MA135—VECTORS AND MATRICES EXAMPLE SHEET 4

All questions in Sections A and B must be handed in to your supervisor via the supervisor's pigeon loft by **3pm Monday**, **Week 5**. Section C questions should be **attempted** by students who hope to get a 1st or 2:1 degree, but are not to be handed in.

Section A

- A1 Let Π be the plane in \mathbb{R}^3 given in standard form by x + y + z = 1. Write the vector equation and the point-normal form equation for Π .
- A2 Let Π_1 , Π_2 be the two planes in \mathbb{R}^3 given by

$$\Pi_1 : x + y + z = 1, \qquad \Pi_2 : x - 2y - z = 0.$$

Find the vector equation of the straight line given by the intersection of Π_1 and Π_2 .

- A3 Find the vector equation of the plane in \mathbb{R}^3 passing through the point (0,1,1) and containing the line $L: \mathbf{x} = (1,0,0) + t(0,0,1)$.
- A4 Calculate $B = (b_{ij})_{3\times 4}$ where $b_{ij} = \begin{cases} i \ j & \text{if } i \leq j \\ i+j & \text{otherwise.} \end{cases}$
- A5 Let

$$A = \begin{pmatrix} -2 & 5 & -3 \\ 4 & 1 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 4 & 3 \\ -2 & 2 \end{pmatrix},$$

$$C = \begin{pmatrix} -3 & 2 & 0 \\ 4 & 5 & 1 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 \\ -1 & 2 \\ 2 & 1 \end{pmatrix}.$$

Which of the following operations is defined; if defined, give the result.

$$A + 2B$$
, $2C - A$, $C + 0_{2 \times 2}$, $B \operatorname{diag}(2, 4)$, AB , $A^{t}B$, D^{-1} , $B^{-1}D$, D/B , $\operatorname{det}(B^{100})$

A6 Write the system of linear equations

$$5x - 2y = 7$$
, $-3x + 7y = 19$

in matrix form and solve. What do the two equations and their solution mean geometrically?

A7 Prove (directly from the definition of determinant) that if A, B are 2×2 matrices then $\det(AB) = \det(A) \det(B)$.

Section B

B1 Write the system of linear equations

$$x + \lambda y = 1,$$
 $\lambda x + 4y = 3$

in matrix form. For which values of λ does this system have a unique solution? Express this unique solution in terms of λ .

- B2 For each of the following statements, either give a proof to show that its is true, or a counterexample to show that it is false:
 - (i) If A, B are invertible $n \times n$ matrices then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.
 - (ii) If A, B, C are 2×2 matrices and AB = AC then either $A = 0_{2\times 2}$ or B = C.
 - (iii) If A is a non-zero 2×2 matrix then A^2 is non-zero.
- B3 Let $A = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$. Use induction to show $A^n = \begin{pmatrix} 3^n & 0 & 0 \\ 0 & 1 & n \\ 0 & 0 & 1 \end{pmatrix}$ for every positive integer n.
- B4 Suppose A, B, C, D are square matrices having the same size and satisfying: $(A^{-1}D + BC)A + B^2 = (CA + B)^2$. If A is invertible, express D in terms of A, B, C, simplifying as much as possible.

Section C

- C1 Which matrices $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ commute with the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.
- C2 Suppose A and P are $n \times n$ matrices, and that P is invertible, and n is a positive integer. Show that $(P^{-1}AP)^n = P^{-1}A^nP$. Is this true for negative n?
- C3 An $n \times n$ matrix is called symmetric is $A^t = A$ and called skew-symmetric if $A^t = -A$. Let B be an $n \times n$ matrix. Show that
 - (i) $B + B^t$ and BB^t are symmetric.
 - (ii) $B B^t$ is skew-symmetric.
 - (iii) Write B as a sum of a symmetric matrix and a skew-symmetric matrix.
- C4 An $n \times n$ matrix A is said to be *orthogonal* if $A^t A = I_n$. How many 6×6 matrices are simultaneously diagonal and orthogonal?