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The Motivations

The Broad Picture
The global warming predictions are based

primarily upon climate models. The key element of all such models
are ocean circulation models. The ocean circulation models, as the
name suggests, are concerned only with the large-scale motions, while
all other motions of scales, less than, say, 102 km are not resolved.
They are merely parameterised, very often on quite flimsy grounds.

It is widely believed (after Munk 66) that the abyssal basin-average
vertical diffusivity Kv is about 10

−4m2/s. However, this view is
being challenged now. The current state of knowledge (or ignorance)
is such that opinions ranging from the key importance of mixing in
the stratified ocean to its total insignificance are equally legitimate.
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There exist hand waiving arguments that the mixing is provided by
small scale turbulence caused by internal wave breaking, however,
specific mechanisms (apart from the critical reflection by bottom
relief) have not been even identified.

In this we work we suggest a plausible mechanism of wave

breaking in the abyssal ocean and develop its quantitative

description.

3



The ”Traditional Approximation”

Internal waves, as well as all oceanic motions of scales small compared
to the Earth’s radius are commonly described as if the Earth were
locally flat, i.e. the motions are considered in a plane tangent to the
Earth’s surface, attached at the location under consideration. This

plane is co-rotating with the Earth’s angular velocity ~Ω.

In the equations of motions, written in a Cartesian frame fixed to
this plane at latitude φ, the Coriolis vector has two components: a
horizontal (meridional) one f̃ = 2Ωcosφ, and a vertical one

f = 2Ω sinφ (Ω = |~Ω|). At mid-latitudes the two are comparable.

The neglect of the terms involving the horizontal component
represents, the so-called, “traditional approximation”.
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The Coriolis force acts in a direction perpendicular to fluid velocity;
hence the horizontal component f̃ can act in only two ways: in the
presence of a zonal motion it creates a vertical acceleration, and in
the presence of a vertical velocity it creates a zonal acceleration.

The commonly used intuitive argument to justify the traditional
approximation is: since low-frequency motions are predominantly
horizontal, neither vertical accelerations nor vertical velocities play a
significant role; hence the effect of f̃ must be negligible.
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The fundamental flaw of this argument lies in the implicit
assumption that the effect due to the horizontal component
of rotation represents a regular perturbation.
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We will show that:

Simultaneous taking into account of

(i) ”non-traditional” effects,

(ii) the fact that the fluid is vertically confined, and

(iii) β-effect (or any other horizontal inhomogeneity)
leads to profound implications for ocean dynamics.

A new generic mechanism enhansing inertial wave breaking

and intensification of mixing emerges.

The near-inertial waves are by far the most energetic part of the IW
spectrum in the ocean and, therefore, whatever happens with them
-matters.
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Basic equations and properties

The Earth’s rotation angular velocity is ~Ω (|~Ω| = 7.29 · 10−5rad/s).

The Coriolis vector has two components:
a a vertical one

f = 2Ω sinφ

(Ω = |~Ω|, φ is latitude; and a horizontal (strictly meridional) one:

f̃ = 2Ωcosφ

.
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We begin with the standard linear equations on the non-traditional
f -plane under the Boussinesq approximation,

ut − fv + f̃w = −px (1)

vt + fu = −py (2)

wt − f̃u = −pz + b (3)

ux + vy + wz = 0 (4)

bt +N
2w = 0 , (5)

where p is the departure of pressure from its hydrostatic value
(divided by a constant reference density), b the buoyancy. The
Cartesian frame with the coordinates : x (west-east), y
(south-north); z (vertical, positive upward, with the origin at the
unperturbed ocean surface) is used; while u, v and w are the
corresponding velocity components.

9



The eqs of motion can be reduced to a single equation for vertical
velocity w

∇2wtt + (~f · ∇)2w +N2∇2
hw = 0 (6)

~f = (0, f̃ , f), and ∇2
h denotes the horizontal Laplacian. We allow the

buoyancy frequency N to depend on z.

In the traditional approximation one would take f̃ = 0.
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For plane monochromatic (w =W exp(iσt)) waves travelling in the
χ = x cosα+ y sinα direction, we find

(N2 − σ2 + f2
s )Wχχ + 2ffsWχz − (σ2 − f2)Wzz = 0 , (7)

where fs = f̃ sinα. Equation (7) is the starting point of our study.

Shorthand presentation

AWχχ + 2BWχz + CWzz = 0 , (8)
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If we consider unbounded fluid and set N = const the the eq-n
admits plane wave solutions for obliquely propagating waves

exp i(kx+ ly +mz − σt)

we recover a well-known dispersion relation

σ2 = N2 cos2 θ + (~f · ~k)2/|~k|2

The limiting cases:

(i) Gravity internal waves:

σ2 = N2 cos2 θ

(ii) Gyroscopic or inertial waves

σ2 = (~f · ~k)2/|~k|2
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”Non-traditional” boundary-value problem

On employing the standard boundary conditions at the surface and
the bottom, the substitution of

W = ψ(z) exp i(kχ+ δz)

with
δ = −kffs/(σ2 − f2)

leads to the following BVP for ψ

ψ′′+k2
[N2(z)− σ2

σ2 − f2
+
( σfs
σ2 − f2

)2]
ψ = 0 , ψ(0) = ψ(H) = 0, (9)

Note, that the ”non-traditional term” containing fs yields a higher
order singularity, but does not pose any extra difficulty.
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The nontraditional term becomes dominant when σ ≈ f , that is, in
the vicinity of the inertial frequency. To the leading order the
solution becomes independent on N(z) and can be readily found for
the n−th mode

(σ2 − f2)/σ = ±fsH
2πn

k, k > 0 (10)

Thus, in contrast to the ”traditional” boundary-value problem where
for all eigenmodes σ2 − f2 > 0, we, in addition, have got another
family of sub-inertial modes with σ2 − f2 < 0.
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Frequencies of the modes of both families tend to inertial frequency
in the longwave limit. For super-inertial waves this looks similar to
the modes behaviour under the traditional approximation, however,
there is a qualitative difference: group velocity does not vanish
at the inertial frequency :

dσ

dk
=
fsH

2πn

For sub-inertial waves the expression for σk differs only in
sign.

The range of allowed sub-inertial frequencies is (O((f̃/N)2)) narrow :

σ2
min =

1

2

(
λ−

√
λ2 − (2fN)2

)
< σ2 < f2 (λ = N2 + f2 + f2

s ) .
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Figure 1: Dispersion relation σ(k1)
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Trapped sub-inertial modes

It is convenient to re-write (9) in the equivalent more explicit form

ψ′′ + k̃2
[
−N2(z) + α2(σ)

]
ψ = 0, ψ(0) = ψ(H) = 0, (11)

where

k̃2 =
k2

|σ2 − f2| and α2(σ) = −σ
2f2
s − σ2(σ2 − f2)

(σ2 − f2)
> 0

For a sub-inertial wave motion to exist the square brackets must be
positive, i.e. N2(z) < α2(σ), which implies that for the most of σ in
the allowed range the sub-inertial wave motion will be localised near
minima of N2(z) and prohibited near the maxima.
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Modal structure for stratification N(z) typical of ocean
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Figure 2: An empirical profile of the buoyancy frequency N , from the Bay
of Biscay (summer). The black dashes denote the regions where sub-inertial
waves, within the range 0.9785f–0.999f , can propagate
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The bottom waveguide

For isolated bottom-trapped sub-inertial waves in the abyssal ocean
the weak dependence of N2 with depth is well approximated by a
linear dependence: N2(z) = N2

0 + γz. Eq. (9) then becomes

ψ′′ − l2
[
z − ∆

γC

]
ψ = 0 . (12)

where l2 = k2γ/C and ∆ = B2 −A0C > 0, with A0 = N2
0 − σ2 + f2,

C = −σ2 + f2 > 0, B = ffs. The transformation

ẑ = l2/3[z − ∆

γC
]

now reduces the equation to the standard Airy-equation

d2ψ

dẑ2
− ẑψ = 0 .
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We shall consider a domain that extends indefinitely upwards;
hence the solution in terms of z reads

ψ = Ai
(
l2/3

[
z − ∆

γC

])
. (13)

We require that ψ be zero at the bottom, here defined at z = 0. Let
the zeros of Ai be given by −sn (sn > 0); one then finds for the
wavenumbers ln: l

2/3
n = snγC/∆, so that

kn = ±γC2
(sn
∆

)3/2

; δn = ∓γBC
(sn
∆

)3/2

. (14)

The complete solution thus becomes

W =

∞∑

n=1

Ai
(snγC
∆

z − sn
) {

an sin(kny + δnz) + bn cos(kny + δnz)
}
.(15)

An example of |W | is shown in Fig. 3.
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Figure 3: An example of a bottom-trapped sub-inertial wave (σ =
0.99f), given by a superposition of the first five modes in (15), with
an = bn = n−1. The stratification is given by the realistic values
N0 = 5 × 10−4rad s−1 γ = 4 × 10−10rad2m−1s−2; latitude φ = 45o

and propagation in the meridional direction: α = π/2 (poleward to
the right).
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Normal modes

Even though the functions ψn are normal modes with respect to the
reduced BVP, they are not normal vertical modes of the full
problem, because they carry only part of the vertical
dependence.

2
2



(a)

z (
km

)

−4
−3
−2
−1

0

(c)

z (
km

)

−4
−3
−2
−1

0

(e)

z (
km

)

−4
−3
−2
−1

0

(g)

z (
km

)

−4
−3
−2
−1

0

(i)

y (km)

z (
km

)

0 100 200 300 400
−4
−3
−2
−1

0

(b)

−1

0

1

(d)

−1

0

1

(f)

−1

0

1

(h)

−1

0

1

y (km)

(j)

0 100 200 300 400

−1

0

1

Figure 4: Modal solutions for constant N , at mid-latitude.
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ψn(z) are not the normal modes of the full problem, but
unseparable 2D eigenfunctions Wn(z, χ) are .

Wn are orthogonal and the set is complete.

The general solution of (7) thus is

W =

∞∑

n=1

ψn(z)
{
an sin(knχ+ δnz) + bn cos(knχ+ δnz)

}
(16)

where an and bn are arbitrary constants. (The time-dependence can
be introduced by replacing knχ by knχ± σt for right- or leftward
propagating waves).
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Transformation into small scales and ”breaking”

Since the sub-inertial dispersion branches represent smooth
continuation of the corresponding super-inertial branches, the
horizontal variations of either intrinsic frequency or the inertial
frequency f strongly affects propagation of near-inertial waves by
allowing transformation of waves of the super-inertial branch

into sub-inertial ones or vice versa.

On the β−plane the sub-inertial waveguides turn into wedges
(because of dependence on y through f).

Below we describe the wave evolution in the bottom ”wedge”.
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Evolution on the β−plane
On the β−plane

f = f0 + βy, (β = 2|Ω| cosφ/R) ,
φ denotes a fixed latitude, Ω the Earth’s angular velocity, and R the
Earth’s radius.

For strictly meridional propagation in terms of the stream=function
Ψ

v = Ψz w = −Ψy (17)

the problem reduces to the single equation

∆Ψtt +N
2Ψyy + f

2Ψzz + f̃
2Ψyy + 2ff̃Ψyz + βf̃Ψz = 0 (18)

with the boundary conditions

Ψy(0) = Ψy(H) = 0 . (19)

This is a Tricomi type problem for which no method exists.
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The challenge is to find out evolution of the wave field itself, not just
characteristics.

WKB

Remarkably, for the most interesting situations, in particular, for the
bottom waveguides, the WKB description works up to the critical
latitude. The wavelength not only decreases, it decreases faster than
the distance to the singularity, which a priori guarantees that the
discrepancy between the WKB and exact solutions will be
exponentially small, with the exponent tending to minus infinity as
the wave approaches the singularity.
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Consider poleward propagation in the bottom waveguide of a narrow
sub-inertial wave packet with central frequency σ and assume initial
separation of scales

ε = |k0|R¿ 1. (20)

Then we look for the solution in the form

Ψ = Φn(0)(z, εy) exp i[

∫ y

yi

ln(εy)dy − σt] +
∑

m=1,s=1

εmΨs(m)(z, εy) .

(21)

The leading order the shortwave asymptotics take a very simple form

ln(y) ' const · y−3/2 , (const = ±γ1(f
2
0 − σ2)2

( sn
(βf0)

)3/2

y−3/2) ,

(22)
while the vertical scale of ψn(z) decreases as l

−2/3 or as |y|, where |y|
is the distance to the critical point.
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Evolution of wave amplitude

a(ψ) ∼ l1/12 ∼ y−1/8 (23)

a(w) ∼ a(v) ∼ a(u) ∼ a(b) ∼ l13/12 ∼ y−13/8 . (24)

of prime interest for us, is the Richardson number ( which evolves
much more rapidly)

Ri =
N2

u2
z + v

2
z

∼ l−25/6 ∼ y25/4 (25)

and the nonlinearity parameter εN , or wave steepness,

εN ∼ l25/12 ∼ y−25/8 . (26)
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A posteriori check of of the WKB validity
In the process of

evolution the wavelength should remain small compared to the
distance |y| to the singular point, that is

l|y| ¿ 1 (27)

has to be satisfied.

Since for the bottom waveguide

ly ∼ y1/3

the condition is satisfied with the increasing accuracy as y → 0.
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Evolution of a finite bandwidth packet

The concept of a monochromatic wave packet is an idealisation,
useful provided one is careful in drawing conclusions on what
happens in reality. The real wave packets all have finite bandwidth.

For each Fourier component of the packet its singularity is located in
a different place, and, therefore, the outcome of the competition
between the wave packet focussing at the critical latitude and its
spreading due to its finite bandwidth, is impossible to quantify a
priori.
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Consider a packet with a central frequency σ0 and a Gaussian
spectrum of characteristic bandwidth ∆σ, assuming ∆σ ¿ σ0

Ψ(y, z, t) =
1√
π∆σ

∫ ∞

−∞

Ψ̂(y, z, σ) exp[−iσt+i
∫ y

yi

l(y1, σ)dy1−(
σ − σ0

∆σ
)2] .

(28)
Making use of the smallness of ∆σ/σ0 we expand the exponent in the
brackets to the second order and evaluate the integral

Ψ(y, z, t) = Ψ̂(y, z, σ0)e
[−iσ0t+i

∫
y

yi
l(y1,σ0)dy1]

{
e−κ

2(1+iµ)/(1+µ2)

√
1− iµ

}

(29)
where

µ = (
∆σ)

2
)2
∫ y

yi

∂2
σσl(y1, σ0)dy1 κ =

∆σ

2

∫ yc(t)

y

dy1
cg(y1, σ0)

. (30)
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Thus, meridional scale of the packet Ly defined by the natural
condition κ2/(1 + µ2) = 1, shrinks as yc → 0

Ly = |y − yc(t)|κ2/(1+µ2)=1 ∼ y2
c (31)

The amplitude growth is somewhat moderated

a(w) ∼ a(v) ∼ a(u) ∼ a(b) ∼ y−3/8
c , (32)

but the growth of 1/Ri and εN remains quite robust

Ri =
N2

u2
z + v

2
z

∼ y15/4
c , εN ∼ y−15/8

c . (33)
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Viscous effects

Since the group velocity rapidly decreases, the packet effectively
stalls, then even a very small (compared to the wave frequency)
viscosity might have very strong effect.

Indeed, consideration of the viscous problem yields an additional
exponential factor to all amplitudes dependencies

exp[−(|y|/yviscous)−5/4] (yviscous is the viscous length scale

which arrests wave growth,
if the wave have not been destroyed before reaching the viscous scale.

Note, that for |y| ≥ yviscous the effect of viscosity is negligible; for
|y| ≤ yviscous the viscous effects become dominant.
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Concluding remarks

We have developed complete linear theory to describe vertical
focussing of sub-inertial finite width wave packets approaching the
singularity.

There is no reflection. The singularity acts as a ‘black hole’

Given the initial wave amplitude, we can predict when this wave will
break, thus contributing to mixing. Ri can become less than 1/4
while the wave is still linear.

Note, that even when the initial wave amplitude is very small and
there is no breaking, the wave seemingly just dissipates, anyway, its
energy is likely to go into enhancement of small scale turbulence.
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What we don’t know yet:

(i) initial amplitudes (there are exist just rough estimates)

(ii) leakage of wave energy through nonlinear interactions.

(iii) overall impact on deep ocean mixing

(iv) is it possible to infer the intensity of wave induced mixing just
by analysing the asymmetry between the properties North and
South propagating near-inertial waves?
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