=0

N-1

a3 (o

1/q e
(a)ir) (B
n=0

N-1

ce 3 (B R(e, o)) 1/’

n=0
C(ea/2 + 6170().

In the above we have used Corollary 5.4, together with Asgiomp 1.3. The above
calculation shows that numerator Bf converges td® in L', and hence in law. This,
together with the a.s. convergence of the denominator angdksf's theorem gives

hr% I, =0 inlaw. (7.7)

IN

R(e, 5)|P) e

IN

IN

Combining (7.4), (7.6) and (7.7) completes the proof of tieotem. O

7.3 Proof of Theorem 4.3
We combine Proposition 5.7 with (5.8) to write the differeng, , | — x5, in the form

a6y — x5 = V25 0&, + R(6,€) (7.8)
in law, where, fore, § sufficiently small,

( Rle, 5)|p) <C[+e). (7.9)
We substitute (7.8) into the formula for the estimator (2vi2h d = 1 to obtain

N-1

N—-1
Sw.s(a) Z &+ 535 N 5 2 (ﬁ(é, e))2 + Nié 3 V2EsE,R(S,c)
n=0

N-1
oyl an“1“2

By the law of large numbers the first term tends almost suely aise — 0 (which
impliesN — oo.) Thus it suffices to show that the remaining terms tend to irelaw.
We do this by showing that they tend to zerdlih.

Note that

N—-1
E|L] <O BF(R(S,€))?
n=0
= CN( + €°)?
<O+ P
=C(e* + 625_(’)

= o(1),
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for a € (0,1), sinces can be chosen arbitrarily close o
Similarly
N-1
B LI < C Y 62(5+€)

n=0

for a € (0,1), since can be chosen arbitrarily close {o This completes the proof.
O

7.4 Proof of Theorem 4.5

Taking the limit7T" — oo in (2.5) gives
~E* (A

A AT = Y o)

Proposition 5.2, equation (5.3) in particular, impliesttha

SEF(AV(@) < B(AV())

lim ¥
SCEFIVV(@F T TEAVV (@)

whereE# denotes expectation with respect to the invariant distidioup(z) of the
homogenized process, given by formula (5.1). An integrelip parts now gives that

EF|VV (2))2 = gE“’(AV(x)).

Thus, the final result of our considerations is that

~

- x
lim lim A(zf) = —a a.s.
o

e—0T—o0

8 Conclusions and Future Work

The problem of parameter estimation for continuous timetisedle diffusion pro-
cesses is studied in this paper. Our goal is to accuratelyHaraogenized equation
from data which has a multiscale character. Our main coragsare as follows:

e In order to estimate the drift and diffusion coefficientswaately it is necessary
to subsample.

e There is an optimal subsampling rate, between the two abrégtt time-scales
of the multiscale data.
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The optimal subsampling rate may differ for different paedens.

For gradient multiscale systems it is only necessary taredd the diffusion

coefficient correctly, if one uses the second estimatortferdrift — A, defined in
equations (2.5) and (2.6).

Both analysis and numerics are given to substantiate tHagasc Many open
guestions remain; we list those which seem important to us.

Rough heuristics indicate that any subsampling rate whidbeiween the two
characteristic time scales of the processes, na@éty) andO(1), should en-
able accurate estimation of the drift and diffusion coediits. However our anal-
ysis works only in the case where the subsampling is betwgen and O(1).
Closing the gap between intuition and what can be provedavoelvaluable.

Analyze other parameter estimation problems for multieschiffusions, not nec-
essarily of gradient form. In particular study both averagind homogenization
set-ups, as outlined in the introductory section.

In this paper we have generated simulated multiscale datssiog a multiscale
diffusion process. However this was done to provide a coieveranalytical
framework. In applications it is of interest to develop ®&br characterizing
the multiscale structure of a given path — to estimate charatic time—scales.
Related work has been done in [11]. Further study would batefést.

Determine precisely the range of subsamplings which wilegiccurate param-
eter estimates and optimize the subsampling rate for acgura

Optimize the algorithm by combining estimates based ortsbifthe subsam-
pled data — so that information is not thrown away; this isalomnthe context of
econometrics and finance in [1, 2].

Analyze questions analogous to those raised here for nmakiasional multi-
scale processes.

Analyze questions analogous to those raised here for hiyptieimultiscale dif-
fusions; in particular the case where the homogenized eguista fully elliptic
first order Langevin equation which is derived from an ovengad second-order
Langevin equation.

Study whether there is any advantage in using random subsgnates.

Study drift that depends non-linearly on the parametergtedtimated:
dzt(t) = —=VV (2(t), &; 2)dt + V20dB(t).

Parameter estimation for deterministic multiscale protdevhere the fast pro-
cess is a strongly mixing chaotic deterministic process.
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