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Notation

K a perfect fields

GK = Gal(K/K ) the absolute Galois group of K
N a positive integer, if char(K ) > 0 then want char(K ) - N.
E an elliptic curve defined over K .

E [N] the N-torsion subgroup of E (K ).

E [N] is stable under the action of GK .

For σ ∈ GK ,
E [N]→ E [N], P 7→ Pσ

is an automorphism.



Mod N Galois Representation of E

Obtain a representation

ρE ,N : GK → Aut(E [N]).

This is known as the mod N Galois representation attached to E .

ker(ρ) is normal of finite index.

σ ∈ ker(ρ) ⇐⇒ Pσ = P for all P ∈ E [N].

∴ ker(ρ) = GK(E [N]).

ρ(GK ) ∼= GK/GK(E [N])
∼= Gal(K (E [N])/K ).



E [N] ∼= (Z/NZ)2 (Z/NZ-module of rank 2).

Automorphism of E [N] = Z/NZ linear isomorphism E [N]→ E [N].

Choosing an basis for E [N] we can identify ρE ,N as a representation

ρE ,p : GK → GL2(Z/NZ).



An Example: ρE ,2
Suppose char(K ) 6= 2.

E : Y 2 = f (X ), f (X ) = X 3 + aX 2 + bX + c ∈ K [X ], ∆(f ) 6= 0.

Write
f = (X − θ1)(X − θ2)(X − θ3), θi ∈ K .

E [2] = {0,P1,P2,P3}, Pi = (θi , 0), P3 = P1 + P2.

K (E [2]) = K (θ1, θ2, θ3), Gal(K (E [2])/K ) = Gal(f ).

Choose P1, P2 as basis.

Case 1: If θ1, θ2, θ3 ∈ K , then ρ = 1 (the trivial homomorphism).



An Example: ρE ,2 (continued)

E [2] = {0,P1,P2,P3}, Pi = (θi , 0), P3 = P1 + P2.

Case 2: θ1 ∈ K , K (θ2) = K (θ3) = K (
√
d), d ∈ K ∗ \ (K ∗)2.

Let σ ∈ GK .

σ(
√
d) =

√
d =⇒ σ(P1) = P1, σ(P2) = P2,

=⇒ ρ(σ) =

(
1 0
0 1

)
∈ GL2(F2)

σ(
√
d) = −

√
d (σ swaps θ2, θ3)

σ(P1) = P1, σ(P2) = P3 = P1 + P2 =⇒ ρ(σ) =

(
1 1
0 1

)
∈ GL2(F2).

ρ(GK ) =

{(
1 0
0 1

)
,

(
1 1
0 1

)}
∼= Gal(K (

√
d)/K ) = Gal(K (E [2])/K ).



An Example: ρE ,2 (continued)

E [2] = {0,P1,P2,P3}, Pi = (θi , 0), P3 = P1 + P2.

Case 3: Gal(f ) = A3 = {id, (1, 2, 3), (1, 3, 2)}.
e.g.

(θ1, θ2, θ3)σ = (θ2, θ3, θ1) =⇒ Pσ1 = P2, Pσ2 = P3 = P1 + P2

=⇒ ρ(σ) =

(
0 1
1 1

)

ρ(GK ) =

{(
1 0
0 1

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)}
∼= A3

∼= Gal(K (E [2])/K ).

Case 4: Gal(f ) = S3, find

ρ(GK ) = GL2(F2) ∼= S3 ∼= Gal(K (E [2])/K ).



Important Remark: Image Upto Conjugation

ρ(GK ) ⊆ GL2(Z/NZ) depends on a choice of basis for E [N].

If we change basis then we conjugate ρ by the change-of-basis matrix,
which is an element of GL2(Z/NZ).

∴ image is only defined up to conjugation.



The mod N-Cyclotomic Character
Let ζN be a primitive N-th root of 1.

Define the mod N-cyclotomic character

χN : GK → (Z/NZ)∗, ζσN = ζ
χN(σ)
N .

Theorem

If τ ∈ GQ denotes any complex conjugation then χN(τ) = −1.

Proof.

Complex conjugation takes ζN to ζ−1N .

Theorem

det ρE ,N = χN

(
GK

ρ−→ GL2(Z/NZ)
det−−→ (Z/NZ)∗

)
.



Cyclotomic Character (continued)

Theorem

det ρE ,N = χN .

Proof.

Recall that the Weil pairing eN : E [N]× E [N]→ µN = 〈ζN〉 is bilinear,
alternating, non-degenerate, and Galois invariant.

Alternating: eN(S , S) = 1 for all S ∈ E [N].

Alternating implies skew-symmetric:

1 = eN(S + T , S + T )

= eN(S , S)eN(S ,T )eN(T ,S)eN(T ,T )

= eN(S ,T )eN(T ,S).

∴ eN(T , S) = eN(S ,T )−1 (skew-symmetric)



Cyclotomic Character (continued)

Proof.

eN non-degenerate =⇒ ∃ basis S , T such that eN(S ,T ) = ζN .

Let σ ∈ GK , ρE ,N(σ) =

(
a b
c d

)
. ∴

{
Sσ = aS + cT ,

T σ = bS + dT .

ζ
χN(σ)
N = ζσN by definition of χN

= eN(S ,T )σ by choice of S , T

= eN(Sσ,T σ) Galois invariance

= eN(aS + cT , bS + dT )

= eN(S ,S)aceN(S ,T )adeN(T , S)bceN(T ,T )cd bilinearity

= eN(S ,T )ad−bc eN alternating

= ζad−bcN by choice of S , T .

∴ χN(σ) = ad − bc = det ρE ,N(σ).



Torsion and Isogenies

Theorem

The following are equivalent:

(a) E has a K-rational point of order N;

(b) ρE ,N ∼
(

1 ∗
0 χN

)
.

(c) ρE ,N(GK ) is conjugate inside GL2(Z/NZ) to a subgroup of

B1(N) :=

{(
1 b
0 d

)
: b ∈ Z/NZ, d ∈ (Z/NZ)∗

}
⊂ GL2(Z/NZ).



Theorem

The following are equivalent:

(a) E has a cyclic K-rational N-isogeny;

(b) ρE ,N ∼
(
φ ∗
0 ψ

)
, where φ, ψ : GK → (Z/NZ)∗ are characters

satisfying φψ = χN .

(c) ρE ,N(GK ) is conjugate inside GL2(Z/NZ) to a subgroup of

B0(N) :=

{(
a b
0 d

)
: b ∈ Z/NZ, a, d ∈ (Z/NZ)∗

}
.

Proof. (a) =⇒ (b). Let θ : E → E be a cyclic N isogeny, defined over K .

ker(θ) = 〈P〉, P ∈ E [N] has order N.

θ defined over K =⇒ 〈P〉σ = 〈P〉.



Theorem

The following are equivalent:

(a) E has a cyclic K-rational N-isogeny;

(b) ρE ,N ∼
(
φ ∗
0 ψ

)
, where φ, ψ : GK → (Z/NZ)∗ are characters

satisfying φψ = χN .

Proof. (a) =⇒ (b). Let θ : E → E be a cyclic N isogeny, defined over K .

ker(θ) = 〈P〉, P ∈ E [N] has order N.

θ defined over K =⇒ 〈P〉σ = 〈P〉.

Choose Q ∈ E [N] such that P, Q is a basis.

Pσ = aσP, Qσ = bσP + dσQ ∀σ ∈ GK

∴ ρE ,N(σ) =

(
aσ bσ
0 dσ

)
.

Exercise: Complete the proof.



Quadratic Twisting

Lemma

Let d ∈ K ∗. Suppose char(K ) 6= 2. Let E ′ be the quadratic twist of E by
d. Let ψ : GK → {1,−1} be the quadratic character defined by√
d
σ

= ψ(σ) ·
√
d. Then ρE ,N ∼ ψ · ρE ′,N .

Proof. E , E ′ have models

E : Y 2 = X 3+aX 2+bX +c , E ′ : Y 2 = X 3+daX 2+d2bX +d3c .

The map φ : E (K )→ E ′(K ), φ(x , y) =

(
x

d
,

y

d
√
d

)
is an

isomorphism. Induces isomorphism φ : E [N]→ E ′[N].
Let P = (x , y) ∈ E [N]. Note that ±P = (x ,±y). Thus,

φ(P)σ =

(
xσ

d
,

yσ

d
√
d
σ

)
=

(
xσ

d
, ψ(σ) · yσ

d
√
d

)
= ψ(σ) ·

(
xσ

d
,

yσ

d
√
d

)
= ψ(σ) · φ(Pσ).

Exercise: complete the proof.



Theorem

Let H be a subgroup of GL2(Z/NZ). Suppose that ρE ,N(GK ) is contained
in H. Let E ′ be a quadratic twist of E . If −I ∈ H, then ρE ′,N(GK ) is
contained in H (up to conjugation).

Corollary

If E has a cyclic K-rational N isogeny, then so does any quadratic twist.

Recall

E has point of order N ⇐⇒ image ⊂ B1(N) :=

{(
1 b
0 d

)}

E has cyclic N isogeny ⇐⇒ image ⊂ B0(N) :=

{(
a b
0 d

)}
.

Note −I ∈ B0(N) but −I /∈ B1(N) (for N ≥ 3).



Serre’s Uniformity Conjecture

Conjecture (Serre’s Uniformity Conjecture)

Let E/Q be without CM. Let p > 37. Then ρE ,p is surjective.

Note: ρ surjective ⇐⇒ image contains SL2(Fp).

Theorem (Dickson)

Let H be a subgroup of GL2(Fp) not containing SL2(Fp). Then (up to
conjugation)

(i) either H ⊆ B0(p) :=

{(
∗ ∗
0 ∗

)}
(Borel subgroup)

(ii) or H ⊆ N+
s (p) :=

{(
α 0
0 β

)
,

(
0 α
β 0

)
: α, β ∈ F∗p

}
(normalizer of

split Cartan)

(iii) or H ⊆ N+
ns(p) (normalizer of non-split Cartan).

(iv) or the image of H in PGL2(Fp) is isomorphic to A4, S4 or A5 (these
are called the exceptional subgroups of GL2(Fp)).



Conjecture (Serre’s Uniformity Conjecture)

Let E/Q be without CM. Let p > 37. Then ρE ,p is surjective.

Theorem (Dickson)

Let H be a subgroup of GL2(Fp) not containing SL2(Fp). Then (up to
conjugation)

(i) either H ⊆ B0(p) :=

{(
∗ ∗
0 ∗

)}
(Borel subgroup)

(ii) or H ⊆ N+
s (p) :=

{(
α 0
0 β

)
,

(
0 α
β 0

)
: α, β ∈ F∗p

}
(normalizer of

split Cartan)

(iii) or H ⊆ N+
ns(p) (normalizer of non-split Cartan)a

(iv) or the image of H in PGL2(Fp) is isomorphic to A4, S4 or A5 (these
are called the exceptional subgroups of GL2(Fp)).

aN+
ns(p) can be conjugated inside GL2(Fp2) to{(

α 0
0 αp

)
,

(
0 α
αp 0

)
: α ∈ F2

p
∗
}
.


