MA3D5 Galois Theory

Homework Assignment 2

The deadline is **2pm Thursday**, week 5. Please hand in your answers to questions 3 and 6 the MA3D5 Galois Theory box outside the Undergraduate Office.

- 1. Let $f \in \mathbb{Q}[x]$ be a polynomial of degree n. Show that the splitting field of f has degree $\leq n!$.
- 2. Let p, q be distinct primes.
 - (a) Show that $\sqrt{p} \notin \mathbb{Q}(\sqrt{q})$.
 - (b) Determine with proof the degree $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}]$.
 - (c) Determine with proof the degree $[\mathbb{Q}(\sqrt{p}, \sqrt{q}, \sqrt{pq}) : \mathbb{Q}]$.
 - (d) Let

$$g(x) = x^4 - 2(p+q)x^2 + (p-q)^2$$
.

Show that $\sqrt{p} + \sqrt{q}$ is a root of g. Deduce that g is irreducible. (**Hint:** use the fact $\mathbb{Q}(\sqrt{p} + \sqrt{q}) = \mathbb{Q}(\sqrt{p}, \sqrt{q})$ which you proved in Assignment 1.)

- 3. Let $f = x^3 + x + 3$. In Assignment 1 you showed that f is irreducible, and that it has exactly one real root.
 - (a) Let θ be the real root of f. Let ϕ , ϕ' be the two other roots. Compute

$$[\mathbb{Q}(\theta):\mathbb{Q}]$$
 $[\mathbb{Q}(\theta,\phi):\mathbb{Q}]$ $[\mathbb{Q}(\theta,\phi,\phi'):\mathbb{Q}].$

- (b) Without writing down the minimal polynomial for θ^2 , show that $\mathbb{Q}(\theta^2) = \mathbb{Q}(\theta)$.
- (c) Write down the minimal polynomial for θ^2 .
- 4. Let L/K be a field extension with degree [L:K]=p where p is a prime. Show that L/K is a simple extension.
- 5. Let L be a field and K its prime subfield. Let ϕ be an automorphism of L (this simply means that $\phi: L \to L$ is an isomorphism of fields). Show that $\phi(a) = a$ for every $a \in K$.
- 6. Let $K := \mathbb{F}_5[x]/(x^4 + x^2 + x + 1)$.
 - (a) Show that K is a field.
 - (b) What is the characteristic of K?
 - (c) Let $\alpha = x + (x^4 + x^2 + x + 1) \in K$. Write down a basis for K/\mathbb{F}_5 in terms of α .
 - (d) Express α^6 in terms of your basis.
 - (e) How many elements does K have?
 - (f) Let $\phi: K \to K$ be given by $\phi(\beta) = \beta^5$. Show that ϕ is an automorphism of K.