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CHAPTER 1

Prologue

1. What’s This?

These are my lecture notes for MA135 Vectors and Matrices. Thanks to Mario
Micallef and Miles Reid for substantial advice on how this subject should be
taught, and to Owen Daniel, Jason Davison, Leslie Kanthan, Martin Gould and
Lee McDonnell for corrections. Please send comments, misprints and corrections
to samir.siksek@gmail.com.

2. A Jolly Good Read!

Linearity pervades Mathematics and Science—even non-linear processes are
best studied through linear approximations. For pedagogical convenience, the
mathematical study of linearity is divided into two settings:

(1) A concrete setting called ‘Vectors and Matrices’.
(2) An abstract setting called ‘Linear Algebra’.

The ‘Vectors and Matrices’ setting is the right place to compute, look at concrete
examples and reinforce our intuition. Once we know how to compute and have
built-up our intuition we can turn to ‘Linear Algebra’ with confidence, wherein,
with the aid of a little abstraction, we gain deeper insights into linear phenomena.

The pleasures of Linear Algebra (the abstract setting) will have to wait till
Term 2; this course is concerned with vectors and matrices (the concrete setting).

It is possible that you have seen at school much or most of what is in this
course—then again, do not worry if this is not the case. The point is that we will
look at vectors, matrices and complex numbers from a more critical point of view
than that of school. Of course we want to calculate, but we want to know why
the calculations give the correct answer to the problem at hand. In other words
we want to prove things. Sometimes it will not be possible to prove what we want
using the concrete tools at our disposal. Consequently, we will take a few things on
trust and relegate their proofs to ‘Linear Algebra’ or some other course. However,
as high-minded and morally-correct persons, it should always be clear to us what
we have proved and what we are taking on trust, for neither do we want to delude
ourselves nor would we allow ourselves to be deluded by someone else (even if this
‘deluder’ is the lecturer).

3. On Homework (a little preaching)

The Pythagoreans divided their followers into two groups. One
group, the µαθηµατικη learned the subject completely and under-
stood all the details.. From them comes our word “mathemati-
cian,” as you can see for yourself if you know the Greek alphabet
(mu, alpha, theta, eta, . . . ). The second group, the ακoυσµατιoκι,
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6 1. PROLOGUE

or “acusmatics,” kept silent and merely memorized the master’s
words without understanding. The point I am making here is that
if you want to be a mathematician, you have to participate, and
that means doing the exercises.

Jeffrey Stopple 1

4. A Preamble on the Real World

The real numbers, we know and love. We often think of them as points on
the real number line. Examples or real numbers are 0, −1, 1/2, π,

√
2 . . .. The

set of real numbers is given the symbol R. Below we list some of their properties.
There is no doubt that you are thoroughly acquainted with all these properties,
and that you use these properties in your manipulations (both by conscious design
and by reflex). The point of listing some of these properties is that we want to have
them at hand so that we can ask, when we present complex numbers, vectors and
matrices, whether these new objects have the same or similar properties. We also
want to learn the names of these properties, which are presented in brackets below.

For all real numbers a, b, c

(i) a+ b = b+ a (addition is commutative)
(ii) (a+ b) + c = a+ (b+ c) (addition is associative)
(iii) a+ 0 = a (0 is the additive identity element)
(iv) for any number a there is another number −a (the additive inverse of a)

such that a+ (−a) = 0.
(v) ab = ba (multiplication is commutative)

(vi) (ab)c = a(bc) (multiplication is associative)
(vii) a(b+ c) = ab+ ac (multiplication distributes over addition)
(viii) a · 1 = a (1 is the multiplicative identity element)
(ix) if a 6= 0, there is a number denoted by a−1 (the multiplicative inverse of

a) such that a · a−1 = 1.

We have not exhausted the properties of real numbers. For example, we can add

(x) If a ≥ b then a+ c ≥ b+ c.
(xi) If a ≥ b and c > 0 then ac ≥ bc. If a ≥ b and c < 0 then ac ≤ bc.

One particularly important property that we will not write down, but which you
will come to admire in the analysis courses is ‘The Completeness Axiom’.

Exercise 4.1. You know that if a, b ∈ R and ab = 0 then either a = 0 or b = 0.
Explain how this follows from property (ix) above.

5. Fields

The syllabus for this course mentions ‘fields’, and says that their definition
is non-examinable. We shall be a little vague about fields, and give a heuristic
definition, rather than a precise one. A field is a ‘number system’ where you can
add, subtract, multiply and divide, and where these operations satisfy properties
(i)–(ix) above. For example, the real number system is a field. The integers do not
form a field because we cannot divide and stay inside the integers (e.g. 2 and 3 are
integers but 2/3 is not an integer). However, the rational numbers is a field, because
we can add, subtract, multiply and divide and properties (i)–(ix) are satisfied.

1A Primer of Analytic Number Theory, Cambridge University Press, 2003.



5. FIELDS 7

The next chapter is devoted to the field of complex numbers C.
Remark Look again at your answer to Exercise 4.1. You will find that all you
have used is some of the properties (i)–(ix). Since the elements of any field satisfy
(i)–(ix), what you have really shown in answering the exercise is the following: if
a, b are elements (or numbers if you like) belonging to any field, and if ab = 0 then
a = 0 or b = 0.





CHAPTER 2

The Delightful Complex Number System

1. What on Earth are Complex Numbers?

A complex number is represented by a+ bi where a and b are real numbers and
i is a symbol that satisfies i2 = −1. We add and multiply complex numbers as you
would expect and every time we see an i2 we replace it by −1.

Example 1.1. Let α and β be the complex numbers α = 2 + 3i and β = −7 + 4i.
Addition is straightforward:

α+ β = −5 + 7i, α− β = 9− i.

Multiplication involves the usual expansion of brackets and then replacing i2 by
−1:

αβ = (2 + 3i)(−7 + 4i)

= −14− 13i+ 12i2 usual expansion of brackets

= −14− 13i+ 12(−1) replace i2 by −1

= −26− 13i

The set of complex numbers is denoted by C. In set notation we can write

C = {a+ bi : a, b ∈ R}.

Definition. Let α be a complex number and write α = a + bi where a and b are
real numbers. We call a the real part of α and b the imaginary part of α. We write
Re(α) = a and Im(α) = b.

Example 1.2. Re(2− 4i) = 2 and Im(2− 4i) = −4.

2. The Complex Plane

The complex number a+ bi is represented by the point (a, b) in the coordinate
plane. The x-axis is called the real axis and the y-axis is called the imaginary axis.
When used to represent complex numbers in this way, the coordinate plane is called
‘The Argand diagram’, or ‘the complex plane’. See Figure 1.

Addition can be described geometrically (i.e. on the complex plane) by complet-
ing the parallelogram. If z and w are complex numbers, then the points representing
0 (the origin), z, w and z + w form a parallelogram; see Figure 2.

3. Some Formal Definitions

Equality of complex numbers is straightforward.

Definition. Two complex numbers are equal if and only if their real parts are equal
and their imaginary parts are equal. Another way of saying this is: if α = a + b i

9



10 2. THE DELIGHTFUL COMPLEX NUMBER SYSTEM

Real Axis

Imaginary Axis

a0

bi a+bi

Figure 1. The Complex Plane (or The Argand Diagram).

Real Axis0

Imaginary Axis

z

z+w

w

Figure 2. If z and w are complex numbers, then the points on
the complex plane representing 0 (the origin), z, w and z+w form
a parallelogram.

and β = c + d i are complex numbers (with a, b, c, d real) then α = β if and only
if a = b and c = d.

We saw examples of addition and multiplication above, but let us write the
definition of addition and multiplication more formally.

Definition. Suppose α = a+ bi and β = c+ di are complex numbers, where a, b,
c, d are real numbers. We define the sum α+ β by

α+ β = (a+ c) + (b+ d)i
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and the product αβ by

αβ = (ac− bd) + (ad+ bc)i.

Notice that real numbers are also complex numbers. Indeed if a is a real
number, we can think of it as the complex number a + 0.i. A complex number of
the form bi (i.e. 0 + bi), with b real, is called an imaginary number. Thus real
numbers and imaginary numbers are special types of complex numbers.

Example 3.1. Suppose r is a positive real number. We denote by
√
r the positive

square-root of r. Notice that

(±
√
ri)2 = −r.

We see that positive real numbers have two real square-roots, whereas negative real
numbers have two imaginary square-roots.

Exercise 3.2. Which number is both real and imaginary?

4. C is a Field

We can make a long list of properties of complex numbers as we did for real
numbers. But it is quicker to say the following.

Theorem 4.1. C is a field.

Recall that a field is ‘number system’ (here we are being vague) whose elements
satisfy conditions (i)–(ix) of Section 4. Saying that C is a field is an economical
way of saying that C satisfies properties (i)–(ix).

Proof of Theorem 4.1. We will actually prove only one of the required
properties and leave the others as an exercise.

The property we prove is the commutativity of multiplication: if α and β are
complex numbers then αβ = βα. So suppose that α and β are complex numbers.
Write α = a + bi and β = c + di where a, b, c, d are real numbers. Then by the
definition of multiplication

αβ = (ac− bd) + (ad+ bc)i, βα = (ca− db) + (da+ cb)i.

But ac = ca, bd = db, ad = da, bc = cb. How do we know this; isn’t this the same
as what we want to prove? No, not really. We know this because a, b, c, d are real
numbers and we are using the commutativity of multiplication for real numbers
which we already know.

It follows that αβ = βα which we wanted to prove. The proof of the remaining
properties is an exercise. The reader is encouraged to prove these (or at least
some of them) using the proof of the commutativity of multiplication as a model.
The only one of these that might prove slightly troublesome is the “existence of
multiplicative inverse”, because we haven’t defined division yet. �

Notice that not all the properties of the real numbers listed in Section 4 carry
over to the complexes. The properties involving inequalities do not. That is because
inequalities between complex numbers have no meaning. This is a point that needs
special care. Never write α > β if either α or β are complex.
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5. An Example is NOT a Proof

In proving that αβ = βα for complex numbers, some may have been tempted
to argue along the following lines. Let, say, α = 1 + 2i and β = 3 + 4i. Then we
check that

αβ = −5 + 10i = βα.

“So the multiplication of complex numbers is commutative”. Is this an acceptable
proof? No, it is not. This is merely an example. It shows that multiplication is
commutative for this particular pair α, β. This is example might lead us to suspect
that multiplication of complex numbers is commutative, but it does not give us
the right to conclude that it is commutative. We want to know that commutativity
of multiplication holds for every conceivable pair of complex numbers α, β. That
is why, in the proof above, we took α = a + bi and β = c + di where a, b, c, d
were unspecified real numbers; every pair of complex numbers may be written so,
and thus our calculation αβ = βα (in the proof) is valid for all pairs of complex
numbers.

The avoidance of blurred impressions will do much good, and so I will go on
at the risk of labouring the point. Suppose that a Martian landed on Earth and,
by chance, had the misfortune of running into a couple of extremely dim people.
Would you not feel offended if the Martian, on the basis of this limited interaction
with mankind, was to conclude that all humans—including yourself—are zombies?

To sum up, an example is just that, it is circumstantial evidence that does not
mount to a proof.

6. The Quaternionic Number System(do not read this)

This section is not examinable. It is here for the benefit of those few
who believe that the above discussion of commutativity is overly pedantic. “Why
should multiplication not be commutative? After all, it is just multiplication. You
are wasting time on contrived pedanticisms”.

Well, matrix multiplication is not commutative—as we will see in the near
future. If A and B are matrices, then it is fairly likely that the products AB and
BA will not be the same.

In the meantime, we exhibit the quaternionic number system where multiplica-
tion is not commutative. Quaternions were fashionable in the late 19th century and
had substantial physical applications. Eventually it was discovered that vectors do
a better job of just about anything you could do with quaternions, and they fell
out of fashion.

Remember that the complex numbers are of the form a+ bi where a, b are real
and i is a symbol satisfying i2 = −1. Well, quaternions are of the form a+bi+cj+dk
where a, b, c, d are real and i, j, k are symbols satisfying

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.

You can already see that quaternionic multiplication is not commutative, since
ij 6= ji. You might also calculate (1 + i)(1 + j) and (1 + j)(1 + i).

I had asked you not to read this section on quaternions, but obviously the
temptation overwhelmed you. Anyway, it is best to erase what you have seen
from your memory banks and concentrate on complex numbers. However, a lasting
impression that it is better to check things than take them for granted will do you
more good than harm.
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7. Exponentiation

How do we define exponentiation? In other words, what does αn mean? Well
if n is a positive integer then this is easy to define.

Definition. If α is a complex number and n a positive integer then we define

αn = α · α · · ·α︸ ︷︷ ︸
n times

.

The definition is correct, but involves a subtle point that needs to be checked.
Before talking about this subtle point, let us see an example.

Example 7.1. Let α = 1 + i. Then (check this):

α2 = 2i, α4 = (2i)2 = −4.

Notice that −4 is not the square of a real number but it is the square and fourth
power of certain complex numbers. We see from the calculation above that α = 1+i
is a root of the polynomial X4 + 4. This polynomial does not have any real roots
but has 4 complex roots which are ±1± i (check). 1

We mentioned that there is a subtle point involved in the definition of αn.
There is no problem with the definition for n = 1, 2. The problem starts when
n = 3 and onward. For example we defined

α3 = α · α · α.

Notice here that there are two multiplications involved. The problem or ambiguity
is that of which multiplication we are doing first. In other words do we mean

α3 = α · (α · α)

or do we mean

α3 = (α · α) · α.
You would be right in expecting that this does not matter; both will give the same
result and so there is no ambiguity in the definition. But how do we know this?
Recall that the complex numbers form a field. One of the defining properties of
fields is that multiplication is associative. So we know that if α, β, γ are complex
numbers then

α(βγ) = (αβ)γ.

So, letting β = γ = α we see that

α · (α · α) = (α · α) · α.

Hence there is no ambiguity in the definition of α3.
We saw that we can remove the ambiguity involved in the definition of α3 using

the associativity of multiplication of complex numbers. It can be shown that this
associativity makes the definition of αn unambiguous for all positive n. This is
laborious, so we will not do it, but the reader can take it on trust.

Exercise 7.2. For which positive integral values of n is in real?

1An important theorem which we will see later is the Fundamental Theorem of Algebra which
says that a polynomial of degree n has n complex roots (counting multiplicities). This is clearly

not true if we work just with real numbers.
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8. Conjugates

Definition. Let α = a+ bi be a complex number, where a, b are real numbers. We
define the conjugate of α (denoted by α) to be α = a− bi.

We will see later that the conjugate helps us in defining the division of complex
numbers.

Theorem 8.1. Suppose α, β are complex numbers. Then

(i) The equality α = α holds if and only if α is a real number.
(ii) Conjugation distributes over addition and multiplication: in other words

α+ β = α+ β

and

α · β = α · β.

(iii) If α = a+ bi with a, b real numbers then

α · α = a2 + b2.

In particular α · α is a non-negative real number.

Proof. The proof is left as an exercise. �

Exercise 8.1. What is the geometric meaning of conjugation 2? I.e. if z is a
complex number, describe the geometric operation on the complex plane that takes
z to its conjugate z.

9. Reciprocals and Division

We would like to define reciprocals of complex numbers. In other words, if
α is a non-zero complex number, what do we mean by 1/α? There are certain
reasonable things that we should expect from this definition. Of course we want to
define reciprocal in such a way that α · 1/α = 1. The key to discovering the correct
definition is part (iii) of Theorem 8.1. This can be rewritten as follows: if a, b are
real then

(a+ bi)(a− bi) = a2 + b2.

We instantly see that the following definition is reasonable.

Definition. Let α be a non-zero complex number and write α = a+ bi where a, b
are real. Define the reciprocal of α to be

1

α
=

a

a2 + b2
− b

a2 + b2
i.

2You should get used to thinking geometrically, and to drawing pictures. The true meaning

of most mathematical concepts is geometrical. If you spend all your time manipulating symbols
(i.e. doing algebra) without understanding the relation to the geometric meaning, then you will

have very little in terms of mathematical insight.
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The reader will quickly check that 3

α · 1

α
= 1

holds for non-zero α. It is now obvious how to define division: if α and β are
complex and β is non-zero then we define α/β = α · 1/β.

The reader will recall that we defined αn only for positive integer values of n.
Now if n is negative we can define αn = 1/α−n. Note the following standard way
to divide complex numbers:

Example 9.1.

3 + i

2− 4i
=

(3 + i)(2 + 4i)

(2− 4i)(2 + 4i)

=
2 + 14i

22 + 42

=
1

10
+

7

10
i.

To divide note that we first multiply the numerator and denominator by the con-
jugate of the denominator. This makes the denominator real and division becomes
easy.

Exercise 9.2. Solve the equation (5− i)X + 7 = 2i.

Exercise 9.3. Write
1

cos θ + i sin θ
in the form a+ i b. (You might already know the answer, but do this question using
the definition of reciprocal).

10. The Absolute Value

Let a be a real number. We recall the definition of the modulus (also called
the absolute value) |a| as follows:

|a| =

{
a if a ≥ 0

−a if a < 0.

From now on we say absolute value instead of modulus. We would like to extend
the notion of absolute value to complex numbers. The above definition will not
do because the inequalities a ≥ 0 and a < 0 do not have a meaning when a is
a complex number. There is, however, another–more geometric–definition of the
absolute value of a real number: if a is a real number then |a| is the distance on the
real line between the numbers a and 0. This definition can be extended to complex
numbers. In geometric terms we define, for a complex number α, its absolute value
|α| to be the distance between α and 0 (the origin) in the complex plane. This
definition is not suitable for calculations, however it is easy to see how to turn it

3Please don’t say “Cancel”! We have given a definition of 1/α. We want to make sure that
this definition does what we expect, so we just have to multiply out

(a+ bi)

(
a

a2 + b2
−

b

a2 + b2
i

)
and see that we get 1.



16 2. THE DELIGHTFUL COMPLEX NUMBER SYSTEM

into an algebraic definition; if α = a+ bi with a, b real then the distance of α from
the origin is

√
a2 + b2. We finally arrive at our definition.

Definition. Let α = a + bi be a complex number with a, b real. We define the
absolute value of α to be

|α| =
√
a2 + b2.

Notice that whenever we speak of the square-root of a positive real, we mean
the positive square-root.

Theorem 10.1. Let α, β be complex numbers.

(i) αα = |α|2.
(ii) |α| = 0 if and only if α = 0.
(iii) |αβ| = |α||β|.
(iv) |α+ β| ≤ |α|+ |β| (this is the triangle inequality).
(v) |α− β| ≥

∣∣|α| − |β|∣∣.
The proof of the above theorem is left as an exercise.

11. Sums of Squares

Let a, b, c, d be integers. Can we always find integers u, v such that

(a2 + b2)(c2 + d2) = u2 + v2?

In other words, if we multiply the sum of two integer squares with the sum of two
integer squares, do we get an expression of the same form? The answer, surprisingly,
is yes. Before you read on, you might try to prove this yourself.

The easy way to do this is to let

α = a+ bi, β = c+ di.

Let γ = αβ. Then γ is a complex number and we can write it as γ = u + vi with
u and v real. Now it is easy to convince yourself that u and v must be integers
because a, b, c, d are integers (multiply out αβ as see what you get). Also

(a2 + b2)(c2 + d2) = |α|2|β|2

= |αβ|2

= |γ|2

= u2 + v2,

which shows what we want.

Exercise 11.1. Write 185 as the sum of two integer squares. (Hint: factorize first!)
Actually write 185 as the sum of two integers squares in as many ways as you can.

The same is true of sums of four squares: if you multiply a sum of four squares
with a sum of four squares you get a sum of four squares. How can you prove this?
The easiest way is to use quaternions, which you are not meant to know about
because you did not read Section 6.

It turns out that not every positive integer is the sum of two integer squares
(find an example). If p is an odd prime, then it can be written as the sum of two
squares 4 if and only if p is of the form 1 + 4m for some integer m. This means for

4This should be proved in the number theory course.
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example that 37 can be written as the sum of two squares because 37 = 1 + 4× 9.
But 11 cannot be written as the sum of two squares because 11 = 1 + 4× 5/2.

One of the most beautiful theorems in mathematics states that every positive
integer is the sum of four squares. This was proved by Joseph Louis Lagrange
in 1770, though the theorem appears—without proof—in the Arithmetica of Dio-
phantus (probably written around 250AD). Some of the proofs of this theorem use
quaternions.

Another fascinating question is, in how many ways can we write a positive
integer n as the sum of four squares. This was answered in 1834 by Carl Jacobi.
He showed that this number is eight times the sum of the divisors of n if n is odd,
and 24 times the sum of the odd divisors of n if n is even 5.

12. The Argument

Recall that there are two coordinate systems which one may employ to specify
points in the plane. The first is the Cartesian system and the second the polar
system. In the Cartesian system we represent a point by a pair (a, b): here a and
b are distances we have to move parallel to the x- and y-axes to reach our point,
having started at the origin. In the polar system we represent points by a pair
(r, θ): here r is the distance of the point from the origin. Moreover, if we denote
the point by P then θ is the angle 6 measured from the positive x-axis to the ray−−→
OP in an anti-clockwise direction. This the polar system.

Converting between Cartesian and polar coordinates is easy. Let (a, b) and
(r, θ) represent the same point. We deduce from Figure 3 that

a = r cos θ, b = r sin θ.

Previously we used the Cartesian system to represent the complex number a+bi
on the complex plane. But we can also use the polar system. Now r is the distance
from the origin, so r = |a+ bi| is just the absolute value. The θ has a special name
called the argument.

Definition. Let α = a+ bi be a non-zero complex number, and suppose that α is

represented in the complex plane by the point P . Let θ be the angle the ray
−−→
OP

makes with the positive real axis (or the positive x-axis). We call θ the argument
of α. Note that we can take 0 ≤ θ < 2π.

We collect the above facts in a useful Lemma.

Lemma 12.1. If α = a+ bi is a non-zero complex number, r is its absolue value,
and θ is its argument, then

a = r cos θ, b = r sin θ,

and

(1) α = r(cos θ + i sin θ).

Moreover,

r = |α| =
√
a2 + b2, b = a tan θ.

The expression on the right-hand side of (1) is called the (r, θ)-form of α.

5Jacobi’s theorem has remarkable proof using modular forms. Hopefully there will soon be

a module on modular forms offered at Warwick.
6Normally, when we talk of angles, we are using the radian measure.
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r

P

b

aO
Figure 3. A point P can be specified by Cartesian (a, b) coordi-
nates, or by polar (r, θ) coordinates.

Example 12.1. Write the following numbers in (r, θ)-form:

3i, −2, −5i, −1 + i,
√

3 + i.

Answer: For the first four of the complex numbers, a quick sketch will give us the
argument and it is easy to get the (r, θ)-form. For example,

|−1 + i| =
√

(−1)2 + 12 =
√

2.

From the sketch, the argument of −1 + i is π/4 + π/2 = 3π/4. Thus

−1 + i =
√

2

(
cos

3π

4
+ i sin

3π

4

)
.

Similarly

3i = 3
(

cos
π

2
+ i sin

π

2

)
, −2 = 2 (cosπ + i sinπ) ,

−5i = 5

(
cos

3π

2
+ i sin

3π

2

)
.

Now let α =
√

3 + i. We see that

r = |α| =
√(√

3
)2

+ 12 =
√

4 = 2.

A sketch will not immediately give us the value of θ, but it is useful to make one
anyway. Note that sin θ = 1/2 and cos θ =

√
3/2. Thus θ = π/6. Hence the
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Real Axis−1

−1+i
i

Imaginary Axis

Figure 4. It is clear that the argument of −1 + i is 3π/4.

(r, θ)-form of α is

α = 2
(

cos
π

6
+ i sin

π

6

)
.

13. Multiplying and Dividing the (r, θ)-Form

Lemma 13.1. Suppose θ1, θ2, θ are real. Then

(2) (cos θ1 + i sin θ1) (cos θ2 + i sin θ2) = cos(θ1 + θ2) + i sin(θ1 + θ2),

(3)
cos θ1 + i sin θ1
cos θ2 + i sin θ2

= cos(θ1 − θ2) + i sin(θ1 − θ2),

and

(4)
1

cos θ + i sin θ
= cos θ − i sin θ.

Proof. We shall use the following pair of familiar identities which you will
remember from school.

sin(θ1 + θ2) = sin θ1 cos θ2 + sin θ2 cos θ1,

cos(θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2.

Notice that

(cos θ1 + i sin θ1) (cos θ2 + i sin θ2) = (cos θ1 cos θ2 − sin θ1 sin θ2)

+ i (sin θ1 cos θ2 + sin θ2 cos θ1) = cos(θ1 + θ2) + i sin(θ1 + θ2).

This proves (2). The proof of (3) is left as an exercise. You have already proved (4)
as an exercise, but do it again using (3). �

Theorem 13.2. (De Moivre’s Theorem) Suppose θ is real and n is an integer.
Then

(5) (cos θ + i sin θ)
n

= cosnθ + i sinnθ.
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Proof. We shall first prove De Moivre’s Theorem for non-negative n, using
induction. It is clearly true for n = 0. Now suppose that (5) holds for a certain
non-negative n. Then

(cos θ + i sin θ)
n+1

= (cos θ + i sin θ)
n

(cos θ + i sin θ)

= (cosnθ + i sinnθ) (cos θ + i sin θ)

= cos{(n+ 1)θ}+ i sin{(n+ 1)θ} using (2).

This shows that (5) is true with n replaced by n+ 1. By induction, the identity (5)
holds for all non-negative integers n.

It remains to prove (5) for negative n. Thus suppose that n is negative and let
m = −n. Since m is certainly positive, we know that

(6) (cos θ + i sin θ)
m

= cosmθ + i sinmθ.

Thus

(cos θ + i sin θ)
n

=
1

(cos θ + i sin θ)
m using n = −m

=
1

cosmθ + i sinmθ
using (6)

= cosmθ − i sinmθ using (4)

= cos(−nθ)− i sin(−nθ) again from m = −n
= cosnθ + i sinnθ,

where for the last step we used the well-known identities:

sin(−θ) = − sin(θ), cos(−θ) = cos(θ).

This completes the proof. �

Example 13.1. Let n be an integer. We will show that(√
3 + i

)n
+
(√

3− i
)n

= 2n+1 cos
1

6
nπ.

Let α =
√

3 + i. Since we will be exponentiating, it is convenient to use the (r, θ)-
form for α, which we have already worked out in Example 12.1:

α = 2
(

cos
π

6
+ i sin

π

6

)
.

By De Moivre’s Theorem

αn = 2n
(

cos
nπ

6
+ i sin

nπ

6

)
Hence(√

3 + i
)n

+
(√

3− i
)n

= αn + αn

= 2n
(

cos
nπ

6
+ i sin

nπ

6

)
+ 2n

(
cos

nπ

6
− i sin

nπ

6

)
= 2n

(
2 cos

nπ

6

)
= 2n+1 cos

nπ

6
.
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Example 13.2. Simplify

(cos θ − i sin θ)
5

cos 7θ + i sin 7θ
.

Answer: From (4)

(cos θ − i sin θ)
5

= (cos θ + i sin θ)
−5
.

By De Moivre,

cos 7θ + i sin 7θ = (cos θ + i sin θ)
7
.

Thus

(cos θ − i sin θ)
5

cos 7θ + i sin 7θ
=

(cos θ + i sin θ)
−5

(cos θ + i sin θ)
7

= (cos θ + i sin θ)
−12

= cos(−12 θ) + i sin(−12 θ)

= cos(12 θ)− i sin(12 θ).

Example 13.3. De Moivre’s Theorem is useful for reconstructing many formulae
involving trigonometric functions. For example, letting n = 2 in De Moivre’s
Theorem we see that

cos 2θ + i sin 2θ = (cos θ + i sin θ)
2

= cos2 θ − sin2 θ + i · 2 sin θ cos θ.

Comparing the real and imaginary parts, we get the well-known identities

cos 2θ = cos2 θ − sin2 θ, sin 2θ = 2 sin θ cos θ.

It is possible that you might forget one of these identities. There is however no
excuse for being unable to reconstruct them using De Moivre.

It is useful to know that the identity for cos 2θ is often given in an alternative
form:

cos 2θ = 2 cos2 θ − 1 = 1− 2 sin2 θ.

It is straightforward to deduce this from the previous identity for cos 2θ using
cos2 θ + sin2 θ = 1.

Exercise 13.4. Let α, β be non-zero complex numbers. Suppose that the points
P , Q represent α and β on the complex plane. Show that OP is perpendicular to
OQ if and only if α/β is imaginary.

14. eiθ

Definition. Let θ be a real number. Define ei θ by

eiθ = cos θ + i sin θ.

Let α = φ+ iθ, where φ and θ are real numbers. Define

eα = eφ · eiθ = eφ (cos θ + i sin θ) .

Here eφ has the usual meaning.
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Remark. You have probably seen the definition of eiθ before, but it is surprising
and in need of some justification. The following is a heuristic argument that is
intended to convince you that such a definition is reasonable. Let

z = cos θ + i sin θ

and think of this z as a function of θ. Differentiating with respect to θ we get

z′ = − sin θ + i cos θ

= i (cos θ + i sin θ) = i z.

Thus z′/z = i; integrating both sides with respect to θ gives∫
z′

z
dθ =

∫
idθ,

and so 7

log z = iθ + C

where C is the integration constant. To find the integration constant C, substitute
θ = 0 in both sides, noting that z(0) = cos 0 + i sin 0 = 1. Hence C = 0 which gives
log z = iθ and so eiθ = z = cos θ + i sin θ.

We should again reiterate that the above argument is heuristic; we haven’t even
defined what integration in the complex number setting means. It only suggests
that our definition is plausible.

Exercise 14.1. Let z = π/6 + i log 2. Write ei z in the form a + b i. (Careful!
This is a trick question.)

Exercise 14.2. Let α = φ+ i θ where φ and θ are real.

(i) Simplify |eα| and |ei α|.
(ii) Show that the conjugate of eα is eα.

15. Expressing cosn θ and sinn θ in terms of Multiple Angles

Let z = cos θ + i sin θ. By De Moivre’s Theorem

zn = cosnθ + i sinnθ,
1

zn
= cosnθ − i sinnθ.

Hence

(7) zn +
1

zn
= 2 cosnθ, zn − 1

zn
= 2i sinnθ

This can help us derive expressions for cosn θ and sinn θ which involve multiple
angles but no powers. Make sure you understand the following example.

Example 15.1. Express cos5 θ in terms of multiple angles. Hence calculate∫
cos5 θdθ.

7In university Mathematics, log x is almost always loge x or what you called lnx at school.



16. THE EXPONENTIAL FORM OF COMPLEX NUMBERS 23

Answer: Write z = cos θ + i sin θ. Thus z + 1/z = 2 cos θ. Hence

25 cos5 θ =

(
z +

1

z

)5

= z5 + 5z3 + 10z +
10

z
+

5

z3
+

1

z5

=

(
z5 +

1

z5

)
+ 5

(
z3 +

1

z3

)
+ 10

(
z +

1

z

)
= 2 cos 5θ + 10 cos 3θ + 20 cos θ.

Hence

cos5 θ =
1

16
cos 5θ +

5

16
cos 3θ +

5

8
cos θ.

Thus ∫
cos5 θdθ =

1

80
sin 5θ +

5

48
sin 3θ +

5

8
sin θ +K.

Exercise 15.2. Express sin4 θ in terms of multiple angles and hence evaluate∫ π/2

0

sin4 θdθ.

16. The Exponential Form of Complex Numbers

Let α be a non-zero complex number. Lemma 12.1 tells us that we may write

α = r(cos θ + i sin θ)

where r and θ are respectively the absolute value and the argument of α. We also
recall that eiθ = cos θ+ i sin θ. Thus we arrive at a very convenient representation
of complex numbers.

Lemma 16.1. Let α be a non-zero complex number. Then

(8) α = rei θ

where r = |α| and θ is the argument of α.

We call rei θ the exponential form of the complex number α. The exponential
form of complex numbers is very useful for multiplication, division and exponenti-
ation of complex numbers.

Lemma 16.2. Suppose r1, r2, r, θ1, θ2, θ3 are real. Then

(9) r1e
iθ1 · r2eiθ2 = r1r2e

i (θ1+θ2),

(10)
r1e

iθ1

r2eiθ2
=
r1
r2
ei (θ1−θ2),

and

(11) (rei θ) = re−i θ.

Moreover, for n an integer,

(12)
(
rei θ

)n
= rnei nθ.

Proof. You should be able to deduce this theorem from Lemma 13.1 and
Theorem 13.2. �
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Example 16.1. In this example, we calculate

(13)

∫
eθ sin θdθ.

The calculation is again not rigorous, but we can check the answer at the end as
we shall see. Notice that sin θ is the imaginary part of ei θ. Thus

eθ sin θ = Im
(
eθei θ

)
,

and so ∫
eθ sin θdθ = Im

(∫
eθei θdθ

)
.

Hence the desired integral in (13) is the imaginary part of the integral∫
eθei θdθ =

∫
e(i+1) θdθ

=
1

i+ 1
e(i+1) θ + C

=
(1− i)

2
eθ (cos θ + i sin θ) + C

=
1

2
eθ ((cos θ + sin θ) + i(sin θ − cos θ)) + C.

Write the integration constant C = L + iK where L and K are real. Thus we
believe on the basis of the above (non-rigorous) argument that

(14)

∫
eθ sin θdθ =

1

2
eθ(sin θ − cos θ) +K.

But now, having guessed what the integral should be, we can check it by differen-
tiating:

d

dθ

(
1

2
eθ(sin θ − cos θ) +K

)
= eθ sin θ.

We have therefore proved that the correctness of (14).

Example 16.2. Use what you know about ei θ to simplify

∞∑
n=0

cos(nθ)

2n
.

Answer: Note that the required sum is the real part of

∞∑
n=0

cos(nθ) + i sin(nθ)

2n
=

∞∑
n=0

(
eiθ

2

)n
=

1

1− eiθ

2

=
2

2− cos θ − i sin θ

=
2(2− cos θ + i sin θ)

(2− cos θ)2 + sin2 θ

=
2(2− cos θ + i sin θ)

5− 4 cos θ
.
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Hence
∞∑
n=0

cos(nθ)

2n
=

4− 2 cos θ

5− 4 cos θ
.

Example 16.3. Use what you know about ei θ to simplify

(15) 1 + cos
( π

10

)
+ cos

(
2π

10

)
+ · · ·+ cos

(
9π

10

)
.

Answer: We know that cosnθ is the real part of ei n θ. Thus the sum (15) is the
real part of

1 + eπi/10 + e2πi/10 + · · ·+ e9πi/10 =
e10πi/10 − 1

eπi/10 − 1

=
−2

cos(π/10)− 1 + i sin(π/10)

= −2
cos(π/10)− 1− i sin(π/10)

(cos(π/10)− 1)2 + sin2(π/10)

= −2
cos(π/10)− 1− i sin(π/10)

cos2(π/10) + sin2(π/10)− 2 cos(π/10) + 1

= −2
cos(π/10)− 1− i sin(π/10)

2− 2 cos(π/10)

=
cos(π/10)− 1− i sin(π/10)

cos(π/10)− 1
.

Taking the real part we get

1 + cos
( π

10

)
+ cos

(
2π

10

)
+ · · ·+ cos

(
9π

10

)
=

cos(π/10)− 1

cos(π/10)− 1
= 1.

Exercise 16.4. Let α be a complex number. Describe geometrically what happens
to α (in the complex plane) when it is multiplied by eiφ (where φ is real).
Hint: write α in exponential form.

17. Quadratic Equations—Read on your own

Here is some ‘baby-stuff’ for you to read on your own (and yes it is exam-
inable, though very easy). The methods that you learned at school for solving
quadratic equations still work at university—even when dealing with equations
with complex coefficients.

Theorem 17.1. (Quadratic formula) Suppose a, b, c are complex numbers with
a 6= 0. Then the solutions to the quadratic equation

ax2 + bx+ c = 0

are

x =
−b±

√
b2 − 4ac

2a
.

Proof. Our first step is to divide by a to get

x2 +
b

a
x+

c

a
= 0.
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Next we complete the square, which means that we write the expression on the left
as a perfect square, plus a constant:(

x+
b

2a

)2

− b2

4a2
+
c

a
= 0.

Reorganizing, we get (
x+

b

2a

)2

=
b2 − 4ac

4a2
.

Square-rooting both sides we get

x+
b

2a
= ±
√
b2 − 4ac

2a
.

Taking b/2a to right-hand side gives us the quadratic formula. �

Make sure you have understood the argument in the proof of the quadratic
formula before you answer this question.

Exercise 17.1. Solve the equation (x − i + 1)2 = −4. (Please, please, don’t
say, “expand the brackets, rearrange and use the quadratic formula”!!!).

18. The Fundamental Theorem of Algebra

Theorem 18.1. Suppose f is a polynomial of degree n with coefficients in C. Then
f has n roots in C (counting multiplicities).

You do not need to know a proof of the Fundamental Theorem of Algebra for
this course. You will find a proof in the Lecture Notes for the Foundations course.
However, if in your third year you take the Complex Analysis course you will see a
one line proof of this theorem.

The Fundamental Theorem of Algebra is very useful to know, but does not tell
you how to find the roots. For this you have to turn to other methods. Suppose
however that somehow (e.g. by searching) you have managed to find n roots of f ;
then the Fundamental Theorem tells you that you have found them all.

Example 18.1. Find the roots of the polynomial

f(X) = X4 − 4X3 + 4X2 + 4X − 5.

Answer: We do a little search for roots and find that f(1) = f(−1) = 0. Hence
(X−1)(X+1) = X2−1 is a factor of f . Dividing f by this factor we discover that

f(X) = (X − 1)(X + 1)(X2 − 4X + 5).

Let g(X) = X2 − 4X + 5. Using the ‘quadratic formula’ we find that the roots of
g are

4±
√

16− 20

2
=

4± 2 i

2
= 2± i.

Hence the roots of f(X) are

−1, 1, 2 + i, 2− i.

Exercise 18.2. Let f be a polynomial with real coefficients.

(i) Show that α is a root of f if and only if α is also a root.
(ii) Show that the number of non-real roots of f must be even.
(iii) If f has an odd degree, show that f must have a real root.
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Remark. Part (iii) has profound implications for geometry. For example, it follows
from (iii) that every object rotating in three dimensions must have some fixed axis
about which it rotates.

18.1. Formulae for solutions of polynomial equations? You might be
wondering if there are formulae for solving polynomial equations of degree ≥ 3.
We have to be a little careful by what we mean by ‘solving’, since polynomial
equations can always be solved by numerical methods, which give an approximate
solution to whatever degree of accuracy we like. But what you probably have in
mind is a formula like the quadratic formula above, in which you would substitute
the coefficients of the equation and after a few operations of addition, subtraction,
multiplication and extractions of n-th roots will give us the solutions. This is
what historically was called ‘solubility by radicals’; a radical is just an n-th root.
It turns out that there are such formulae for cubic and quartic equations (i.e.
degrees 3 and 4), called Cardano’s formulae, and have been known since the 16th
Century. A major question for about two centuries thereafter was whether the
quintic (i.e. degree 5) can be solved by radicals, until Niels Henrik Abel (1802–

1829) and Évariste Galois (1811–1832) showed that this is impossible 8.

19. n-th Roots

Just as the exponential form makes it easy to multiply and divide complex
numbers, so it also makes it easy to find the n-th roots of complex numbers.

The trigonometric function sin θ is periodic with period 2π. Thus if θ1 − θ2 =
2πk where k is an integer, then sin θ1 = sin θ2. However the converse does not have
to be true. By this we mean, if sin θ1 = sin θ2 then it is not necessarily true that
θ1 − θ2 = 2πk for some integer k. For example sinπ/4 = sin 3π/4.

However, the function ei θ has a very attractive property.

Lemma 19.1. The function ei θ is periodic with period 2π. Moreover, ei θ1 = ei θ2

if and only if θ1 − θ2 = 2πk for some integer k.

The lemma follows from the properties of sin and cos.

Lemma 19.2. Suppose α and β are non-zero complex numbers with exponential
forms

α = rei θ, β = sei φ.

Suppose that n is a positive integer. Then αn = β if and only if

(16) r = s1/n, θ =
φ+ 2πk

n

for some integer k.

Proof. Suppose that αn = β. Note that

rn = |αn| = |β| = s.

But r and s are positive, so r = s1/n. Canceling rn = s from αn = β, we get

ei nθ = ei φ.

8This is proved in the remarkable Galois Theory (third year) module. Galois Theory
answers—almost effortlessly—many classical problems that had vexed mathematicians for thou-

sands of years; for example, is it possible to trisect an angle using a ruler and compass?
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From Lemma 19.1 we see that

nθ = φ+ 2πk,

for some integer k. Dividing by n gives (16).
Conversely, suppose that (16) holds for some integer k. Then

αn = rnei nθ = s ei φ · e2πi k = s ei φ = β,

as required. �

Apparently, the Lemma gives us infinitely many n-th roots of a complex number
β: one for each value of k. This is not so, for n-th roots of β are the roots of the
polynomial Xn − β and so (by the Fundamental Theorem of Algebra) there are n
of them. In fact there is repetition. The following theorem gives the n-th roots
without repetition.

Theorem 19.3. Let β be a non-zero complex number and let its exponential form
be

β = sei φ.

The n-th roots of β are

s1/n exp

(
(φ+ 2π k)i

n

)
, k = 0, 1, 2, . . . , n− 1.

Proof. Let

αk = s1/n exp

(
(φ+ 2π k)i

n

)
.

It is clear from the above lemma that αk is an n-th root of β, and that any n-th
root of β is of this form. We want to show that

(17) α0, α1, . . . , αn−1

are all the nth roots of β and there are none missing. Thus we want to show that
if m is any integer then αm is equal to one of the alphas in the list (17). But notice
that

αm+n = αm exp (2π i) = αm.

So we find

· · · = αm−2n = αm−n = αm = αm+n = αm+2n = . . .

Now if m is any integer, we can add or subtract a multiple of n to get an integer
between 0 and n− 1. So αm does really belong to the list (17). �

Example 19.1. Find the cubic roots of −2.

Answer: We note first that

−2 = 2 exp(πi).

Thus from the Theorem, the cube roots of −2 are

21/3 exp

(
(π + 2πk)i

3

)
, k = 0, 1, 2.
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These are

21/3 exp

(
πi

3

)
= 21/3 (cosπ/3 + i sinπ/3) = 21/3

(
1

2
+ i

√
3

2

)
21/3 exp (π i) = −21/3

21/3 exp

(
5πi

3

)
= 21/3 (cos 5π/3 + i sin 5π/3) = 21/3

(
1

2
− i
√

3

2

)
.

20. The n-th Roots of Unity

It is worthwhile looking a little more closely at the n-th roots of 1. We can
write 1 in exponential form as 1 = 1 exp(0 · i). Theorem 19.3 tells us that the n-th
roots of 1 are

exp

(
2π k i

n

)
= cos

2π k

n
+ i sin

2π k

n
, k = 0, 1, 2, . . . , n− 1.

If we write

ζ = exp

(
2π i

n

)
then we see that the n-th roots of unity are

1, ζ, ζ2, . . . , ζn−1.

It is easy to sketch the n-th roots of unity on the complex plane. They all have
absolute value 1, so they lie on the circle with radius 1 and centre at the origin. The
first one to draw is 1; you know where that one is. The next one is ζ. This is the
one you get if start at 1 go around the circle in an anticlockwise direction through
an angle of 2π/n. To get ζ2, start at ζ and go around the circle in an anticlockwise
direction through an angle of 2π/n, and so on. The points 1, ζ,. . . ,ζn−1 are equally
spaced around the circle with an angle 2π/n between each one and the next. See
Figure 5 for the cube and fourth roots of unity.

Figure 5. On the left, the three cube roots of unity: here ζ =
e2πi/3. On the right, the fourth roots of unity. Note that e2πi/4 =
eπi/2 = i, so the fourth roots of unity are 1, i, i2 = −1, and i3 = −i.

Example 20.1. What is the sum of the n-th roots of unity?
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Answer:

1 + ζ + ζ2 + · · ·+ ζn−1 =
ζn − 1

ζ − 1
=

1− 1

ζ − 1
= 0.

Example 20.2. Write down the cube roots of unity.

Answer: We can (and will) use the above recipe to write the cube roots of unity.
But there is another (easier) way: the cube roots of unity are the roots of the
polynomial X3 − 1. Note

X3 − 1 = (X − 1)(X2 +X + 1).

Thus (using the quadratic formula), the cube roots of unity are

1,
−1 + i

√
3

2
,

−1− i
√

3

2
.

Having found them, what is the point of using the above recipe to find the cube
roots of unity? Well, knowing the solution beforehand will allow us to check that
the recipe that we wrote down is correct.

Using the above recipe we find that the cube roots of unity are

exp

(
2π k i

3

)
= cos

2π k

3
+ i sin

2π k

3
, k = 0, 1, 2, . . . , n− 1.

These are

cos 0 + i sin 0 = 1,

cos
2π

3
+ i sin

2π

3
=
−1 + i

√
3

2
,

cos
4π

3
+ i sin

4π

3
=
−1− i

√
3

2
.

Whilst it is always true that the n-th roots of unity are the roots of Xn−1, for
large values of n it is not convenient to use this fact to write down the n-th roots.

A Very Important Summary. Repeat after me: 9 There are two square-roots
of unity 10 and they add up to 0; there are three cube-roots of unity and they add
up to 0; there are four fourth-roots of unity and they add up to 0; there are five
fifth-roots of unity and they add up to 0; . . .

Exercise 20.3. Sketch the fifth and sixth roots of unity.

21. Why Complicate Things?

I will not inflict on you a long and eloquent speech on the merits of the complex
number system. But there is perhaps a persistent doubt at the back of your mind
as to their usefulness. You might be saying to yourself, “we live in the real world
where physical quantities are represented by real numbers”. In truth, complex
numbers are not esoteric objects that became fashionable through the efforts of

9This bit might seem patronizing—sorry! But a favourite trick question of several maths

lecturers is “how many . . . and what is their sum?”. If you like to vex them, make sure you give

the wrong answer, but be prepared for the consequences . . .
10Just in case you still don’t know, unity is another name for 1.
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nerdy mathematicians with heads in the clouds. They are used by practical (hard-
nosed) people to solve real world problems. Indeed, it often turns out that a
solution to a real world problem is through complex numbers. If unconvinced, talk
to a friend in electrical engineering. But before you do that, try this question.

Exercise 21.1. You are going to solve the cubic equation x3 + x2 − 2x − 1 = 0.
You know from the Fundamental Theorem of Algebra that you are looking for 3
solutions.

(i) You might want to try first whatever tricks you learned from school—if
any.

(ii) Now, assuming that does not work, try the following substitution: x =
y+ 1/y the clear denominators and simplify (the secret behind hitting on
the right substitution lies in algebraic number theory). You will get

y6 + y5 + y4 + y3 + y2 + y + 1 = 0.

(iii) Can you see why y must be a 7th root of unity that is not 1?
(iv) By writing down the 7th roots of unity show that x is one of

2 cos

(
2π

7

)
, 2 cos

(
4π

7

)
, . . . , 2 cos

(
12π

7

)
.

(v) Altogether we have found 6 solutions to our cubic equation in x whilst we
were expecting 3. There is in fact some repetition in the above list that
is a side effect of our non-linear substitution x = y + 1/y. Eliminate the
repetition to find the 3 roots.

Moral: The moral of the above is that to write down the 3 real roots of a cu-
bic equation we had to go through complex numbers. This is not the first time
where we deduced a ‘real’ fact on the basis of ‘complex’ arguments. Recall that in
Example 16.1 we determined the integral of a real function using the complexes.





CHAPTER 3

Vectors (at Last)

1. Vectors in Rn

We define R2 to be the set

R2 = {(x1, x2) : x1, x2 ∈ R}.

That is, R2 is the set of ordered pairs of real numbers. We call R2 Euclidean 2-space.
There are two ways of thinking about an element (a, b) ∈ R2.

• The first is to think of (a, b) as the point P (a, b) in the coordinate plane
with x-coordinate a and y-coordinate b.

• The second is to think of (a, b) as the vector
−−→
OP (directed line segment)

which starts at the origin O and ends at the point P (a, b).

When referring to an element of R2, it will probably be clear which interpretation
we have in mind. When we talk about points we use uppercase letters to represent
them, as in “the point P”. When we talk about vectors we use bold lowercase
letters, as in “the vector v”.

Likewise, elements of R3 can be thought of as points or vectors in 3-dimensional
space. Of course R3 is just:

R3 = {(x1, x2, x3) : x1, x2, x3 ∈ R}.

Euclidean n-space is just the set Rn defined by

Rn = {(x1, x2, . . . , xn) : x1, x2, . . . , xn ∈ R}.

You should not be scared of Euclidean n-space for n ≥ 4. Working in 4- or 5-
dimensional space is not really any more demanding than 2- or 3-dimensional space.
The intuition that we need for thinking about Rn will come from R2 and R3.
Practically all concepts, operations, theorems etc. on Rn are fairly trivial extensions
of those on R2 and R3.

We call the vector (x1, x2, . . . , xn) the position vector of the point P (x1, x2, . . . , xn)
in Euclidean n-space.

Example 1.1. P (1,−1, 3, 4) and Q(−1, 0,−1, 1) are points in R4 (or Euclidean
4-space). But also u = (1,−1, 3, 4) and v = (−1, 0,−1, 1) are vectors in R4. In fact
u and v are respectively the position vectors of P and Q. We will see later that the
vectors u and v are perpendicular. This we will show using the dot product which
you have learned at school for R2 and R3, but works in the same way for R4.

2. First Definitions

Two vectors u, v in Rn are said to be equal if their corresponding components
are equal. For example, in R2 this means the following: suppose u = (u1, u2) and

33
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v = (v1, v2) then u = v if and only if u1 = v1 and u2 = v2. In Rn, we say that
u = (u1, . . . , un) and v = (v1, . . . , vn) are equal if ui = vi for i = 1, 2, . . . , n.

The zero vector (written 0) is the vector with all components equal to 0. Thus
the zero vector in Rn is

0 = (0, 0, . . . , 0︸ ︷︷ ︸
n times

).

The length (or norm) of a vector u = (u1, u2) in R2 is defined by

‖u‖ =
√
u21 + u22.

For u = (u1, u2, u3) in R3 the length is defined by

‖u‖ =
√
u21 + u22 + u23.

In general, the length of u = (u1, . . . , un) ∈ Rn is

‖u‖ =
√
u21 + u22 + · · ·+ u2n.

If ‖u‖ = 1, the vector u is said to be a unit vector.

Example 2.1. Find the length of the vector u = (−2, 1,−1, 3, 0).

Answer:
‖u‖ =

√
(−2)2 + 12 + (−1)2 + 32 + 02 =

√
15.

Example 2.2. Find the values of a making the vector v = (1/5, 2/5, 2/5, a) a unit
vector.

Answer: Note

‖v‖ =
√

(1/5)2 + (2/5)2 + (2/5)2 + a2 =
√

9/25 + a2.

Then v is a unit vector if and only if ‖v‖ = 1, or in other words:

9/25 + a2 = 1.

This gives a = ±4/5.

3. Addition and Scalar Multiplication

When we talk about vectors we call real numbers scalars.

Definition. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be two vectors in Rn.
We define the sum

u + v = (u1 + v1, u2 + v2, . . . , un + vn).

Let λ be a scalar (i.e. a real number). We define the scalar multiple of u by λ

λu = (λu1, λ u2, . . . , λ un).

Example 3.1. Let u = (3,−1,−2,−3) and v = (−3,−2, 5, 1). Then u + v =
(0,−3, 3,−2) and 2 u = (6,−2,−4,−6).

Geometrically, the sum u + v can be described by the familiar ‘completing the
parallelogram’ process. See Figure 3.

If the scalar λ is positive then λu has the same direction as u, and if λ is
negative λu has the opposite direction to u.

Lemma 3.1. Let u be a vector and λ a scalar. Then ‖λu‖ = |λ| ‖u‖.
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u

v u+v

Figure 1. Geometrically, the sum u + v can be described by the
familiar ‘completing the parallelogram’ process.

Proof. Write u = (u1, u2, . . . , un). Then λu = (λu1, λ u2, . . . , λ un), so

‖λu‖ =
√

(λu1)2 + (λu2)2 + · · ·+ (λun)2

=
√
λ2
√
u21 + u22 + · · ·+ u2n = |λ| ‖u‖.

�

Example 3.2. For a non-zero vector v, find a unit vector with the same direction.

Answer: We know that if the scalar λ is positive then λv has the same direction
as v. We must choose λ > 0 so that λv is a unit vector. In other words, we want
‖λv‖ = 1. But ‖λv‖ = |λ| ‖v‖ = λ ‖v‖. So we must choose λ = 1/‖v‖ and we see

that
1

‖v‖
v is a unit vector with the same direction as v.

For a vector u ∈ Rn we define −u = (−1)u. Thus if u = (u1, . . . , un) then
−u = (−u1, . . . ,−un). From what we know about scalar multiplication −u has
the same length as u but opposite direction. For vectors u, v ∈ Rn we define their
difference to be u− v = u + (−v).

Exercise 3.3. Let

u = (−1, 2, 1, 0), v = (0, 1, 3,−1), w = (−2, 3, 0, 5).
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Perform the following operations.

(i) u + v (ii) 2u− v + w (iii) 3(u− v) + w

(iv) ‖v + w‖ (v)
u + v

‖u + v‖
.

Exercise 3.4. Let u, v, w be vectors in R7 and λ be a scalar. Which of the
following operations is not defined?

(i) 2λ+ v (ii) w + λv

(iii) ‖v‖ − λu (iv) ‖u‖v − λu

Exercise 3.5. Let v be a non-zero vector and w the unit vector of the opposite
direction to v. Write w in terms of v.

4. Geometric Interpretation of Subtraction

Recall that geometrically a vector is a directed line segment
−−→
OP with O being

the origin. For any two points P , Q, we can also consider directed line segments

of the from P to Q which we denote by
−−→
PQ. We will say that two directed line

segments
−−→
PQ and

−→
RS are equivalent if they have the same length and direction.

See Figure 2.
The following theorem shows that any directed line segment is equivalent to a

vector.

Theorem 4.1. Let P and Q be points in Rn and let u and v be respectively the

vectors
−−→
OP and

−−→
OQ. Then the directed line segment

−−→
PQ is equivalent to v − u.

In other words
−−→
PQ is parallel to the vector v − u and the distance from P to Q is

equal to ‖v − u‖.

Proof. Note that u+ (v−u) = v. Now think back to the geometric interpre-
tation of vector addition in terms of the parallelogram. The vectors u and v − u
form two adjacent sides of a parallelogram with v (their sum) in the diagonal; see

Figure 3. It is clear that
−−→
PQ and v − u have the same direction and length: in

other words they are equivalent. �

Example 4.1. Find the distance between the point P (2, 3, 1,−1) and the point
Q(1, 2,−1, 1).

Answer: Notice that
−−→
PQ is equivalent to the vector (1, 2,−1, 1) − (2, 3, 1,−1) =

(−1,−1,−2, 2). Hence the distance from P to Q is equal to

‖(−1,−1,−2, 2)‖ =
√

(−1)2 + (−1)2 + (−2)2 + 22 =
√

10.

Exercise 4.2. Let r0 = (−1, 1). Find all vectors r = (x, y) satisfying

‖r‖ = ‖r− r0‖ =
√

5.

Draw a picture.
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P

QR

S

Figure 2. The directed line segments are equivalent because they
have the same length and direction.

5. Properties of Vector Addition and Scalar Multiplication

Theorem 5.1. Let u, v, w be vectors in Rn, and let λ, µ be scalars. Then

(a) u + v = v + u (vector addition is commutative)
(b) (u + v) + w = u + (v + w) (vector addition is associative)
(c) u + 0 = u (0 is the additive identity)
(d) u + (−u) = 0 (−u is the additive inverse of u)
(e) (λµ)u = λ(µu)
(f) (λ+ µ)u = λu + µu (distributive law)
(g) λ(u + v) = λu + λv (another distributive law)
(h) 1 u = u
(i) (−1)u = −u
(k) 0 u = 0

Proof. Every part of the theorem follows from the properties of real numbers.
We will prove part (g) to illustrate this and leave the other parts as an exercise for
the reader.

For the proof of (g) let

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn).



38 3. VECTORS (AT LAST)

u

v
v−u

O

P

Q

Figure 3. As u + (v − u) = v then v is the diagonal of the
parallelogram formed by u and v − u.

Then

λ(u + v) = λ (u1 + v1, . . . , un + vn) by defn of vector addition

= (λ(u1 + v1), . . . , λ(un + vn)) by defn of scalar mult.

= (λu1 + λv1, . . . , λun + λvn)

= (λu1, . . . , λun) + (λv1, . . . , λvn) by defn of vector addition

= λ(u1, . . . , un) + λ(v1, . . . , vn) by defn of scalar mult.

= λu + λv

Notice that in all the steps we are using the definitions of vector addition and scalar
multiplication, except for the third step where we used the distributive property
for real numbers:

λ(ui + vi) = λui + λvi.

�

6. The i, j, k notation

In R2 we write

i = (1, 0), j = (0, 1).

We can then express every vector (a, b) ∈ R2 in terms of i and j:

v = ai + bj.
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Similarly, every vector in R3 can be written in terms of i, j, k where

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

For example (3,−1, 4) = 3i− j + 4k.

7. Row Vectors and Column Vectors

There are two ways of representing vectors in R2. One way is to write (a, b) for

the vector
−−→
OP which starts at the origin and ends at the point P (a, b). The other

way is to write (
a
b

)
for the vector

−−→
OP . We call (a, b) a row vector, and(

a
b

)
a column vector. At the moment the difference between row vectors and column
vectors is only notational. Notice that row vectors are more economical on space.
But there are good psychological reasons for using column vectors which will be
explained in due course (page 75) when we define matrices and come to think of
them as functions.

Likewise, we can think of vectors in Rn as row vectors and column vectors. We
have the same notions of length, addition, subtraction, scalar multiplication and
dot product for column vectors that we do for row vectors. However, we never
think of adding a row vector to a column vector; the difference may be notational,
but this addition would be in extremely bad taste.

Exercise 7.1. Let

u =

−1
2
1

 , v =

0
1
3

 , w =

−2
3
1

 .

Perform the following operations.

(i) u + v (ii) 2u− v + w (iii) 3(u− v) + w

(iv) ‖v + w‖ (v)
u + v

‖u + v‖
.

8. Dot Product

Recall our geometric interpretation of a vector. A vector is a directed line

segment
−−→
OP starting at the origin and ending at some point P . Any two non-zero

vectors
−−→
OP and

−−→
OQ meet at the origin and so form an angle. The dot product will

allow us to calculate this angle.

Definition. Let

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn)

be two vectors in Rn. We define the dot product of u and v (denoted by u · v)
as follows:

u · v = u1v1 + u2v2 + · · ·+ unvn.
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Example 8.1. Let u = (1, 0, 4, 0, 1) and v = (−1, 1, 0, 3, 4). Then

u · v = 1×−1 + 0× 1 + 4× 0 + 0× 3 + 1× 4 = 3.

Exercise 8.2. Let

u = (−1, 2, 1, 0), v = (0, 1, 3,−1), w = (−2, 3, 0, 5).

Perform the following operations.

(i) u · v (ii) (2u + w) · v

Exercise 8.3. Let u, v, w be vectors in Rn. Explain why the expressions

(u · v) ·w, ‖u · v‖

are not defined.

9. Properties of the Dot Product

Theorem 9.1. Let u, v, w be vectors in Rn, and let λ be a scalar. Then

(i) u · v = v · u (dot product is commutative)
(ii) (λu) · v = λ(u · v) = u · (λv)
(iii) u · (v + w) = u · v + u ·w (distributive law)
(iv) u · 0 = 0
(v) u · u = ‖u‖2

Proof. Again the proof follows from the definition and the properties of the
real numbers. For illustration, we prove part (i) and leave the rest as an easy
exercise. So suppose that

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn).

Then

u · v = u1v1 + u2v2 + · · ·+ unvn defn of dot product

= v1u1 + v2u2 + · · ·+ vnun mult. of reals is commutative

= v · u defn of dot product

�

Exercise 9.1. Suppose v ∈ R3. Show that

v = (v · i)i + (v · j)j + (v · k)k.

10. Angle Between Vectors

Theorem 10.1. Let u and v be non-zero vectors in Rn, and let θ be the angle
between u and v. Then

(18) u · v = ‖u‖ ‖v‖ cos θ.

Proof. Let u and v be the directed line segments
−−→
OP and

−−→
OQ. By The-

orem 4.1, the directed line segment
−−→
PQ is equivalent to the vector v − u. See

Figure 4.

Let a, b and c be the length of
−−→
OP ,

−−→
OQ and

−−→
PQ respectively. Thus

a = ‖u‖, b = ‖v‖, c = ‖v − u‖.
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u

v
v−u

O

P

Q

Figure 4

Applying the law of cosines to the triangle OPQ gives

c2 = a2 + b2 − 2ab cos θ.

In other words,

(19) ‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2‖u‖‖v‖ cos θ.

But there is another way of evaluating ‖v − u‖2. From part (v) of Theorem 9.1,
we see that

‖v − u‖2 = (v − u) · (v − u) = v · v − u · v − v · u + u · u.

Now by part (a) of Theorem 9.1 we know that u · v = v · u and so we get

(20) ‖v − u‖2 = ‖u‖2 + ‖v‖2 − 2 u · v.

Comparing (19) and (20) we see that

‖u‖2 + ‖v‖2 − 2 u · v = ‖u‖2 + ‖v‖2 − 2 ‖u‖ ‖v‖ cos θ,

which, after a little cancellation, gives (18). �

Suppose that u, v are non-zero vectors and θ is the angle between them. Recall
that cos θ is positive for 0 ≤ θ < π/2 and negative for π/2 < θ ≤ π. Thus we know
the following:

• If u · v = 0 then θ = π/2 and the vectors are orthogonal.
• If u · v > 0 then the angle θ is acute.
• If u · v < 0 then the angle θ is obtuse.

Example 10.1. Let us return to the two vectors in R4 that we met in Example 1.1:
u = (1,−1, 3, 4) and v = (−1, 0,−1, 1). We see that u ·v = 0 and so the two vectors
are perpendicular.
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Example 10.2. Let u = i and v = j − i and let θ be the angle between them.
Then

cos θ =
u · v
‖u‖ ‖v‖

=
−1√

2
.

Thus θ = 3π/4. Make a sketch to satisfy yourself that this answer is reasonable.

Example 10.3. Let u, v be vectors in Rn. Show that

‖u + v‖2 + ‖u− v‖2 = 2 ‖u‖2 + 2 ‖v‖2.

Answer: Recall from the proof of Theorem 10.1 that

‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2 u · v.

In the same way

‖u + v‖2 = (u + v) · (u + v)

= u · u + 2 u · v + v · v
= ‖u‖2 + ‖v‖2 + 2 u · v.

Adding the two identities we obtain the desired result.

Exercise 10.4. Determine the cosine of the angle determined by the given pair of
vectors, and state where the angle is acute, obtuse or a right-angle:

(i) (1, 0, 2), (−2, 1, 1) (ii) (1,−1), (1,−2)

(iii) (4, 1,−1, 2), (1,−4, 2,−1)

Exercise 10.5. Let u, v be vectors in Rn and θ be the angle between them. Prove
that

‖u + v‖2 − ‖u− v‖2 = 4‖u‖ ‖v‖ cos θ.

Exercise 10.6. Find the area of the parallelogram that has unit vectors u and v
as adjacent sides, if u · v =

√
3/2.

Exercise 10.7. Suppose that u, v are unit vectors in Rn. Show that

‖u + 2 v‖2 + ‖u− 2 v‖2 = 10.

11. Two Important Inequalities

In this section you will prove two important inequalities which you will need
again and again in your mathematical career.

Exercise 11.1. (The Cauchy-Schwartz Inquality) Suppose u1, . . . , un and
v1, . . . , vn are real numbers. Show that

|u1v1 + u2v2 + · · ·+ unvn|

≤
(
u21 + u22 + · · ·+ u2n

)1/2 (
v21 + v22 + · · ·+ v2n

)1/2
.

Hint: Think about what the inquality is saying in terms of vectors.

Exercise 11.2. (The Triangle Inequality) Let u, v be vectors in Rn. Show
that

‖u + v‖ ≤ ‖u‖+ ‖v‖.
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Hint: Start with ‖u + v‖2 = (u + v) · (u + v) and after expanding the brackets
use the Cauchy-Schwartz inequality.

12. Orthogonality

Definition. We say that non-zero vectors u and v are orthogonal (or perpen-
dicular) if the angle between them is π/2. By Theorem 10.1, non-zero vectors u
and v are orthogonal if and only if u · v = 0.

We say that non-zero vectors v1,v2, . . . ,vn are orthogonal if every pair is
orthogonal. Using more notation, we can say that v1,v2, . . . ,vn are orthogonal
if vi · vj = 0 whenever i 6= j.

We say that vectors v1,v2, . . . ,vn are orthonormal if they are orthogonal and
each is a unit vector.

Notice that if the vectors v1,v2, . . . ,vn are orthogonal, and we let ui = vi/‖vi‖,
then the vectors u1,u2, . . . ,un are orthonormal.

Example 12.1. Obviously the vectors i, j, k in R3 are orthonormal. It is easy to
check that i + j, i − j, k are orthogonal. To get orthonormal vectors we can scale
them, diving each vector by its length. We obtain orthonormal vectors

1√
2

(i + j),
1√
2

(i− j), k.

Exercise 12.2. Find a vector that is orthogonal to both (1, 0, 3), (0, 1,−1).

Exercise 12.3. Let u = (a, b) be a non-zero vector in R2. Show that v = (b,−a)
is orthogonal to u. Hence find two unit vectors that are orthogonal to u. Are there
any others?

Exercise 12.4. Suppose that v1,v2, . . . ,vm are orthogonal non-zero vectors in
Euclidean n-space, and that a vector v is expressed as

v = λ1v1 + λ2v2 + · · ·+ λmvm.

Show that the scalars λ1, λ2, . . . , λm are given by

λi =
v · vi
‖vi‖2

, i = 1, 2, . . . ,m.

If v1,v2, . . . ,vm are orthonormal, what would the answer be?

13. Vector Equation of the Line

You should know that any straight line in the plane can be written either as
y = mx+ c if it isn’t vertical, and as x = b if it is vertical. We would like to write
down the equation of a straight line in terms of vectors. Working with vectors
we will see that there is none of the awkward subdivision of cases: vertical and
non-vertical. Moreover, our equation is of the same form regardless of whether the
line is in the plane R2, 3-space R3, or any Euclidean space Rn.

Take any straight line L in Rn (if you are happier with R2 and R3 then think
that n is 2 or 3). Pick any point Q on L and any non-zero vector v parallel to L.

If P is a point on L then the vector
−−→
QP is parallel to L and so parallel to v. Hence
−−→
QP = tv

for some scalar t. See Figure 5.
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Figure 5

As usual, write O for the origin. Then
−−→
OP =

−−→
OQ+

−−→
QP using the definition of vector addition

=
−−→
OQ+ tv.

Now let u =
−−→
OQ and x =

−−→
OP . Then

x = u + tv.

This is the vector equation for the line L. Note that we think of u and v as fixed
vectors; the first is the position vector of a fixed point Q on L and the second is a
vector parallel to L. We think of x as a variable vector. As t varies along the real
line (recall that t is a scalar), x is the position vector of a point varying along L.
So we think of x as a function of t and write

x(t) = u + tv.

Example 13.1. Find the vector equation of the line L passing through the points
(0, 1, 1) and (1, 3, 2) in R3.

Answer: We can take Q = (0, 1, 1) as a point on the line, with position vector

u =
−−→
OQ = (0, 1, 1). We also note that v = (1, 3, 2)− (0, 1, 1) = (1, 2, 1) is a vector

parallel to the line. So the vector equation of L is

L : x = (0, 1, 1) + t(1, 2, 1).

We can also write this without vectors by letting x = (x, y, z) and we see that

L :


x = t,

y = 1 + 2t,

z = 1 + t.

This is the parametric form of the line L. It gives us the coordinates x, y, z in
terms of a parameter t.
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Exercise 13.2. Let L1, L2 be the two lines in the plane R2 given by the equations

L1 : x = (0, 1) + t(1, 1), L2 : x = (1, 0) + t(1,−1).

The lines are non-parallel; why? We know that any two non-parallel lines in the
plane must intersect. We want to find the point of intersection of L1 and L2. What
is wrong with the following argument:

To find the point of intersection, equate

(0, 1) + t(1, 1) = (1, 0) + t(1,−1).

Thus t(0, 2) = (1,−1) which is impossible???

Exercise 13.3. Let L be the line in the plane given by the equation y = mx+ c.
What is the vector equation of L?

Exercise 13.4. Let L1 : x = u1 + tv1 and L2 : x = u2 + tv2 be straight lines in
Rn, where v1 6= 0, v2 6= 0 and u1 6= u2. Show that L1 and L2 are the same line if
and only if the three vectors v1, v2, u1 − u2 are parallel.

13.1. A Very Important Warning. A straight line has infinitely many vec-
tor equations and infinitely many parametric equations. Just because two lines have
different vector equations, doesn’t give us the right to conclude that the lines are
different. Do this exercise and you will see what I mean.

Exercise 13.5. Let L1, L2 be the pair of lines

L1 : x = (1, 1, 2) + t(1, 0, 1), L2 : x = (0, 1, 1) + t(2, 0, 2).

Show that L1, L2 both pass through the pair of points (1, 1, 2) and (0, 1, 1). But
you know that passing through any two distinct points is a unique line, so . . .

Exercise 13.6. Let L be the line with vector equation x = (2, 1, 0) + t(1, 3, 1).
Which of the following lines is parallel to L but passess through the point P (1, 1,−1):

(a) x = (2, 1, 0) + t(1, 1,−1) (b) x = (4, 2, 0) + t(1, 3, 1)

(c) x = (−1,−5,−3) + t(2, 6, 2) (d) x = (1, 1,−1) + t(3, 4, 1)

14. Vector Equation of the Plane

We shall only be concerned with planes in R3. A plane is normally denoted
by the symbol Π (a capital π). You will need to be comfortable with four different
ways of representing a plane in R3.

I. The Point-Normal Form. Let Π be a plane in R3. Let n be a vector normal
to Π (by normal to Π we simply mean perpendicular to Π). Choose and fix a point

Q on the plane Π and let u =
−−→
OQ be the position vector of Q. Suppose now that

P is any point on Π and let x =
−−→
OP be its position vector. Note that the vector−−→

QP = x−u is parallel to the plane and so perpendicular to n. Hence n·(x−u) = 0.
This is the point-normal equation for the plane:

(21) Π : n · (x− u) = 0.

Here n is any (non-zero) vector normal to the plane, and u is the position vector
of any point on the plane.
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Figure 6

II. The Standard Form. You have met this form at school (and probably the
other three). A plane is represented by the equation

(22) Π : ax+ by + cz = d

where a, b, c, d are (real) numbers, and not all of a, b, c are zero. Let us see
how to get from the point-normal form to the standard form. Suppose Π is the
plane given by (21) where n = (a, b, c) is a non-zero vector normal to the plane and
u = (u, v, w) is the position vector of some point on the plane. Write x = (x, y, z).
Then equation (21) can be rewritten as n · x = n · u, or

ax+ by + cz = au+ bv + cw.

Writing d = au+ bv + cw we get the equation for Π in its standard form (22).

III. The Vector Form.
Let u be the position vector of a point on Π. Let v and w be non-zero non-

parallel vectors 1, both parallel to Π. Then the vector equation of the plane is

(23) Π : x = u + sv + tw.

Note that the vector equation of the plane is given in terms of two parameters s, t,
because the plane is a 2-dimensional object.

IV. The Parametric Form.

1The statement that v and w are non-zero and non-parallel means that neither v nor w is
a scalar multiple of the other.
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In the vector form (23) write x = (x, y, z), u = (u1, u2, u3), v = (v1, v2, v3),
w = (w1, w2, w3). Then (23) can be rewritten as

Π :


x = u1 + sv1 + tw1,

y = u2 + sv2 + tw2,

z = u3 + sv3 + tw3.

Example 14.1. Let Π be the plane given by standard equation

Π : x+ y + z = 1.

Write equations for Π in point-normal and vector forms.
Answer: Let n = (1, 1, 1), x = (x, y, z). Note that the equation can be rewritten
as n · x = 1. Now the point P (1, 0, 0) is on the plane and so its position vector
u = (1, 0, 0) satisfies n · u = 1 (which is clear anyway). Hence we can rewrite the
equation as (1, 1, 1) · x = (1, 1, 1) · (1, 0, 0), or

(1, 1, 1) · (x− (1, 0, 0)) = 0,

which is the equation in point-normal form.
We now want the vector equation for Π. Note that the points Q(0, 1, 0) and

R(0, 0, 1) are on the plane. Hence the vectors v =
−−→
PQ = (−1, 1, 0) and w =

−→
PR =

(−1, 0, 1) are parallel to the plane. Moreover, these vectors are not parallel to each
other (they are not multiples of one another). Hence a vector equation for Π is

x = (1, 0, 0) + s(−1, 1, 0) + t(−1, 0, 1).

Exercise 14.2. Let Π1, Π2 be the two planes in R3 given by

Π1 : x+ y + z = 1, Π2 : x− 2y − z = 0.

Find the vector equation of the straight line given by the intersection of Π1 and
Π2.

Exercise 14.3. Find the vector equation of the plane in R3 passing through the
point (0, 1, 1) and containing the line L : x = (1, 0, 0) + t(0, 0, 1).

Exercise 14.4. In the vector equation of the plane (23) we insisted that the vectors
v and w are non-parallel. Show that if v and w are parallel then the equation gives
a line and not a plane.

Exercise 14.5. Let

Π1 : x · (1, 1, 1) = γ, Π2 : x = s(−1, α, 0) + t(1, 1, β) + (−1,−1,−1).

For which triples of values α, β, γ will Π1, Π2 be the same plane?

Exercise 14.6. For which pairs of values α, β does the line

L : x = (−1, β, α) + t(7, β, 4)

lie on the plane x+ y + z = 3?
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15. Subspaces of Rn

Definition. A subset V of Rn is said to be a subspace of Rn if it satifies these
three conditions:

• 0 ∈ V ;
• for all vectors u, v in V , their sum u + v must be in V ;
• for all vectors v in V and scalars λ, the product λv must be in V .

In other words, in a subspace we can add and multiply by scalars.

Example 15.1. Let V = {(a, a) : a ∈ R}. In other words V is the subset of R2

where the x-coordinate equals the y-coordinate. Thus V is the the line y = x in R2.
It is geometrically obvious that V contains the origin; that if we add two vectors
belonging to it the result also belongs to it; and that if scale any vector belonging
to this diagonal, by any scalar we please, the result also belongs to V . But at this
stage in your academic career, you are expected to write a proof in symbols. Let
us do that:

First note that 0 = (0, 0) ∈ V . Secondly, suppose u ∈ V and v ∈ V . By
definition of V , u = (a, a) and v = (b, b) for some a, b ∈ R. Thus u+v = (a+b, a+b)
which again belongs to V . Finally, suppose that v ∈ V and λ ∈ R. By definition
of V , v = (a, a). So λv = (λa, λa) which is in V . This shows that V is a subspace
of R2.

Example 15.2. This time we take W = {(a, a) : a ∈ R, a ≥ 0}. The set W is not
all the line y = x but a ‘ray’ as in Figure 7. Note that W does not satisfy the last

O x

y

W

Figure 7. W = {(a, a) : a ∈ R, a ≥ 0} is ray.

condition for being a subspace. For example, take v = (1, 1) and λ = −1. Note v
is a vector belonging to W and λ is a scalar, but λv = (−1,−1) does not belong to
W . Hence W is not subspace of R2.
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Notice that to show that W is not a subspace, we gave a counterexample.
This means that we gave an example to show that at least one of the requirements
in the definition is not always satisfied.

What do subspaces of R2 look like? In fact there are exactly three possibilities:

(1) either the subspace is just the origin {0},
(2) or it is a straight line passing through the origin,
(3) or it is the whole of R2.

Now what do subspaces of R3 look like? There are four possibilities. What do
you think they are?





CHAPTER 4

Matrices

1. What are Matrices?

Let m, n be positive integers. An m× n matrix (or a matrix of size m× n) is
a rectangular array consisting of mn numbers arranged in m rows and n columns:

a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

...
am1 am2 am3 . . . amn

 .

Example 1.1. Let

A =

(
1 −2 0
−1 7 14

)
, B =

 3 −2
−1 8
2 5

 , C =

 3 1 5
−6 −8 12
2 5 0

 .

A, B, C are matrices. The matrix A has size 2 × 3 because it has 2 rows and 3
columns. Likewise B has size 3× 2 and C has size 3× 3.

Displaying a matrix A by writing

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

...
am1 am2 am3 . . . amn

 .

wastes a lot of space. It is convenient to abbreviate this matrix by the notation
A = (aij)m×n. This means that A is a matrix of size m × n (i.e. m rows and n
columns) and that we shall refer to the element that lies at the intersection of the
i-th row and j-th column by aij .

Example 1.2. Let A = (aij)2×3. We can write A out in full as

A =

(
a11 a12 a13
a21 a22 a23

)
.

Notice that A has 2 rows and 3 columns. The element a12 belongs to the 1st row
and the 2nd column.

The abbreviated notation (aij)m×n for matrices is particularly convenient when
we have a recipe for the elements of the matrix. As we see in the following example.

Example 1.3. Let C = (cij)2×2 where cij = i− j. Calculate C.

Answer: C has 2 rows and 2 columns. Thus

C =

(
c11 c12
c21 c22

)
.

51
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We need the values of the cij which we get from the recipe cij = i− j. Hence

C =

(
c11 c12
c21 c22

)
=

(
1− 1 1− 2
2− 1 2− 2

)
=

(
0 −1
1 0

)
.

Exercise 1.4. Let B = (bij)3×4 where

bij =

{
i j if i ≤ j
i+ j otherwise.

Calculate B.

2. Matrix Operations

Definition. Let A = (aij)m×n and B = (bij)p×q be matrices. We say that A and
B are equal (and write A = B) if the following conditions are satisfied:

• m = p and n = q;
• aij = bij for all pairs i, j.

In other words, for two matrices to be equal we require them to have the same
size, and we require that corresponding elements are equal.

Example 2.1. Let

A =

(
0 0 0
0 0 0

)
, B =

0 0
0 0
0 0

 , C =

0 0
0 0
0 0.1

 .

Then A 6= B because A is 2 × 3 and B is 3 × 2. For the same reason A 6= C.
Although B and C have the same size, they are not equal because the elements in
the (3, 2)-position are not equal.

Definition. Given m × n matrices A = (aij) and B = (bij), we define the sum
A + B to be the m × n matrix whose (i, j)-th element is aij + bij . We define the
difference A−B to be the m× n matrix whose (i, j)-th element is aij − bij .

Let λ be a scalar. We define λA to be the m×n matrix whose (i, j)-th element
is λaij .

We let −A be the m × n matrix whose (i, j)-th element is −aij . Thus −A =
(−1)A.

Note that the sum A+B is defined only when A and B have the same size. In
this case A+B is obtained by adding the corresponding elements.

Example 2.2. Let

A =

(
2 −5
−2 8

)
, B =

 4 3
1 0
−1 2

 , C =

−4 2
0 6
9 1

 .

Then A+B is undefined because A and B have different sizes. Similarly A+C is
undefined. However B + C is defined and is easy to calculate:

B + C =

 4 3
1 0
−1 2

+

−4 2
0 6
9 1

 =

0 5
1 6
8 3

 .
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Likewise A−B and A− C are undefined, but B − C is:

B − C =

 4 3
1 0
−1 2

−
−4 2

0 6
9 1

 =

 8 1
1 −6
−10 1

 .

Scalar multiplication is always defined. Thus, for example

−A =

(
−2 5
2 −8

)
, 2B =

 8 6
2 0
−2 4

 , 1.5C =

 −6 3
0 9

13.5 1.5

 .

Definition. The zero matrix of size m×n is the unique m×n matrix whose entries
are all 0. This is denoted by 0m×n, or simply 0 if no confusion is feared.

Example 2.3.

02×4 =

(
0 0 0 0
0 0 0 0

)
.

Exercise 2.4. Let

A =

(
−2 5 −3
4 1 2

)
, B =

(
4 3
−1 2

)
, C =

(
−3 2 0
4 5 1

)
.

Which of the following operations is defined; if defined, give the result.

(i) A+ 2B (ii) 2C −A
(iii) B + 02×2 (iv) C + 02×2.

Exercise 2.5. Let

A =

(
x y 1
z −1 −1

)
, B =

(
2 z −1
−y 1 2

)
.

Find the values of x, y and z if

2A+B =

(
−2 1 1
−3 −1 0

)
.

Definition. Let A = (aij)m×n and B = (bij)n×p. We define the product AB to
be the matrix C = (cij)m×p such that

cij = ai1b1j + ai2b2j + ai3b3j + · · ·+ ainbnj .

Note the following points:

(1) For the product AB to be defined we demand that the number of columns
of A is equal to the number of rows of B.

(2) The ij-th element of AB is obtained by taking the dot product of the i-th
row of A with the j-th column of B.

Example 2.6. Let

A =

(
1 2
−1 3

)
, B =

(
5 −3
0 −2

)
.

Both A and B are 2× 2. From the definition we know that A× B will be a 2× 2
matrix. We see that

AB =

(
1× 5 + 2× 0 1×−3 + 2×−2
−1× 5 + 3× 0 −1×−3 + 3×−2

)
=

(
5 −7
−5 −3

)
.
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Likewise

BA =

(
5× 1 +−3×−1 5× 2− 3× 3
0× 1− 2×−1 0× 2 +−2× 3

)
=

(
8 1
2 −6

)
.

We make a very important observation: AB 6= BA in this example. So matrix
multiplication is not commutative.

Example 2.7. Let A be as in the previous example, and let

C =

(
2 1 3
3 −4 0

)
.

Then

AC =

(
8 −7 3
7 −13 −3

)
.

However, CA is not defined because the number of columns of C is not equal to
the number of rows of A.

Definition. Let A = (aij)m×n be a matrix (of size m × n). The transpose of A

(written At) is the n×m matrix whose j-th column is the j-th row of A. Another
way of saying this is: if B = (bij)n×m = At then bij = aji.

Example 2.8. The transpose of

C =

(
2 1 3
3 −4 0

)
is

Ct =

2 3
1 −4
3 0

 .

Exercise 2.9. Commutativity—What can go wrong?

(1) Give a pair of matrices A, B, such that AB is defined but BA isn’t.
(2) Give a pair of matrices A, B, such that both AB and BA are defined but

they have different sizes.
(3) Give a pair of matrices A, B, such that AB and BA are defined and of

the same size but are unequal.
(4) Give a pair of matrices A, B, such that AB = BA.

2.1. Where do matrices come from? No doubt you are wondering where
matrices come from, and what is the reason for the weird definition of matrix
multiplication. Matrices orginate from linear substitutions. Let a, b, c, d be fixed
numbers, x, y some variables, and define x′, y′ by the linear substitutions

x′ = ax+ by

y′ = cx+ dy.
(24)

The definition of matrix multiplication allows us to express this pair of equations
as one matrix equation

(25)

(
x′

y′

)
=

(
a b
c d

)(
x
y

)
.

You should multiply out this matrix equation and see that it is the same as the
pair of equations (24).
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Now suppose moreover that we define new quantaties x′′ and y′′ by

x′′ = αx′ + βy′

y′′ = γx′ + δy′,
(26)

where α, β, γ, δ are constants. Again we can rewrite this in matrix form as

(27)

(
x′′

y′′

)
=

(
α β
γ δ

)(
x′

y′

)
.

What is the relation between the latest quantaties x′′, y′′ and our first pair x,
y? One way to get the answer is of course to substitute equations (24) into (26).
This gives us

x′′ = (αa+ βc)x+ (αb+ βd)y

y′′ = (γa+ δc)x+ (γb+ δd)y.
(28)

This pair of equations can re-expressed in matrix form as

(29)

(
x′′

y′′

)
=

(
αa+ βc αb+ βd
γa+ δc γb+ δd

)(
x
y

)
.

Another way to get x′′, y′′ in terms of x, y is to substitute matrix equation (25)
into matrix equation (27):

(30)

(
x′′

y′′

)
=

(
α β
γ δ

)(
a b
c d

)(
x
y

)
.

If the definition of matrix multiplication is sensible, then we expect that matrix
equations (29) and (30) to be consistent. In other words, we would want that(

α β
γ δ

)(
a b
c d

)
=

(
αa+ βc αb+ βd
γa+ δc γb+ δd

)
.

Check that this is indeed the case.

3. Some Special Matrices

A square matrix is one which has the same number of rows as columns. So if
A is a square matrix, it will have size n× n for some positive integer n; we say A
is a square matrix of size n. If A is a square matrix and k is a positive integer we
define k-th power of A to be

Ak = AA · · ·A︸ ︷︷ ︸
k

.

We note that this is only defined for square matrices (why?). The reader will also
note that for this definition to be sensible we need the fact that matrix multiplica-
tion is associative. For this see Theorem 4.1.

A diagonal matrix is a square matrix where all the entries that are not on
the diagonal are zero. For example

A =

(
1 4
0 7

)
is not a diagonal matrix since the element 4 in the (1, 2)-position is a non-zero
element that is not on the diagonal. However

B =

(
1 0
0 7

)
, C =

1 0 0
0 2 0
0 0 −3


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are diagonal matrices. We refer to the diagonal matrix with diagonal entries a1,
a2, . . . , an with the notation diag(a1, a2, . . . , an). Thus the diagonal matrices B and
C can be written more economically as B = diag(1, 7) and C = diag(1, 2,−3).

The identity matrix of size n written In is

In = diag(1, 1, 1, . . . , 1︸ ︷︷ ︸
n

).

We define the Kronecker delta by the formula:

δij =

{
1 if i = j,

0 if i 6= j.

Thus, for example, δ23 = 0 but δ44 = 1. Then the identity matrix of size n can also
be written as In = (δij)n×n.

Exercise 3.1. Show that diag(a1, a2)k = diag(ak1 , a
k
2) for positive integers k. Ex-

tend to diagonal matrices of size n.

Exercise 3.2. Let A =

3 0 0
0 1 1
0 0 1

 . Use induction to show An =

3n 0 0
0 1 n
0 0 1


for every positive integer n.

4. Properties of Matrix Operations
Theorem 4.1. Let A, B, C be matrices and λ, µ scalars. The following properties
hold (provided that the dimensions of the matrices are such that the operations are
defined):

(i) A+B = B +A (matrix addition is commutative)
(ii) A+ (B + C) = (A+B) + C (matrix addition is associative)
(iii) A+ 0m×n = A
(iv) A+ (−A) = 0m×n
(v) A(BC) = (AB)C (matrix multiplication is associative)

(vi) AIm = A, InB = B
(vii) A(B + C) = AB +AC, (A+B)C = AC +BC (distributive laws)
(viii) λ(A+B) = λA+ λB, (λ+ µ)A = λA+ µA (distributive laws)
(ix) (λµ)A = λ(µA)
(x) 1A = A, 0A = 0m×n

(xi) λ0m×n = 0m×n
(xii) A0n×p = 0m×p, 0p×mA = 0p×n
(xiii) λ(AB) = (λA)B = A(λB)
(xiv) (A+B)t = At +Bt

(xv) (AB)t = BtAt.

5. Matrix Inverses

We talked about matrix addition, subtraction and multiplication. The reader
may be wondering if there is an analogue of division for matrices or at least a
concept of a reciprocal for matrices. If λ is real, then the reciprocal of λ is a
number µ that satisfies

λµ = µλ = 1.
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Of course the reciprocal does not exist for λ = 0 but does exist otherwise, and we
denote it by λ−1.

We would like to define a similar concept to reciprocal for matrices. Before
doing that we have to ask what is the analogue of 1 for matrix multiplication.

Let A be a square matrix of size n. Recall, from Theorem 4.1, that

AIn = InA = A

where In is the identity matrix. In other words, the identity matrix acts in the
same way as 1 does for real number multiplication. You should now have guessed
what the analogue of reciprocal for matrices is. In fact we call it the inverse and
not the reciprocal.

Definition. Let A be square matrix of size n. We say that A is invertible (or
non-singular) if there exists a matrix B (called the inverse) such that

AB = BA = In.

Clearly, if the inverse B exists it must be square of size n.

Example 5.1. For example, if

A =

(
1 2
0 1

)
then we can take B to be (

1 −2
0 1

)
we see that AB = BA = I2, so that B is the inverse of A.

The reader will of course expect that the zero matrix does not have an inverse.
But there are also non-zero matrices that do not have inverses. These are called
singular or non-invertible.

Example 5.2. Let

A =

(
1 0
0 0

)
.

We show that A is non-invertible (or singular) by contradiction. So suppose it is
invertible. That is, there is a 2× 2 matrix B such that AB = BA = I2. Let

B =

(
a b
c d

)
.

Then

AB =

(
a b
0 0

)
.

Clearly AB 6= I2 whatever the values of a and b are. Thus we have a contradiction
and we see that A is non-invertible.

We have learned that some matrices are invertible and others are not. There is
a hidden assumption in the definition of inverse given above. Recall that we called
B the inverse of A if AB = BA = In. The hidden assumption is in the word ‘the’,
which implies uniqueness. How do we know that there aren’t two or more inverse
to A? Of course inverses (i.e. reciprocals) of real numbers are unique, but we have
seen that matrices don’t have some of the properties of real numbers (e.g. matrix
multiplication is non-commutative). Let us prove that the inverse (if it exists) is
unique.
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Theorem 5.1. Let A be a square matrix of size n. If A is invertible then it has a
unique inverse.

Proof. Our proof is a standard uniqueness proof that you will see again and
again during your undergraduate career. Almost all uniqueness proofs follow the
same pattern: suppose that there are two of the thing that we want to prove unique;
show that these two must be equal; therefore it is (whatever it is) unique.

For our proof we suppose that A has two inverses, and call them B and C. We
want to show that B = C. By definition of inverse we know that

AB = BA = In, AC = CA = In.

Thus

B = BIn from Theorem 4.1

= B(AC) from the above AC = In

= (BA)C matrix multiplication is associative (Theorem 4.1)

= InC from the above BA = In

= C from Theorem 4.1.

Thus B = C. Since every two inverses must be equal, we see that the inverse must
be unique. �

Now we have shown that the inverse, if it exists, must be unique, we introduce
a suitable notation for it. If the square matrix A is invertible, we write A−1 for the
(unique) inverse of A.

6. Some Peculiarities of Matrix Arithmetic

Manipulations involving matrices need particular care because the matrix mul-
tiplication need not be commutative. You must be on guard for subconscious
assumptions that are based on your experience with real numbers and which do
not hold for matrices. Here is a sample of pitfalls:

• For real or complex numbers α and β, we know that (α + β)(α − β) =
α2 − β2. However for square matrices A, B of the same dimension, we
note that (A + B)(A − B) = A2 − AB + BA − B2; since AB 6= BA in
general, we cannot cancel to obtain A2 −B2.

• Again for square matrices of the same dimension (A+B)2 = A2 +AB +
BA+B2 and so in general (A+B)2 6= A2 + 2AB +B2.

• Again for for square matrices A, B of the same dimension (AB)2 = ABAB
and so in general (AB)2 6= A2B2.

We must never talk of dividing matrices; if we write A/B do we mean B−1A
or AB−1? In the matrix world, the two do not have to be same. For reals and
complexes there is no ambiguity in writing α/β since β−1α and αβ−1 are same.
Study the proof of the following lemma.

Lemma 6.1. Let A be a square matrix of size m, B and C be matrices of size
m× n. Suppose A is invertible. If AB = AC then B = C.

Proof. If we were dealing with real or complex numbers we would just say
‘divide both sides by A’, but we are dealing with matrices. One of the hypotheses
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of the lemma is that A is invertible. So premultiply 1 both sides of AB = AC by
A−1:

A−1AB = A−1AC.

But A−1A = Im (the identity matrix) and ImB = B, ImC = C so we get B =
C. �

Exercise 6.1. Give an example to show that the above lemma fails if A is not
invertible.

Another of the properties of real and complex numbers that does not extend
to matrices is the following: if αβ = 0 then α = 0 or β = 0. As we know,
this property of real and complex numbers is a consequence of the existence of
multiplicative inverses of non-zero numbers. But we know that there are non-zero
square matrices that are not invertible. So we should also expect this property to
fail in the matrix setting, and indeed it does. For example, let

A =

(
1 0
0 0

)
, B =

(
0 0
0 1

)
.

Then

AB =

(
0 0
0 0

)
,

but A and B are non-zero.

7. Determinants

Definition. Let A be a 2× 2 matrix and write

A =

(
a b
c d

)
.

We define the determinant of A, written det(A) to be

det(A) = ad− bc.

Another common notation for the determinant of the matrix A is the following∣∣∣∣a b
c d

∣∣∣∣ = ad− bc.

Theorem 7.1. (Properties of Determinants) Let A, B be 2× 2 matrices.

(i) det(I2) = 1.
(ii) det(AB) = det(A) det(B).

(iii) If A is invertible then det(A) 6= 0 and det(A−1) =
1

det(A)
.

(iv) Let n be a positive integer. Then det(An) = det(A)n. If A is invertible
then this is also true for negative n.

(v) det(At) = det(A).

1Premultiply means multiply on the left and postmultiply means multiply on the right. For
real and complex numbers this vocabulary is not used since multiplication is commutative, and

so it does not matter on which side we multiply.
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Proof. The proof is mostly left as an exercise for the reader. Parts (i), (ii)
and (v) follow from the definition and effortless calculations. For (iii) note that

det(A−1A) = det(I2) = 1.

Now applying (ii) we have 1 = det(A−1) det(A). We see that det(A) 6= 0 and
det(A−1) = 1/ det(A).

For positive n, the formula det(An) = det(A)n can be proved by a straight-
forward induction. To prove it for negative n we argue as follows. Suppose n is
negative and write m = −n, which is clearly positive. Since you have already proved
(iv) for positive exponents, we know that det(Am) = det(A)m. Now suppose that
A is invertible. From (iii) we know that det(A−1) = 1/det(A) and

det(A−m) = det((Am)−1) = 1/ det(Am).

Thus

det(An) = det(A−m) = 1/ det(Am) = 1/ det(A)m = det(A)−m = det(A)n.

This proves (iv) for negative exponents. (Go through the argument carefully and
make sure you understand each step). �

Exercise 7.1. (The Geometric Meaning of Determinant) You might be won-
dering (in fact should be wondering) about the geometric meaning of the determi-
nant. This exercise answers your question. Let Let A be a 2× 2 matrix and write

A =

(
a b
c d

)
.

Let u =

(
a
c

)
and v =

(
b
d

)
; in otherwords, u and v are the columns of A. Show

that |det(A)| is the area of the parallelogram with adjacent sides u and v (See
Figure 1). This tells you the meaning of |det(A)|, but what about the sign of
det(A)? What does it mean geometrically? Write down and sketch a few examples
and see if you can make a guess. Can you prove your guess?
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Figure 1. If u and v are the columns of A then the shaded area is |det(A)|.



8. INVERSES 61

Exercise 7.2. Suppose u =

(
a
c

)
and v =

(
b
d

)
are non-zero vectors, and let A

be the matrix with columns u and v; i.e. A =

(
a b
c d

)
. Show (algebraically) that

det(A) = 0 if and only if u, v are parallel. Explain this geometrically.

Exercise 7.3. Let A =

(
α 1
1 1

)
. For which values of α is det(A5 − A4) = −16?

(Warning: This will be very messy unless you use the properties of
determinants)

8. Inverses

One reason why determinants are important lies the following theorem.

Theorem 8.1. Let A be a 2× 2 matrix, and write

A =

(
a b
c d

)
.

Then A is invertible if and only if det(A) 6= 0, in which case

A−1 =
1

detA

(
d −b
−c a

)
.

Proof. Let

B =

(
d −b
−c a

)
.

Then we check that

AB =

(
ad− bc −ab+ ba
cd− dc −cb+ da

)
=

(
det(A) 0

0 det(A)

)
= det(A)I2.

Similarly (check), BA = det(A)I2. Suppose det(A) is non-zero. Then we see that

A

(
1

det(A)
B

)
=

(
1

det(A)
B

)
A = I2.

Hence A is invertible and its inverse is

A−1 =
1

det(A)
B =

1

detA

(
d −b
−c a

)
,

as required.
We have shown that if det(A) 6= 0 then A is invertible. By Theorem 7.1, part

(ii), we know that if A is invertible then det(A) 6= 0. Thus A is invertible if and
only if det(A) 6= 0. This completes the proof. �

Remark. The notion of determinant generalizes to arbitrary square matrices. It is
also true that if A is a square matrix, then A is invertible if and only if det(A) 6= 0.
We leave this generalization to the Linear Algebra course, but it is helpful to be
aware of this.
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9. Linear Systems of Equations

We intend to apply what we have learned about matrices to solving systems
of two linear equations equations in two variables. We begin this section with an
example.

Example 9.1. Solve the system of simultaneous equations

(31) 2x+ 3y = 8, x− 5y = −9.

Answer: Let

A =

(
2 3
1 −5

)
, x =

(
x
y

)
, b =

(
8
−9

)
.

Think of the column vectors x and b as 2 × 1 matrices. Thus we can form the
product Ax:

Ax =

(
2x+ 3y
x− 5y

)
.

We note that Ax = b if and only if the unknowns x, y satisfy the pair of equa-
tions (31). Thus we can replace our two simultaneous equations with a single matrix
equation Ax = b in unknown vector x. Now det(A) = −10− 3 = −13 6= 0. Hence
A is invertible. Note Ax = b if and only if x = A−1b. This means that the
simultaneous system has a unique solution. We can get the solution by calculating

x = A−1b =
1

−13

(
−5 −3
−1 2

)(
8
−9

)
=

1

−13

(
−13
−26

)
=

(
1
2

)
.

In other words, x = 1, y = 2 is the unique solution to (31).

You are probably thinking that the method used in the example above isn’t the
fastest way to solve a pair of equations in two variables. This is correct; you would
have probably got the answer quicker by substitution from one equation into the
other.

• To solve a system of m linear equations in n variables, the most efficient
and reliable method is echelon reduction (also called Gaussian elimina-
tion). This method systematizes the ad hoc substitution method that you
learned at school. Echelon reduction will be done in Linear Algebra.

• But echelon reduction, and the ad hoc method are a poor way to think
about the solutions of systems of linear equations. Every system of m
linear equations in n unknowns can be written in the form Ax = b where
A is an m × n matrix, b is a column vector in Rm and x is an unknown
column vector in Rn. This is the best way to think about the linear
system of equations. By ‘think about’, we mean ‘study theoretically’,
‘prove theorems about’, etc. Have a look at Theorems 9.2 and 9.3 below.
These theorems would be difficult to formulate, let alone prove, if we
weren’t using matrix notation.

Consider a general system of m linear equations in n unknowns:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm

(32)
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Let

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

...
am1 am2 am3 . . . amn

 ,

and

x =


x1
x2
...
xn

 , b =


b1
b2
...
bm

 .

Then the system (32) can be rewritten as a single matrix equation Ax = b. We
still think of the single equation Ax = b as a system of linear equations.

The following terminology is standard, and the reader should know it.

Definition. We call the system of linear equation Ax = b homogeneous if b = 0;
otherwise we call it inhomogeneous. The system Ax = b is called consistent if
it has a solution; otherwise, it is called inconsistent.

9.1. Homogeneous Systems. A homogeneous system Ax = 0 always has
the solution x = 0, which is called the trivial solution. Any non-zero solution to
the homogeneous system Ax = 0 is called non-trivial.

Lemma 9.1. Suppose A is an m× n matrix.

(a) 0 is a solution to the homogeneous system Ax = 0.
(b) If u and v are solutions to Ax = 0 then (u + v) is also a solution to

Ax = 0.
(c) If u is a solution to Ax = 0 and λ is a scalar, then λu is also a solution

to Ax = 0.

Proof. The proof is a very easy exercise 2 �

Theorem 9.2. Suppose that A is an n× n (i.e. square) matrix.

(i) If A is invertible then the homogeneous system Ax = 0 has only the trivial
solution.

(ii) If A is non-invertible, then the homogeneous system Ax = 0 has non-
trivial solutions.

Proof. Suppose A is invertible. Premultiplying Ax = 0 by A−1 gives x =
A−10 = 0. This shows that the only solution is the trivial one and so proves (i).

2The lemma shows that the set of solutions of Ax = 0 is a subset S of Rn satisfying three
properties:

• 0 ∈ S;
• if u,v ∈ S then u + v ∈ S;

• if λ ∈ R and u ∈ S then λu ∈ S.

You will recall that any subset of Rn satisfying these three properties is called a subspace of Rn

(we covered subspaces in section 15 of Chapter 3). Thus S is a subspace of Rn; this particular
subspace is called the kernel of the matrix A, and is more usually denoted by Ker(A). You will

learn a lot more about subspaces and kernels in Linear Algebra.
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We prove part (ii) only for the 2×2 case. Suppose now that A is non-invertible,
and write

A =

(
a b
c d

)
.

Thus det(A) = ad−bc = 0. We want to show that the homogeneous system Ax = 0
has a non-trivial solution. If A = 02×2 then the system has non-trivial solutions;

e.g. x =

(
1
0

)
. So we may suppose that A is non-zero. Let

v1 =

(
−b
a

)
, v2 =

(
d
−c

)
.

Note that

Av1 =

(
−ab+ ba
−cb+ da

)
=

(
0

det(A)

)
= 0.

Likewise Av2 = 0. Hence both v1 and v2 are solutions to the homogeneous system
Ax = 0. If both were zero then a = b = c = d = 0 and so A = 02×2; this is
impossible as we are assuming that A 6= 02×2. Thus at least one of v1 and v2 is a
non-trivial solution to Ax = 0. This completes the proof. �

9.2. Inhomogeneous Systems.

Theorem 9.3. Suppose that A is an n× n (i.e. square) matrix.

(i) If A is invertible then the system Ax = b has the unique solution x =
A−1b.

(ii) If A is non-invertible, then the system Ax = b either has no solutions, or
it has infinitely many solutions.

Proof. Suppose A is invertible. Premultiplying Ax = b by A−1 gives x =
A−1b. This proves (i).

Let us prove part (ii). Here we are supposing that A is non-invertible. We want
to show that Ax = b either has no solutions or has infinitely many solutions.
Case I: The system Ax = b has no solutions. Then this is already one of the two
possibilities that we want to prove and we’re finished.
Case II: The system Ax = b has solutions. Let v be one of them. Thus Av = b.

We now apply part (ii) of Theorem 9.2. As A is not invertible, the homogeneous
system Ax = 0 has some non-trivial solution; call it w. Thus w 6= 0 (it is non-
trivial) and Aw = 0.

We know that

Av = b, Aw = 0.

Now if t is a scalar then

A(v + tw) = Av + tAw = b + t0 = b.

In other words, for every t, the vector v + tw is a solution to Ax = b. But w 6= 0.
Thus we see that there are infinitely many solutions to Ax = b. This proves (ii). �

Example 9.2. Consider the linear system

2x+ 3y = 1,

4x+ 6y = 2.
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This can be rewritten as Ax = b where

A =

(
2 3
4 6

)
, b =

(
1
2

)
.

Notice that det(A) = 0 and hence A is not invertible. You can check (by substitu-
tion) that x = −1+3t, y = 1−2t gives a solution to the linear system for all values
of t. Thus we obtain infinitely many solutions. It is actually possible to show that
any solution must be of the form x = −1 + 3t, y = 1− 2t for some scalar t; we will
not do this, but it will be easy for you once you have studied echelon reduction in
Linear Algebra.

Now consider the linear system

2x+ 3y = 1,

4x+ 6y = 3.

This can be rewritten as Ax = b′ where A is exactly the same (non-invertible)
matrix above, and

b′ =

(
1
3

)
.

Notice that this system does not have any solutions. To see this multiply the first
equation by 2 and subtract it from the second equation; you will get 0 = 1 which
is impossible.

9.3. A challenge. Perhaps you still don’t see the point of matrices. If so, the
following challenge will help you respect them. Theorem 9.3 is a theorem about
systems of linear equations, but expressed in the language of matrices. Can you
reformulate and prove this theorem using the old language of systems of linear
equations.

10. Eigenvalues and Eigenvectors

Definition. Let A be an n× n matrix. Suppose that v is a non-zero vector and λ
is a scalar such that Av = λv. In this case we say that λ is an eigenvalue of A
and v is an eigenvector that corresponds to the eigenvalue λ.

Note that an eigenvector of A is a vector whose direction is preserved (or
reversed) on multiplying by A.

The assumption that v 6= 0 in the definition is very important. If we allowed
0 as an eigenvector we have to allow all scalars as eigenvalues, and we don’t want
that.

Geometrically, an eigenvector is just a vector which when multiplied by the
matrix keeps its direction (or just reverses it).

Example 10.1. Let

A =

(
1 1
0 2

)
, v =

(
1
1

)
.

Then

Av =

(
1 1
0 2

)(
1
1

)
=

(
2
2

)
= 2v.

Since v is non-zero, we see that 2 is an eigenvalue and v is an eigenvector that
corresponds to the eigenvalue 2.
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Definition. Suppose A is an n×n matrix. We define the characteristic polynomial
of A to be the polynomial

χA(x) = det(xIn −A).

Remark. We have only defined determinants of 2×2 matrices, but we did mention
that the notion of determinant generalizes to arbitrary square matrices. The only
property of n× n determinants that we will need is the following: an n× n matrix
B is invertible if and only if det(B) 6= 0.

The following theorem will tell us how to compute eigenvalues and eigenvectors
of square matrices.

Theorem 10.1. Suppose A is an n × n matrix. Then λ is an eigenvalue of A if
and only if λ is a root of the characteristic polynomial χA(x). If λ is an eigenvalue
of A, then v is an eigenvector corresponding to λ if and only if v is a non-trivial
solution to the homogeneous system (λIn −A)x = 0.

Proof. Note that

λ is an eigenvalue of A⇐⇒ Av = λv for some v 6= 0

⇐⇒ there is a non-zero vector v such that Av = λInv

⇐⇒ there is a non-zero vector v such that λInv −Av = 0

⇐⇒ there is a non-zero vector v such that (λIn −A)v = 0

⇐⇒ the homogeneous system (λIn −A)x = 0 has

some non-trivial solution

⇐⇒ the matrix (λIn −A) is not invertible (Theorem 9.2)

⇐⇒ det(λIn −A) = 0

⇐⇒ λ is a root of the polynomial χA(x) = det(xIn −A).

�

Example 10.2. Let

A =

(
1 2
2 4

)
.

Find the eigenvalues and eigenvectors of v.

Answer: The characteristic polynomial of A is

χA(x) = det(xI2 −A) =

∣∣∣∣x− 1 −2
−2 x− 4

∣∣∣∣
= (x− 1)(x− 4)− 4

= x2 − 5x = x(x− 5).

So the eigenvalues of A are λ1 = 0 and λ2 = 5. To find an eigenvector corresponding
to λ1 we need to find a non-trivial solution to the homogeneous system (λ1I2−A)x =
0. This can be rewritten as (

−1 −2
−2 −4

)(
x
y

)
=

(
0
0

)
.

In other words we want any non-trivial solution to

(33) −x− 2y = 0, −2x− 4y = 0.
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We see that x = −2, y = 1 is a non-trivial solution and so we can take

v1 =

(
−2
1

)
as an eigenvector corresponding to λ1 = 0. Notice that there are in fact infinitely
many non-trivial solutions to the homogeneous system (33): namely we can take
x = −2t and y = 4t for any non-zero value of t. In this course, we will only need
to find one eigenvector corresponding to a particular eigenvalue. Thus, in this
course, if a question says “find the eigenvalues and eigenvectors of (some matrix)
A”, you are expected to find all the eigenvalues and, for each eigenvalue, find one
corresponding eigenvector. There are situations you will see in Linear Algebra
where you will need to find more than one eigenvector for certain eigenvalues as we
explain below, though this is not required for the Vectors and Matrices tests.

Similarly we find that

v2 =

(
1
2

)
is an eigenvector that corresponds to λ2.

Exercise 10.3. Let A = diag(α1, . . . , αn). Use the definition of eigenvalue to
show that α1, . . . , αn are eigenvalues of A (this means that you must find vectors
v1, . . . ,vnsuch that Avi = αivi).

Exercise 10.4. Let A, B be n× n matrices. Suppose that v is an eigenvector to
both A and B. Show that v is an eigenvector to AB and to A+B. (Hint: use the
definition of eigenvector).

Exercise 10.5. Suppose A is a square matrix and λ is an eigenvalue of A.

(i) Show that λn is an eigenvalue of An for all positive integers n.
(i) Suppose A is invertible. Show λ is non-zero and that λ−1 is an eigenvalue

of A−1.

11. Eigenspaces

This section on eigenspaces is not examinable, but reading it now will
help you understand what is to come in Linear Algebra. Let A be an n×n matrix,
and λ and eigenvalue ofA. In other words λ is a root of the characteristic polynomial
χA(x). Of course, when we count roots of a polynomial, we always care about
multiplicity. The algebraic multiplicity of λ is the exact power of (x − λ) that
divides χA(x). A simple eigenvalue is one that has algebraic multiplicity 1. In
Example 10.2 above both eigenvalues had algebraic multiplicity 1. Whereas in
Example 11.1 below we have one eigenvalue of algebraic multiplicity 2.

Lemma 11.1. Let λ be a simple eigenvalue of A. If u and v are eigenvectors of
A corresponding to λ then u = αv for some non-zero scalar α.

In other words, we only care to find one eigenvector for a simple eigenvalue
because all the others are multiples of it and so knowing one means we know them
all.

Let λ be an eigenvalue of A. We define the eigenspace of A corresponding to λ
to be the set

Vλ = {v ∈ Rn : Av = λv}.
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In other words, the eigenspace of λ is the set of eigenvectors of λ together with the
vector 0. It is easy for you to check that it is a subspace of Rn according to the
definition given in Section 15 of Chapter 3.

We can rewrite the Lemma above as follows.

Lemma 11.2. Let λ be a simple eigenvalue of A. Then its eigenspace Vλ is a
straight line through the origin.

What happens when λ is not simple. In this case the eigenspace can be bigger
that just a line. Define the geometric multiplicity of λ to be the dimension of
the eigenspace Vλ. What does dimension here mean? For now, just think of it
intuitively: the origin on its own is 0-dimensional, a straight line through the origin
is 1-dimensional, and plane through the origin is 2-dimensional, and so on. The
whole story is

geometric multiplicity ≤ algebraic multiplicty

and

very often, though not always, geometric multiplicity = algebraic multiplicty.

Example 11.1. Let A = I2. We find χA(x) = (x−1)2. Hence A has one eigenvalue
λ = 1 of algebraic multiplicity 2. Now consider the corresponding eigenspace V1.
By definition it is

V1 = {v ∈ R2 : Av = 1v}.
But A = I2 and so Av = I2v = v = 1v for all vectors v ∈ R2. Hence V1 = R2. In
other words, the eigenspace is the whole of the plane R2 and so is 2-dimensional.
We see that the geometric multiplicity of the eigenvalue λ = 1 is also 2.

Exercise 11.2. Let A =

(
1 1
0 1

)
. Show that

(1) The only eigenvalue is λ = 1 and it has algebraic multiplicity 2.
(2) The corresponding eigenspace is the line y = 0 (in other words it is the

x-axis). What is the geometric multiplicity?

12. Similarity and Diagonalization

Definition. Suppose A, B are n× n matrices. We say that A and B are similar
if there is an invertible n × n matrix P such that B = P−1AP . We say that
A is diagonalizable if it is similar to a diagonal matrix. In other words, A is
diagonalizable if there is an invertible n × n matrix P such that P−1AP is a
diagonal matrix. In this case we say that the matrix P diagonalizes the matrix
A.

Theorem 12.1. Suppose A is a 2 × 2 matrix with distinct 3 eigenvalues λ1 and
λ2. Let v1, v2 be eigenvectors of A corresponding respectively to the eigenvalues λ1
and λ2. Let P = (v1,v2) (this is the 2× 2 matrix with columns v1 and v2). Then
P is invertible and

P−1AP =

(
λ1 0
0 λ2

)
.

3λ1, λ2 are distinct means that λ1 6= λ2.
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Proof. Note that

AP = A(v1, v2) = (Av1, Av2) = (λ1v1, λ2v2) = (v1, v2)

(
λ1 0
0 λ2

)
.

In other words

AP = P

(
λ1 0
0 λ2

)
.

We will prove in a minute that P is invertible. Then we can just premultiply both

sides by P−1 to get P−1AP =

(
λ1 0
0 λ2

)
, which is exactly what we wanted to

prove. Notice we haven’t used the assumption that the eigenvalues are distinct, so
we must use it in showing that P is invertible.

Let’s show that P is invertible, which we do by contradition. So suppose it
isn’t invertible. By exercise 7.2, the columns v1 and v2 are parallel. Recall that
they are eigenvectors and so, by definition, neither is zero. Hence v1 = αv2 for
some scalar α 6= 0. Now Av1 = λ1v1 since v1 is the eigenvector corresponding to
λ1. However, pre-multiplying both sides of v1 = αv2 with A we get

Av1 = A(αv2) = αAv2 = αλ2v2 = λ2(αv2) = λ2v1.

In other words λ1v1 = λ2v1 and as v1 is non-zero, λ1 = λ2. This contradicts the
assumption that the eigenvalues are distinct. �

Example 12.1. Let

A =

(
1 2
2 4

)
.

Find a matrix P that diagonalizes A. Hence compute An for positive n.

Answer: In Example 10.2 we computed the eigenvalues and eigenvectors of A. We
found that the eigenvalues are λ1 = 0, λ2 = 5, and that corresponding to these were
respectively the eigenvectors

v1 =

(
−2
1

)
, v2 =

(
1
2

)
.

We now let

P =

(
−2 1
1 2

)
;

this is the matrix with v1 an v2 as its columns. According to Theorem 12.1, the
matrix P diagonalizes A. In fact the theorem says that

(34) P−1AP =

(
0 0
0 5

)
.

To compute An we need the following observation:

(P−1AP )n = (P−1AP )(P−1AP ) · · · (P−1AP )

= P−1A(PP−1)A(PP−1)A · · · (PP−1)AP

= P−1AInAInA · · · InAP
= P−1AnP.

Raising both sides of (34) to the power n we deduce,

(P−1AP )n =

(
0 0
0 5

)n



70 4. MATRICES

and so

P−1AnP =

(
0 0
0 5n

)
.

Pre-multiplying by P and post-multiplying by P−1 =

(
−2/5 1/5
1/5 2/5

)
we get that

An =

(
−2 1
1 2

)(
0 0
0 5n

)(
−2/5 1/5
1/5 2/5

)
=

(
5n−1 2× 5n−1

2× 5n−1 4× 5n−1

)
.

Exercise 12.2. Let A =

(
0 −1
2 3

)
.

(i) Calculate the eigenvalues of A and corresponding eigenvectors.
(ii) Give a matrix P the diagonalizes A.
(iii) Calculate An for positive n.

Exercise 12.3. Show that similarity is an equivalence relation on n× n matrices.
In other words show that

• A is similar to A;
• if A is similar to B then B is similar to A;
• if A is similar to B and B is similar to C the A is similar to C.

Exercise 12.4. Let A and B be similar 2× 2 matrices.

(i) Show that A, B have the same characteristic polynomial (Hint: write
B = P−1AP and I2 = P−1I2P in the definition of χB(x) and show that
this is equal to χA(x).)

(ii) Part (i) shows that similar matrices have the same eigenvalues. Can you
show this directly from the definition of eigenvalue?

13. Matrices as Functions from Rn to Rm

Let A be an m × n matrix. Think of vectors in Rn, Rm as column vectors. If
u is a (column) vector in Rn then we can think of it as an n× 1 matrix, and form
the product Au. The matrix Au is an m × 1 matrix and so we can think of it as
a (column) vector in Rm. Thus multiplication by A gives a function Rn → Rm,
which we denote by TA. In other words, we let

TA : Rn → Rm,

be given by TA(u) = Au.

Example 13.1. Let A =

(
0 1
1 0

)
. Then A defines a function TA : R2 → R2 given

by TA(u) = Au. Let us calculate TA explicitly:

TA

(
x
y

)
=

(
0 1
1 0

)(
x
y

)
=

(
y
x

)
.

We note that, geometrically speaking, TA represents reflection in the line y = x.

Example 13.2. Let A =

(
1 0
0 0

)
. Then TA

(
x
y

)
=

(
x
0

)
. Thus geometrically, TA

represents projection onto the x-axis.
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Theorem 13.1. (Properties of TA) Suppose that A is an m×n matrix, u1, u2 ∈ Rn
and λ is a scalar. Then

(35) TA(u1 + u2) = TA(u1) + TA(u2)

and

(36) TA(λ u1) = λ TA(u1).

Proof. Note that

TA(u1 + u2) = A(u1 + u2) by definition of TA

= Au1 +Au2 distributive property for matrices

= TA(u1) + TA(u2) by definition of TA again.

This proves (35); the proof of (36) is left as an exercise. �

The above theorem motivates the following definition.

Definition. A linear transformation Rn → Rm is a function T : Rn → Rm
satisfying

(37) T (u1 + u2) = T (u1) + T (u2)

for all vectors u1, u2 ∈ Rn, and

(38) T (λ u) = λ T (u)

for all u ∈ Rn and λ ∈ R.

Now Theorem 13.1 can be rephrased as the first part of the following theorem.

Theorem 13.2. Suppose A is an m×n matrix. Then the function TA : Rn → Rm
is a linear transformation. Conversely, if T : Rn → Rm is a linear transformation
then there is an m × n matrix A such that T (u) = TA(u) = Au for all vectors
u ∈ Rn. (We call A the matrix associated with the linear transformation T .)

Proof. The first part follows from Theorem 13.1 and the definition of linear
transformations. Let us prove the second part. Suppose T : Rn → Rm is a linear
transformation. Let e1, . . . , en be the following vectors in Rn:

e1 =


1
0
0
...
0

 , e2 =


0
1
0
...
0

 , . . . , en =


0
0
0
...
1

 .

Then T (e1), . . . , T (en) will be vectors in Rm and we can write

T (e1) =


a11
a21
a31
...

am1

 , T (e2) =


a12
a22
a32
...

am2

 , . . . , T (en) =


a1n
a2n
a3n

...
amn

 .
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Notice that any vector in Rn can be rewritten in terms of e1, . . . , en as follows:
x1
x2
x3
...
xn

 = x1e1 + · · ·+ xnen.

Thus

T


x1
x2
x3
...
xn

 = T (x1e1 + x2e2 + · · ·+ xnen)

= T (x1e1) + T (x2e2) + · · ·+ T (xnen)

= x1T (e1) + x2T (e2) + · · ·+ xnT (en)

= x1


a11
a21
a31
...

am1

+ x2


a12
a22
a32
...

am2

+ · · ·+ xn


a1n
a2n
a3n

...
amn



=


a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn



=


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

...
am1 am2 am3 . . . amn



x1
x2
x3
...
xn

 .

In other words, if we write

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

...
am1 am2 am3 . . . amn


then Tu = Au = TA(u) for all vector u ∈ Rn. This completes the proof the second
part of the theorem. �

Example 13.3. Let T : R2 → R2 be given by

T

(
x
y

)
=

(
x
−y

)
.

We see straightaway that T represents reflection in the x-axis. The function T is
actually a linear transformation. Let us prove this. First we want to prove (37) for
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all vectors u1, u2 in R2. So suppose u1, u2 ∈ R2 and write

u1 =

(
x1
y1

)
, u2 =

(
x2
y2

)
.

Then

T (u1 + u2) = T

(
x1 + x2
y1 + y2

)
by definition of vector addition

=

(
x1 + x2
−(y1 + y2)

)
by the definition of T

=

(
x1
−y1

)
+

(
x2
−y2

)
by defining of vector addition.

But

T (u1) =

(
x1
−y1

)
, T (u2) =

(
x2
−y2

)
.

So T (u1 + u2) = T (u1) +T (u2). This proves (37) algebraically, but see figure 2 for
a geometric reason why this should be true.

v

T(v)

T(u)

u+v

u

T(u+v)=T(u)+T(v)

Figure 2. The end points of the vectors u, v, u+v, together with
the origin form a parallelogram. We reflected the vectors u, v and
u + v in the x-axis. We obtain vectors T (u), T (v) and T (u + v).
Note the end points of these three new vectors, together with the
origin still form a parallelogram, simply because the reflection of a
parallelogram is a parallolgram. This explains geometrically that
T (u + v) = T (u) + T (v).
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Before declaring that T is a linear transformation we must show that it also
satisfies (38) for all scalars λ and all vectors u ∈ R2. So suppose that λ is a scalar
and

u =

(
x
y

)
.

Then

T (λu) = T

(
λx
λy

)
by defn of mult of matrix by scalar

=

(
λx
−λy

)
by definition of T

= λ

(
x
−y

)
by defn of mult of matrix by scalar

= λTu by definition of T .

This proves (38) and completes that proof that T is a linear transformation. We
have been told above that every linear transformation comes from a matrix. What
is the matrix associated to this particular linear transformation T : R2 → R2? The
matrix that we are looking for will be a 2× 2 matrix. Let us call it A and write

A =

(
a b
c d

)
.

We want T = TA. In other words, we want

(39) T

(
x
y

)
= A

(
x
y

)
to hold for all vectors

(
x
y

)
in R2. We can rewrite the identity (39) as(

x
−y

)
=

(
ax+ by
cx+ dy

)
.

Since this is to hold for all x, y, we see that a = 1, b = 0, c = 0, d = −1. In other
words, the matrix A associated with the linear transformation T is(

1 0
0 −1

)
.

Example 13.4. Not every map R2 → R2 is a linear transformation. For example,
let S : R2 → R2 be given by

S

(
x
y

)
=

(
x+ 1
y

)
.

The map S represents a translation of 1 unit to the right. This S is not a linear
transformation. To prove this we only need to give one counterexample to either
condition (37) or to condition (38). For example, let us take

u =

(
1
1

)
, λ = 2.

Then

S(λu) = S

(
2
2

)
=

(
3
2

)
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whereas

λS(u) = 2

(
2
1

)
=

(
4
2

)
.

So S(λu) 6= λS(u). This shows that S is not a linear transformation as condi-
tion (38) does not hold.

Exercise 13.5. Let A = 2In, B = −In and C = In. What do the linear transfor-
mations TA, TB and TC represent geometrically?

Exercise 13.6. Write down the 2×2 matrix corresponding to projection from the
coordinate plan onto the y-axis.

Exercise 13.7. Let T : R3 → R3 be given by

T

xy
z

 =

xy
0

 .

This is projection from 3-space onto the xy-plane. Show that T is a linear trans-
formation. What is the matrix associated to T?

14. Why Column Vectors?

You will have noticed that of late we have taken a preference for column vectors
as opposed to row vectors. Let us see how things are different if we stuck with row
vectors. So for the moment think of elements of Rn, Rm as row vectors. Let A be
an m× n matrix.

If u is a (row) vector in Rn or Rm then Au is undefined. But we find that uA
is defined if u is a (row) vector in Rm and gives a (row) vector in Rn. Thus we get
a function

SA : Rm → Rn

given by SA(u) = uA. It is now a little harder to think of the matrix A as a
function since we have written it on the right in the product uA (remember that
when we thought of vectors as columns we wrote Au).

Some mathematicians write functions on the right, so instead of writing f(x)
they will write xf . They will be happy to think of matrices as functions on row
vectors because they can write the matrix on the right. Most mathematicians write
functions on the left. They are happier to think of matrices as functions on column
vectors because they can write the matrix on the left.

15. Rotations

We saw above some examples of transformations in the plane or in 3-space. In

this section we take a closer look at rotations. Suppose that P =

(
x
y

)
is a point in

R2. Suppose that this point is rotated anticlockwise about the origin through an

angle of θ. We want to write down the new point P ′
(
x′

y′

)
in terms of x, y and θ.

Now suppose that the distance of P from the origin O is r and that the angle
−−→
OP

makes with the positive x-axis is φ. Thus

x = r cosφ, y = r sinφ.
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Since we rotated P anticlockwise about the origin through an angle θ to obtain P ′,

we see that the distance OP ′ is also r and the angle
−−→
OP ′ makes with the positive

x-axis is φ+ θ. Thus

x′ = r cos(φ+ θ), y′ = r sin(φ+ θ).

We expand cos(φ+ θ) to obtain

x′ = r cos(φ+ θ)

= r cosφ cos θ − r sinφ sin θ

= x cos θ − y sin θ.

Similarly
y′ = x sin θ + y cos θ.

We can rewrite the two relations

x′ = x cos θ − y sin θ, y′ = x sin θ + y cos θ,

in matrix notation as follows(
x′

y′

)
=

(
cos θ − sin θ
sin θ cos θ

)(
x
y

)
.

Thus anticlockwise rotation about the origin through an angle θ can be achieved
by multiplying by the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

This shows that rotation about the origin is really a linear transformation R2 → R2.
We have shown algebraically that rotation about the origin is a linear trans-

formation. But let us understand why this is so geometrically 4. Pick an angle
θ and let T be the map that rotates every point about the origin anticlockwise
through this angle θ. This means that if we start with a vector u and we rotate
anticlockwise about the origin by θ radians then we denote the new vector obtained
by T (u). Now suppose that we are given two vectors u, v and let us apply T to
three vectors u, v, u + v. We know that the end points of the vectors u, v and
u + v, together with the origin, form a parallelogram, as in left-half of Figure 3.

When we rotate the vectors u, v, u+v we get T (u), T (v), T (u+v). Of course
the whole parallelogram gets rotated, so the end points of T (u), T (v) and T (u+v)
together with the origin form a new parallelogram, as in the right-half of Figure 3.

We see from the picture that the sum of the vectors T (u) and T (v) is T (u+v).
Hence we have shown that

T (u + v) = T (u) + T (v).

In the same way we can argue geometrically that T (λu) = λT (u). In other words,
it doesn’t matter if we stretch the vector first and then rotate it, or rotate the vector
first and then stretch it. The end result will be the same. Since T satisfies the two
defining properties of linear transformation, we see that T is a linear transformation.

4I told you long ago: “You should get used to thinking geometrically, and to drawing pic-

tures. The true meaning of most mathematical concepts is geometric. If you spend all your time

manipulating symbols (i.e. doing algebra) without understanding the relation to the geometric
meaning, then you will have very little in terms of mathematical insight”. No doubt you have

taken my advice on board and so there is no need for me to repeat it.
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u

v u+v
T(u)

T(v)

T(u+v)

Figure 3. The end points of the vectors u, v, u + v, together
with the origin form a parallelogram. We rotated the vectors u, v
and u + v through an angle θ about the origin. We obtain vectors
T (u), T (v) and T (u + v). Note the end points of these three new
vectors, together with the origin still form a parallelogram.

Exercise 15.1. You know that Rθ represents anticlockwise rotation about the
origin through angle θ. Describe in words the linear transformation associated to
−Rθ. (Warning: don’t be rash!)

16. Orthogonal Matrices

Definition. A n× n matrix A is orthogonal if AtA = AAt = In.

In other words, an orthogonal matrix is invertible and its inverse is its own
transpose.

Exercise 16.1. Let Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

(i) What is det(Rθ)?
(ii) Show that Rθ is orthogonal (recall that an n×n matrix A is orthogonal

if AtA = AAt = In).
(iii) Show algebraically that RφRθ = Rφ+θ.
(iv) Use the geometric interpretation of the matrix Rθ to explain (iii).
(v) Use the geometric interpretation of the matrix Rπ/2 to explain why it

cannot have real eigenvalues and eigenvectors.
(vi) Compute the eigenvalues and corresponding eigenvectors for Rπ/2. Hence

diagonalize Rπ/2.

Exercise 16.2. Let A =

(
a b
c d

)
be an orthogonal matrix. We will show in steps

that either A = ±Rθ or A = SRθ for some θ, where S =

(
1 0
0 −1

)
.

(i) Show that a2 + c2 = 1, b2 + d2 = 1 and ab+ cd = 0.
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(ii) Deduce the existence of angles φ, ψ such that a = cosφ, c = sinφ, b =
cosψ, d = sinψ.

(iii) Substitute into ab+ cd = 0 and deduce that φ = ψ ± π/2.
(iv) Deduce that A = Rθ or A = SRθ for some θ.
(v) You know that Rθ represents anti-clockwise rotation about the origin

through an angle θ. Describe in words the linear transformation asso-
ciated with the matrix SRθ.

17. More on Rotations

Recall that to rotate a vector in R2 anticlockwise about the origin through an
angle θ we multiply by the matrix

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
.

Let v ∈ R2. What is the vector RθRφv? It is the vector we get if we rotate v
anticlockwise through an angle φ and then again through an angle θ. In other
words RθRφv is what we obtain by rotating v through an angle θ + φ. Hence, we
expect that

Rθ+φ = RθRφ.

Verify this algebraically. Now this identity turns addition into multiplication, and
so it should remind you of the identity eθ+φ = eθeφ. In fact, a more accurate
analogy is identity

ei(θ+φ) = eiθeiφ.

The reason is because multiplying a complex number by eiθ rotates it about the
origin anticlockwise through the angle θ (prove this using the exponential form for
complex numbers).

Now that you know that Rθ and eiθ are analogues, you should have no trouble
guessing what the matrix analogues of the n-th roots of unity are. If we let

Z = R2π/n =

(
cos (2π/n) − sin (2π/n)
sin (2π/n) cos (2π/n)

)
,

then I2,Z, . . . ,Zn−1 all satisfy the relationship An = I2. What do you expect their
sum to be? Can you prove it? Why is it incorrect to write

I2 + Z + · · ·+ Zn−1 =
I2 −Zn

I2 −Z
=
I2 − I2
I2 −Z

= 0 ?

18. The Image of a Linear Transformation

Suppose T : Rn → Rm is a linear transformation. The image of T , denoted
by Im(T ), is defined in set-theoretic notation as follows:

Im(T ) = {T (v) : v ∈ Rn}.
Here is the geometric meaning: if you imagine the vector v moving in Rm, then
Im(T ) is the shape cut out by T (v).

An equivalent way of defining Im(T ) is

Im(T ) = {w ∈ Rm : w = T (v) for some v ∈ Rn }
In other words, Im(T ) is the collection of those things in the codomain that are
‘hit’ by T .

Here are some examples which should clarify this idea.
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Example 18.1. Let T : R2 → R2 be given by T (v) = 0 for all v ∈ R2. Then
Im(T ) = {0}; i.e. it is just the origin.

Example 18.2. Let T : R→ R2 be given by T (α) = (α, α). You can check that T
is a linear transformation. What is the shape cut out by T (α) as α ranges through
the real numbers? We can rewrite

T (α) = (α, α) = α(1, 1).

Thus, as α ranges through the real numbers, T (α) ranges through the multiples of
the vector (1, 1). Hence we see that Im(T ) is just the diagonal straight line y = x.

Example 18.3. Let T : R2 → R3 be given by T (α, β) = (α, β, 0). It is easy to see
that Im(T ) is the plane in R3 given by z = 0.

Example 18.4. Here is a more serious example. Let T : R2 → R3 be a linear
transformation. What can we say about its image? Note that any vector in R2 can
be written as (α, β) = αi + βj. Since T is a linear transformation,

T (α, β) = T (αi + βj) = αT (i) + βT (j).

Let v = T (i), w = T (j) and note that these are vectors in R3. Then

T (α, β) = αv + βw.

There are now three cases:

Case (i) v = w = 0. In this case ImT = {0} is just the origin.
Case (ii) v is a multiple of w or w is a multiple of v (in other words, they are

parallel). Let us say that w = λv. Then

T (α, β) = αv + βw = αv + λβv = tv,

where t = α + λβ is a scalar. We see that Im(T ) is the set of all scalar
multiples of the vector v. This is a straight line through the origin.

Case (iii) Neither v is a multiple of w nor w is a multiple of v. Then the image is
the plane passing through the origin which contains the vectors v and w
(see Section 14 of Chapter 3).

Exercise 18.5. Let T : R2 → R3 be given by T (x, y) = (x+y, x+y, x+y). Show
that the image of T is the line x = y = z.

Exercise 18.6. Give an explicit linear transformation T : R3 → R3 whose image
is the plane x+ y + z = 0 (Hint: It would help to write the equation of the plane
in vector form).





CHAPTER 5

Vector Product (or Cross Product) in R3

1. Not another chapter? Will this course ever finish?

In R3, apart from the dot product there is another product called the vector
product. Unlike the dot product, which produces a scalar, the vector product gives
a vector.

Definition. Let u, v be vectors in R3 and write u = (u1, u2, u3), v = (v1, v2, v3).
Define the vector product (or cross product) of u and v (written as u× v) to be

u× v = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).

This can be rewritten in determinant notation as

(40) u× v =

(∣∣∣∣u2 u3
v2 v3

∣∣∣∣ ,− ∣∣∣∣u1 u3
v1 v3

∣∣∣∣ , ∣∣∣∣u1 u2
v1 v2

∣∣∣∣).
We emphasize that the vector product is only defined for vectors in R3.
The definition is a little awkward to use as it is a little hard to remember. Here

is an easy way to remember it:

• Form the 2× 3 matrix (
u1 u2 u3
v1 v2 v3

)
whose first row is u and second row is v.

• To find the first coordinate of u× v delete the first column and take the
determinant.

• To find the second coordinate of u×v delete the second column and take
MINUS the determinant.

• To find the third coordinate of u×v delete the third column and take the
determinant.

Example 1.1. Let u = (7, 2,−3) and v = (1, 0, 2). Find u× v.

Answer: We first write (
7 2 −3
1 0 2

)
.

Following the recipe above, we see that

u× v =

(∣∣∣∣2 −3
0 2

∣∣∣∣ ,− ∣∣∣∣7 −3
1 2

∣∣∣∣ , ∣∣∣∣7 2
1 0

∣∣∣∣) = (4,−17,−2).

Theorem 1.1. (Properties of the vector product) Suppose that u, v, w are
vectors in R3 and λ is a scalar. Then

(i) u× v = −(v × u) (vector product is anti-commutative)
(ii) u× (v + w) = u× v + u×w (distributive law)
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(iii) (v + w)× u = v × u + w × u (distributive law)
(iv) λ(u× v) = (λu)× v = u× (λv).
(v) u× u = 0
(vi) u× 0 = 0× u = 0

(vii) u · (u× v) = 0 and v · (u× v) = 0 (u× v is orthogonal to both u and
v)

(viii) ‖u× v‖2 = ‖u‖2‖v‖2 − (u · v)2.

Proof. All of the above can be proved directly using the definitions. We prove
(i) and leave the rest as exercises. Note that when u and v are swapped in the
vector product, we swap the rows of the determinants in (40). Now swapping the
rows of a 2× 2 determinant changes its sign. To see this, note that∣∣∣∣c d

a b

∣∣∣∣ = cb− da = −(ad− bc) = −
∣∣∣∣a b
c d

∣∣∣∣ .
This shows that v × u = −u× v. �

Exercise 1.2. Let u, v, w be vectors in R3. Explain why (u · v)×w is undefined
and why u · (v ×w) is defined.

Exercise 1.3. Let w ∈ R3. Show that the map Sw : R3 → R3 given by Sw(u) =
w × u is a linear transformation (Hint: use the properties of the vector product).
What is the matrix associated with Si? Describe the image of Si.

2. Physical/Geometric Interpretation of the Vector Product

Theorem 2.1. Let u, v be non-zero vectors in R3, and let θ be the angle between
them. Then u× v is orthogonal to both u and v. Moreover,

‖u× v‖ = ‖u‖‖v‖ sin θ.

Proof. The first part of the theorem is a repetition of part (vii) of Theo-
rem 1.1, which you have already proved as an exercise.

For the second part of the theorem, we use the identity in part (viii) of The-
orem 1.1: ‖u × v‖2 = ‖u‖2‖v‖2 − (u · v)2. Now recall that u · v = ‖u‖‖v‖ cos θ.
Thus

‖u× v‖2 = ‖u‖2‖v‖2 −
(
‖u‖‖v‖ cos θ

)2

= ‖u‖2‖v‖2(1− cos2 θ)

= ‖u‖2‖v‖2 sin2 θ.

Now ‖u‖, ‖v‖ are positive, since u, v are non-zero vectors. Moreover, 0 ≤ θ ≤ π.
Thus sin θ ≥ 0. Hence

‖u× v‖ = ‖u‖‖v‖ sin θ.

Here we needed the positivity so we do not end up with two square-roots. �
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2.1. The Right-Hand Rule. We know from the above that u×v is a vector
that is orthogonal to both u and v. There are in fact two opposite directions that
are orthogonal to both u and v, and for some applications it is important to know
which of these u× v takes. To determine this we use what is known as ‘the right-
hand rule’. Imagine that the thumb of your right hand is pointing in the direction
of u and the index finger of your right-hand is pointing in the direction of v. Then
the middle finger will point in the direction of u× v.

v

uxv

u

u

uxv

v

Figure 1. Right-Hand Rule: imagine that the thumb of your
right-hand is pointing in the direction of u and the index finger
of your right-hand is pointing in the direction of v. Then the
middle finger will point in the direction of u× v.

2.2. Area of the Parallelogram. The reader will no doubt recall the formula
for the area of the parallelogram with adjacent sides of length a, b and angle θ
between them: it is ab sin θ. We instantaneously deduce the following corollary.

Corollary 2.2. If u and v are vectors in R3, then ‖u× v‖ is equal to the area of
the parallelogram with sides u and v.

Exercise 2.1. (i) Compute (i× i)× j and i× (i× j). What do you notice?
What is wrong with writing u× v ×w?

(ii) Let u = (1, 0, 3), v = (0, 1,−1). Compute u× v. Hence find the two unit
vectors that are orthogonal to both u and v.

(iii) Find the area of the parallelogram that has unit vectors u and v as

adjacent sides, if u · v =
√

3/2.

Exercise 2.2. Find the two unit vectors parallel to the xy-plane that are perpen-
dicular to the vector (−2, 3, 5).

3. Triple Scalar Product

What does u·v×w mean? Does it mean (u·v)×w, or does it mean u·(v×w)?
After a little thought we notice that u ·v is a scalar, and we cannot takes its vector
product with a vector. However, v ×w is a vector. Thus u · (v ×w) does have a
meaning and gives a scalar. Thus when we write u · v × w we mean u · (v × w)
and we call this the triple scalar product because its result is a scalar. The triple
scalar product has an important geometric interpretation.

Theorem 3.1. Let u, v, w be vectors in R3. The volume of the parallelepiped with
sides u, v, w is |w · u× v|.
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Proof. You will remember from school that the formula:

volume of parallelepiped = area of base× height.

We will use this formula to prove that the volume also equals |u · v × w|. Study
Figure 2 carefully.

u

w
v

uxv

h

Figure 2

The area of the base is just the area of the parallelogram with sides u and v.
Hence

area of base = ‖u× v‖.
Recall that the direction of the vector u×v is perpendicular to the plane containing
u and v. In the figure, we denote the height by h and the angle the vector w makes
with the u×v by θ. In other words, θ is the angle w makes with the perpendicular
to the plane containing u and v. Note that heighth = ‖w‖ cos θ. Hence

w · (u× v) = ‖w‖ ‖u× v‖ cos θ

= ‖u× v‖ (‖w‖ cos θ)

= area of base× height = volume of parallelepiped.

Is this the end of the proof? There is an unfinished point. Why do we have an
absolute value in |w · (u× v)| in the statement of the theorem? We didn’t seem to
use this in the proof. The truth is that the figure contains a subtle assumption: the
subtle assumption is that u×v and w are both on the same side of the base. Note
that the direction of u × v is controlled by the right-hand rule. What happens if
you swap u and v? Then u× v will be pointing downwards as in Figure 3.

Then

w · (u× v) = ‖w‖ ‖u× v‖ cos(π − θ),
and we will have to make use of the fact that cos(π−θ) = − cos(θ). Thus w ·(u×v)
is the volume of the parallelepiped up to sign. �

No doubt, it has occured to you in the above proof, that it doesn’t matter
which two vectors we take as base—this should always give us the same answer.
Hence you will have noted that

|w · u× v| = |u · v ×w| = |v · u×w|.

If you are a little more careful, you will reach the following conclusion:
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v

w
u

h

uxv

Figure 3

Theorem 3.2. Cyclic permutations (see below) of the vectors u, v, w do not affect
the triple vector product u ·v×w. Non-cyclic permutations simply change its sign.

What’s a cyclic permutation of u, v and w? Write the symbols u, v, w as
in Figure 4 (i.e. arranged clockwise round a circle in that order). The cyclic
permutations of u, v, w are

(1) u, v, w;
(2) v, w, u;
(3) w, u, v.

In other words, these are the permutations where we pick one of them as a starting
point and move clockwise round the circle. The non-cyclic permutations of u, v,
w are the other three permutations (recall that 3 objects have 6 permutations).

u

vw

Figure 4

All that Theorem 3.2 is saying is

u · v ×w = v ·w × u = w · u×w,

and

u ·w × v = −u · v ×w;

the latter is obvious from the properties of the vector product.
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4. 3× 3 Determinants

It is time to talk briefly about 3 × 3 determinants. But before we do this it
helps to recall the geometric interpretation of determinant which we covered in
Chapter 4. Let u, v be vectors in R2. Let A be a 2× 2 matrix with rows u and v.
We know that |det(A)| is the area of the parallelogram with adjacent sides u and
v (See Figure 5).
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Figure 5. If u and v are vectors in R2 then the shaded area is
|det(A)| where A is the matrix with rows u and v.

This suggests to us a sensible generalisation of 2 × 2 determinants to 3 × 3
determinants, for surely we suspect that (up to sign) the 3×3 determinant represents
the volume of a parallelepiped.

Definition. Let A be a 3× 3 matrix. Let u, v, w be the vectors in R3 that form
the rows of A (in that order). Define

det(A) = u · v ×w.

Note the following important property of determinants:

Theorem 4.1. (i) Let A be a 2 × 2 matrix with rows u and v. det(A) = 0
if and only if u and v are parallel.

(ii) Let A be a 3 × 3 matrix with rows u, v, w. det(A) = 0 if and only if u,
v and w are coplanar.

Proof. For (i), det(A) = 0 if and only if the parallelogram in Figure 5 has
area 0. This happens exactly when the parallelogram ‘collapses’; that is when u
and v are parallel.

For (ii), you should ponder over Figure 2 and convince yourself that this is true.
The word ‘coplanar’ means that the three vectors are in the same plane. �



CHAPTER 6

Complements (Secret Knowledge)

This chapter contains secret knowledge about linear algebra and other subjects
that you’re unlikely to learn about from any other source. Because I am a really
sporting kind of person, I am letting you know some of the secrets of the trade.
However, secrets are so much fun and exams are meant to be tedious and boring,
so the stuff here is not examinable.

The subject of vectors and matrices (and linear algebra) works pretty much
the same regardless of whether we are working over the rationals, real numbers or
complex numbers. For example, take the system of two linear equations in four
variables

x− y + z + 2w = 0

2x− y − z + w = 0.

Once you have learnt echelon reduction in Term 2 it will be very easy to solve this
system. You can show that any solution is of the form

x
y
z
w

 = λ


2
3
1
0

+ µ


1
3
0
1

 ,

for some ‘numbers’ λ, µ. This means that the rational solutions are given by vectors
of this form with λ, µ rational numbers. The real solutions are given by vectors of
this form with λ, µ real numbers. The complex solutions . . . .

So you see, linear algebra works pretty much the same regardless of the field
we are working over. We have to be a little careful if we are working with finite
fields (which you will meet eventually), but not much more careful.

Why does linear algebra work pretty much the same regardless of the field?
Think again about how you solve a system of linear equations. The operations
you use are addition, subtraction, multiplication and division; these are operations
that work in any field (remember the field properties you saw in Chapter 1). The
situation is very different if, instead of solving a system of linear equations, we
wanted to solve a system of polynomials equations. In this situation it matters very
much what field we are working over. For example, take the polynomial equation
x2 − 2 = 0. This has two solutions in R but none in Q (you should know by now

that
√

2 is irrational, i.e. it is not in Q). Likewise the equation x2 + 1 = 0 has two
solutions in C but none in R. Notice that to solve these last two equations we need
to ‘take square-roots’, an operation that is different from addition, subtraction,
multiplication and division.
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Let us take another example—look at the system of two quadratic equations
in four variables:

(41) x2 + y2 = z2, x2 − y2 = w2.

This has infinitely many complex solutions and infinitely many real solutions; can
you prove this? Fibonacci (1170 – 1250) showed that the only rational solutions
are proportional to (x, y, z, w) = (±1, 0,±1,±1). But Fibonacci knew much less
mathematics than you do, so you should be able to prove this!

This system of equations (41) can be looked at in many ways. The study of its
complex solutions is part of algebraic geometry and Riemann surfaces; the study of
its rational solutions is part of number theory. These are very different subjects, so
for systems of polynomial equations the way we approach them differs very much
with the field that we are working over.

Into the clouds—read at your own peril!

Recall the Fundamental Theorem of Algebra. That says that any polynomial
(in one variable) of degree n has n roots in C (counting multiplicities). The field
C is not the only field to have this property. We call a field ‘algebraically closed’
if it has this property. Thus C is an example of an algebraically closed field. We
know that Q and R are not algebraically closed, because the polynomial x2 + 1
doesn’t have roots in Q and R. It turns out that algebraically closed fields are the
easiest setting over which one can study systems of polynomial equations in several
variables. We call this subject ‘algebraic geometry’. Just as linear algebra works
pretty much the same regardless of the field, so algebraic geometry works pretty
much the same regardless of which algebraically closed field we are using; this is the
gist of a very deep theorem called The Lefschetz Principle.

Those brave souls who have ventured this deep are dying for another example
of an algebraically closed field. Let us construct one. Inside C are two types
of numbers: algebraic and transcendental. An algebraic number is the root of a
polynomial with rational coefficients. For example, 5 is an algebraic number since
it is the root of X − 5 which has rational coefficients. Likewise the 7-th roots of
unity are algebraic because they are roots of X7−1 which has rational coefficients.
A complex number that is not algebraic is called transcendental. Now let Q be the
set of all algebraic numbers. It turns out that Q is a field and that it is algebraically
closed—these facts are not obvious, but they are proved in the third year Galois
Theory course.

The shrewd reader is suspicious. I have defined a subset of C and said that
it is an algebraically closed field: “maybe the subset Q is equal to the whole of
C?” If that was the case then I haven’t given an example of another algebraically
closed field. “Can you show that Q and C are different? Are there really complex
numbers that are transcendental?”. We can give two answers:

(i) Those who by the end of Term 1 have really, really, digested the Founda-
tions course will be able to see that Q is countable and C is uncountable.
That means that there must be transcendental numbers, and that in fact,
most complex numbers are trascendental.

(ii) The way (i) shows the existence of transcendental numbers is a little bit
like witchcraft—we get a lot for almost no work. But still, it doesn’t give
a single example of a transcendental number. The first example was given
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by Lioville in 1850. He showed that the number
∑∞
n=0 10−n! is transcen-

dental. Hermite (1873) and Lindemann (1882) showed the trancendence
of e and π respectively. Whilst the proofs are a little involved, they are not
beyond the abilities of an A-level student. If you feel adventurous have
a look at the Galois theory books in the library, or google trancendental
numbers.





APPENDIX A

MA135 Vectors and Matrices 2005–2006 Test

INSTRUCTIONS
CALCULATORS MAY NOT BE USED

1. Read each question carefully and decide which of the statements (a) – (d) best
represents a correct answer. Black out the corresponding box (blue or black pen
please) on the Answer Sheet, or alternatively, black out the ‘no attempt’ box.

2. Black-out exactly one of the five boxes for each question.

3. The scoring is: 3 for a correct answer, 1 for no attempt, and 0 for a wrong
answer. If T is your total score, your final mark out of 25 is: Max{0, T − 8} [so
that people who guess all the answers get zero on average, whilst you still get full
marks (25 out of 25) if you answer all the questions correctly.]

Q1 Suppose X is a complex number satisfying (2 + i)X + (1 + i)(1− 2i) = −2 + 4i.
How many of the following statements are true?

• Re(X) = −1
• X/X = −(4 + 3i)/5

• X =
√

10eiθ where tan θ = −3

(a) 0 (b) 1 (c) 2 (d) 3

Q2 How many of the following statements are true?

• There are 6 cube-roots of unity.
• The 4-th roots of unity add up to 1.
• The 7-th roots of unity are cos(2πk/7) + i sin(2πk/7) where k = 0, . . . , 6.

(a) 0 (b) 1 (c) 2 (d) 3

Q3 Suppose B = (bij)3×2 where bij = i+ 2j. Which of the following is equal to B?

(a)

3 5
4 6
5 7

 (b)

(
3 5 7
4 6 8

)
(c)

3 4
5 6
7 8

 (d)

(
3 4 5
5 6 7

)

Q4 Suppose A, B, C are 2 × 2 matrices satisfying AB = C, where B =

(
4 3
6 5

)
and C =

(
1 2
−1 3

)
. Then A+At is

(a)

(
8 −9/2
−9/2 0

)
(b)

(
2 18
18 54

)
(c)

(
−7 −9
−9 15

)
(d) none of the others.
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Q5 Suppose A, B are 2 × 2 matrices. Suppose P is an invertible 2 × 2 matrix
satisfying B = P−1AP . How many of the following statements are true?

• det(xI2 −A) = det(xI2 −B)
• A and B have the same eigenvalues
• An = PBnP−1 for all positive integers n

(a) 0 (b) 1 (c) 2 (d) 3

Q6 Consider the following system of linear equations in two unknowns x, y

αx− ζ = −βy, δy + γx = ξ.

Which of the following is a necessary and sufficient condition for this system to
have a unique solution?

(a) αδ 6= βγ (b) ζ 6= 0, ξ 6= 0 (c) αβ 6= γδ (d) αδ = βγ.

Q7 Suppose u, v and w are non-zero vectors in R3. How many of the following
statements are true?

• u× v is orthogonal to both u and v
• |u ·v×w| is the volume of the parallelepiped with adjacent sides u, v, w
• (−1, 2, 3)× (2, 1, 6) = (−9,−12, 5)

(a) 0 (b) 1 (c) 2 (d) 3

Q8 How many of the following facts are used in the proof of the identity u · v =
‖u‖‖v‖ cos θ?

• The property u · u = ‖u‖2.
• The property u · v = v · u.
• The cosine rule for triangles c2 = a2 + b2 − 2ab cos θ.

(a) 0 (b) 1 (c) 2 (d) 3.

Q9 Suppose the vector u = (x, y) has length 5 units and satisfies u · i = 4 and
u · j < 0. Then u · (−4, 3) is equal to

(a) 0 (b) −25 (c) 25 (d) −7

Q10 Let T : R2 → R2 be the linear transformation defined by T

(
x
y

)
=

(
x+ y
y

)
.

Which of the following is the matrix associated with T?

(a)

(
1 1
0 1

)
(b)

(
1 0
1 1

)
(c)

(
0 1
1 1

)
(d)

(
1 1
1 0

)

Q11 Which of the following matrices will rotate a column vector in R2 anticlockwise
through an angle of 90◦?

(a)

(
1 0
0 1

)
(b)

(
0 −1
1 0

)
(c)

(
−1 0
0 −1

)
(d)

(
1 1
1 1

)
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MA135 Vectors and Matrices 2006–2007 Test 1

INSTRUCTIONS
CALCULATORS MAY NOT BE USED

1. Read each question carefully and decide which of the statements (a) – (d) best
represents a correct answer. Black out the corresponding box (blue or black pen
please) on the Answer Sheet, or alternatively, black out the ‘no attempt’ box.

2. Black-out exactly one of the five boxes for each question.

3. The scoring is: 3 for a correct answer, 1 for no attempt, and 0 for a wrong
answer. If T is your total score, your final mark out of 25 is: Max{0, T − 8} [so
that people who guess all the answers get zero on average, whilst you still get full
marks (25 out of 25) if you answer all the questions correctly.]

Q1 How many of the following statements are true?

• There are eight 4-th roots of unity.
• The cube roots of unity add up to −1.
• The 11-th roots of unity are exp(2πik/11) where k = 0, . . . , 10.
• The 9-th roots of unity are 1, ζ, . . . , ζ8 where ζ = cos(2π/9)+i sin(2π/9).

(a) 1 (b) 2 (c) 3 (d) 4

Q2 Suppose X is a complex number satisfying (1 + i)X = (1− 2i)(2− i), and let
θ be its argument. Then tan θ is

(a)
√

3 (b) 1 (c) −7 (d) 13/2

Q3 Let α, β and γ be the roots of x3 + x2 − 2. Then α2 + β2 + γ2 is equal to

(a) 3 + i (b) 11− 2i (c) cos(π/7) + i sin(π/7) (d) 1

Q4 The expression exp(2iθ)
(cos θ + i sin θ)5

cos(4θ)− i sin(4θ)
simplifies to

(a) exp(3iθ) (b) exp(−14θ) (c) exp(−3iθ) (d) exp(11iθ).

Q5 Let L be the line with vector equation x = (2, 1, 0) + t(1, 3, 1). Which of the
following lines is parallel to L but passess through the point P (1, 1,−1):

(a) x = (2, 1, 0) + t(1, 1,−1) (b) x = (4, 2, 0) + t(1, 3, 1)

(c) x = (−1,−5,−3) + t(2, 6, 2) (d) x = (1, 1,−1) + t(3, 4, 1)
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Q6 Let r0 = (1, 1). How many vectors r = (x, y) in R2 satisfy ‖r‖ = ‖r−r0‖ = 1?

(a) 0 (b) 1 (c) 2 (d) ∞

Q7 Suppose u is a non-zero vector in R2. Which of the following has length 3 but
opposite direction to u?

(a)
−3

‖u‖
u (b)

−9

‖u‖2
u (c)

−‖u‖
3

u (d) none of the

others

Q8 How many of the following facts are used in the proof of the identity u · v =
‖u‖‖v‖ cos θ?

• The property u · u = ‖u‖2.
• Commutativity of the dot product.
• The cosine rule for triangles.

• The formula for the area of the triangle
1

2
ab sin θ.

(a) 1 (b) 2 (c) 3 (d) 4.

Q9 Let u and v be (non-zero) orthogonal vectors in Rn. What is the angle that

the vector
1

‖u‖
u +

1

‖v‖
v makes with u?

(a) π/2 (b) 0 (c) π/4 (d) depends on u, v

Q10 Suppose that u, v, w are orthonormal in R5. Then (5u+v+w) ·(3u−v+2w)
is

(a) 16 (b) 0 (c) 12 (d) undefined

Q11 How many complex roots (counting multiplicities) does the polynomial
f(x) = (x4 − x− 1)(x5 − x− 1) have?

(a) 4 (b) 5 (c) 9 (d) depends on x



APPENDIX C

MA135 Vectors and Matrices 2006–2007 Test 2

INSTRUCTIONS
CALCULATORS MAY NOT BE USED

1. Read each question carefully and decide which of the statements (a) – (d) best
represents a correct answer. Black out the corresponding box (blue or black pen
please) on the Answer Sheet, or alternatively, black out the ‘no attempt’ box.

2. Black-out exactly one of the five boxes for each question.

3. The scoring is: 3 for a correct answer, 1 for no attempt, and 0 for a wrong
answer. If T is your total score, your final mark out of 25 is: Max{0, T − 8} [so
that people who guess all the answers get zero on average, whilst you still get full
marks (25 out of 25) if you answer all the questions correctly.]

Q1 Let A =

(
4 2
1 1

)
. Then det(A11 −A10) is

(a) −17 (b) −29 × 17 (c) −211 (d)
−24

Q2 Let

R =

(
cos θ − sin θ
sin θ cos θ

)
, S =

(
−1 0
0 1

)
.

Let x be a column vector in R2. To obtain RSx from x we

(a) reflect in the y-axis then rotate anti-clockwise about the origin through
angle θ;

(b) rotate anti-clockwise about the origin through angle θ then reflect in the
y-axis;

(c) reflect in the origin then rotate clockwise about the origin through angle
θ;

(d) rotate clockwise about the origin through angle θ then reflect in the origin.

Q3 Let

Π1 : x · (1, 1, 1) = γ, Π2 : x = s(−1, α, 0) + t(1, 1, β) + (−1,−1,−1).

For which triple of values α, β, γ will Π1, Π2 be the same plane?

(a) α = 2, β = 1, γ = −3;
(b) α = 1, β = −2, γ = −3;
(c) α = 2, β = 1, γ = 5;
(d) α = 1, β = −2, γ = 5.

95



96 C. MA135 VECTORS AND MATRICES 2006–2007 TEST 2

Q4 The eigenvalues of A =

(
0 −5
−1 4

)
are

(a) 3, −2 (b) −4, 3 (c) 1 + i, 1− i (d) 5, −1.

Q5 Let u = (3, 5, 1), v = (1, 2,−1), w = (1, 1, 1). Then the volume of the paral-
lelpiped with adjacent sides u, v, w is

(a) 10 (b) 2 (c) 5 (d)
√

7.

Q6 Let T1, T2, T3 : R3 → R2 be given by

T1(x, y, z) = (x+ 1, y + z), T2(x, y, z) = (2x, y), T3(x, y, z) = (x2, y + z).

Which of T1, T2, T3 is a linear transformation?

(a) T1 (b) T2 (c) T3 (d) none of them.

Q7 The linear system in x, y

(1 + λ)x− µy = δ, (1− λ)x+ µy = 2,

has a unique solution precisely when

(a) λ = ±µδ (b) µ 6= δ (c) λµ = 2δ (d) µ 6= 0.

Q8 Let A, B be 2× 2 matrices satisfying

A−1 +B =

(
4 2
7 2

)
, A−1 −B =

(
4 0
5 2

)
.

Then 2BA is

(a) undefined (b)

(
−6 4
2 −1

)
(c)

(
0 3
−7 5

)
(d)

(
2 1
3 −5

)
.

Q9 Let ω = exp(2πi/3). Then iω is an n-th root of unity where n is

(a) 12 (b) 7 (c) 4 (d) 3.

Q10 Suppose that u, v are unit vectors in R4. Then ‖u+3v‖2 +‖3u−v‖2 is equal
to

(a) 2
√

7 (b) 20 (c) 12 (d) 16

Q11 Let T : R2 → R3 be given by T (x, y) = (x + y, x + y, x + y). The image of
T is

(a) a point (b) a line (c) a plane (d) depends on x and y.
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MA135 Vectors and Matrices 2007–2008 Test 1

INSTRUCTIONS
CALCULATORS MAY NOT BE USED

1. Read each question carefully and decide which of the statements (a) – (d) best
represents a correct answer. Black out the corresponding box (blue or black pen
please) on the Answer Sheet, or alternatively, black out the ‘no attempt’ box.

2. Black-out exactly one of the five boxes for each question.

3. The scoring is: 3 for a correct answer, 1 for no attempt, and 0 for a wrong
answer. If T is your total score, your final mark out of 25 is: Max{0, T − 8} [so
that people who guess all the answers get zero on average, whilst you still get full
marks (25 out of 25) if you answer all the questions correctly.]

Q1 How many of the following statements are true?

• There are five 5-th roots of unity.
• The 11-th roots of unity add up to 0.
• The 4-th roots of unity are 1, i, −1, −i.
• The 7-th roots of unity are 1, ζ, . . . , ζ6 where ζ = cos(2π/7)+i sin(2π/7).

(a) 1 (b) 2 (c) 3 (d) 4

Q2 Suppose X is the complex number satisfying (1 + i)X = (2i − 1)(2 + i). The
argument of X is

(a) π/6 (b) π/4 (c) π/3 (d) π/2

Q3 Let α, β and γ be the roots of x3 + x+ 2. Then α−1 + β−1 + γ−1 is equal to

(a) −1/2 (b) −i/2 (c) cos(π/3) + i sin(π/3) (d) 1 + i
√

3

Q4 The expression
cos θ + i sin θ

1 + i
√

3
can be rewritten as

(a) 2−1/2 exp(i(θ − π/3)) (b) 2−1/2 exp(i(θ − 2π/3))

(c) 2−1 exp(i(θ − 2π/3)) (d) 2−1 exp(i(θ − π/3)).

Q5 Let L be the line with vector equation x = (2, 1)+t(1, 3). Which of the following
lines is perpendicular to L and passess through the origin:

(a) x = t(−1, 2) (b) x = (6,−2) + t(−3, 1)

(c) x = (0, 0) + t(1, 1) (d) none of the others.
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Q6 Write x = (x, y) in R2. The two equations

‖x‖ = 1, ‖x− (0, 2)‖ = 1,

geometrically represent

(a) two overlaping circles; (b) two touching circles;

(c) two completely disjoint circles; (d) none of the others.

Q7 Let v is a non-zero vector in R5. Which of the following has length π but
opposite direction to v?

(a)
−π
‖v‖

v (b)
−‖v‖
π

v (c)
π2

‖v‖
v (d) none of the

others

Q8 How many of the following facts are used in the proof of the identity u · v =
‖u‖‖v‖ cos θ?

• The property u · u = ‖u‖2.
• Commutativity of the dot product.
• The cosine rule for triangles.
• De Moivre’s Theorem.

(a) 1 (b) 2 (c) 3 (d) 4.

Q9 Let x and y be non-parallel non-zero vectors in Rn of equal length. What is
the angle that the vector x + y makes with the vector x− y ?

(a) π/2 (b) 0 (c) 2π/3 (d) depends on x, y

Q10 Let u = (1, 0, 0), v = (0, 1/2, 1/2), w = (0, 1/2,−1/2), x = (1/2, 0, 1/2).
Which of the following triples in R3 are orthonormal?

(a) u, v, w (b) u, v, x (c) u,
√

2v,
√

2w (d) u,
√

2v,
√

2x

Q11 Which of the following planes is perpendicular to the line x = (0, 1, 1) +
t(1, 2,−2) and passes through the point (1, 1, 1)?

(a) 2x+ 4y − 4z = 2 (b) − 2x+ 3y + 2z = 1

(c) 2x+ 4y − 4z = 0 (d) − 2x+ 3y + 2z = 3.
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INSTRUCTIONS
CALCULATORS MAY NOT BE USED

1. Read each question carefully and decide which of the statements (a) – (d) best
represents a correct answer. Black out the corresponding box (blue or black pen
please) on the Answer Sheet, or alternatively, black out the ‘no attempt’ box.

2. Black-out exactly one of the five boxes for each question.

3. The scoring is: 3 for a correct answer, 1 for no attempt, and 0 for a wrong
answer. If T is your total score, your final mark out of 25 is: Max{0, T − 8} [so
that people who guess all the answers get zero on average, whilst you still get full
marks (25 out of 25) if you answer all the questions correctly.]

Q1 Let A =

(
4 α
1 1

)
. For which real numbers α is det(A5) = −32?

(a) −2 (b) 2 (c) 6 (d) −6

Q2 Let

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
, S =

(
−1 0
0 −1

)
.

Let u be a column vector in R2. To obtain SRθu from u we

(a) rotate anti-clockwise about the origin through angle θ then reflect in the
origin;

(b) reflect in the y-axis then rotate anti-clockwise about the origin through
angle θ;

(c) reflect in the origin then rotate clockwise about the origin through angle
θ;

(d) rotate clockwise about the origin through angle θ then reflect in the x-axis.

Q3 Let

Π1 : x · (1, 0, 1) = 1, Π2 : x = s(1, 0, a) + t(b, 1,−1) + (2, 1, c).

For which triple of values a, b, c will Π1, Π2 be the same plane?

(a) a = −1, b = 1, c = −3 (b) a = 1, b = −1, c = −3

(c) a = 1, b = −1, c = −1 (d) a = −1, b = 1, c = −1.
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Q4 Let A be a 2 × 2 matrix satisfying A

(
1
1

)
=

(
2
2

)
, A

(
2
−1

)
=

(
−6
3

)
. The

characteristic polynomial of A is

(a) x2 + x− 6 (b) x2 − 5x+ 6 (c) x2 + 5x+ 6 (d) x2 − x− 6.

Q5 In R3 the volume of the parallelopiped with adjacent sides u, v, w is |u ·v×w|.
How many of the following facts are used in the proof of this formula:

• volume of the parallelopiped = (area of base) × height;
• area of a parallelogram with adjacent sides x and y is ‖x× y‖;
• x× y is orthogonal to both x and y;
• if θ is the angle between vectors x and y then x · y = ‖x‖‖y‖ cos θ.

(a) 1 (b) 2 (c) 3 (d) 4.

Q6 Let T1, T2, T3 : R3 → R2 be given by

T1(x, y, z) = (0, y − z), T2(x, y, z) = (2x+ 1, y), T3(x, y, z) = (xy, 0).

Which of T1, T2, T3 is a linear transformation?

(a) T1 (b) T2 (c) T3 (d) none of them.

Q7 The linear system in x, y

(1 + λ)x+ µy = δ, (1− λ)x+ µy = 0,

is a homogeneous system with non-trivial solutions precisely when

(a) λ = µδ (b) λµ = δ = 0 (c) λµ = 0, δ 6= 0 (d)
µ 6= 0.

Q8 Let A, B be 2 × 2 matrices satisfying AB =

(
−3 7
−4 1

)
, B−1 =

(
1 −1
0 1

)
.

Then 25A−1 is

(a)

(
−6 4
2 −1

)
(b)

(
0 3
−2 5

)
(c)

(
5 −10
4 −3

)
(c) undefined.

Q9 Let ζ = exp(2πi/5). Then −ζ is an n-th root of unity where n is

(a) 5 (b) 6 (c) 10 (d) 4.

Q10 Which of the following are necessary and sufficient conditions for the matrices
A =

(
a b
c d

)
and B = ( 1 0

1 0 ) to commute?

(a) A = ( 0 0
0 0 ) (b) A = B (c) b = c+ d− a = 0 (d) a+ b = c+ d

Q11 Let T : R3 → R3 be given by T (x, y, z) = (0, x+ z, y). The image of T is the

(a) xy-plane (b) yz-plane (c) xz-plane (d) plane x+ z = y.


