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Exact Langevin equations are derived for the height fluctuations of surfaces driven by the deposi-
tion of material from a molecular beam. We consider two types of model: deposition models, where
growth proceeds by the deposition and instantaneous local relaxation of particles, with no subse-
quent movement, and models with concurrent random deposition and surface diffusion. Starting
from a Chapman-Kolmogorov equation the deposition, relaxation, and hopping rules of these mod-
els are first expressed as transition rates within a master equation for the joint height probability
density function. The Kramers-Moyal-van Kampen expansion of the master equation in terms of an
appropriate “largeness” parameter yields, according to a limit theorem due to Kurtz [Stoch. Proc.
Appl. 6, 223 (1978)], a Fokker-Planck equation that embodies the statistical properties of the orig-
inal lattice model. The statistical equivalence of this Fokker-Planck equation, solved in terms of its
associated Langevin equation, and solutions of the Chapman-Kolmogorov equation, as determined
by kinetic Monte Carlo (KMC) simulations of the lattice transition rules, is demonstrated explic-
itly by comparing the surface roughness and the lateral height correlations obtained from the two
formulations for the Edwards-Wilkinson [Proc. Roy. Soc. London Ser. A 381, 17 (1982)] and Wolf-
Villain [Europhys. Lett. 13, 389 (1990)] deposition models, and for a model with random deposition
and surface diffusion. In each case, as the largeness parameter is increased, the Langevin equation
converges to the surface roughness and lateral height correlations produced by KMC simulations
for all times, including the crossover between different scaling regimes. We conclude by examining
some of the wider implications of these results, including applications to heteroepitaxial systems
and the passage to the continuum limit.

I. INTRODUCTION

The widespread application of lattice models to the
basic phenomenology of epitaxial kinetics [1–3] has fos-
tered a huge literature on the morphological evolution of
fluctuating growth fronts [4–8] that has established these
models as paradigms for driven nonequilibrium systems.
One of the central concerns of this work is the expres-
sion of the time-development of a system, as determined
by a set of transition rules between neighboring config-
urations, in terms of a stochastic differential equation.
Several methods have been proposed for obtaining an-
alytic formulations of rule-based lattice models, includ-
ing phenomenological [9, 10] and symmetry [11–13] argu-
ments, mappings onto other models [11, 14], real-space
renormalization-group methods [15], and formal expan-
sions of stochastic equations on a lattice [14, 16–19]. Al-
though these studies have produced suggestive results for
individual cases, a methodology that produces differen-
tial equations of motion for general lattice growth models
has yet to be advanced.

An altogether different approach to associating a
stochastic differential equation with a lattice model is
based on the asymptotic scaling properties of the growth

∗Institute of High Performance Computing, Singapore Science Park
II, Singapore 117528.
†christoph.haselwandter@imperial.ac.uk
‡Present address: Instituut-Lorentz, Universiteit Leiden, P.O. Box
9506, 2300 RA Leiden, The Netherlands.
§d.vvedensky@imperial.ac.uk

front. The shot noise of the deposition process causes ki-
netic roughening characterized by scale invariance analo-
gous to that for dynamical critical phenomena near equi-
librium [4]. The corresponding “critical” exponents are
said to be universal if they depend only on the spatial
dimension of the substrate and on the “relevant” terms
in the equation of motion, rather than on microscopic
details, such as the type of lattice or the spatial range of
the transition rules. On this basis, several lattice models
have been assigned to universality classes of particular
Langevin equations [4, 5, 10, 20–26], although this can
require extensive kinetic Monte Carlo (KMC) simulations
to eliminate crossover effects [24–26]. But there are no-
table exceptions to this scenario. For such cases, a more
fundamental approach to determining the continuum ex-
pressions of lattice models is required.

In this paper we develop a procedure for deriving lattice
Langevin equations for the height fluctuations of driven
surfaces that are statistically equivalent to KMC simula-
tions [29]. We will focus on two basic model types: de-
position models, where particles are deposited randomly,
relax instantaneously to a neighboring site and remain
there, and models with concurrent random deposition
and surface diffusion. Examples of deposition models
include random deposition, where the deposition site is
the initial site, the Edwards-Wilkinson model [20, 30],
where the deposition site is a local height minimum, the
Wolf-Villain model [31, 32], where the deposition site is
a local coordination maximum, and numerous variations
thereon [33, 34]. Such relaxation rules model the short-
range mobility of “hot” atoms deposited onto the surface
by a molecular beam that is caused by the heat of con-
densation, especially near step edges, but are also used
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to examine the effects of limited surface diffusion without
incurring the computational overheads of a full hopping
model.

KMC simulations of models with deposition and sur-
face diffusion have explained many fundamental aspects
of epitaxial phenomena through quantitative compar-
isons with experimental measurements, including growth
on vicinal surfaces [2, 3], submonolayer island-size dis-
tributions [35–37], unstable growth [38, 39], and the role
of multiple species in the growth of compound semicon-
ductors [1, 40, 41]. Such simulations have the advantage
of versatility and computational efficiency, but the ab-
sence of an underlying analytic formulation means that
obtaining systematic results can be quite time consum-
ing. Even ostensibly minor modifications to the tran-
sition rules necessitate performing an entire new set of
simulations. One of the primary aims of the work re-
ported here is to provide an analytic infrastructure to
augment KMC simulations.

Our procedure begins by expressing the morpho-
logical evolution of a growth model as a Chapman-
Kolmogorov equation for the joint conditional transi-
tion probability between height configurations of the sys-
tem. Chapman-Kolmogorov equations and their associ-
ated master equations provide a complete statistical de-
scription of stochastic systems, but are amenable to di-
rect analysis in only a few special cases [42–44]. KMC
simulations provide a practical, albeit indirect, alterna-
tive to solving Chapman-Kolmogorov equations in terms
of averages over individual realizations of the evolution
of a system and we make extensive use of such simula-
tions in this paper. However, as noted above, the major
drawback of KMC simulations is their inability to repre-
sent the consequences of competing rates in other than
an algorithmic context.

The next step is to use a Kramers-Moyal-van Kampen
expansion of the master equation [42] to extract a Fokker-
Planck equation [45–47] that embodies the statistics of
the height fluctuations of the original lattice model. The
statistical equivalence of results produced by these two
equations is demonstrated by comparing the morpho-
logical evolution obtained from the Langevin equation
associated with the Fokker-Planck equation with that
produced by KMC simulations. These comparisons are
based on the surface roughness and lateral height corre-
lations, so scaling exponents can be determined directly
[29]. But we can also identify crossover regimes, and
calculate other statistical properties of the morphology,
such as amplitudes [48] and stationary roughness distri-
butions [49].

Quite apart from providing a computational alterna-
tive to KMC simulations, the lattice Langevin equation
offers a framework for examining the analytic proper-
ties of lattice growth models. This includes the relative
importance of different types of noise (e.g. due to de-
position, diffusion, and evaporation) in different growth
regimes, and the behavior under coarse-graining trans-
formations, either for the direct passage to the contin-

uum limit [50, 51], or for generating initial conditions
for renormalization-group trajectories. The latter is a
key element for explaining the unexpected behavior of
the Wolf-Villain [24, 26] and Edwards-Wilkinson [27, 28]
models in higher spatial dimensions revealed by KMC
simulations.

The organization of this paper is as follows. In
Sec. II we formulate the Chapman-Kolmogorov and mas-
ter equations for fluctuating surfaces. The Kramers-
Moyal-van Kampen expansion of the master equation is
carried out in Sec. III and includes a discussion of the
analytic requirements of this expansion. The analysis of
the equivalent Langevin equation [29] is the subject of
Sec. IV. To simplify the derivation of this equation, we
confine our discussion to one-dimensional substrates, al-
though this is not an inherent limitation of our procedure.
Indeed, as noted above, there are several examples of in-
triguing behavior of lattice models in higher dimensions
and our method is well placed to contribute to the debate.
The replacement of discrete by continuous height units
necessitated by the Kramers-Moyal-van Kampen expan-
sion has subtle consequences for the regularization of the
threshold functions used to characterize local height en-
vironments in the transition rules. This is discussed in
Appendix A.

The application of our method to the Edwards-
Wilkinson and Wolf-Villain models is described in Secs. V
and VI, where direct comparisons between the KMC
and Langevin solutions are made for the roughness and
the lateral height correlations. The Edwards-Wilkinson
model is used to demonstrate the convergence of the
Langevin to the KMC solution for these quantities as the
“largeness” parameter in the Kramers-Moyal-van Kam-
pen expansion is increased. For the Wolf-Villain model,
our method reproduces the complex crossover sequence
observed with KMC simulations [24] even without a con-
verged solution. In Sec. VII, we apply our method to a
model with random deposition and surface diffusion. The
surface roughness calculated from the Langevin equa-
tion again reproduces the main statistical characteristics
of the KMC simulations, including the temperature de-
pendence of the initial crossover from random deposi-
tion. We discuss the wider implications of these results
in Sec. VIII, including the existence of a continuum ex-
pression of lattice Langevin equations and the extension
of our method to other types of lattice model and to het-
eroepitaxial systems. A summary of our main results is
provided in Sec. IX.

Some of the results described here have appeared pre-
viously in brief communications [29, 50]. The purpose
of this paper is to present a detailed derivation of our
methodology and to demonstrate its capability for a
range of models used to study the statistical properties
of growing surfaces. Our derivation clarifies and extends
the earlier discussion [17] of equations of motion for mod-
els of epitaxial growth and provides a rigorous connection
between the variables used in KMC simulations and those
that appear in Langevin equations.
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II. THE MASTER EQUATION

We consider a one-dimensional lattice of length L on
each site i of which (1 ≤ i ≤ L) is a column whose
topmost particle is at height Hi. Every surface profile
corresponds uniquely to an array H = {H1, H2, . . . , HL}.
The lattice constant and vertical spacing are both set
to unity, so the lattice sites and column heights have
integer values. Processes such as deposition, desorption,
and surface diffusion (see below) cause the heights to
change by integer increments at discrete times tn. Since
the transition rates of these processes depend only on
the instantaneous surface profile, not on its history, the
models we consider are all Markovian.

The central quantity for Markov processes is the tran-
sition probability

P (Hn, tn|Hn−1, tn−1) ≡ Tt(Hn|Hn−1) , (1)

where only the time difference t = tn−tn−1 enters on the
right-hand side because of the homogeneity of the pro-
cesses under consideration. The Chapman-Kolmogorov
equation [42],

Tt+t′(H3|H1) =
∑
H2

Tt′(H3|H2)Tt(H2|H1) , (2)

is an identity for the transition probability of all Markov
processes, but is rarely [43] amenable to a direct analysis.
The differential form of this equation, expressed in terms
of the small-time limit of the transition probability, is the
master equation:

∂Tt(H3|H1)
∂t

=
∑
H2

[
W (H3|H2)Tt(H2|H1)

−W (H2|H3)Tt(H3|H1)
]
, (3)

where W (H′|H), the transition rate per unit time from
H to H′, is the time derivative of Tt(H′|H) evaluated at
t = 0. This equation can be cast into a more compact and
intuitive form by noting that each transition probability
is evaluated for the initial state H1 at time t1. Thus,
by suppressing the redundant arguments, we can define
P (H, t) ≡ Tt(H|H1) and write Eq. (3) as [42]

∂P

∂t
=

∑
r

[
W (H − r; r)P (H − r, t) − W (H; r)P (H, t)

]
,

(4)
where W (H; r) is the transition rate from H to H+r, and
r = {r1, r2, . . .} is the array of jump lengths ri associated
with each site.

The Chapman-Kolmogorov equation (2) is the defini-
tive statement of the morphological evolution of our
driven surfaces. Solutions of this equation provide the
same statistical information as averages obtained from
KMC simulations. The master equation (4) is a for-
mal restatement of the Chapman-Kolmogorov equation
in terms of a continuous time variable, but with dis-
crete height variables. To render this equation physically

meaningful, we must establish the relationship between
the original variables and those appearing in Eq. (4).
This will be done in Sec. III.

The transition rates are determined by processes that
cause the heights to change. Typical examples for sur-
face growth are deposition, surface diffusion, and evapo-
ration. Expressions for the transition rates of such pro-
cesses are easily constructed. For deposition, particles
impinge on the lattice at an average rate τ−1

0 per site,
where τ0 is the time for the deposition of a monolayer of
atoms. The transition rate W is nonvanishing only be-
tween configurations H and H′ that differ by one height
unit at the deposition site: H ′

i = Hi + 1 for any site
i. In the simplest case, random deposition, particles are
deposited onto randomly chosen sites and remain there.
The transition rate for this process is

W1(H; r) = τ−1
0

∑
i

δri,1

∏
j �=i

δ(rj) , (5)

where δi,j is the Kronecker delta. If the final deposition
site is selected from among the initial randomly chosen
site and the two nearest neighbor sites according to some
criterion, the transition rate becomes

W2(H; r) = τ−1
0

∑
i

[
w

(1)
i δri,1

∏
j �=1

δ(rj)

+w
(2)
i δri−1,1

∏
j �=i−1

δ(rj) + w
(3)
i δri+1,1

∏
j �=i+1

δ(rj)
]

, (6)

where the quantities w
(k)
i express the conditions for the

particle to remain on the initial site i (k = 1), to relax
to the site i− 1 (k = 2), or to relax to i+1 (k = 3). The
sum rule

w
(1)
i + w

(2)
i + w

(3)
i = 1 (7)

ensures that the average deposition rate per site is τ−1
0 .

The generalization of these expressions to deposition
rules that include more distant neighbors is straightfor-
ward.

The transition rate for a particle hopping from a site i
to a site j has the general form

W3(H; r) =
∑
ij

wijδri,−1δrj ,1

∏
k �=i,j

δ(rk) , (8)

where the hopping rate and hopping rules are contained
in the wij . The rules can depend on the initial con-
figuration only, as for many models of surface diffusion
[17], or on both the initial and final configurations, as
for hopping near step-edge barriers [52] and Metropolis
implementations of hopping [53]. A common model for
surface diffusion is nearest neighbor hopping with Arrhe-
nius rates whose energy barrier Ei is calculated from the
initial environment of the active atom. In this case we
have

wij = 1
2ν0e

−βEi (δi,j−1 + δi,j+1) , (9)
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where the attempt frequency ν0 ∼ 1012–1013 s−1 [54],
β = (kBT )−1, kB is Boltzmann’s constant, and T is
the absolute temperature of the substrate. The sim-
plest expression for Ei is obtained as the sum of a site-
independent energy barrier ES from the substrate and
a contribution EN from each of the ni lateral nearest
neighbors: Ei = ES + niEN . For comparisons with the
morphologies of specific materials systems, these barriers
can be determined either by fits to a particular experi-
ment [3, 40] or from first-principles calculations [41].

III. KRAMERS-MOYAL-VAN KAMPEN
EXPANSION

Although the master equation (4) is more manage-
able than the Chapman-Kolmogorov equation (2), direct
solutions for driven surfaces are possible in only a few
special cases [44]. To circumvent this problem, we will
use a Kramers-Moyal-van Kampen expansion [42] and
invoke a limit theorem to obtain a Fokker-Planck equa-
tion that embodies the statistical properties of the master
equation. The Fokker-Planck equation and its associated
Langevin equation are formulated in terms of continuous
time and height variables that can be directly related
to the original discrete variables used in Eq. (2). This
procedure necessitates expanding the first term on the
right-hand side of Eq. (4), which relies on two criteria
for the transition rates [42]. These are discussed in the
following two subsections.

A. The “Small Jump” Criterion

The first condition mandates that W (H; r) is a
sharply-peaked function of r in that there is a quantity
δ > 0 such that

W (H; r) ≈ 0 for |r| > δ . (10)

This restricts the magnitude of the changes in H caused
by the transition rules and is accordingly referred to as a
“small jump” condition. The fulfillment of this condition
ensures the convergence of the moments of W (H; r), as
discussed in Sec. III C.

Transition rules of lattice growth models typically
change the column heights Hi by a single unit, as in
Eqs. (5), (6), and (8). For these processes, the jump
lengths ri = −1, 0 or 1 for all sites i, which manifestly
satisfies Eq. (10). This condition remains valid even for
ballistic deposition, where a height can change by several
units during a single deposition event [4].

B. The “Smoothness” Criterion

The second condition is that W (H; r) is a slowly-
varying function of H, i.e.

W (H + ∆H; r) ≈ W (H; r) for |∆H| < δ . (11)

In effect, this is a smoothness criterion that renders the
Kramers-Moyal-van Kampen expansion meaningful [55].

Transition rules such as those in Eqs. (5), (6), and (8)
are typically expressed in terms of nonanalytic threshold
functions that characterize the local height environment.
For example, the number ni of lateral nearest neighbors
at a site i is calculated by determining how many nearest
neighbor heights are greater than or equal to Hi:

ni = θ(Hi−1 − Hi) + θ(Hi+1 − Hi) , (12)

where

θ(x) =
{

1 if x ≥ 0;
0 if x < 0.

(13)

Thus, an arbitrarily small change in a height can lead
to an abrupt change in ni and thereby in any transition
rate that depends on this quantity, in clear violation of
Eq. (11). This problem can be alleviated by making two
formal modifications to the transition rules. The unit
jumps in Eqs. (5), (6), and (8) are replaced by jumps of
size Ω−1, where Ω — the “largeness” parameter in the
van Kampen expansion [42] — controls the magnitude of
the intrinsic fluctuations of the growth front:

Hi → hi = Ω−1Hi . (14)

The time is rescaled accordingly as

t → τ = Ω−1t (15)

to preserve the rates of change of the heights. The sec-
ond modification is the replacement of the step function
θ(x) in Eq. (13) by a continuous function. This renders
the transition rates continuous as well, but the specific
form of this regularization depends on the transition rules
of the model under consideration. This is developed in
Appendix A.

By regarding h and r as continuous variables, the mas-
ter equation in (4) becomes

∂P

∂τ
=

∫ [
W̃ (h − r; r)P (h − r, τ) − W̃ (h; r)P (h, τ)

]
dr ,

(16)
where the transformed transition rate W̃ is, for example,
given by

W̃1(h; r) = τ−1
0 Ω

∑
i

δ

(
ri −

1
Ω

) ∏
j �=i

δ(rj) , (17)

where δ(x) is the Dirac delta-function, with analogous
expressions for W̃2 and W̃3 corresponding to Eqs. (6) and
(8). Equation (16) describes the morphological evolution
of the same model as the Chapman-Kolmogorov equation
(2), but on time and heights scales that are finer by a
factor Ω.
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C. Fokker-Planck Equation

The first term on the right-hand side of Eq. (16) can
now be expanded as a Taylor series to obtain∫

W̃ (h − r; r)P (h − r, τ) dr −
∫

W̃ (h; r)P (h, τ) dr

=
∞∑

n=1

(−1)n

n!

∑
i1,...,in

∂n

∂hi1 · · · ∂hin

[
K

(n)
i1···in

(h)P (h, t)
]

,

(18)

where K
(n)
i1···in

is the nth moment of W̃ ,

K
(n)
i1···in

(h) =
∫

ri1 · · · rinW̃ (h; r) dr ∼ O(Ω1−n) . (19)

The small jump condition in Eq. (10) ensures that these
moments are well-defined. With this ordering in Ω of
the K(n), a limit theorem due to Kurtz [45–47] states
that, as Ω → ∞, the solution of the master equation
(4) is approximated, with an error of O(ln Ω/Ω), by the
solution of the Fokker-Planck equation [56],

∂P (h, τ)
∂τ

= −
∑

i

∂

∂hi

[
K

(1)∞
i (h)P (h, τ)

]

+
1
2

∑
ij

∂2

∂hi∂hj

[
K

(2)∞
ij (h)P (h, τ)

]
, (20)

where, from Eq. (19), the first two moments of W̃ are

K
(1)∞
i (h) ≡

∫
riW (h; r) dr , (21)

K
(2)∞
ij (h) ≡

∫
rirjW (h; r) dr . (22)

This Fokker-Planck equation is expressed in terms of the
continuous variables τ and h and provides the same sta-
tistical information about the morphological evolution of
fluctuating surfaces as the Chapman-Kolmogorov equa-
tion (2), which is expressed in terms of the original dis-
crete variables t and H. These variables have a direct
correspondence over their entire ranges only for Ω → ∞.
This fact is signified by the superscript “∞” in the mo-
ments of the transition rate. The important conceptual
and practical point is that the continuous representa-
tion is characterized completely by a deterministic drift
K

(1)∞
i and diffusion with coefficients K

(2)∞
ij .

IV. THE LANGEVIN EQUATION

The solution of Eq. (20) will be obtained by solving
the equivalent Langevin equation [42, 47],

dhi

dτ
= K

(1)∞
i (h) + ηi , (23)

where the ηi are Gaussian noises with mean zero and a
covariance matrix given by K(2)∞:

〈ηi(τ)〉 = 0 , (24)

〈ηi(τ)ηj(τ ′)〉 = K
(2)∞
ij (h)δ(τ − τ ′) , (25)

and 〈·〉 signifies averages with respect to the distri-
bution function of the ηi. The initial and bound-
ary conditions for this coupled set of differential equa-
tions must be the same as those used for obtaining
KMC solutions of the Chapman-Kolmogorov equation
(2). The initial condition is given by a configuration
h0 = {h1(0), h2(0), . . . , hL(0)}. Periodic boundary con-
ditions are used in all the calculations reported here.

The solution of the Langevin equation (23) produces
results that are statistically equivalent to the Chapman-
Kolmogorov equation in that averages over many inde-
pendent realizations are identical. This relationship can
be expressed formally as〈

F
(
{Hi(t)}

)〉
=

〈
F

({
Hi(0) +

∫ t

0
[K(1)∞

i (h(τ)) + ηi(τ)] dτ
})〉

, (26)

where F is a function of the surface profile, such as the
width or the structure factor defined in Sec. IV B. This
equation provides a direct connection between the con-
tinuous variables τ and hi in the Langevin equation and
the discrete variables t and Hi used for KMC solutions
of the Chapman-Kolmogorov equation.

For models of deposition and instantaneous relaxation,
as in Eq. (6), each event changes the occupancy only of
a single site. Thus, all of the moments of W are diagonal
and proportional to the first moment, and we have

K
(1)∞
i =

1
τ0

[
w

(1)
i + w

(2)
i+1 + w

(3)
i−1

]
, (27)

K
(2)∞
ij = δijK

(1)∞
i , (28)

so the noise covariance in Eq. (25) reduces to

〈ηi(τ)ηj(τ ′)〉 = K
(1)∞
i δijδ(τ − τ ′) . (29)

Alternatively, for models with random deposition and
concurrent surface diffusion described by the nearest
neighbor hopping in Eq. (9) the transition moments are

K
(1)∞
i = 1

2ν0∆2λi + τ−1
0 , (30)

K
(2)∞
ij = 1

2ν0

[
δij∆2λi − (λi + λj)∆2δij

]
+ τ−1

0 δij , (31)

where λi = e−βEi , and the discrete second difference

∆2fi = fi−1 − 2fi + fi+1 (32)

acts only on the first index of δij in Eq. (31). Any hop-
ping process generates off-diagonal matrix elements in
the covariance matrix because the occupancies of two
sites are changed by such an event. Nearest neighbor
hopping produces a tridiagonal covariance matrix, while
longer range hopping and cluster diffusion generate asso-
ciated non-zero entries in this matrix.
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A. Numerical Solution of the Langevin Equation

The numerical integration of Eqs. (23) and (25) pro-
ceeds by assigning an Itô interpretation to the noise [47].
We first consider deposition models. The stochastic dif-
ferential equation associated with the Langevin equation
(23) and the moments in Eqs. (27) and (28) is

dhi = K
(1)∞
i (h) dτ +

[
K

(1)∞
i (h)

]1/2

dWi , (33)

where the Wiener variable dWi represents continuous
Brownian motion [57]. The square root of the diagonal
matrix K(1)∞ is well-defined because all of the matrix
elements in Eq. (28) are non-negative. This equation is
discretized as

hi(τ + ∆τ) = hi(τ) + K
(1)∞
i (h) ∆τ

+
[
K

(1)∞
i (h)

]1/2

∆Wi(τ) , (34)

with ∆Wi(τ) = Wi(τ + ∆τ) − Wi(τ), and

〈∆Wi(τ)〉 = 0 , (35)

〈[∆Wi(τ)]2〉 = ∆τ . (36)

The diagonal covariance matrix for deposition mod-
els considerably simplifies the numerical integration of
Eq. (23) because different sites are coupled only in the
computation of the diagonal elements. For models with
surface diffusion, however, the covariance matrices have
non-zero off-diagonal entries, as in Eq. (31), so an al-
together different scenario arises. The formulation of
the corresponding stochastic differential equation relies
on the fact that this matrix is positive definite, i.e.

L∑
i,j=1

K
(2)∞
ij vivj > 0 , (37)

for all nonzero vectors v = (v1, . . . , vL). For the matrix
elements in Eq. (31), we calculate

L∑
i,j=1

K
(2)∞
ij vivj =

L∑
i=1

(λi−1 +λi)(vi−1 − vi)2 +
v2

τ0
, (38)

where periodic conditions have been imposed on the ma-
trix elements and on the components of v. Thus, for
any finite deposition rate, K(2)∞ is positive definite. For
equilibration in the absence of deposition (Sec. VII), we
must therefore impose an arbitrarily small flux to main-
tain this property.

Given the foregoing, the stochastic differential equa-
tion associated with the Langevin equation (23) and the
moments in Eqs. (30) and (31) can be written as

dhi = K
(1)∞
i (h) dτ +

L∑
j=1

Uij dWj , (39)

in which UTU = K(2)∞, where UT is the transpose of
U , is the Cholesky factorization [58] of the symmetric
positive definite matrix K(2)∞ in terms of the upper tri-
angular matrix U . The discretized form of this equation
is given by

hi(τ +∆τ) = hi(τ)+K
(1)∞
i ∆τ +

L∑
j=1

Uij∆Wj(τ) , (40)

where

〈∆Wi(τ)〉 = 0 , (41)

〈∆Wi(τ)∆Wj(τ)〉 = δij∆τ . (42)

The Cholesky decomposition required for the integration
of Eq. (40) can place substantial demands on computer
resources for large system sizes if extended deposition
times are required.

The results presented in the following sections are ob-
tained by integrating Eqs. (34) and (40) for decreas-
ing values of ∆τ . According to Eqs. (14) and (15),
hi = Ω−1Hi and τ = Ω−1t, so ∆hi = Ω−1∆Hi and
τ = Ω−1∆t, which implies that a decrease in ∆τ is
equivalent to an increase of Ω. Hence, with increasing
Ω successively more iterations of Eqs. (34) and (40) are
required to reach the same elapsed real time interval ∆t
and physical height change ∆Hi. Since all our models
are subsumed by the general equation (40), we write the
discretized form of Eq. (26) as

〈F ({Hi(t)})〉 =
〈

F

({
Hi(0) +

Ω∑
n=1

[
(Ω−1t)K(1)∞

i (h(τn)) +
L∑

j=1

Uij∆Wj(τn)
]})〉

, (43)

where τn = Ω−1nt. The evaluation of this equation
proceeds by determining K(1)∞ and K(2)∞ from h(τn).
Gaussian random numbers with zero mean and unit vari-
ance are then used to determine the fluctuations at all

lattice sites to obtain the height profile h(τn+1) at the
next time step. As Ω → ∞, Kurtz’s theorem [45–47]
stipulates that the statistical properties of the morphol-
ogy determined by averages of these solutions converge
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to the corresponding average quantities obtained from
KMC simulations.

B. Statistical Characterization of Rough Surfaces

Our comparisons between KMC simulations and so-
lutions of Langevin equations are based on the surface
roughness and the lateral height correlation function.
These quantities provide statistical information about
the morphological evolution normal to and along the sur-
face.

The surface roughness W (L, t) is defined as the root-
mean square of the height profile,

W (L, t) ≡
[
〈h2(t)〉 − 〈h(t)〉2

]1/2
, (44)

where 〈h(t)n〉 = L−1
∑

i hn
i (t) for n = 1, 2. For suffi-

ciently long times and large substrate sizes, W exhibits
dynamic scaling [4]:

W (L, t) ∼ Lαf(t/Lz) , (45)

with the scaling function

f(x) ∼
{

xβ for x 
 1;
constant for x � 1,

(46)

in which α is the roughness exponent, z = α/β is the
dynamic exponent, and β is the growth exponent.

The lateral height correlation function C(r, t) is defined
as

C(r, t) ≡ 〈[hi(t) − hj(t)]
2〉1/2 , (47)

where r = |i − j| is the separation of sites i and j. For r
much smaller than the lateral correlation length, C has
the scaling form [4]

C(r, t) ∼ rα . (48)

The exponents α, β, and z provide the basis for assigning
a model to a particular universality class and thereby
inferring the associated continuum equation, in analogy
with the procedure used for critical dynamics.

V. THE EDWARDS-WILKINSON MODEL

The Edwards-Wilkinson equation [30],

∂h

∂t
= ν2

∂2h

∂x2
+ ξ , (49)

where ν2 > 0 and ξ is a Gaussian white noise, was origi-
nally proposed as a theory for sedimentation. The atom-
istic realizations of this model for surfaces driven by de-
position from a molecular beam [20, 27, 28] are based on
identifying the lowest height(s) near a randomly chosen
site. In the version we study here, a particle incident

on a site remains there only if its height is less than or
equal to that of both of its nearest neighbors. If only one
nearest neighbor column is lower than that of the origi-
nal site, deposition is onto that site, but if both nearest
neighbor heights are less than that of the original site,
the deposition site is chosen randomly between the two
lower columns.

The pertinent height configurations can be tabulated
by using the step function in Eq. (13) to express the rel-
ative heights between the nearest neighbors of the initial
site as an identity:

[θ(hi−1 − hi) + Θ(hi−1 − hi)]

× [θ(hi+1 − hi) + Θ(hi+1 − hi)] = 1 , (50)

where

Θ(hi − hj) = 1 − θ(hi − hj) . (51)

The expansion of Eq. (50) produces 4 configurations each
of which is assigned to the w

(k)
i in Eq. (6) according to

the rules of the Edwards-Wilkinson model. The sum rule
in Eq. (7) is thereby satisfied by construction. These
assignments are shown in Fig. 1 and yield the expressions

w
(1)
i = θ(hi−1 − hi)θ(hi+1 − hi) , (52)

w
(2)
i = θ(hi+1 − hi)Θ(hi−1 − hi)

+ 1
2Θ(hi−1 − hi)Θ(hi+1 − hi) , (53)

w
(3)
i = θ(hi−1 − hi)Θ(hi+1 − hi)

+ 1
2Θ(hi−1 − hi)Θ(hi+1 − hi) . (54)

The Langevin equation for the Edwards-Wilkinson
model is obtained by substituting these expressions into
Eqs. (23) and (25).

(c) (d)

(a) (b)

FIG. 1: Relaxation rules of the Edwards-Wilkinson model,

with contributions to (a) w
(1)
i , (b) w

(2)
i , (c) w

(3)
i , and (d) to

w
(2)
i and w

(3)
i . The corresponding expressions are given in

Eqs. (52)–(54). The arrows indicate the incident and depo-
sition sites. In (d), both of the deposition sites are equally
likely. The broken lines show where greater heights do not
affect the deposition site.
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FIG. 2: Surface roughness obtained from the Langevin equa-
tion (23) and (25) with Eqs. (52)-(54) and from KMC simu-
lations for a system of length L = 1000 for Ω = 1, 2, 20. Time
is measured in units of monolayers (ML) deposited. The data
were averaged over 500 independent realizations. The slopes
of the straight lines correspond to the growth exponent of ran-
dom deposition (β = 1

2
) and that of the Edwards-Wilkinson

model (β = 1
4
).

The comparison of W (L, t) obtained from KMC sim-
ulations and the Langevin equation employing the step
function θ(x; 0) in Eq. (A1) is shown in Fig. 2 for a sys-
tem of length L = 1000 and with Ω = 1, 2, 20. Most
apparent is that, for Ω = 1, 2, the roughness calculated
from the Langevin equation is appreciably greater than
that of the KMC simulation. For Ω = 1 there is a
spurious “crossover” near 2–3 ML from random depo-
sition, characterized by a growth exponent β = 1

2 , to-
ward the Edwards-Wilkinson scaling regime at times be-
yond t ∼ 102 ML. The behavior at early times is due
largely to the noise: the covariance matrix in Eq. (25) in-
cludes information about nearest-neighbor sites, but the
noise is uncorrelated between sites. Thus, as the lattice
is scanned at each time step, the uncorrelated noise pro-
duces a larger variance in the heights than that of the
simulation. As Ω increases this regime collapses toward
t = 0 and the roughness calculated from the Langevin
equation converges to the KMC roughness at all times.

Figure 3 compares the lateral height correlation func-
tion in Eq. (47) obtained from KMC simulations for
a lattice of size L = 1000 with that determined from
the Langevin equation for Ω = 1, 2, 20 at an early time
(t = 100 ML) and at a much later time (t = 5000 ML).
The basic trends with increasing Ω are the same as those
in Fig. 2. The Langevin solution overestimates the cor-
relation function and there is a crossover from uncorre-
lated behavior, characteristic of random deposition, to
the Edwards-Wilkinson scaling regime. These deviations
are most apparent up to r ∼ 10, even for Ω = 20. This is
to be expected, since the spatial range of the discrepancy
approaches the atomic scale of the lattice. However, even

100

C
(r
)
(la
tti
ce
un
its
)

100 101 102

Edwards Wilkinson Model
L = 1000, t = 100 ML

= 1

= 2

= 20

KMC

(a)

100 101 102

r (lattice units)

100

101

C
(r
)
(la
tti
ce
un
its
)

Edwards Wilkinson Model
L = 1000, t = 5000 ML

= 1

= 2

= 20

KMC

(b)

= 1
2

FIG. 3: Lateral height correlation function obtained from
the Langevin equation (23) and (25) with Eqs. (52)-(54) and
KMC simulations up to r = 500 for a system of size L = 1000
at (a) t = 100ML and (b) t = 5000ML for Ω = 1, 2, 20.
Data were obtained by averaging over 500 independent real-
izations. The slope of the straight line in (b) has the Edwards-
Wilkinson value of the roughness exponent (α = 1

2
).

for Ω = 1 the spatial range of the correlations is correctly
described by the Langevin equation.

We have shown previously [29] that a plot of WL−α

vs. tL−z produces a collapse onto the scaling function f
in Eq. (45) for the Edwards-Wilkinson exponents (α =
1
2 , z = 2). This result, together with the comparisons
in Figs. 2 and 3, shows that, for large enough values of
Ω, our method reproduces the pre-asymptotic behavior,
the scaling properties, and the saturation values of the
roughness and correlation function obtained from KMC
simulations. The roughness fluctuations in the satura-
tion regime [49] also follow the same scaling function as
the KMC solution [59]. Each of these quantities interro-
gates a different aspect of the surface morphology, so the
comparisons presented in this section demonstrate that
our method yields results that systematically converge
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to those of KMC simulations as Ω → ∞. Indeed, these
comparisons suggest that, if only the scaling regimes are
of interest, then solutions of the Langevin equation, even
with Ω = 1 for large enough system sizes and long enough
times, yield an accurate estimate of the exponents.

VI. THE WOLF-VILLAIN MODEL

The Wolf-Villain model [32] was first introduced for the
low-temperature growth of group-IV materials [31]. This
model has been the subject of many theoretical studies
[18, 23, 24, 60–63, 65, 66]. KMC simulations show a slow
crossover from Mullins-Herring to Villain-Lai-Das Sarma
behavior and eventually to the Edwards-Wilkinson uni-
versality class [24, 62, 63], a conclusion supported by
arguments based on surface diffusion currents [23].

In the Wolf-Villain model [31, 32] an arriving particle
remains on the original (randomly chosen) site only if its
coordination cannot be increased by moving to a near-
est neighbor site. If only one nearest neighbor site offers
greater coordination than the original site, deposition is
onto that site. However, if both nearest neighbor sites
offer greater coordination than the original site, the de-
position site is chosen randomly between the two. The re-
quired configurations can be tabulated by using the step
functions in Eqs. (13) and (51) to express the pertinent
relative heights as an identity. Since the coordinations of
the initial and two nearest neighbor sites are needed to
ascertain the deposition site, this identity must include
sites up to second-nearest neighbors:

[θ(hi−1 − hi−2) + Θ(hi−1 − hi−2)]

× [δ(hi, hi−1) + Θ(hi−1 − hi) + Θ(hi − hi−1)]

× [δ(hi, hi+1) + Θ(hi − hi+1) + Θ(hi+1 − hi)]

× [θ(hi+1 − hi+2) + Θ(hi+1 − hi+2)] = 1 , (55)

where

δ(hi, hj) = θ(hi − hj) + θ(hj − hi) − 1 . (56)

The expansion of Eq. (55) produces 36 terms that can
be combined into distinct generic configurations and as-
signed to the w

(j)
i according to the deposition rules of the

Wolf-Villain model. The deposition rules are depicted in
Fig. 4 for w

(1)
i and in Fig. 5 for w

(2)
i . The associated

diagrams for w
(3)
i are mirror images about the central

(ith) site of each diagram in Fig. 5. Expressions for the
configurations in Figs. 4 and 5 are compiled in Table
I; the corresponding expressions for the configurations
that contribute to w

(3)
i can be obtained by applying the

transformation i ± k → i ∓ k to each of the terms for
w

(2)
i . We mention in passing that the corresponding con-

structions in Table I and Figs. 4 and 5 for the Das Sarma-
Tamborenea model [33] requires minimal additional effort
because the generic configurations are the same as those

(d) (e) (f)

(a)(a) (b) (c)

FIG. 4: Local height configurations that contribute to w
(1)
i

for the Wolf-Villain model. Arrows indicate the incident and
deposition sites. Column heights strictly greater than and
strictly equal to hi are as indicated; those less than or equal
to hi are shown with broken lines.

of the Wolf-Villain model. The two models differ only
in the implementation of their deposition rules to these
configurations.

Figure 6 compares the roughness determined from
KMC simulations with that obtained from the Langevin
equation with the step function θ(x; 1) in Eq. (A1) for
a lattice of length L = 40 000. Because of the extended
deposition time and large system size, we have integrated
the Langevin equation with Ω = 1. In common with the
corresponding comparison for the Edwards-Wilkinson
model in Fig. 2, there is an initial transient regime ex-
tending up to t ∼ 10 ML during which β 
 0.5, corre-
sponding to random deposition. For greater times, the
roughness obtained from the Langevin equation tracks
the KMC roughness.

(g)(g) (h)(h) (i)

(d)(d) (e)(e) (f)(f)

(a)(a) (b)(b) (c)(c)

FIG. 5: Local height configurations that contribute to w
(2)
i

for the Wolf-Villain model. Arrows indicate the incident and
deposition sites. Where more than one deposition site is
obtained, both are equally likely. Column heights strictly
greater than and strictly equal to hi are as indicated: those
less than or equal to hi are shown with broken lines.
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TABLE I: The terms generated by the expansion of Eq. (55), the corresponding configurations in Figs. 4 and 5, and the

assignment to the w
(j)
i according to the rules of the Wolf-Villain model.

Term Figure Rule

θ(hi−1 − hi−2)δ(hi, hi−1)δ(hi, hi+1)θ(hi+1 − hi+2) 4(a) w
(1)
i[

1 − θ(hi − hi−1)
][

1 − θ(hi − hi+1)
]

4(b) w
(1)
i[

1 − θ(hi − hi−1)
]
δ(hi, hi+1) 4(c) w

(1)
i

δ(hi, hi−1)
[
1 − θ(hi − hi+1)

]
4(d) w

(1)
i[

1 − θ(hi − hi−1)
][

1 − θ(hi+1 − hi)
]
θ(hi+1 − hi+2) 4(e) w

(1)
i

θ(hk−1 − hk−2)
[
1 − θ(hi−1 − hi)

][
1 − θ(hi − hi+1)

]
4(f) w

(1)
i[

1 − θ(hi−1 − hi−2)
]
δ(hi, hi−1)δ(hi, hi+1)θ(hi+1 − hi+2) 5(a) w

(2)
i[

1 − θ(hi−1 − hi)
]
δ(hi, hi+1)θ(hi+1 − hi+2) 5(b) w

(2)
i[

1 − θ(hi−1 − hi−2)
][

1 − θ(hi−1 − hi)
][

1 − θ(hi − hi+1)
]

5(c) w
(2)
i[

1 − θ(hi−1 − hi−2)
][

1 − θ(hi−1 − hi)
][

1 − θ(hi+1 − hi)
]
θ(hi+1 − hi+2) 5(d) w

(2)
i[

1 − θ(hi−1 − hi−2)
][

1 − θ(hi−1 − hi)
]
δ(hi, hi+1)

[
1 − θ(hi+1 − hi+2)

]
5(e) w

(2)
i[

1 − θ(hi−1 − hi−2)
]
δ(hi, hi−1)δ(hi, hi+1)

[
1 − θ(hi+1 − hi+2)

]
5(f) w

(2)
i , w

(3)
i[

1 − θ(hi−1 − hi−2)
][

1 − θ(hi−1 − hi)
][

1 − θ(hi+1 − hi)
][

1 − θ(hi+1 − hi+2)
]

5(g) w
(2)
i , w

(3)
i

θ(hi−1 − hi−2)
[
1 − θ(hi−1 − hi)

][
1 − θ(hi+1 − hi)

]
θ(hi+1 − hi+2) 5(h) w

(2)
i , w

(3)
i[

1 − θ(hi−1 − hi−2)
]
δ(hi, hi−1)

[
1 − θ(hi+1 − hi)

]
θ(hi+1 − hi+2) 5(i) w

(2)
i , w

(3)
i
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FIG. 6: Comparison of surface roughness obtained from the
lattice Langevin equation with Ω = 1 and KMC simulations
for the Wolf-Villain model for a system of length L = 40 000.
Scaling regimes are shown by straight lines whose slopes have
the indicated values of the growth exponent β.

After the initial transient period, for times up to
105 ML, the growth exponent is β = 3

8 , which corre-
sponds to that of the Mullins-Herring equation [67, 68],

∂h

∂t
= −ν4

∂4h

∂x4
+ ξ , (57)

where ν4 > 0. This is the result obtained by Wolf and

Villain [32] from KMC simulations, but we can offer an
analytic justification of this behavior. If, in the lattice
Langevin equation, the step function θ(x; 1) in Eq. (A1)
and the height profile h are replaced by analytic func-
tions, and discrete differences are calculated with Taylor
expansions, the dominant coefficient, by almost an order
of magnitude, in the resulting infinite series of partial
derivatives is ν4 [51]. Thus, the morphological evolution
of the smoothed Wolf-Villain model is described approx-
imately by the Mullins-Herring equation.

Mullins-Herring scaling persists for almost four
decades of deposition time before crossing over to a
regime characterized by the growth exponent β = 1

3 ,
which corresponds to the Villain-Lai-Das Sarma equa-
tion [9, 10]:

∂h

∂t
= −ν4

∂4h

∂x4
+ λ

∂2

∂x2

(
∂h

∂x

)2

+ ξ . (58)

After a further elapsed time extending to two decades,
there is a final crossover to the scaling regime of the
Edwards-Wilkinson equation (49), for which β = 1

4 . Al-
though the Langevin equation provides an accurate ac-
count of this crossover sequence, which was first reported
by Kotrla and Šmilauer [24], a fundamental understand-
ing requires an analysis of the renormalization-group tra-
jectory from the initial conditions of the smoothed Wolf-
Villain model. This will be reported elsewhere.

The correlation function in Eq. (47) determined from
KMC simulations and the Langevin equation with Ω = 1
is shown in Fig. 7 at times t = 104 ML, 106 ML, 108 ML.
The comparison in Fig. 7(a) shows that the scaling
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FIG. 7: The correlation function C(r) defined in Eq. (47)
calculated from KMC simulations and the Langevin equation
with Ω = 1 for the Wolf-Villain model for a system size of
L = 40 000 at times (a) 104 ML, (b) 106 ML, and (c) 108 ML.

regime of the correlation function is consistent with the
roughness exponent α = 3

2 associated with the Mullins-
Herring equation. This behavior persists to t = 108 ML
[Fig. 7(b,c)], but only for values of r up to 10 lattice units,
i.e. only for short-range correlations. At t = 108 ML,
there appears to be an incipient crossover from the
Mullins-Herring regime, but no other clearly discernible
scaling regime. Nevertheless, the correlation function ob-
tained from the Langevin solution follows the details of
the KMC solution; any discrepancy can be attributed to
our having used Ω = 1 to obtain this solution. Even at

the latest time, the correlations extend only to several
hundred lattice sites, so the slope change in the rough-
ness at this time is a true crossover, rather than the onset
of saturation. In contrast, for the system in Figs. 2 and 3,
the lateral correlations are approaching the system size
and the roughness shows the first signs of saturation.

VII. RANDOM DEPOSITION WITH SURFACE
DIFFUSION

Models of epitaxial kinetics typically include random
deposition and nearest-neighbor Arrhenius-type hopping
over barriers determined by the initial environment of the
hopping atom [1–3]. As noted in Sec. IV, the simplest
such rules stipulate that the hopping barrier is deter-
mined by an energy ES from the substrate and a contri-
bution EN from each of the ni lateral nearest neighbors,
so Ei = ES + niEN . The Langevin equation for this
model is given in terms of the moments in Eqs. (30) and
(31) in which we take [3] ES = 1.58 eV and EN = 0.24 eV
for a system of length L = 100. The deposition rate
is 0.5 ML per second. We have used the step function
θ(x; 1) in Eq. (A1), which is the same as that used for
the Wolf-Villain model because the transition rules are
again determined by calculating the number of nearest
neighbors.

The scaling behavior of this model has been studied
with the renormalization-group [10] and KMC simula-
tions [22, 70]. The roughness shows an intermediate scal-
ing regime with a growth exponent β = 3

8 , characteristic
of the Mullins-Herring equation (57), before crossing over
to the value β = 1

3 calculated [10] for the equation of mo-
tion in Eq. (58). Since these regimes are manifestations
of thermally activated hopping, the crossover times de-
creases with increasing temperature.

Figure 8 compares the surface roughness in Eq. (44) de-
termined by KMC simulations with that obtained from
the solution of the Langevin equation for temperatures
T = 500 K and T = 600 K. At T = 500 K [Fig. 8(a)], sur-
face diffusion is almost completely suppressed and growth
proceeds essentially by random deposition, resulting in
the growth exponent β = 1

2 characteristic of this pro-
cess. In this regime, γ ≈ 1 for all lattice sites, so the
off-diagonal elements in the correlation matrix Eq. (31)
are small compared to the diagonal elements, but we have
retained all of the correlation matrix elements in this cal-
culation. The weak surface diffusion means that the local
environment is of minimal importance for the transition
rules, so calculations with Ω = 1 yield accurate results.
However, surface diffusion is not completely absent, as
times beyond 104 ML see the onset of the crossover to
the Mullins-Herring growth exponent (β = 3

8 ).
As the temperature is raised to 600 K, surface diffu-

sion becomes activated and the roughness shows an alto-
gether different behavior from that at 500 K [Fig. 8(b)].
After an initial transient, the growth exponent initially
approaches β = 3

8 . The importance of surface diffusion
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FIG. 8: Comparison between surface roughness obtained from
the lattice Langevin equation with the indicated values of Ω
and KMC simulations for a model with random deposition
and surface diffusion for a system of length L = 100. The
results have been averaged over 500 independent realizations.

means that the local environment becomes an important
factor in the transitions at this temperature, so a value
of Ω = 10 is required to obtain agreement between the
Langevin and KMC solutions. These comparisons indi-
cate that the Langevin equation captures the interplay
between the driving force of the deposition process and
the equilibration through surface diffusion, which is one
of the central features of epitaxial growth.

The effect of surface diffusion can be isolated by exam-
ining the equilibration of a surface profile in the absence
of deposition. Such studies originated with the work of
Mullins [68] who showed that the relaxation of a sinu-
soidally patterned surface could be used to extract sur-
face diffusion constants. Figure 9 shows a sequence of
snapshots of the relaxation of the one-dimensional pro-
file displayed in panel (a) determined by KMC simula-
tions and from the solution of the Langevin equation with
the moments in Eqs. (30) and (31), both on a surface of
length L = 40. The quality of the agreement between the
two solutions shows that the Langevin equation correctly
describes the time scale of the relaxation toward equilib-
rium. This result is especially important for modelling
other equilibration processes such as Ostwald ripening,
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FIG. 9: Relaxation of a surface profile in the absence of de-
position at 600 K modelled by KMC simulations (solid lines)
and the Langevin equation with Ω = 20 (broken lines). The
system has size L = 40 on which periodic boundary condi-
tions are imposed. The initial profile is indicated by dots in
(a). Profiles are shown at times (a) 3000, (b) 6000, (c) 9000,
(d) 12000, (e) 15000, and (f) 18000. In each panel, the ab-
scissa is the spatial position (1 ≤ i ≤ 40) and the ordinate is
the height hi. The energy parameters are the same as those
used in Fig. 8 and each result has been averaged over 50 in-
dependent realizations.

the recovery phase of epitaxial growth, and the decay of
nanostructures on surfaces.

VIII. DISCUSSION

In the preceding sections, we have derived Langevin
equations for several standard models of epitaxial growth.
Our analytic description embodies the statistical infor-
mation obtained from KMC simulations, but comple-
ments the purely algorithmic approach of the KMC
method. This has several useful conceptual and practical
consequences. For deposition models, where the correla-
tion matrix is diagonal, the numerical integration of the
Langevin equation provides a computational alternative
to KMC simulations. But even in the presence of sur-
face diffusion, which produces a correlation matrix with
off-diagonal entries, an analytic formulation offers advan-
tages because not all stochastic processes necessarily con-
tribute equally to this matrix. For example, in the early
stages of irreversible growth on a singular surface under
typical operating conditions, nucleation is the most im-
portant stochastic process; all other processes, including
deposition, can be taken as deterministic [69]. At later
stages, as the surface roughens, surface diffusion is less
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effective and the shot noise of the deposition becomes the
dominant stochastic process [4]. Our analytic expression
for the correlation matrix of the noise could provide the
basis for an adaptive approach to stochastic integration
or some other form of noise reduction [25].

The model described in Sec. VII provides a basic de-
scription of growth by molecular-beam epitaxy and has
been used to explain many fundamental experimental ob-
servations [3, 35–37]. But it is for applications to het-
eroepitaxial systems, especially the theory of quantum
dot formation, where establishing a Langevin equation is
of prime importance. Equations of motion for heteroepi-
taxial morphology based on classical linear elasticity [71–
73] have already met with considerable success, but such
approaches cannot easily draw connections to atomistic
processes. Although continuum elasticity can be derived
by coarse-graining “ball-and-spring” models [74], and hy-
brid methods are now capable of determining the meso-
scopic consequences of atomistic interactions [75, 76], a
complete understanding of heteroepitaxial morphological
evolution, particularly comparisons with specific materi-
als systems, must await a more systematic treatment of
the coarse-graining of atomic-scale kinetics in the pres-
ence of strain. Lattice-based models that subsume non-
local elastic effects into local hopping barriers provide a
useful starting point for such efforts.

Our approach is suitable for other lattice models with
transition rules that fulfill the small jump and smooth-
ness conditions in Sec. III, including the random walk
with exclusion [77], which is a lattice realization of Burg-
ers’ equation, and ballistic deposition [78], which belongs
to the Kardar-Parisi-Zhang (KPZ) universality class [4].
Sandpile models of self-organized criticality might be
amenable to our method. An issue of considerable re-
cent interest in this area is the relation between sandpile
models and the depinning transition in quenched random
media [79]. Phenomenological equations have been pro-
posed for self-organized criticality [80], but systematic
derivations are now beginning to appear [81]. Taking
a broader view, epidemiology and population dynamics
could also benefit from our analysis [82] and, indeed, a
method similar to that developed here has been applied
to population dynamics [83], albeit without spatially-
dependent variables.

The wider significance of our method derives from the
Langevin equation providing a starting point for the pas-
sage to the continuum limit. This can be carried out for
the Edwards-Wilkinson model by transforming to coarse-
grained variables based on “naive” scaling [50], but for
models where such arguments fail, renormalization-group
(RG) methods must be used. In this case, the regular-
ized Langevin equation provides the initial condition for
the RG and the subsequent trajectory determines any
crossover regimes along the path to the stable fixed point.
This establishes the basis for identifying the appropri-
ate continuum equation as a function of coarse grain-
ing. Quite apart from the conceptual impact of this
procedure, there are practical applications. A Langevin

equation derived from first principles can be compared
with equations derived from the statistics of growing sur-
faces to obtain estimates of fundamental parameters [84].
The comparison between the morphological evolution of
real systems with predictions based on stochastic growth
equations remains an active research area [85, 86] and
our methodology is poised to contribute to this effort.

IX. SUMMARY AND CONCLUSIONS

We have derived Langevin equations for fluctuating
surfaces that embody the statistical properties of KMC
simulations. The statistical equivalence of the Langevin
equation and the Chapman-Kolmogorov equation, as re-
quired by the Kurtz theorem [45–47], has been demon-
strated with applications to several standard models. We
have identified the important implementational issues of
our method: the optimal regularization of the step func-
tions used to characterize the local environment for a
particular model, and the convergence of the Langevin
to the KMC solution with increasing largeness parame-
ter Ω. The convergence is slowest at the earliest times for
the roughness and the smallest distances for the correla-
tion function, where atomistic effects are most evident.
But for longer times and larger distances on large lat-
tices, even Ω = 1 can provide a reliable account of the
scaling behavior of correlation functions.

The availability of an exact analytic formulation of
stochastic lattice models of growth provides a starting
point for coarse-graining Langevin equations for input to
RG transformations. This provides the basis for a first-
principles continuum description of lattice models that
would explain several intriguing observations of KMC
simulations [24, 26–28] that as yet have no analytic justi-
fication. Finally, in the arena of heteroepitaxial phenom-
ena, our method provides an opportunity to derive con-
tinuum equations whose coefficients retain their atomistic
ancestry. This would pave the way towards a systematic
approach to modelling heteroepitaxial growth for specific
materials systems.
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APPENDIX A: STEP FUNCTION
REGULARIZATION

The step functions in the transition rules that appear
in the Chapman-Kolmogorov equation survive the pas-
sage to the Langevin equation, albeit as regularized func-
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tions. However, the transition rules fix the step function
θ(x) in Eq. (13) only for integer values of x [Fig. 10(a)].
The continuation of the step function to all real argu-
ments must maintain the transition rules for continuous
heights. This is a stringent condition on the regulariza-
tion and depends on the rules of the model. An inappro-
priate choice of regularization can provide results that
appear to be at variance with the Kurtz theorem, when
it actually represents an inadvertent change of the model
itself. The simplest regularization of θ(x) that fulfills the
requirement of continuity discussed in Sec. III B is

θ(x; a) =
1
a

[max(x + a, 0) − max(x, 0)] , (A1)

where 0 < a ≤ 1 and max(x, y) is the greater of x and
y. The general form of this regularization is shown in
Fig. 10(b). No other regularizations we have constructed
has produced superior results to those based on Eq. (A1).

1. The Edwards-Wilkinson Model

The transition rates of the Edwards-Wilkinson model
are based on identifying the minimum height(s) from
among a randomly chosen site and its two nearest neigh-
bors. Expressions for these transition rates are given in
Eqs. (52)–(54). The rules of this model are extended to
continuous variables by requiring that the height is al-
ways minimized, even if the height differences between
neighboring sites are less than one unit.

Several typical local height configurations and their
deposition probabilities obtained by using θ(x; 1) and
θ(x; 0.01) in Eqs. (52)–(54) are shown in Fig. 11. These
comparisons demonstrate the striking effect that different
choices of regularization θ(x; a) have on the morpholog-
ical evolution of a surface for nominally the same tran-
sition rules. We see that, apart from the configuration
where the original site has the minimum height, θ(x; 1)
produces a bias toward greater heights than θ(x), which
clearly violates the spirit of the Edwards-Wilkinson rules.
Configurations in which the original site has the great-
est height by less than one unit provide the most telling

1 1
x

1

1 1
x

1

a

(a) (b)

FIG. 10: (a) The step function in Eq. (13), and (b) the reg-
ularization in Eq. (A1). The function in (b) has the same
values for integer arguments, which are indicated by dots, as
the function in (a) for 0 < a ≤ 1. The shaded regions show
how the abrupt threshold behavior in (a) is smoothed by the
regularization in (b).
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FIG. 11: Local deposition probabilities for the Edwards-
Wilkinson model using (a) θ(x; 1) and (b) θ(x; 0.01), where
θ(x; a) is defined in Eq. (A1). The randomly chosen site is
denoted by i and the deposition probabilities to each site are
written at the top of the corresponding column. Height dif-
ferences between the central and nearest-neighbor heights are
shown at the sides of each configuration.

difference: θ(x; 1) actually favors this as the deposition
site, again in violation of the Edwards-Wilkinson crite-
rion. On the basis of these considerations, we expect
that θ(x; 1) produces a rougher surface than θ(x; 0.01)
and, more importantly, that θ(x; 0.01) provides the more
faithful extension of the Edwards-Wilkinson model to
continuous variables.

Figure 12 compares the roughness calculated from the
Langevin equation by using θ(x; 1) and θ(x) with that ob-
tained from KMC simulations. The regularization with
θ(x; 1) does indeed lead to a rougher surface than that
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FIG. 12: The roughness in Eq. (44) for the Edwards-
Wilkinson model obtained by solving the Langevin equation
with Ω = 50 for a system of size L = 20 using the regular-
ization θ(x; 1) defined in Eq. (A1) and the original threshold
function θ(x) in Eq. (13). Each data set was obtained from
an average of 1500 realizations.
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FIG. 13: Local deposition probabilities for the Wolf-Villain model using (a) θ(x; 1) and (b) θ(x; 0.01). The randomly chosen
site is denoted by i and the transition probabilities to each site are written at the top of the corresponding column. Height
differences between the central and nearest-neighbor heights are indicated at the sides of each configuration.

obtained from KMC simulations at all times. The two
Langevin solutions yield approximately the same slope at
pre-saturation times, but then begin to diverge, and show
an appreciable difference in their saturation values. By
contrast, the calculation with θ(x) agrees with the KMC
roughness at all times. As this suggests, the Langevin
solution with the regularizations θ(x; a) using decreasing
values of a converges to the KMC solution as a → 0.
Thus, the optimal choice is, in fact, no regularization at
all. Operationally, we can either choose a value of a small
enough to produce agreement with KMC simulations to
some prescribed tolerance, or simply take the limit a → 0
after having performed the Kramers-Moyal-van Kampen
expansion.

2. The Wolf-Villain Model

The deposition rules of the Wolf-Villain model are
based on identifying the site that maximizes the num-
ber of nearest neighbors. The transition probabilities for
several representative configurations are shown in Fig. 13.
These have been calculated by using θ(x; 1) and θ(x; 0.01)
in the local transition rates in Table I. An immediate
consequence of the height variables becoming continu-
ous is that the likelihood of nearest-neighbors having the
same height is essentially zero. Consequently, configura-
tions in Figs. 4 and 5 whose transitions rely on the equal-
ity of neighboring heights are effectively pre-empted by
the sharp threshold function in Eq. (13). Therefore, for
height differences lying in the range [0, 1], the rules of the
Wolf-Villain model must be applied gradually, so we ex-
pect that θ(x; 1) provides the optimal regularization for
this model.

The four configurations shown in the top row of Fig. 13
illustrate the main difference between the two regulariza-
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FIG. 14: The roughness in Eq. (44) for the Wolf-Villain model
obtained by solving the Langevin equation with Ω = 50 for a
system of size L = 20 using θ(x; 1) and θ(x). Each set of data
was obtained from an average of 1500 realizations.

tions. The maximum coordination is identified as the de-
position site by θ(x; 0.01). However, with θ(x; 1), there is
a gradual transition of the most probable deposition site
as the height of the second-nearest neighbor increases,
which effectively increases the coordination of the near-
est neighbor. For configurations where the initial site
has the lowest height, both regularizations are in broad
agreement if the height differences are large enough. The
regularization θ(x; 1) again yields appreciable probabili-
ties onto neighboring sites if their coordination, as mea-
sured by neighboring height differences, is sufficient. This
regularization allows deposition onto the initial site if
neighboring sites have non-zero coordination, but cor-
rectly identifies the site with the greatest coordination,
which θ(x; 0.01) does not. In effect, θ(x; 1) smears out
small height differences.
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The roughness calculated from the Langevin equation
with both regularizations is compared in Fig. 14 with the
KMC roughness. The regularization θ(x; 0.01) produces
a much greater saturation roughness and a delayed satu-

ration time than θ(x; 1), although there is agreement at
early times between all three solutions. For the Wolf-
Villain model, therefore, θ(x; 1) is the more accurate reg-
ularization.
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